PHYSICAL REVIEW B VOLUME 54, NUMBER 5 1 AUGUST 1996-I

Computer-simulation study of the thermal conductivity of amorphous insulating solids
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We study by computer simulation an amorphous solid modeled as a percolating cluster of atoms on the fcc
lattice. The atoms interact by nearest neighbor Lennard-Jones pair potentials. In contrast to past simulation
efforts, the present simulation allows for full three-dimensional motion of the atoms, and exhibits results for
the thermal conductivity and density of states of the vibrational modes which differ from previous simulation
results.[S0163-18206)02029-3

Though there is a great difference between the tempera- fw\?  exd(hw)/(kgT)]
ture depe'ndence and magnltyde of. the thermal conductivity C(w)=KkKg kBT) {ex;{(ﬁw)/(kBT)]—l}z
of crystalline and amorphous insulating solfd$the thermal
conductivities of amorphous insulating solids are foundis the specific heat at temperatreof a vibrational mode of
quantitatively as well as qualitatively to be very similar to frequencyw, andD () is the diffusion constant of a phonon
one another. In general, three regions of temperature beha@f frequencyw. Equation(1) does not make a distinction
ior are observed in amorphous insulating solids. These arétween the diffusivity of different types of modes of fre-
(1) for T<1 K the thermal conductivity exhibits & power duencye, but rather treats all excitations of frequeneaythe

law behavior with k= 8<2, (2) for 1<T<10 K a plateau sar_}wﬁ. Hamiltoni £ th ¢ wdy i
region is observed in which the thermal conductivity is rela- € 2 amitonian o € system we study 1S
tively independent of temperatur@®) for 10<T<100 K the H=2p{/2m+ (L2)Z; 2 u([ris s=ril), i runs over the at-

thermal conductivity again exhibits a monotonic increase®™S; d is such thai + & sums over the nearest neighbors of

with increasingT.1~" As these three features are present inth€ ith atom, andu(r) =4e (o/r) 2~ (o/r)°] is the (12-6
most amorphous insulating solids, exhibiting the same ordergennir/g-.]ones pair potential with the fcc lattice constant
of magnitude of the thermal conductivity, a comprehensivefo=2"""0- From this system we remove at random a frac-
theoretical treatment of the thermal conductivity must exhibition 1—p of the atoms. We then further remove all atoms in
these properties for quite general amorphous geometries afhigite cIu_sters, retaining only the atoms bound in the infinite
atomic interactions. percolating cluster. _ _

Recently, computer-simulation work on vibrational exci-  1he computation of/(w) is based on the harmonic ap-
tations and the thermal conductivity of amorphous insulating?’0XImation using recursive metho@,éfhe computation of
materials has been done by Sheng and Zh®hey consid- (w) is based on the full anharmonic Hamiltonian.
ered ascalar wavetreatmentatoms of the system only move Our den_5|ty of states calculations r8ely on recursion meth-
in one dimensionof a system of atoms on an infinite perco- ©ds found in the work by Haydocét al.” and Ngxg-) F;)r our
lating cluster(model of amorphous materjatlefined on a randzor_n network,v(w) [where v(w)do=n(e)dew” and
simple cubic lattice. n(w?) is the qlensﬂy of modes in?], can be written in terms

In this paper we shall present simulation results for the?f @ summation over the local density of statgs,(»®) at
thermal conductivity of a percolating clust@morphous ma- €ach atomic site for the component of atomic motion
teria) on which the atoms of the cluster are allowed fully 8long the a axis, e.g., n(w?)=Z2; N (®®) where
three-dimensionalvecton vibrational displacements. Spe- JNi.«(®?)dw?=1. In terms of the dynamical matriR of the
cifically, atoms in our model are taken to be on an infinitevibrational system
percolating cluster of a fcc lattice and to interact by nearest 1
neighbor Lennard-Jones pair potentials. The choice of near- ni,a(w2)= — —Ime";“(wz)
est neighbor pair potentials in our amorphous structures, m '
however, precludes a treatment based on the simple cubic 1
lattice as the simple cubic lattice with nearest neighbor pair =——(i,a|/(0?*+i0—D) " Yi,a) 2
potential interactions is mechanically unstable. m

Our calculations for the thermal conductivitg(T) are  and|i,a) is a normalized state of motion of thi¢h atom
based on the relation along thea axis.

Expressing the dynamical matri in tridiagonal form

. a.*,  n=m,
K(T)ZJO V(w)C(w)D(w)dw, (1) o irﬁc-j—l' n=m+1, o

bl.e* = n=m-1,

wherev(w) is the phonon density of states in frequency, 0, otherwise,
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FIG. 1. The density of statas(w?) vs w? for a system, com-

posed ofN, atoms(atoms on the percolating clusteior p=0.7, FIG. 2. The diffusion coefficienDy(w) vs o for p=0.55,

p=0.7, andp=0.8. In this plotw, is the maximal vibrational

p=0.8, p=0.9, andp=1£). In this plotwpg,is the maxw_nal vibra- frequency of thep=1.0 fcc system and,, is the nearest neighbor
tional frequency of thgg=1.0 fcc system. Results fqg=0.7 and . ) .
separatior(lattice constanton the fcc lattice.

p= 0.8 obtained by directly counting the eigenvalues of the dynami-
cal matrix computed for a reduced array of 864 sitdgshed line

histogram resultsare also shown. In computing Dy(w) we study the system dynamics

when, to a single atom at the center of the percolating clus-

Gﬁia(wz) can be expanded as a continued fraction, ter, we apply a time-dependent force of the form
1 “ F)= Fosin(wt)exd — (yot)?], —to<t<t,,
e )
w —ay =

(6)

a,a 2y —
Gii"(0%)= otherwise,
where|ywto|?=3.8. The simulation begins &t —t,. The
amplitude distribution of the driving force as a function of

where{a:%,b-% can be calculated using methods similar to . . . .
{aq",by") g requency in our calculations has a half width at half maxi-

those in Ref. 8. In general, we use 20-40 sets O um of Aw~0.07
{ay®,by;“} for a given|i,a). The termination usetsee Ref. o=l

10 for detail$ is based on the development of an expression Th? dlffus_|on coeff|C|ent,DN(2w)_, IS cgmputeal by
_ > : . . ; studying the time dependence(®“)=Xu;R{/Z;u;, where
for n; ,(w*) from its continued fraction representation and . o o .
’ 2911 R; is the equilibrium position vector of théth atom

N 2 P
the derivative off ' n; ,dw” with respect tow*. measured relative to the equilibrium position of the atom
We have considered a cube of fcc lattice obA1xX21 000 by the force defined in Eq6) and u,=p2/2m

conventional unit cells with periodic boundary conditions. :

. ) . + irs— i)
We have determined(w?) using 1000 and (23000 different ui(tﬁlszztﬁ:g&s%% br)I/DSh(c\a/\rIE gi\éezt%ﬁgeapggffs ririt;cr)]rcjm])?r
li,a). Little difference was found betweer(«®) computed In Fig. 2 are results for the diffusion coefficiemy(w)
using 1000 and using 6000. In Fig. 1 we present results fof, - p=0.55, p=0.7, andp=0.8. The solid lines in this fig-

2 2 — ; ; H
Pe(;" |%SV::(§USSY% fr?rfp__%’ ggre_eéng V!:('j R_GB %Z'Slgm':ég(')fl ure represenbDy(w) computed as described above but the
u wn Top=0.9, p=0.5, p="5.1. ashed lines represent an interpolation which we discuss be-

Fhese re;ults are compared to re§ults obtgmed by the COUNGw. These results were obtained for percolating clusters cre-
ing of eigenvalues of the dynamical matrix for an array Ofated from an fcc region of 3737x37 conventional unit

864 sites. ) o 9

The phonon diffusion coefficiend (w) (proportional to Cel:filmv\t]elﬁ)ir:%(\j,\'/% tt)r?:tngfllrgvs?rnecgﬂgrr]\i.ieﬁ (o) is domi-
the tota71I _mean free path for phonon scattering in thenated by Rayleigh scatterify[Dy(w) — gdw"‘]. This
systenft”) is given by 1D(w) = 1/Dy(w) + 1/D(w) where fact can be used to estimate the low frequency behavior of
Dy(w) is for processes involving scattering from a fixed Dy(w). Specifically, in Fig. 2 at low frequency we have
network andDt (w) is for processes involving scattering ap')qprox.imatedD (w),=C w,'4 (dotted lines where C,, is
accompanying a change in network geometry between met%hosen to matgh the sfjimulation results g (w) (S(:Jlid
stable states. The processes contributingDi (w) are

treated in the context of the two-level state thédrwhich lines) at their lowest frequency. _
At the upper frequency limit ob (), we use an inter-

uses .
polation scheme to s&\(w) to zero at the upper frequency
1 ho ho A 1 band edgdsee Ref. 1k In this case we use a linear inter-
W=Ak—5tanl‘(2kBT +§ Kalhwt UBT3 (5)  polation from the upper edge of the simulation computed

Dn(w) (solid lineg to zero atw=0.96w,, for p=0.7 and
for fitting parametersA and B to give the low temperature ©=0.97w,,, for p=0.8, wherew,,,is the upper band edge
behavior ofl1 (w)=(3l)D (w) wherev is the average of thep=1.0 system.

phonon velocityEq. (5) was taken from the Ref. 6 and dif- For the thermal conductivity we us€ ), D(w), and the
fers from that used by Sheng and Zhosee Ref. 11 specific heat in Eq(1) to obtain results as a function af
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TABLE |. Parameters used for the thermal conductivity calcu- 0
lation. ¢ (glcn?), v (10° cmises, O (K), A (cm™* K™1), B 10 : '
(1073 K~2), myy (1.66054x 1024 g), nyni, anday(A). :

Material ¢ v  Op A B Mynit~ Nunit A1

a-Si0, 22 41 300 360 3.0 60.08 3 278
a-Se 43 119 113 880 20.0 78.96 1 351
PMMA 12 179 150 1000 0.3 100.12 15 236

KWemlk!)

The resulting integral for the thermal conductivity depends
on the fcc lattice constardy, wmax v, A and B. Values 10° . e
for v, A, andB are listed in Table | of Ref. 6, and we have 0.1 ! 10 100
taken these over directly in obtaining the resultKqiT). To TEK)

obtain wq, Wwe have made the approximation
hwma— Kg®p , Where®p, is the Debye temperature listed in
Table | of Ref. 6. A value of the lattice constaag can be
obtained! from a,=a;p*’?, p is the atomic concentration,
a;=(\2myni/ong) Y and ¢ is the mass densitytaken
from Table | of Ref. 6, m,,; is the mass of the molecular experimental data for these materials presented in Fig. 2 of
unit which is repeated on the amorphous network, mpglis Ref. 6. We do not expect nor do we find quantitative agree-
the number of atoms in the molecular unit. Tagis chosen ment between our Fig. 3 results and the results in Fig. 2 of
so that the number of vibrational modes per volume is theRef. 6. This is due to the fact that our model does not reflect
same in our model as in the experimental material we comthe structure ofa-Se, a-SiO,, and PMMA. (Sheng and
pare with. In Table | we present parameters we extracted aghou in their Fig. 4 choose parameters to force a fit between
above fora-Se,a-SiO,, andPMMA. theory and experiment. We have not done jhis.

In Fig. 3 we presentK(T) versus T computed for At T<1 K in which the diffusivity is dominated by two
p=0.7 andp=0.8, respectively. Qualitative agreement is |evel scattering, we finé (T)=T#, where at low frequencies
found between the thermal conductivities in Fig. 3 and the,,(w)ocwﬁ_ Our results forp=0.8 exhibit Debye behavior

for w/wn=0.2 and giveB=2 but our p=0.7 results,
1072 : N . which only exhibit Debye behavior fab/wn4=0.05, give
p=0.7 2 1< B<2. These types of power law behaviors compare fa-
3 vorably with experiment. The scalar wave results of Sheng
1073 4 L and Zhou, however, are based on models which exhibit only
1 B=2 Debye like behaviot416

The C4w ™ * contribution toD y(w) from Rayleigh scatter-

“ ing is important in determining the low temperature limit of
1073 i the plateau region. This can be seen from Fig. 4. Results are
shown forCy4, 2C4, 4C4, and Cy4— where Cy is the
Rayleigh scattering fitting coefficient used in Fig. 3 for

107 : : — PMMA andp=0.8. In general, foCy4, 2C4, 4C,4 the char-

0.1 1 10 100 acter of the thermal conductivity is little changed from the

(@ T(K) Cqw ™~ * fit. In the extreme limit that Rayleigh scattering is
ignored, a small plateau region is observed even though the
thermal conductivity determined in this case is too large. In
this last limit the plateau region is also observed to begin at
too large a value off. For T=10 K, all curves forK(T)
eventually increase monotonically with increasifig This
behavior follows primarily from the specific heat.

To conclude we find upon comparsion with the scalar
wave theory the following.

(1) Both models exhibit diffusion coefficients which de-
crease in magnitude with decreasing atomic concentration
p. The Rayleigh scattering dominatBg(w) at lower fre-

165 , . . quencies ap is decreased. At lowest frequencies the total
01 1 10 100 diffusivity is determined by two level states scattering. As

() T (K) the frequency is increased a region is observed in which the

total diffusivity is dominated by Rayleigh scattering and at

FIG. 3. The thermal conductivity vs temperature for parameterghe largest frequencies general scattering from the amor-
for a-Se (1), a-SiO, (2), andPMMA (3), in Table I. phous network is dominant.

FIG. 4. Thermal conductivity, calculated for TablePIMMA
parametersp=0.8, C4 (1) , 2C4 (2), 4Cy4 (3), andCy— (4).

KWem! K1)

KWem! K1)
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(2) The vector treatment exhibits a density of states whichmodels the plateau region and its lower temperature limit are
differs considerably from the scalar wave model and acdetermined by the Rayleigh scattering from the amorphous
counts for the larger thermal conductivity values observed imetwork. The exponeng in our model offers &p<2
our vector treatment. Our results, unlike the Sheng and ZhoWhich is more realistic thanB=2 observed in the scalar
results, exhibit a density of states which can depextept Wave treatment.

for a very small neighborhood ab=0) from a quadratic This work was supported in part by National Science

variation withw at very low frequencies: Foundation Grant No. DMR 92-13793. The authors would
(3) Both models exhibit the three regions of different tem-like to thank Professor Roger Haydock for supplying some

perature dependent behavior observedlferl00 K. In both  of the recursive codes which were used in this work.
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