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We investigate theoretically charge-density wa@BW'’s) in mesoscopic heterostructures for the configu-
ration where the one-dimensional chains are oriented normal to the interfaces. Based on Bogoliubov—de
Gennes equations and suitable boundary conditions, ground state properties of phase coherent CDW systems
are calculated in the mean-field approximation. It is shown that in a charge-density-wave/normal-metal/charge-
density-wave junction the CDW condensates couple through the normal metal region by means of Friedel
oscillations. Geometrical resonance effects are predicted. We relate the phase-dependent energy of the junction
to a momentum current, carried by electron-hole pairs. The effects of pinning potentials at the interfaces are
also considered. Finally, we discuss the analogies with superconductor and ferromagnet jufgtib63-
182996)07924-9

I. INTRODUCTION CDW motion will be treated subsequently in Refs. 12 and
13.
The coupling of spatially separated ground states in The basis for our calculations are the Bogoliubov—de
phase-coherent heterostructures is known to cause many fgennes’ (BAG) equations for CDW's. The BdG equations
markable effects. The Josephson effect and Andreev refle@€ known to successfully explain many experiments on spa-

tion in superconductor junctiorts, the nonlocal exchange E'ﬁélyB(')nhot?mgg\?fgguéesnl;%ir?'Liltjgr?g fs(;:uggj\rﬁss.‘ Isrle%escé rltla
coupling® and the associated giant magnetoresistarice 9 d y

- . .. derived from the mean-field approximation. We also propose
magnetic multilayers are only a few examples c.)f the St”k'.ngboundary conditions which are necessary to solve the BdG
phenomena that occurr in such systems. In this context it

is : ;
. ; ) guations in heterostructures. In the geometry where the one-
surprising that the concept of charge-density wa@BW's)  gimensional chains are oriented normal to the interfaces, we
in mesoscopic junctions has apparently escaped attention. [y culate in Sec. Ill the density of states and the pinning

the mesoscopic regime the coherence length of the CDV¥pergy of normal-metal/icharge-density wav@#/C) and
becomes comparable to the sample size. A search for altefe/N/C) junctions with barrier potentials of arbitrary strength
nate quantum size effects in mesocopic devices like hetergyt the interfaces. We consider the CDW proximity effect and
structures of CDW's and normal metals might lead to fundathe mechanism of phase coupling by Friedel oscillations. In
mental insights into the physics of charge-density waves. sec. |V we will point out the analogies with ferromagnet and

In the 1950s, Peierls suggested that strongly anisotropigyperconductor junctions. Section V summarizes our conclu-
metals are unstable with respect to lattice deformations. Thigjgns.

instability is known as the Peierls transition. The ground
state consists of a periodic electron density modulation, Il. MEAN-FIELD THEORY
called the charge-density wave, accompanied by a static pe-
riodic lattice distortion. Frblich® noted that in incommensu-
rate systems the degeneracy of the condensate with respect toln strongly anisotropic or quasi-one-dimensional materi-
rigid translations generates a symmetry restoring collectivals, the particular shape of the band structure causes a nest-
mode of transport. The sliding motion of the CDW producesing of electron-hole states near the Fermi surface. The back-
remarkable electrical behavior, like non-Ohmic conductfity scattering of electrons near the Fermi energy produces a
and narrow band noise. divergence in the response of the charge-density to lattice
Charge-density waves in bulk systems have already redeformations. As a consequence, a charge-density-wave
ceived much attention in the last few decadies an over- ground state is formed spontaneously at a critical tempera-
view see Grnef). Unlike mesoscopic superconducting de- ture T, which is rigidly coupled to a periodic lattice distor-
vices, there has not been much work reported on CDW's inion. The ground state consists of a condensate of electron-
mesoscopic systems so far. We are only aware of sporaditwle pairs and is characterized by a complex order parameter
contributions in charge-density-wave tunnel junctions withinA. Because the effective mass of the electrons in the trans-
a tunneling Hamiltonian approaéh!! Experiments on me- verse direction is much larger than the effective mass in the
soscopic CDW samples are expected to be conducted in thiirection along the chains, it is reasonable to assume that the
near future* Stimulated by these experimental efforts, we only effect of neighboring chains is the suppression of ther-
investigate theoretically the ground state properties of varimal fluctuations of the order parameter. In this approxima-
ous heterostructures in the mean-field approximation. Trangion, the main features of the Peierls transition and of the
port properties such as quasiparticle conductance and slidirggssociated collective mode can be captured by the mean-field

A. Bogoliubov—de Gennes equations
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treatment of the one-dimensional free electron gas coupled to
the underlying lattice by electron-phonon interaction, as de-
scribed by the Fralich Hamiltonian. In mean-field theory,
the interaction with the phonons &= 2k is singled out,
and the effective single-particle Hamiltonian reads

2

i _ _
H=— 5= di— eet U +H{A(0)U+A* (e ', (1)

where the first term describes the kinetic energy diig) is

an external potential, which is assumed to vary slowly on the
scale of Ikg. The last terms represents the phonon field,
which consists of the product of a slowly varying pair poten-
tial A(x) and a term which oscillates with the CDW wave FIG. 1. The electron dispersion in the Peierls ground state. A
vector Q=2k-. To solve the Schidinger equation, 9aP 2\ isformed at the Fermi wave vecté .

H = ey, the wave function close to the Fermi energy may
be split into right R) and left L) going electron parts:

\I’_(X):<UKZEi‘p)eikX’ ‘P"'(X):(_U:g—i‘p)eikx’

P(X) = Pr(x) &P+ gy (x)e e, ) (7)

¥m and ¢, are also slowly varying. Disregarding second de-Wherev, andu, are the standard BCS coherence factors
rivatives of g and ¢ as well as terms which oscillate rap-

[2_A2 [[Z2_r2
idly like exp(3ikgx), the Schrdinger equation can be cast Uzzl( 1— 6K_A) 2 1( 1+ Ek_A) @)
into the eigenvalue equation: K2 €k ’ €k '

Uk2

. which satisfy the relatiow _,=u,
~i1hvedxtU(X) A(x) Vo= e W 3) At T=0 all states below the gap are filled and all states
A*(X) ihvpa +U(x)| K KTk above the gap are empty. The electronic energy gain by cre-
ating a gap overcomes the increased elastic energy at the
where the spino®, is defined as critical temperature and induces the phase transition. The
electron density in the ground stateTat 0 is

lﬂR,k) . @

Lk n(x) =s; [ p(x)|?= sEk {v2+ u+2uw,cog Qx+ @)}

These are the Bogoliubov—de Gennes equations for CDW 9

systems. Right and left going wave functions are coupled b3Spin degeneracg is now included. The produdtvy is

the pair potentiald (x). Since the matrix operator is Hermit- ~-/ed the condensation amplitude in statend is appre-
ian, the eigenfunctions form a complete orthonormal set. The;;pje only in an interval arounkk , which is inversely pro-
quasiparticle excitation spectrum is given by the energy eibortional to the CDW coherence lengélg =#vp/mA. &
genvalues. Note the subtle difference with the BdG eq“ationéorresponds to the spatial dimension of the electron-hole

in superconductivity: in supercon_duc_tors the quasiparticl%airS in the condensate. Integrating E#).and using Eq(5)
wave functions are linear combinations of electron-hole, ads to the well-known density modulation

pairs, whereas here we have linear combinations of right ang

oo

left going electrons. These equations have to be solved to- F o 2A
gether with the self-consistency equation n(x)=s) —+ g—COS(QX+ ®)- (10
ep
This is the charge-density wave. The modulation is propor-
A(X):gep; I (X g (X)tanh( Be/2), (5  tional to the pair amplitude, the wavelength is given by
N=27/Q, and the phas@ determines the position of the
where the sum is taken over #lIstatesge,, is the electron- CDW.
phonon coupling constant, amg= 1/kgT.
In a uniform CDW systerJ(x)=0, A(x)=A€'¢, and B. Boundary conditions
the BdG equations are easily solved. The energy eigenvalues For a theory of heterostructures based on the BdG equa-
€=¢€-(k) are then given by tions, we have to determine boundary conditions at inter-
faces. Let us consider first the boundary condition at a short
e+ (k)=sgn k) VA?+ (hvgk)?, (6) range impurity potential, modeled by a function

_ _ ~V(x)=H4(x). Adding this term to Eq(1) and integrating
where the wave vectdr is measured relative to the Fermi the Schfdinger equation, the conventional boundary condi-

wave vectork=|k|—kge. The energy spectrum contains a tions for the wave function and its derivative are obtained:
gap 2A at kg and the energies.. describe the conduction

and valence band, see Fig. 1. The eigenfunctions are H(0F)=y(07), (17
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2m CDW motion a threshold voltage is necessary to overcome
0x¢|o+—(9x¢|o—:ﬁTH¢/(0)- (12 the associated pinning potential. The pinning force is ex-
pressed as
By substituting Eq.(2) into these conditions we obtain the
boundary condition for the spinor wave function dE
F=-Q de’ (18
Y(0")=MP¥(07) (13
We will now apply this formalism to the single impurity
in terms of the transfer matrix problem in Sec. Il A, to the normal-metal/charge-density-
_ _ wave (N/C) junction in Sec. Ill B, and to the C/N/C junction
(1—'2 —iz in Il C.
=\ . - (14
4 1+iz

. . . . A. Single impurity pinnin
whereZ=H/#v is the dimensionless scattering strength. In g pUry P g

general, the transfer matrix also includes effects of potential The interaction between a CDW and a single impurity has
steps. A difference in electron densities left and right of thebeen investigated extensively byfidiand Zawadowski! In
interface can be modeled by a potentia| Stvlox): their model Only baCkscattenng with momentum tran@r

6(x)(er. — er_), Whered is the Heaviside step function. In IS taken into account. In principle, we cover both forward
this casLe theRtransfer matrix reads and backward scattering using the boundary conditions dis-

cussed in Sec. Il B. This problem is treated here mainly to
demonstrate the simplicity of our formalism. The impurity is

M= i ta 1-a ' (15) again modeled by @ function potentialV(x)=H §(x). The
Vaa\l—a 1+a wave functions to the left and right of the impurity st 0

wherea=uFL/vFR. For an ideal interface without impurity are
or potential stepM is the unit matrix and no mixing of right Uy o e'? i
and left going electrons occurs. It will be shown that the ue ¢ ev+B " e x<0
off-diagonal terms due to defects or density mismatch leads ¥ (x)= :
to the pinning of the CDW. Given these boundary condi- Uk ikx ue x>0
tions, we have all the ingredients to calculate the ground ue e e”+D vk e
state properties of CDW heterostructures. (19

and have the same macroscopic phasd&he scattering ma-

trix S relates the incoming amplitudes and D to the out-
In spatially nonuniform electron systems, scattering duegoing amplitudes8 andC via

to band mismatch, interfaces, or impurities will change the

Ill. HETEROSTRUCTURES

density of states. The perturbed density of stateis ex- Bl [A| [ru t|(A )
pressed in terms of the scattering mat8xby the general C =5 D/ \ty ry/\D/’ (20
relationt®
wherer stands for the reflection andfor the transmission
9 amplitude. Matching the wave functions using Efj3) we
p= 5 5cIndeS+po, (16)  obtain after some algebra

wherepg is the unperturbed density of states. This equation 7
has been applied by Beenakkéo superconductor/normal- ru=-—12€
metal/superconductaiS/N/S junctions. Here we will con-

vﬁei"’—k uﬁe’i“’+ 2uvy
(1+iZ)vi—(1—iZ)ui+2iZuwcosp |’

struct the scattering matrix for CDW heterostructures using v2e 194 u2eie+ 2u,0
the eigenfunctions of the BdG equations as a basis. The wavg,= — iZe“”[ i ‘; K > .k K ] ,
functions should be normalized to carry the same amount of (1+iZ)vi—(1=iZ)ui+2iZugvcosp
quasiparticle current to ensure current conservation, which is
equivalent to a unitar$ matrix. The elements of the scatter- vi—u?
ing matrix can be calculated from the boundary conditions at12= 1= (1+ iZ)vE— (1— iZ)uE+ 2iZ U Cosp
the scattering sites. Using the expression (21)
1 d It is easily verified that the scattering matrix is unitary. The

E(e)= o fﬁmdes(f-@)df (17 determinant of the scattering matrix becomes

we can calculate the phase-dependent total energy at Iowd (l—iZ)vﬁ—(l+iZ)uﬁ—ZiZukvkcoap
; . . ! ~ deS(e,0)= — : : : ,

temperatures from the scattering matrix. The interaction be S(e, @) (1+|Z)vﬁ—(1—|Z)uﬁ+2|Zukvkc03p
tween the CDW and the nonuniformities in the system re- (22)

sults in a position- or phase-dependent force on the CDW.
This force pins the CDW and in order to observe a slidingand we obtain for the energy-phase relation
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Z=1.0 A( x)

0 &,
FIG. 3. The proximity effect at a N/C interfagechematig In

the CDWA(X) recovers its bulk valua at a distance of the order
of &, from the interface.

will result in an additional potential barrier, which can
readily be included by using the transfer maivixas defined
o ) _in Eq. (15).

FIG. 2. The dependence of the pinning force from a single im- The wave functions in both regions are
purity as a function of the CDW position for different barrier

strengthsZ. A (1) ik’ x B <0> ik’x <0
—| .|+ =] |e7 X
dE  2Zsing P(x)= 0 o
o i
do i E( Uk ) ikx+3<uke¢)e_ikx x>0
7| '
<[ (v~ ) g ek (25)
e K I W) ZH 1+ 2u cosp)? |

with wave vector k' =e/fivg in the normal-metal and
(23 k= \e?— A?/fivg in the CDW region. The wave function in
where we have used the Fermi enekgyas integration cut- the normal-metal region is decoupled £0 impliesv,=1
off. For weak impurity potentialsZ<1, we may disregard andu,=0). Matching the wave functions using E3.3) we
the Z2 term in the denominator. Carrying out the integral in Obtain after some algebra
this limit by using Eq.(5) the classical result (1-iZ)ue¥—iZv,

dE A Z " TF i Z) e izue
—=——Zsinp (29 .
de 7§ (1+iZ)u e +iZv,
Moo= — . . — ’
is recovered, where the dimensionless coupling constant 22 (1+iZ)v+iZue™'*
@=ge,12wﬁvp is introduced. If the scattering potential is re-
pulsive (Z>0), the energy minimum configuration corre- \/vkz—uk2
sponds tap= 7 and the electron density at the impurity site tlz:tﬂ:(1+iZ)vk+iZuke"‘P’ (26)

is minimal. For stronger impurity potentials the integral has

to be calculated numerically. Figure 2 shows the pinningvhere we have used the relatigit/k” = \vZ—uZ. Figure 4
force for different scattering strengths. For smalthe pin-  shows the reflection and transmission probabilities for
ning force is sinusoidal. For stronger potentials a deviatiorZ=0 and Z=1 (¢=0). Electron states in the gap
occurs, which leads to higher harmonics in the Fourier spect— A <e<0)are totally reflected. IA =0 the normal reflec-
trum. The behavior of the pinning force is qualitatively thetion and transmission probabilites are obtained:

same as calculated by Ref. 17. T=(1+2Z%"! and R=1-T. Note that in contrast to the
Blonder-Tinkham-Klapwijk modélof superconductor junc-
B. N/C junction tions the transmission probability depends on the macro-

. i i scopic phase of the CDW. This phase dependence has im-
_ Consider a normal-metal/charge-density WeNEC) junc-  nqrtant consequences for the quasiparticle conductance,
tion with an interface ax=0. In the CDW region the order \ hich will be treated in Ref. 12. The determinant of the
parameter (x) near the interface is not constant, but decaysscattering matrix is

smoothly over a finite length of the order of the coherence

length, as indicated schematically in Fig. 3. This is the CDW (1-iZ)v—iZue™'¢

proximity effect. To determiné\(x) near the interface one detS(e, )= — (AFiZ)o FiZue ® (27

has to solve the gap equatid§).!® Here we disregard the k K

proximity effect and assume a step function pair potentialFor a perfect interface wit =0 the expression obviously
which is a common assumption in S/N junctionsd&unc-  does not depend op. Therefore, the CDW is not pinned
tion potential is added to the interface to model an interfac&nd the translational degeneracy of the CDW is conserved.
defect or impurity. For simplicity we assume the CDW andFor Z#0 the CDWis pinned.

the normal-metal to be one dimensional and the average Calculation of the electron density in the normal-metal
electron densities to be equal. Mismatch in electron densitiegegion x<0) for Z=0 yields
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Ae¢1, x<0
A(x)=4 0, 0<x<L (29)
Ae'¢2, x>L.

There is a total phase differenegs= ¢,— ¢4, over the junc-
tion. For simplicity we assume again that the average elec-
tron densities are the same in the normal-metal and the
CDW. The energy spectrum of this double junction is given
by the eigenvalues of the BdG equation. There will be bound
states in the gap and a scattering continuum below and above
the gap, which is modified by the presence of the junction.
As before, solving the BdG equations and matching the
wave functions results in the reflection and transmission co-
efficients. The determinant of the scattering matrix is

2.ik’L 2, —ik’L—i
deSie,p)=— S T gy
vie " E—uye T

wherek’ is the wave vector in the normal-metal region. The
energy-phase relation becomes

FIG. 4. Reflectior(solid) and transmission probabiliti€dotted

_ 22
at the N/C interface for barrier strengtds-0 andZ=1 as a func- d_E: _ i Ade 1— Uk Uk
tion of energy. do 27 ) - Vet Ug—2uivicog 2k’ L+ @)
de
ke (ke +> = (31)
n(x)=si —+ | ~2uwcod 2kx+g)dky. (28) n do
0

The first term is an integration over the continuous energy

_ _ spectrum and the sum is taken over all bound states. The
We see that the electron density consists of a constant ter@hcond term in the brackets of this equation, which we will

and a rapidly oscillating term which decays algebraically likecq)| 5, in the following, is the factor by which the density of
1/x. The last term is very similar to a Friedel oscillation states of the normal region is modified by the presence of the
caused by a potential defect in the electron gas. Here thep\'s. The total term is thus the difference in the density of
Friedel oscillation is not mduced. by an impurity, but by the giates of the normal region. Note thathas a maximum
CDW system, and depends on its ph&se. when X’L+¢=2=n (n, an integer and a minimum when

C. C/N/C junction 2k'L+¢=m(2n+1). The maximum corresponds to the

The coupling of phase-coherent ground states which anraesonant scattering condition

spatially separated by a normal metal has strong effects on

the physical properties of the system. We will now investi- Vmax=—7— =
gate the mechanism and the consequences of phase coupling vi—Ug  \Je2—A2 No(e)
in a C/N/C junction. Consider two one-dimensional CDW
materials separated by a normal metal with lengthas
sketched in Fig. &). As in the previous section we approxi-
mate this C/N/C junction by a step model for the pair-
potential shown in Fig. ®). The spatial dependence of the

1 € _ Neowl( €)

: (32

whereNcpw andNg denote the bulk density of states in the
CDW and normal-metal regions, respectively. The bound
statese, formed in the gap of this junction are given by the
poles of the scattering matrix and satisfy

order parameter is then € 2 €L
2arcco€x +2kFL+;K_O+"D=27m' (33
?, ‘ ?, The first term is due to the penetration of the gap states into

the CDW'’s. AboveA the bound states broaden into the reso-
nant scattering continuum. This can be seen from the trans-
mission probability

A A €\?
| (K) -1
0 ‘ v 0 T(e)= = 1 for e>A, (34
x=0 x=L 2 —cod| = —+
A A & X

FIG. 5. (a) Schematic picture of the C/N/C junctiofth) Scat- o o o
tering potential which describes a mesoscopic junction. Boundvherex=KkgL + ¢/2, which is plotted in Fig. 6. Oscillations
states are formed in the gap. with period w2£,/L are identified and explained as a quasi-
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or 2m -

L=5¢,

06|
T(e) -~ 7=0
04l

ke Z=0.02

-~ Z=0.04

0.0

0 b1 2

FIG. 6. The transmission probability as a function of energy.
Geometrical resonances with periadé, /L are identified as Tom- 0
asch oscillations. !

. . . FIG. 7. The response of the phage to an adiabatic change of
particle interference effect caused by scattering from the gag,q phasep, for different impurity strengthZ. The change of, is
structure. In the field of superconductivity similar geometri- - inear forz 0.

cal resonances are known as Tomasch oscillafibrighe
modulation of the quasiparticle conductance could be ob
served in thed?Vv/d1? analysis of arl-V transport measure-

ment. It is emphasized that these expressions are very simil : . : S
to those for the Josephson junction as calculated in Refs, /N/F) junction. Mathematically the phase coupling is cal

21-23, where the resonant states correspond to the transi%tt”a.ted aImosF identically for all three systems, ”am?'y by
of a Cooper pair. One crucial difference is that in oursystemSOIV'ng Bpgohubov—de Gennes type of equations in the
dE/de, does not express a zero bias electrical Josephsc;ﬁ:ee, regions and by matching of the wave functions. The
current. The electrical current is zero in a C/N/C junction,PhySics is very different, however. A phase difference over
since the transmission coefficient from left to right equals théh€ junction results in a current. In S/N/S junctions, Andreev
transmission coefficient from right to left. In Sec. IV we will Scaftering generates a supercurrent through the normal metal
relate dE/d¢ to a flow of electron-hole pairs, which carry region in response to a phase difference over the junétion.
zero charge but momentuf. F/N/F junctions, depending on the width of the normal-
Phase coupling is determined by scattering states in theetal, nonlocal exchange coupling of the magnetization di-
continuous spectrum e —A) and by localized states rections may cause a stable antiparallel) (coupling via
(—A<e<0). The total energy depends only on the phasespin-density oscillation! In Refs. 3 and 24 it has been
difference over the junction. This means that at an ideal inshown that a difference in magnetization moments results in
terface there is no intrinsic pinning. If one CDW is moved a net spin current flowing through the normal layer. We ar-
adiabatically, dissipationless sliding CDW transport throughgue that the phase coupling in the C/N/C junction can be
the normal region is possible. This is equivalent to a superformulated in terms of a momentum current, or to put it
current flowing in @ S/N/S junction. As shown in Sec. lll B, differently, by coherent transport of electron-hole pairs.
an N/C contact will modulate the electron density in the |n Sec. Il we have linearized the energy spectrum near the
normal metal, which resembles a Friedel oscillation, but defermj energy. If we keep the quadratic dependence of the

pends on th_e phase of the CDW. The phase coupling i_n th@nergy dispersion, the BdG equations are given by
C/N/C junction can thus be understood as a phase locking of

Friedel oscillations, arising from both interfaces. The mecha- H A\[f _ f
nism is similar to the nonlocal exchange Ruderman-Kittel- A* H/\g € g
Kasuyan-YosidaRKKY) interaction in magnetic multilay-
ers via spin-density oscillatiorfs. where H=—#295/2m— e +U(x) and A=A(x)exp(Qx).

For future experiments it should be relevant to includeThe quasiparticle current, can directly be calculated as
impurities or defects at the interfaces. We now include two 4
8 function potentialsv(x) =H;8(x) +H,8(x—L) at the in- Jgp==1Im(f* o,f)+1Im(g* d,9)}. (36)
terfaces of the C/N/C heterostructure, wlth-5&,. Figure 7 m
shows the response of phasgas a function of phase, for | the approximation that the one-dimensional electron gas is

which the energy is minimalH;=Hy). If ¢, is changed pertyrbed only in the vicinity of the Fermi energy, a widely
adiabatically slow in time, the change @ in time is non- o4 expression for the momentunper particle is
linear and shows a phase jump. 5 5

p=nke{|f]"~lgl%}, (37)

where the terms in brackets are the difference between right
We have already mentioned similarities between theand left going electron states. The forgg can be calcu-
phase coupling in the S/N/S and the C/N/C junctions. Wdated using the BdG equation and this procedure results in

will now investigate these analogies further and also com-
are them with the ferromagnet/normal-metal/ferromagnet

f
ual().

IV. THREE MESOSCOPIC JUNCTIONS
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atp+,9xjp:4kF|m(Af* 9), (39 conductor junctions and right and left going eIect.rons in the
o _ charge-density wave junctions. These wave functions are cal-
wherej is defined as culated from the following equations
2, _ H, A\/f B f
Jp=—r{Im(f* ,f) —Im(g* 9,0)}. (39 FINFESae g =elg)

In this one-dimensional mode],, corresponds to thd,, H A f f
component of the stress tensor and is equivalent to the flow SINIS: | ey gl "€lg) (43
of x-momentum density in the direction. Note that this

equation only differs by a minus sign from E@®6). In bulk H A\/f f
CDW systemsj,,=0 at the gap edge=A, whereas the C/N/C: N =€l |,
ap ., SR T A H/\g g
momentum currenjt,~ kg . This is similar to bulk supercon-
ductors wherejq,=0, but the electrical currenfe~kg. ~ WhereH ., H_, andA in the F/N/F junction are defined by

Equation(38) is equivalent to the conservation law for the H.=H=h, andA=h,+ihy, with hy  , the components of

quasiparticlechargein a superconductdrHere it is the con-  the magnetization vector. The magnetic junction is simpler

servation law for the quasiparticlmomentum The right-  as far as the self-consistency condition is concerned, because

hand side is a sourc@r drain term connecting the quasi- SPin-up and spin-down electrons have the same mass,

particles with the condensate. In one dimensigiis related whereas in the superconductor and charge-density-wave

to the pinning forcdEq. (18)] via junction the effective mass of the quasiparticles and quasi-
' holes has to be taken into account.

dE_ &

- = — _J ,
do 2P
. We have investigated coherence effects of charge-density
wherel the total momentu_m curredpis the sum over all ,-voq in mesoscopic systems by solving the CDW
occupied states, = 1/Akg2 ], o _ Bogoliubov—de Gennes equations with suitable boundary
“The phase coupling in the three junctions under considersonditions. The scattering matrix theory, using the BdG so-
ation can be summarized by the following “universal” iden- |ytions as a basis, provides a simple method for ground state

(40) V. SUMMARY

tities: energy calculations. From this model, transport properties
like quasiparticle conductances can easily be extractéde
E/N/E: d_E __ EJ have studied the N/C interface, with and without an impurity.
"o de 278 It is found that an ideal interface will not pin the CDW. The
interaction between the impurity potential and the CDW has
dE h a strong effect on the transmission and reflection probabili-
SIN/S: do 5 Je ties. The electron density in the normal region is modulated
like a Friedel oscillation, but is induced by the CDW and
E 4 depends on its phase. These Friedel oscillations are the ori-
CINIC: —=—3J,. (41 gin of the phase coupling in a C/N/C junction, analogous to
de 2 exchange coupling in magnetic systems via spin-density os-
The currents are determined by cillations. Tomasch-like oscillations due to quantum size ef-
5 fects are identified in the C/N/C junction. The phase-
Js=—2, {Im(f* 3,9) — Im(g* 3,F)}, dependent energy is related to a momentum current,
mk indicating a coherent flow of electron-hole pairs.
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