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The existence of a two-vibron~amide-I quanta! bound state has been examined within the framework of a
two-site realization of the Davydov model. The parameter space of the system is divided into two regions
where the nature of pairing and the character of bound states are determined by the quite different physical
mechanisms. The validity of the semiclassical approximation was discussed.@S0163-1829~96!03726-5#

Understanding of the underlying physical mechanisms of
the charge and energy transfer in biological macromolecules
such asa-helix proteins, for example, is one of the most
challenging problems in modern condensed-matter theory.1

An interesting attempt, in that sense, was made by Davydov2

who proposed the soliton model as a basic theoretical frame-
work for the explanation of the role of ana-helixmolecule
in the long-distance charge~electron, proton, etc.! and in-
tramolecular vibrational energy~amid-I quanta, vibron or
CO-stretching mode! transfer. The basic idea of Davydov
theory ~DT! is that the energy losses of the particle through
dissipation and dispersion may be prevented by its self-
trapping~ST! in the induced local distortion of polypeptide
chain and soliton formation. Over the last decade, various
aspects of the DT concerning its relevance for the explana-
tion of the transport processes in realistic biological systems
became the subject of the numerous critical
reexaminations.3–5 Special attention was focused on two ma-
jor points. The first one is the analysis of the soliton stability,
its lifetime in particular, at biologically relevant
temperatures.3 The second one concerns the validity of the
approximations involved in the choice of the wave functions
used in a description of the soliton in the framework of the
so-called Davydov ansatz~DA!.4 While the first problem still
remains wide open,5 we can safely accept the applicability of
the DA in the adiabatic limit, i.e., when the~quasi-!particle
bandwidth (2J) highly exceeds maximal phonon energy
(\vB), so that a semiclassical description of the phonon sub-
system is justified.6,7

Parallely with the analysis of the original Davydov pro-
posal where ST of a single excitation has been considered, it
was also suggested that the ST of the bound state of two or
more amid-I quanta is more relevant in real biological
systems.8 The arguments in benefit of such an attitude are
that the energy released in the adenosine triphosphate~ATP!
hydrolysis is approximately twice the vibron energy and that
the bisoliton energy~per particle! could be considerably
lower then the energy of the single soliton which implies
better stability of the former. Practically in all these studies,
theoretical analysis has been founded upon the assumption
about the classical nature of phonons. However the set of
system parameters usually used in these studies correspond
to the nonadiabatic limit where quantum fluctuations of lat-

tice play an essential role9 so that the semiclassical approxi-
mation is no longer valid. Namely the applicability of the
semiclassical approximation assumes that the particle is fast
as compared with lattice so that the induced lattice distortion
cannot follow its motion. Under these conditions pairing may
arise as a consequence of the trapping of both particles in the
common potential well formed by the static, large radius,
lattice distortion. Quite on the contrary, in the nonadiabatic
limit the particle is surrounded~dressed! by the cloud of
virtual phonons engaged in the creation of the short-ranged
lattice distortion which follows particle motion
instantaneously.9 As a result, the enhancement of the parti-
cle’s effective mass and decreasing of the effective tunneling
energy (J) arises. In many-particle systems the ‘‘dressing’’
effect causes an effective attractive interaction between dif-
ferent particles which may also lead to the creation of the
bound states of two or more particles. This possibility has
been neglected so far and it will be examined in the present
work. For that purpose we shall consider a simple system
which consists of two vibrons tunneling between two impu-
rity molecules embedded in an otherwise perfect lattice.
Such a situation may be described by the two-site approxi-
mation of the original Davydov Hamiltonian, which, using
the vibron number conservation conditionB1

1B1

1B2
1B252 after some trivial transformation, may be written

in the symmetrical form

H52J~B1
1B21B2

1B1!1~B1
1B12B2

1B2!(
q

lq~aq1a2q
1 !

1(
q

\vqaq
1aq . ~1!

Here lq5(Fq/2N
1/2)(12eiqR0), while Fq[F5 const and

vq[v05 const in the case of interaction with dispersionless
optical phonons, Holstein’s molecular crystal model~MCM!
andFq52ix(\/2Mvq)

1/2sin(qR0) in the case of an interac-
tion with long-wavelength acoustical phonons with fre-
quency vq5vBsin(qR0/2), Davydov model. Here
vB52(k/M )1/2 is the maximal phonon frequency,k and
M denote the elastic constant of the molecular chain and
mass of the peptide group~PG!, respectively, whileR0 de-
notes the lattice constant. In the context of the explanation of

PHYSICAL REVIEW B 1 AUGUST 1996-IVOLUME 54, NUMBER 5

540163-1829/96/54~5!/2992~4!/$10.00 2992 © 1996 The American Physical Society



amid-I quanta transfer the following set of parameters was
usually used:2–5 J51.55310222 J, x562pN, M51.9
310225 kg, R054.5310210 m, while k;13 N/m.

Our examination of such a simplified model is motivated
by its recent application in the analysis of the thermal stabil-
ity of Davydov solitons~DS! where it was found that the
creation of the two-vibron bound state may lead to the en-
hanced stability of DS even at high temperatures.10 However
the validity of these predictions is not quite clear. Namely
the above set of parameters corresponds to the nonadiabatic
limit so that the applicability of the semiclassical approxima-
tion for phonons, without analysis of its validity, is question-
able. Thus in order to understand the problem of a two-
vibron bound-state formation and the stability of these
entities, one should formulate the criteria determining the
region of the parameter space of a system in which a particu-
lar type of phonon field behavior will dominate system prop-
erties, the nature of pairing especially. As well as in the case
of the analysis of the single-particle ST, these criteria may be
formulated in terms of two parameters only:B52J/\vB ,
adiabaticity and coupling constant,S5EB /\vB . Here
EB5(q(ulqu2/\vq) denotes the so-called small-polaron
binding energy.

In order to examine the bivibron formation due to the
‘‘dressing’’ mechanism we first rewrite the Hamiltonian~1!
in terms of new operators:Cn5U1BnU describing the
dressed particle polaron, consisting of the original excita-
tions accompanied by the phonon cloud andbq5U1aqU
representing the new phonons with shifted equilibrium posi-
tions.U denotes the so-called incomplete Lang-Firsov uni-
tary transformation operator widely used in the small-
polaron theories9 and the bipolaron model of
superconductivity:11

U5expF ~B1
1B12B2

1B2!(
q

f q~aq2a2q
1 !G ,

f q5 f2q* , ~2!

here f q denotes variational parameter to be determined by
minimizing the ground-state~GS! energy of the system. Av-
eraging the so-obtained result over the new phonon vacuum
we found an effective Hamiltonian describing the system of
two interacting ‘‘polarons:’’

H52Je2x~C1
1C21C2

1C1!22s~C1
12C1

21C2
12C2

2!.
~3!

In deriving this expression we have used the vibron number
conservation condition in order to eliminate the ‘‘mixed’’
terms:C1

1C1C2
1C2 . Heres5(q@lq( f q1 f2q* )2\vqu f qu2#

while x52(qu f qu2 is the so-called dressing parameter mea-
suring the degree of the reduction of the effective tunneling
term.

Writing down the eigenvalue problem of the effective
Hamiltonian using the bivibron vector of state in the form
uC&5(n,m51,2Cn,mCn

1Cm
1u0&vib , (^CuC&52(n,muCn,mu2

51, (Cmn5Cnm) we arrive at the homogeneous system of
equations for bivibron amplitudes:

~E14sdn,m!Cnm1J (
l561

~Cn,m1 l1Cn11,m!50,

Cn,m50 for all n,mÞ1,2. ~4!

This leads to the following result for the bivibron energy:

Ebiv
dress522s22As21J2e22x. ~5!

Repeating the same procedure using the single-particle vec-
tor of state we found the energy of the free vibron as follows:
Ef52J, or in units ofEB in terms of adiabaticity and cou-
pling constantEf52B/2S.

Now we should minimize the bivibron energy~5! with
respect to the parameterf q . However, the variational proce-
dure may be greatly simplified by introducing the assump-
tion of equal dressing for all phonon modes:9

f q5d(l* /\vq), whered(0,d,1) is the new variational
parameter measuring the relative extent of the induced lattice
distortion. This assumption, at first sight, looks like a very
strong approximation since the whole set of variational pa-
rameters, one for each mode, is substituted by a single one.
However, according to some previous results,7,9 concerning
the single polaron and some other related problems, one can
see that it gives the same qualitative predictions as the
q-dependent one, while the estimates of the GS energy are
slightly higher. Thus for the present purpose we may utilize
this simplified version. The problem is now reduced to mini-
mizing the following expression:

E52d~22d!2Ad2~22d!21S B2SD
2

e24Sd2, ~6!

representing the bivibron energy per particle expressed in
units of EB (E5Ebiv

dress/2EB). In such a way we obtain the
self-consistent equation ford:

d5F 12
~12d!~22d!2~B2/2S!e24d2S

Ad2~22d!21S B2SD
2

e24d2S G21

. ~7!

It can be solved numerically and our results are visualized in
Fig. 1 where we have plotted the set of adiabates@curves
S5S(d,B)# for a few chosen values ofB spanning the whole
range of adiabaticity. Each of these adiabates represents the
set of points in theS,d plane corresponding to the extrema of
the GS energy. Clearly the physically meaningful region is
the one where the stability condition holds (]2E/]d2.0),
i.e., below the stability line:S5@8d2(12d)#21. For repre-
senting our results in such a way instead ofd5d(S) we have
some practical reasons and the most important one is that the
points where the first two derivatives ofE vanish correspond
to the points onS5S(d) lines where]S/]d50. Thus the
stability line passes through the stationary points of each
adiabate. Looking at Fig. 1 as a graph ofd5d(S,B) one can
see that as long as the adiabaticity parameter is less than
some critical value,Bc5A(7/4)e3/2 corresponding to the
adiabate which is tangential to stability line in its minimum,
these curves include only minima of the GS energy while
d shows continuous growth with the increase of the coupling
strength (S). WhenB exceeds that critical value,d becomes
a multivalued function onS and in the certain region of the
coupling constant, determined by the crossing points of
stability line and particular adiabate, there appear, for
each value ofS, two values d corresponding to the
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minima of GS energy. The first of these two solutions ofd
falls onto a relatively small value, which is approximately
d.1/(11B), and characterizes a quasifree partially dressed
bivibron, while the second one falls ontod;1. States char-
acterized withd'1, occurring on each adiabate either for
S→` or whenB!1, define a highly dressed practically lo-
calized quasiparticle~bipolaron or bivibron! with very large
effective mass. Comparing energies of these states with each
other and with the energies of free ones (Ef52B/2S) we
found that~i! in the nonadiabatic limit (B!1) and for prac-
tically all nonvanishing values of the coupling constant, the
bipolaron is energetically more favorable than the free vi-
brons;~ii ! in the adiabatic case (B@1) the energy per par-
ticle of the quasifree bipolaron@Eqf.22/(B11)2B/2S#
obviously is always lower than the energy of free states;~iii !
the quasifree bipolaron is more superior than the localized
(El.222O@(B/2S)2e24S#) states as far asS,(B11)/4,
while localization occurs in the opposite case.

As one can see the above analysis does not exclude the
possibility of bipolaron formation on account of an effective
vibron-vibron interaction even in the highly adiabatic limit,
where, according to usually accepted premise of the theory
of ST phenomena6,7,9 one should expect applicability of the
semiclassical concept. Thus in order to discuss the validity of
the above conclusions and determine criteria where a particu-
lar mechanism of pairing would prevail we have to examine
the possibility of bipolaron formation applying a semiclassi-
cal approximation. For that purpose we first average the
model Hamiltonian~1! over the phonon coherent states:
ua&5)quaq& (aqua&5aqua&). Then we solve the eigen-
value problem of a so-obtained effective semiclassical
Hamiltonian using the analogous vector of state of the sys-
tem as before substituting dressed vibron operators by the
bare ones. Thus we again obtain the homogeneous set of
equations for bivibron amplitudes:

@E1~21!n2hdn,m#Cn,m1J (
l561

~Cn,m1 l1Cn1 l ,m!50,

Cn,m50 if n,mÞ1,2, ~8!

whereh5(qlq(aq1a2q* ). This procedure is fully equiva-
lent to Davidov’sD2 ansatz and two vibron bound states, if
any arises, should be related to bisolitons. These entities are
minimal energy configurations created by the capture of both
vibrons in the common potential well formed by the static
lattice distortion. They can be created only in the case when
the coherent phonon amplitudesaq , which measure the ex-
tent of the induced lattice distortion, are different from zero.
From the condition that system~8! possesses nontrivial so-
lutions, we find three solutions forE. Naturally only the
lowest one,E522Ah21J2, is physically meaningful. Fi-
nally, minimizing the system energyEs5E1(q\vquaqu2

we obtainaq5g(lq* /\vq) where g50 if J/4EB.1 and

g52A12(J/4EB)
2 if J/4EB,1. The first solution (g50)

corresponds to the undeformed lattice with two free vibrons
with the energy~in units ofEB) per particleEf52B/2S. The
second one defines the bivibron with the energy per particle:

Ebivclass5222
1

2 S B4SD
2

. ~9!

The corresponding bivibron amplitudes are given as follows:
C11,225(1/A8)(16g) and C125(1/A8)A12g2. In terms
of the adiabaticity parameter and coupling constant, the con-
dition for the existence of such statesJ,4EB may be written
as follows:B,8S. Using an analogous procedure with a
single-particle wave function we find the energy of the single
vibron trapped in its own potential well as
Ev5212(B/4S)2. The condition for the formation of such
states isJ/(2EB),1. In order to analyze bivibron stability
with respect to these states we found a bivibron binding en-
ergy which represents the difference between the energy~9!
and single vibron energy:

DE5211
1

2 S B4SD
2

. ~10!

It is negative in practically the whole physically meaningful
region ~i.e., if B,8S). Thus under this condition, a system
populated with two vibrons is always unstable with respect
to thesemiclassicalbivibron formation.

We are now in a position to determine in which region of
parameter space of a system (S-B plane! a particular method
should give a more accurate description of the two-site two-
vibron system. Owing to the variational character of both
approaches the one which gives a lower estimate for the GS
energy of the system is superior. Substituting the optimized
values ofd into ~6! one may calculate the GS energy of the
dressed bivibron for the arbitrary value ofS andB. Compar-
ing the so-obtained result with the semiclassical bivibron en-
ergy we found, as well as in the single-polaron case,12 a
so-called semiclassical boundary, the solid line in Fig. 2,
which divides the parameter space of the system into two
regions with quite distinct physical properties. In the first
one, corresponding to those points in theS-B plane lying
above this line, system properties and the nature of pairing

FIG. 1. Dressing fractiond vs coupling constant (S) for a few
chosen values of the adiabaticity parameter (B). Curvesa, b, c,
d, e, f , and g correspond to the following values ofB: 10, 5;
Bc.2.8, 2, 1, 0.5, and 0.1, respectively. The dotted line represents
the so-calledstability line: S5@8d2(12d)#21.
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are determined by the classical nature of phonons. In the
opposite case, a semiclassical approximation is no more
valid and pairing should be achieved through the effective
vibron-vibron interaction. Since the above-quoted values of
physical parameters for thea-helix fall into this region
(B.0.17 andS.0.04) we conclude that, for this particular
case, the bivibron will be formed, but such an entity cannot
be related to the Davydov~bi!soliton since it arises as a
consequence of a different mechanism. As compared with
the single-polaron problem where the semiclassical boundary

is determined by the lines~b! for the Davydov model and~c!
for the MCM in Fig. 2~see Ref. 12!, in the present case the
semiclassical approximation is valid in a quite larger region
of the parameter space.

Our results in a certain sense question the main ideas of
papers10 since, within this model and for the usually used set
of system parameters, we found that vibron pairing arises
due to a quite different mechanism than originally proposed
in Ref. 10. Therefore the stability of such entities, their trans-
port properties in particular, should be quite different than
those predicted on the basis of a semiclassical approxima-
tion. Furthermore, we must stress that the above analysis
strictly concerns the problem of bivibron formation in two-
site systems only and any generalization of these arguments
to the problem of Davidov-like~bi!soliton formation in real-
istic biological systems is doubtful. Namely the above results
show remarkable similarities with a single-particle ST in
two-site systems which differ in many respects from the ST
in extended systems6,7,12so that the condition for applicabil-
ity of the semiclassical approximation is not simply an adia-
batic condition (B@1).12,13

The above choice of the simplified variational method im-
poses certain restrictions on a domain of validity of our re-
sults. However these restrictions concern the accuracy of that
method to describe the dressed bivibron properly, behavior
of its effective mass as a function of system parameters in
particular, but cannot affect our conclusion against the appli-
cability of the semiclassical approximation. It will hold even
if one uses a more accurate variational procedure for the
description of a dressed entity. Namely such an improved
treatment would result with lower estimates of the GS energy
for the particular values ofS andB than the present one, in
such a way enlarging the region of parameter space where
the dressing mechanism is dominant.
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FIG. 2. The semiclassical boundaries in theS-B plane for the
bivibron (a) and single-polaron cases. (b) Davydov model and
(c) MCM.
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