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We study by computer simulation an amorphous solid modeled as a percolating cluster of atoms on the fcc
lattice. The atoms interact by nearest neighbor Lennard-Jones pair potentials. In contrast to past simulation
efforts, the present simulation allows for full three-dimensional motion of the atoms, and exhibits results for
the thermal conductivity and density of states of the vibrational modes which differ from previous simulation
results.@S0163-1829~96!02029-2#

Though there is a great difference between the tempera-
ture dependence and magnitude of the thermal conductivity
of crystalline and amorphous insulating solids,1–7 the thermal
conductivities of amorphous insulating solids are found
quantitatively as well as qualitatively to be very similar to
one another. In general, three regions of temperature behav-
ior are observed in amorphous insulating solids. These are
~1! for T<1 K the thermal conductivity exhibits aTb power
law behavior with 1<b<2, ~2! for 1<T<10 K a plateau
region is observed in which the thermal conductivity is rela-
tively independent of temperature,~3! for 10<T<100 K the
thermal conductivity again exhibits a monotonic increase
with increasingT.1–7 As these three features are present in
most amorphous insulating solids, exhibiting the same orders
of magnitude of the thermal conductivity, a comprehensive
theoretical treatment of the thermal conductivity must exhibit
these properties for quite general amorphous geometries and
atomic interactions.

Recently, computer-simulation work on vibrational exci-
tations and the thermal conductivity of amorphous insulating
materials has been done by Sheng and Zhou.7 They consid-
ered ascalar wavetreatment~atoms of the system only move
in one dimension! of a system of atoms on an infinite perco-
lating cluster~model of amorphous material! defined on a
simple cubic lattice.

In this paper we shall present simulation results for the
thermal conductivity of a percolating cluster~amorphous ma-
terial! on which the atoms of the cluster are allowed fully
three-dimensional~vector! vibrational displacements. Spe-
cifically, atoms in our model are taken to be on an infinite
percolating cluster of a fcc lattice and to interact by nearest
neighbor Lennard-Jones pair potentials. The choice of near-
est neighbor pair potentials in our amorphous structures,
however, precludes a treatment based on the simple cubic
lattice as the simple cubic lattice with nearest neighbor pair
potential interactions is mechanically unstable.

Our calculations for the thermal conductivityK(T) are
based on the relation

K~T!5E
0

`

n~v!C~v!D~v!dv, ~1!

wheren(v) is the phonon density of states in frequency,

C~v!5kBS \v

kBT
D 2 exp@~\v!/~kBT!#

$exp@~\v!/~kBT!#21%2

is the specific heat at temperatureT of a vibrational mode of
frequencyv, andD(v) is the diffusion constant of a phonon
of frequencyv. Equation~1! does not make a distinction
between the diffusivity of different types of modes of fre-
quencyv, but rather treats all excitations of frequencyv the
same.

The Hamiltonian of the system we study is
H5( ipi

2/2m1(1/2)( i(du(ur i1d2r i u), i runs over the at-
oms,d is such thati1d sums over the nearest neighbors of
the i th atom, andu(r )54e@(s/r )122(s/r )6# is the ~12-6!
Lennard-Jones pair potential with the fcc lattice constant
a0521/6s. From this system we remove at random a frac-
tion 12p of the atoms. We then further remove all atoms in
finite clusters, retaining only the atoms bound in the infinite
percolating cluster.

The computation ofn(v) is based on the harmonic ap-
proximation using recursive methods.8 The computation of
D(v) is based on the full anharmonic Hamiltonian.

Our density of states calculations rely on recursion meth-
ods found in the work by Haydocket al.8 and Nex.9 For our
random network,n(v) @where n(v)dv5n(v2)dv2 and
n(v2) is the density of modes inv2#, can be written in terms
of a summation over the local density of statesni ,a(v

2) at
each atomic sitei for the component of atomic motion
along the a axis, e.g., n(v2)5( i ,ani ,a(v

2) where
*ni ,a(v

2)dv251. In terms of the dynamical matrixD of the
vibrational system

ni ,a~v2!52
1

p
ImGi ,i

a,a~v2!

52
1

p
^ i ,au~v21 i02D!21u i ,a& ~2!

and u i ,a& is a normalized state of motion of thei th atom
along thea axis.

Expressing the dynamical matrixD in tridiagonal form

Dmn
TD55

am
i ,a , n5m,

bm11
i ,a , n5m11,

bm
i ,a* , n5m21,

0, otherwise,

~3!
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Gi ,i
a,a(v2) can be expanded as a continued fraction,

Gi ,i
a,a~v2!5

1

v22a1
i ,a2ub2

i ,au2
1

v22a2
i ,a2•••

, ~4!

where$an
i ,a ,bn

i ,a% can be calculated using methods similar to
those in Ref. 8. In general, we use 20–40 sets of
$an

i ,a ,bn
i ,a% for a givenu i ,a&. The termination used~see Ref.

10 for details! is based on the development of an expression
for ni ,a(v

2) from its continued fraction representation and
the derivative of*v2

ni ,adv2 with respect tov2.9,11

We have considered a cube of fcc lattice of 21321321
conventional unit cells with periodic boundary conditions.
We have determinedn(v2) using 1000 and 6000 different
u i ,a&. Little difference was found betweenn(v2) computed
using 1000 and using 6000. In Fig. 1 we present results for
n(v2) versusv2 for p51, agreeing with Ref. 12. In Fig. 1
results are shown forp50.9, p50.8, andp50.7. Some of
these results are compared to results obtained by the count-
ing of eigenvalues of the dynamical matrix for an array of
864 sites.

The phonon diffusion coefficientD(v) ~proportional to
the total mean free path for phonon scattering in the
system6,7! is given by 1/D(v)51/DN(v)11/DTL(v) where
DN(v) is for processes involving scattering from a fixed
network andDTL(v) is for processes involving scattering
accompanying a change in network geometry between meta-
stable states. The processes contributing toDTL(v) are
treated in the context of the two-level state theory2,3 which
uses

1

l TL~v!
5A

\v

kB
tanhS \v

2kBT
D1

A

2

1

kB /\v11/BT3
~5!

for fitting parametersA andB to give the low temperature
behavior of l TL(v)5(3/v̄)DTL(v) where v̄ is the average
phonon velocity@Eq. ~5! was taken from the Ref. 6 and dif-
fers from that used by Sheng and Zhou,7 see Ref. 11#.

In computing DN(v) we study the system dynamics
when, to a single atom at the center of the percolating clus-
ter, we apply a time-dependent force of the form

F~ t !5H F0sin~vt !exp@2~gvt !2#, 2t0<t<t0 ,

0, otherwise,
~6!

whereugvt0u2>3.8. The simulation begins att52t0 . The
amplitude distribution of the driving force as a function of
frequency in our calculations has a half width at half maxi-
mum ofDv'0.07v.

The diffusion coefficient,DN(v), is computed11 by
studying the time dependence of^R2&5( iuiRi

2/( iui , where
Ri is the equilibrium position vector of thei th atom
measured relative to the equilibrium position of the atom
driven by the force defined in Eq.~6! and ui5pi

2/2m
1(1/2)(du(ur i1d2r i u). ~We have taken a different form for
ui than that used by Sheng and Zhou,

7 see Refs. 11 and 13.!
In Fig. 2 are results for the diffusion coefficient,DN(v)

for p50.55, p50.7, andp50.8. The solid lines in this fig-
ure representDN(v) computed as described above but the
dashed lines represent an interpolation which we discuss be-
low. These results were obtained for percolating clusters cre-
ated from an fcc region of 37337337 conventional unit
cells with periodic boundary conditions.

It is well known that at low frequenciesDN(v) is domi-
nated by Rayleigh scattering14 @DN(v) →v→0

Cdv
24#. This

fact can be used to estimate the low frequency behavior of
DN(v). Specifically, in Fig. 2 at low frequency we have
approximatedDN(v)5Cdv

24 ~dotted lines! where Cd is
chosen to match the simulation results forDN(v) ~solid
lines! at their lowest frequency.

At the upper frequency limit ofDN(v), we use an inter-
polation scheme to setDN(v) to zero at the upper frequency
band edge~see Ref. 15!. In this case we use a linear inter-
polation from the upper edge of the simulation computed
DN(v) ~solid lines! to zero atv50.96vmax for p50.7 and
v50.97vmax for p50.8, wherevmax is the upper band edge
of the p51.0 system.

For the thermal conductivity we usen(v), D(v), and the
specific heat in Eq.~1! to obtain results as a function ofT.

FIG. 1. The density of statesn(v2) vs v2 for a system, com-
posed ofNp atoms~atoms on the percolating cluster! for p50.7,
p50.8, p50.9, andp51.0. In this plotvmax is the maximal vibra-
tional frequency of thep51.0 fcc system. Results forp50.7 and
p50.8 obtained by directly counting the eigenvalues of the dynami-
cal matrix computed for a reduced array of 864 sites~dashed line
histogram results! are also shown.

FIG. 2. The diffusion coefficientDN(v) vs v for p50.55,
p50.7, andp50.8. In this plotvmax is the maximal vibrational
frequency of thep51.0 fcc system anda0 is the nearest neighbor
separation~lattice constant! on the fcc lattice.
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The resulting integral for the thermal conductivity depends
on the fcc lattice constanta0 , vmax, v̄, A and B. Values
for v̄, A, andB are listed in Table I of Ref. 6, and we have
taken these over directly in obtaining the result forK(T). To
obtain vmax we have made the approximation
\vmax5kBQD , whereQD is the Debye temperature listed in
Table I of Ref. 6. A value of the lattice constanta0 can be
obtained11 from a05a1p

1/3, p is the atomic concentration,
a15(A2munit /%nunit)

1/3 and % is the mass density~taken
from Table I of Ref. 6!, munit is the mass of the molecular
unit which is repeated on the amorphous network, andnunit is
the number of atoms in the molecular unit. Thea0 is chosen
so that the number of vibrational modes per volume is the
same in our model as in the experimental material we com-
pare with. In Table I we present parameters we extracted as
above fora-Se,a-SiO2 , andPMMA.

In Fig. 3 we presentK(T) versus T computed for
p50.7 andp50.8, respectively. Qualitative agreement is
found between the thermal conductivities in Fig. 3 and the

experimental data for these materials presented in Fig. 2 of
Ref. 6. We do not expect nor do we find quantitative agree-
ment between our Fig. 3 results and the results in Fig. 2 of
Ref. 6. This is due to the fact that our model does not reflect
the structure ofa-Se, a-SiO2 , and PMMA. ~Sheng and
Zhou in their Fig. 4 choose parameters to force a fit between
theory and experiment. We have not done this.!

At T&1 K in which the diffusivity is dominated by two
level scattering, we findK(T)}Tb, where at low frequencies
n(v)}vb. Our results forp50.8 exhibit Debye behavior
for v/vmax&0.2 and giveb52 but our p50.7 results,
which only exhibit Debye behavior forv/vmax&0.05, give
1,b,2. These types of power law behaviors compare fa-
vorably with experiment. The scalar wave results of Sheng
and Zhou, however, are based on models which exhibit only
b52 Debye like behavior.11,14,16

TheCdv
24 contribution toDN(v) from Rayleigh scatter-

ing is important in determining the low temperature limit of
the plateau region. This can be seen from Fig. 4. Results are
shown forCd , 2Cd , 4Cd , and Cd→` whereCd is the
Rayleigh scattering fitting coefficient used in Fig. 3 for
PMMA andp50.8. In general, forCd , 2Cd , 4Cd the char-
acter of the thermal conductivity is little changed from the
Cdv

24 fit. In the extreme limit that Rayleigh scattering is
ignored, a small plateau region is observed even though the
thermal conductivity determined in this case is too large. In
this last limit the plateau region is also observed to begin at
too large a value ofT. For T*10 K, all curves forK(T)
eventually increase monotonically with increasingT. This
behavior follows primarily from the specific heat.

To conclude we find upon comparsion with the scalar
wave theory the following.

~1! Both models exhibit diffusion coefficients which de-
crease in magnitude with decreasing atomic concentration
p. The Rayleigh scattering dominatesDN(v) at lower fre-
quencies asp is decreased. At lowest frequencies the total
diffusivity is determined by two level states scattering. As
the frequency is increased a region is observed in which the
total diffusivity is dominated by Rayleigh scattering and at
the largest frequencies general scattering from the amor-
phous network is dominant.

FIG. 3. The thermal conductivity vs temperature for parameters
for a-Se ~1!, a-SiO2 ~2!, andPMMA ~3!, in Table I.

FIG. 4. Thermal conductivity, calculated for Table IPMMA
parameters,p50.8, Cd ~1! , 2Cd ~2!, 4Cd ~3!, andCd→` ~4!.

TABLE I. Parameters used for the thermal conductivity calcu-
lation. % (g/cm3), v̄ (105 cm/sec!, QD ~K!, A ~cm21 K21), B
(1023 K22), munit (1.66054310224 g!, nunit , anda1(Å).

Material % v¯ QD A B munit nunit a1

a-SiO2 2.2 4.1 300 360 3.0 60.08 3 2.78
a-Se 4.3 1.19 113 880 20.0 78.96 1 3.51
PMMA 1.2 1.79 150 1000 0.3 100.12 15 2.36
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~2! The vector treatment exhibits a density of states which
differs considerably from the scalar wave model and ac-
counts for the larger thermal conductivity values observed in
our vector treatment. Our results, unlike the Sheng and Zhou
results, exhibit a density of states which can depart~except
for a very small neighborhood ofv50) from a quadratic
variation withv at very low frequencies.11

~3! Both models exhibit the three regions of different tem-
perature dependent behavior observed forT<100 K. In both

models the plateau region and its lower temperature limit are
determined by the Rayleigh scattering from the amorphous
network. The exponentb in our model offers 1<b<2
which is more realistic thanb52 observed in the scalar
wave treatment.
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