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Effects of quantum lattice fluctuations on vibron pairing in two-site systems
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The existence of a two-vibroamide-l quantabound state has been examined within the framework of a
two-site realization of the Davydov model. The parameter space of the system is divided into two regions
where the nature of pairing and the character of bound states are determined by the quite different physical
mechanisms. The validity of the semiclassical approximation was discyS@t53-182006)03726-3

Understanding of the underlying physical mechanisms ofice play an essential rdleso that the semiclassical approxi-
the charge and energy transfer in biological macromoleculemation is no longer valid. Namely the applicability of the
such asa-helix proteins, for example, is one of the most semiclassical approximation assumes that the particle is fast
challenging problems in modern condensed-matter theoryas compared with lattice so that the induced lattice distortion
An interesting attempt, in that sense, was made by Davidovcannot follow its motion. Under these conditions pairing may
who proposed the soliton model as a basic theoretical framearise as a consequence of the trapping of both particles in the
work for the explanation of the role of am-helix molecule ~ common potential well formed by the static, large radius,
in the long-distance chargelectron, proton, etg.and in- lattice distortion. Quite on the contrary, in the nonadiabatic
tramolecular vibrational energgamid-l quanta, vibron or limit the particle is surroundeddressedl by the cloud of
CO-stretching modetransfer. The basic idea of Davydov Virtual phonons engaged in the creation of the short-ranged
theory (DT) is that the energy losses of the particle throughlattice  distortion — which  follows  particle  motion
dissipation and dispersion may be prevented by its se|flnstantaneousl§/.As a result, the enhancement of the parti-
trapping (ST) in the induced local distortion of polypeptide cle’s effective mass and decreasing of the effective tunneling
chain and soliton formation. Over the last decade, variougnerdy () arises. In many-particle systems the “dressing”
aspects of the DT concerning its relevance for the explanagffect causes an effective attractive interaction between dif-
tion of the transport processes in realistic biological systeméerent particles which may also lead to the creation of the
became the subject of the numerous criticalPound states of two or more particles. This possibility has
reexaminations=® Special attention was focused on two ma- Peen neglected so far and it will be examined in the present
jor points. The first one is the analysis of the soliton stability,work. For that purpose we shall consider a simple system
its lifetime in particular, at biologically relevant Which consists of two vibrons tunneling between two impu-
temperatured.The second one concerns the validity of thefity molecules embedded in an otherwise perfect lattice.
approximations involved in the choice of the wave functionsSuch a situation may be described by the two-site approxi-
used in a description of the soliton in the framework of themation of the original Davydov Hamiltonian, which, using
so-called Davydov ansatDA).* While the first problem still  the vibron number conservation conditionB; B;
remains wide opehwe can safely accept the applicability of +B, B,=2 after some trivial transformation, may be written
the DA in the adiabatic limit, i.e., when thguasijparticle  in the symmetrical form
bandwidth (2) highly exceeds maximal phonon energy
(Sil/;otg)mslts) Jfc[:;ittifziie?{;:z?m|cla55|cal description of the phonon subH — _J(B'B,+B}B,)+(B!B,~ B} Bz)% )\q(anraiq)

Parallely with the analysis of the original Davydov pro-
posal where ST of a single excitation has been considered, it n 2 rw-ata o)
was also suggested that the ST of the bound state of two or q @q%q 4a-
more amid-l quanta is more relevant in real biological ,
system$. The arguments in benefit of such an attitude areHere A= (F4/2N?)(1—¢'90), while F,=F= const and
that the energy released in the adenosine triphospiadte) 0 =wo= const in the case of interaction with dispersionless
hydrolysis is approximately twice the vibron energy and thatoptical phonons, Holstein’s molecular crystal mo(dICM)
the bisoliton energy(per particle¢ could be considerably andFq=2ix(%/2M wq)l’zsin(qR)) in the case of an interac-
lower then the energy of the single soliton which impliestion with long-wavelength acoustical phonons with fre-
better stability of the former. Practically in all these studies,quency = wgsin(QRy2), Davydov model. Here
theoretical analysis has been founded upon the assumptiang=2(x/M)¥? is the maximal phonon frequency, and
about the classical nature of phonons. However the set dfl denote the elastic constant of the molecular chain and
system parameters usually used in these studies correspormss of the peptide grouG), respectively, whileR, de-
to the nonadiabatic limit where quantum fluctuations of lat-notes the lattice constant. In the context of the explanation of
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amid-I quanta transfer the following set of parameters was V.m=0 for all n,m#1,2. (4)

usually used™ J=1.55x10"%? J, y=62pN, M=1.9 , _ o

X 10~ 25 kg, Ry=4.5% 10" 1% m, while x~13 N/m. This leads to the following result for the bivibron energy:
Our examination of such a simplified model is motivated dress. _ o o [2 247X

by its recent application in the analysis of the thermal stabil- Eoiy 20-2\ o+ e ®)

ity of Davydov solitons(DS) where it was found that the Repeating the same procedure using the single-particle vec-
creation of the two-vibron bound state may lead to the entor of state we found the energy of the free vibron as follows:
hanced stability of DS even at high temperatufddowever E;=—J, or in units ofEg in terms of adiabaticity and cou-
the validity of these predictions is not quite clear. Namelypling constant;= — B/2S.
the above set of parameters corresponds to the nonadiabatic Now we should minimize the bivibron enerd$) with
limit so that the applicability of the semiclassical approxima-respect to the parametéy. However, the variational proce-
tion for phonons, without analysis of its validity, is question- dure may be greatly simplified by introducing the assump-
able. Thus in order to understand the problem of a twotion of equal dressing for all phonon modes:
vibron bound-state formation and the stability of thesef,=s(\*/%w,), where 5(0<§<1) is the new variational
entities, one should formulate the criteria determining theparameter measuring the relative extent of the induced lattice
region of the parameter space of a system in which a particudistortion. This assumption, at first sight, looks like a very
lar type of phonon field behavior will dominate system prop-strong approximation since the whole set of variational pa-
erties, the nature of pairing especially. As well as in the casgameters, one for each mode, is substituted by a single one.
of the analysis of the single-particle ST, these criteria may b@lowever, according to some previous restftsoncerning
formulated in terms of two parameters onB=2J/iiwg,  the single polaron and some other related problems, one can
adiabaticity and coupling constanS=Eg/Awg. Here see that it gives the same qualitative predictions as the
Eg==q(|\g/¥fw,) denotes the so-called small-polaron g-dependent one, while the estimates of the GS energy are
binding energy. slightly higher. Thus for the present purpose we may utilize
In order to examine the bivibron formation due to the this simplified version. The problem is now reduced to mini-
“dressing” mechanism we first rewrite the Hamiltoniah) ~ mizing the following expression:
in terms of new operators€,=U*B,U describing the
dressed particle polaron, consisting of the original excita- \/ ) )
tions accompanied by the phonon cloud ang=U"a,U E=—082-0)—\ 529+
representing the new phonons with shifted equilibrium posi- ) o ) )
tions. U denotes the so-called incomplete Lang-Firsov uni-fépresenting the bivibron energy per particle expressed in
tary transformation operator widely used in the small-units of Eg (£=Efs*12Eg). In such a way we obtain the
polaron theories and the bipolaron model of Self-consistent equation far:

2 2
e7455 , (6)

2S

superconductivity! e -1
5 (1-8)(2— 6)— (B?/2S)e 4%"S @
_ N 2
U—ex;{(BfBl—B;Bz)Eq: fo(ag—a’y) |, \/52(2_5)2+ 235) o 45%S

fq= f’iq, (2 It can be solved numerically and our results are visualized in
. . Fig. 1 where we have plotted the set of adiabdmsves
htnfr(.efg .denotes variational parameter to be determined by~ S(5,B)] for a few chosen values & spanning the whole
minimizing the ground-statéGS) energy of the system. Av- 40 of adiabaticity. Each of these adiabates represents the
eraging the so—obt:?uned re;ult over the new phonon vacuu t of points in thés, § plane corresponding to the extrema of
we f_ound an eff“ectlve Ha.rplltonlan describing the system OEhbe GS energy. Clearly the physically meaningful region is
two interacting “polarons: the one where the stability condiztion hold812£/0752>0),
—_1a Xt Fy_ +2R2 ~+2A2 i.e., below the stability lineS=[86“(1—5)] . For repre-
H=—Je (Cy Cot €y C1) —20(Cy 7CIHC, 7Co). (3  senting our results in such a way insteadbef 5(S) we have
some practical reasons and the most important one is that the
In deriving this expression we have used the vibron numbepoints where the first two derivatives fvanish correspond
conservation condition in order to eliminate the “mixed” to the points onS=S(4) lines wheredS/d8=0. Thus the
terms:C; C,C; C,. Here o=3 [ \o(fq+ %) —fwglfgl?]  stability line passes through the stationary points of each
while x=22q|fq|2 is the so-called dressing parameter mea-adiabate. Looking at Fig. 1 as a graph&#f 8(S,B) one can
suring the degree of the reduction of the effective tunnelingsee that as long as the adiabaticity parameter is less than
term. some critical value B.=/(7/4)e®? corresponding to the
Writing down the eigenvalue problem of the effective adiabate which is tangential to stability line in its minimum,
Hamiltonian using the bivibron vector of state in the form these curves include 0n|y minima of the GS energy while
W) =20 me1¥nmCn ClO)vib,  ((¥|¥)=2%, ¥, Wl & shows continuous growth with the increase of the coupling
=1, (Ym="Y,m We arrive at the homogeneous system ofstrength §). WhenB exceeds that critical valué, becomes

equations for bivibron amplitudes: a multivalued function ors and in the certain region of the
coupling constant, determined by the crossing points of
E+406. V. +1] P +p -0, stability line and particular adiabate, there_ appear, for

( 7 Snm W om |:2¢1( nst T e each value ofS, two values § corresponding to the
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o0 [E+ (=127 ml¥nmtd 2 (Vnmert Wneim) =0,

Y, n=0 if nm#1,2, (8

6.00 where == \q(aq+ a’iq). This procedure is fully equiva-

lent to Davidov’sD, ansatz and two vibron bound states, if
any arises, should be related to bisolitons. These entities are
minimal energy configurations created by the capture of both
vibrons in the common potential well formed by the static
lattice distortion. They can be created only in the case when
the coherent phonon amplitudeg, which measure the ex-
tent of the induced lattice distortion, are different from zero.
From the condition that systefi8) possesses nontrivial so-
lutions, we find three solutions foE. Naturally only the
lowest one,E=—2/5?+J?, is physically meaningful. Fi-
nally, minimizing the system energfs=E+ =% wq|aql®

0.00 ...‘y‘ we obtain aq=y(\g/hwy) where y=0 if J/4Eg>1 and

000 0RO 040060 080 00 o T (J/4ER)? if JIAE<1. The first solution §=0)
corresponds to the undeformed lattice with two free vibrons
FIG. 1. Dressing fractiom vs coupling constant) for a few  With the energy(in units of Eg) per particlef;= —B/2S. The
chosen values of the adiabaticity paramet®}.(Curvesa, b, c, second one defines the bivibron with the energy per particle:
d, e, f, andg correspond to the following values &: 10, 5;
B.~2.8, 2, 1, 0.5, and 0.1, respectively. The dotted line represents 1( B )2

4.00

2.00
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the so-calledstability line S=[85%(1—8)] ™. Eov =~ “2\as ©
minima of GS energy. The first of these two solutionssof The corresponding bivibron amplitudes are given as follows:
falls onto a relatively small value, which is approximately W11 ,=(1/Y8)(1+y) and ¥1,=(1/1/8)y1— 2. In terms
6=1/(1+B), and characterizes a quasifree partially dressegf the adiabaticity parameter and coupling constant, the con-
bivibron, while the second one falls ont>-1. States char- dition for the existence of such statés 4Eg may be written
acterized withé~1, occurring on each adiabate either for as follows: B<8S. Using an analogous procedure with a
S—= or whenB<1, define a highly dressed practically lo- single-particle wave function we find the energy of the single
calized quasiparticlgbipolaron or bivibron with very large  vibron trapped in its own potential well as
effective mass. Comparing energies of these states with eagh= —1— (B/4S)2. The condition for the formation of such
other and with the energies of free oneg< —B/2S) we  states isJ/(2Eg)<1. In order to analyze bivibron stability
found that(i) in the nonadiabatic limitB<1) and for prac-  with respect to these states we found a bivibron binding en-
tically all nonvanishing values of the coupling constant, theergy which represents the difference between the en@gy
bipolaron is energetically more favorable than the free vi-and single vibron energy:
brons;(ii) in the adiabatic caseBg>1) the energy per par-
ticle of the quasifree bipolarofi&y=—2/(B+1)—B/2S] 2
obviously is always lower than the energy of free statiis; Af=-1+5 ( 48) : (10
the quasifree bipolaron is more superior than the localized
(§=—2—0[(B/2S)%e %)) states as far a8<(B+1)/4, Itis negative in practically the whole physically meaningful
while localization occurs in the opposite case. region (i.e., if B<8S). Thus under this condition, a system
As one can see the above analysis does not exclude th®pulated with two vibrons is always unstable with respect
possibility of bipolaron formation on account of an effective to the semiclassicabivibron formation.
vibron-vibron interaction even in the highly adiabatic limit, ~We are now in a position to determine in which region of
where, according to usually accepted premise of the theorparameter space of a systeSB plane a particular method
of ST phenomerfa”® one should expect applicability of the should give a more accurate description of the two-site two-
semiclassical concept. Thus in order to discuss the validity ofibron system. Owing to the variational character of both
the above conclusions and determine criteria where a partic@pproaches the one which gives a lower estimate for the GS
lar mechanism of pairing would prevail we have to examineenergy of the system is superior. Substituting the optimized
the possibility of bipolaron formation applying a semiclassi-values ofé into (6) one may calculate the GS energy of the
cal approximation. For that purpose we first average thelressed bivibron for the arbitrary value $fandB. Compar-
model Hamiltonian(1) over the phonon coherent states: ing the so-obtained result with the semiclassical bivibron en-
|ay=Tl4lay) (agl@)=aqe)). Then we solve the eigen- ergy we found, as well as in the single-polaron césa,
value problem of a so-obtained effective semiclassicabo-called semiclassical boundary, the solid line in Fig. 2,
Hamiltonian using the analogous vector of state of the syswhich divides the parameter space of the system into two
tem as before substituting dressed vibron operators by theegions with quite distinct physical properties. In the first
bare ones. Thus we again obtain the homogeneous set ofie, corresponding to those points in t8 plane lying
equations for bivibron amplitudes: above this line, system properties and the nature of pairing
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is determined by the line) for the Davydov model an¢t)
3:50 3 for the MCM in Fig. 2(see Ref. 12 in the present case the
S ] semiclassical approximation is valid in a quite larger region
3.00 e of the parameter space.
] b Our results in a certain sense question the main ideas of
1 papers? since, within this model and for the usually used set
250 3 of system parameters, we found that vibron pairing arises
3 due to a quite different mechanism than originally proposed
2.00 3 in Ref. 10. Therefore the stability of such entities, their trans-
3 port properties in particular, should be quite different than
3 a those predicted on the basis of a semiclassical approxima-
1.50 3 tion. Furthermore, we must stress that the above analysis
E strictly concerns the problem of bivibron formation in two-
1.00 3 site systems only and any generalization of these arguments
E to the problem of Davidov-likébi)soliton formation in real-
B istic biological systems is doubtful. Namely the above results
0.50 3 show remarkable similarities with a single-particle ST in
1 two-site systems which differ in many respects from the ST
i S in extended systerft§*?so that the condition for applicabil-
0.00 2.00 400 600 800 1000 12.00 ity of the semiclassical approximation is not simply an adia-
B batic condition B>1).1213

FIG. 2. The semiclassical boundaries in tB& plane for the
bivibron (a) and single-polaron casesb)( Davydov model and
(c) MCM.

The above choice of the simplified variational method im-
poses certain restrictions on a domain of validity of our re-
sults. However these restrictions concern the accuracy of that
method to describe the dressed bivibron properly, behavior
of its effective mass as a function of system parameters in

are determined by the classical nature of phonons. In thgart_ig:ular, but cannot aﬁfect our conclus_ion aga!nst the appli-
ability of the semiclassical approximation. It will hold even

opposite case, a semiclassical approximation is no morl one uses a more accurate variational procedure for the
valid and pairing should be achieved through the effective P

vibron-vibron interaction. Since the above-quoted values Oﬂzz(t:rrrlgrlgr\]/vglzlg rzrseuSItSSv(ijtheg{\l/:[/}(/a.r Zsat%e;i/ezlgﬂhinc;'gg;%\?ed
physical parameters for the-helix fall into this region gy

(B=0.17 andS=0.04) we conclude that, for this particular f%rcwz F;s;tlcgﬁ;:/?:]ue?hfeﬁrzn?oi tgfa na;[:]aempertz Sresnt;cnee,v\;ﬂere
case, the bivibron will be formed, but such an entity canno ay ging the regior P P

N : o he dressing mechanism is dominant.
be related to the Davydoybi)soliton since it arises as a

consequence of a different mechanism. As compared with This work was supported by the Serbian Ministry of Sci-
the single-polaron problem where the semiclassical boundargnce and Technology, Grant Nos. 0103 and 0127.
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