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We investigate theoretically charge-density waves~CDW’s! in mesoscopic heterostructures for the configu-
ration where the one-dimensional chains are oriented normal to the interfaces. Based on Bogoliubov–de
Gennes equations and suitable boundary conditions, ground state properties of phase coherent CDW systems
are calculated in the mean-field approximation. It is shown that in a charge-density-wave/normal-metal/charge-
density-wave junction the CDW condensates couple through the normal metal region by means of Friedel
oscillations. Geometrical resonance effects are predicted. We relate the phase-dependent energy of the junction
to a momentum current, carried by electron-hole pairs. The effects of pinning potentials at the interfaces are
also considered. Finally, we discuss the analogies with superconductor and ferromagnet junctions.@S0163-
1829~96!07924-6#

I. INTRODUCTION

The coupling of spatially separated ground states in
phase-coherent heterostructures is known to cause many re-
markable effects. The Josephson effect and Andreev reflec-
tion in superconductor junctions,1,2 the nonlocal exchange
coupling,3 and the associated giant magnetoresistance4 in
magnetic multilayers are only a few examples of the striking
phenomena that occurr in such systems. In this context it is
surprising that the concept of charge-density waves~CDW’s!
in mesoscopic junctions has apparently escaped attention. In
the mesoscopic regime the coherence length of the CDW
becomes comparable to the sample size. A search for alter-
nate quantum size effects in mesocopic devices like hetero-
structures of CDW’s and normal metals might lead to funda-
mental insights into the physics of charge-density waves.

In the 1950s, Peierls suggested that strongly anisotropic
metals are unstable with respect to lattice deformations. This
instability is known as the Peierls transition. The ground
state consists of a periodic electron density modulation,
called the charge-density wave, accompanied by a static pe-
riodic lattice distortion. Fro¨hlich5 noted that in incommensu-
rate systems the degeneracy of the condensate with respect to
rigid translations generates a symmetry restoring collective
mode of transport. The sliding motion of the CDW produces
remarkable electrical behavior, like non-Ohmic conductivity6

and narrow band noise.7

Charge-density waves in bulk systems have already re-
ceived much attention in the last few decades~for an over-
view see Gru¨ner8!. Unlike mesoscopic superconducting de-
vices, there has not been much work reported on CDW’s in
mesoscopic systems so far. We are only aware of sporadic
contributions in charge-density-wave tunnel junctions within
a tunneling Hamiltonian approach.9–11 Experiments on me-
soscopic CDW samples are expected to be conducted in the
near future.14 Stimulated by these experimental efforts, we
investigate theoretically the ground state properties of vari-
ous heterostructures in the mean-field approximation. Trans-
port properties such as quasiparticle conductance and sliding

CDW motion will be treated subsequently in Refs. 12 and
13.

The basis for our calculations are the Bogoliubov–de
Gennes15 ~BdG! equations for CDW’s. The BdG equations
are known to successfully explain many experiments on spa-
tially inhomogeneous superconductor structures. In Sec. II
the Bogoliubov–de Gennes equations for CDW systems are
derived from the mean-field approximation. We also propose
boundary conditions which are necessary to solve the BdG
equations in heterostructures. In the geometry where the one-
dimensional chains are oriented normal to the interfaces, we
calculate in Sec. III the density of states and the pinning
energy of normal-metal/charge-density waves~N/C! and
~C/N/C! junctions with barrier potentials of arbitrary strength
at the interfaces. We consider the CDW proximity effect and
the mechanism of phase coupling by Friedel oscillations. In
Sec. IV we will point out the analogies with ferromagnet and
superconductor junctions. Section V summarizes our conclu-
sions.

II. MEAN-FIELD THEORY

A. Bogoliubov–de Gennes equations

In strongly anisotropic or quasi-one-dimensional materi-
als, the particular shape of the band structure causes a nest-
ing of electron-hole states near the Fermi surface. The back-
scattering of electrons near the Fermi energy produces a
divergence in the response of the charge-density to lattice
deformations. As a consequence, a charge-density-wave
ground state is formed spontaneously at a critical tempera-
tureTc , which is rigidly coupled to a periodic lattice distor-
tion. The ground state consists of a condensate of electron-
hole pairs and is characterized by a complex order parameter
D. Because the effective mass of the electrons in the trans-
verse direction is much larger than the effective mass in the
direction along the chains, it is reasonable to assume that the
only effect of neighboring chains is the suppression of ther-
mal fluctuations of the order parameter. In this approxima-
tion, the main features of the Peierls transition and of the
associated collective mode can be captured by the mean-field
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treatment of the one-dimensional free electron gas coupled to
the underlying lattice by electron-phonon interaction, as de-
scribed by the Fro¨hlich Hamiltonian. In mean-field theory,
the interaction with the phonons atQ52kF is singled out,
and the effective single-particle Hamiltonian reads

H52
\2

2m
]x
22eF1U~x!1$D~x!eiQx1D* ~x!e2 iQx%, ~1!

where the first term describes the kinetic energy andU(x) is
an external potential, which is assumed to vary slowly on the
scale of 1/kF . The last terms represents the phonon field,
which consists of the product of a slowly varying pair poten-
tial D(x) and a term which oscillates with the CDW wave
vector Q52kF . To solve the Schro¨dinger equation,
Hc5ec, the wave function close to the Fermi energy may
be split into right (R) and left (L) going electron parts:

c~x!5cR~x!eikFx1cL~x!e2 ikFx. ~2!

cR andcL are also slowly varying. Disregarding second de-
rivatives ofcR andcL as well as terms which oscillate rap-
idly like exp(3ikFx), the Schro¨dinger equation can be cast
into the eigenvalue equation:

S 2 i\vF]x1U~x! D~x!

D* ~x! i\vF]x1U~x!
DCk5ekCk , ~3!

where the spinorCk is defined as

Ck5S cR,k

cL,k
D . ~4!

These are the Bogoliubov–de Gennes equations for CDW
systems. Right and left going wave functions are coupled by
the pair potentialD(x). Since the matrix operator is Hermit-
ian, the eigenfunctions form a complete orthonormal set. The
quasiparticle excitation spectrum is given by the energy ei-
genvalues. Note the subtle difference with the BdG equations
in superconductivity: in superconductors the quasiparticle
wave functions are linear combinations of electron-hole
pairs, whereas here we have linear combinations of right and
left going electrons. These equations have to be solved to-
gether with the self-consistency equation

D~x!5gep(
k

cL,k* ~x!cR,k~x!tanh~bek/2!, ~5!

where the sum is taken over allk states,gep is the electron-
phonon coupling constant, andb51/kBT.

In a uniform CDW systemU(x)50, D(x)5Deiw, and
the BdG equations are easily solved. The energy eigenvalues
ek[e6(k) are then given by

e6~k!5sgn~k!AD21~\vFk!2, ~6!

where the wave vectork is measured relative to the Fermi
wave vectork⇒uku2kF . The energy spectrum contains a
gap 2D at kF and the energiese6 describe the conduction
and valence band, see Fig. 1. The eigenfunctions are

C2~x!5S vk
uke

2 iwD eikx, C1~x!5S uk

2vke
2 iwD eikx,

~7!

wherevk anduk are the standard BCS coherence factors

vk
25

1

2
S 12

Aek
22D2

ek
D , uk

25
1

2
S 11

Aek
22D2

ek
D , ~8!

which satisfy the relationv2k5uk.
At T50 all states below the gap are filled and all states

above the gap are empty. The electronic energy gain by cre-
ating a gap overcomes the increased elastic energy at the
critical temperature and induces the phase transition. The
electron density in the ground state atT50 is

n~x!5s(
k

uc~x!u25s(
k

$vk
21uk

212ukvkcos~Qx1w!%.

~9!

Spin degeneracys is now included. The productukvk is
called the condensation amplitude in statek and is appre-
ciable only in an interval aroundkF , which is inversely pro-
portional to the CDW coherence lengthj0 5\vF /pD. j0
corresponds to the spatial dimension of the electron-hole
pairs in the condensate. Integrating Eq.~9! and using Eq.~5!
leads to the well-known density modulation

n~x!5sH kFp 1
2D

gep
cos~Qx1w!J . ~10!

This is the charge-density wave. The modulation is propor-
tional to the pair amplitude, the wavelength is given by
l52p/Q, and the phasew determines the position of the
CDW.

B. Boundary conditions

For a theory of heterostructures based on the BdG equa-
tions, we have to determine boundary conditions at inter-
faces. Let us consider first the boundary condition at a short
range impurity potential, modeled by ad function
V(x)5Hd(x). Adding this term to Eq.~1! and integrating
the Schro¨dinger equation, the conventional boundary condi-
tions for the wave function and its derivative are obtained:

c~01!5c~02!, ~11!

FIG. 1. The electron dispersion in the Peierls ground state. A
gap 2D is formed at the Fermi wave vectorkF .

54 2799MESOSCOPIC CHARGE-DENSITY-WAVE JUNCTIONS



]xcu012]xcu025
2m

\2 Hc~0!. ~12!

By substituting Eq.~2! into these conditions we obtain the
boundary condition for the spinor wave function

C~01!5MC~02! ~13!

in terms of the transfer matrix

M5S 12 iZ 2 iZ

iZ 11 iZ D , ~14!

whereZ5H/\vF is the dimensionless scattering strength. In
general, the transfer matrix also includes effects of potential
steps. A difference in electron densities left and right of the
interface can be modeled by a potential stepV(x)5
u(x)(eFL2eFR), whereu is the Heaviside step function. In
this case the transfer matrix reads

M5
1

A4a
S 11a 12a

12a 11a D , ~15!

wherea5vFL /vFR. For an ideal interface without impurity

or potential step,M is the unit matrix and no mixing of right
and left going electrons occurs. It will be shown that the
off-diagonal terms due to defects or density mismatch leads
to the pinning of the CDW. Given these boundary condi-
tions, we have all the ingredients to calculate the ground
state properties of CDW heterostructures.

III. HETEROSTRUCTURES

In spatially nonuniform electron systems, scattering due
to band mismatch, interfaces, or impurities will change the
density of states. The perturbed density of statesr is ex-
pressed in terms of the scattering matrixS by the general
relation16

r5
1

2p i

]

]e
lndetS1r0 , ~16!

wherer0 is the unperturbed density of states. This equation
has been applied by Beenakker2 to superconductor/normal-
metal/superconductor~S/N/S! junctions. Here we will con-
struct the scattering matrix for CDW heterostructures using
the eigenfunctions of the BdG equations as a basis. The wave
functions should be normalized to carry the same amount of
quasiparticle current to ensure current conservation, which is
equivalent to a unitarySmatrix. The elements of the scatter-
ing matrix can be calculated from the boundary conditions at
the scattering sites. Using the expression

E~w!5
1

2p i E e
]

]e
lndetS~e,w!de ~17!

we can calculate the phase-dependent total energy at low
temperatures from the scattering matrix. The interaction be-
tween the CDW and the nonuniformities in the system re-
sults in a position- or phase-dependent force on the CDW.
This force pins the CDW and in order to observe a sliding

CDW motion a threshold voltage is necessary to overcome
the associated pinning potential. The pinning force is ex-
pressed as

F52Q
dE

dw
. ~18!

We will now apply this formalism to the single impurity
problem in Sec. III A, to the normal-metal/charge-density-
wave~N/C! junction in Sec. III B, and to the C/N/C junction
in III C.

A. Single impurity pinning

The interaction between a CDW and a single impurity has
been investigated extensively by Tu¨ttö and Zawadowski.17 In
their model only backscattering with momentum transferQ
is taken into account. In principle, we cover both forward
and backward scattering using the boundary conditions dis-
cussed in Sec. II B. This problem is treated here mainly to
demonstrate the simplicity of our formalism. The impurity is
again modeled by ad function potentialV(x)5Hd(x). The
wave functions to the left and right of the impurity atx50
are

C~x!55 AS vk
uke

2 iwD eikx1BS ukeiwvk
D e2 ikx, x,0

CS vk
uke

2 iwD eikx1DS ukeiwvk
D e2 ikx, x.0

~19!

and have the same macroscopic phasew. The scattering ma-
trix S relates the incoming amplitudesA andD to the out-
going amplitudesB andC via

S BCD 5SS AD D 5S r 11 t12

t21 r 22
D S AD D , ~20!

wherer stands for the reflection andt for the transmission
amplitude. Matching the wave functions using Eq.~13! we
obtain after some algebra

r 1152 iZe2 iwH vk
2eiw1uk

2e2 iw12ukvk
~11 iZ !vk

22~12 iZ !uk
212iZukvkcosw

J ,
r 2252 iZeiwH vk

2e2 iw1uk
2eiw12ukvk

~11 iZ !vk
22~12 iZ !uk

212iZukvkcosw
J ,

t125t215
vk
22uk

2

~11 iZ !vk
22~12 iZ !uk

212iZukvkcosw
.

~21!

It is easily verified that the scattering matrix is unitary. The
determinant of the scattering matrix becomes

detS~e,w!52
~12 iZ !vk

22~11 iZ !uk
222iZukvkcosw

~11 iZ !vk
22~12 iZ !uk

212iZukvkcosw
,

~22!

and we obtain for the energy-phase relation
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dE

dw
52

2Zsinw

p

3E
2eF

2D

ukvkH ~vk
22uk

2!

~vk
22uk

2!21Z2~112ukvkcosw!2 J de,

~23!

where we have used the Fermi energyeF as integration cut-
off. For weak impurity potentials,Z!1, we may disregard
theZ2 term in the denominator. Carrying out the integral in
this limit by using Eq.~5! the classical result

dE

dw
52

D

p

Z

ĝ
sinw ~24!

is recovered, where the dimensionless coupling constant
ĝ5gep/2p\vF is introduced. If the scattering potential is re-
pulsive (Z.0), the energy minimum configuration corre-
sponds tow5p and the electron density at the impurity site
is minimal. For stronger impurity potentials the integral has
to be calculated numerically. Figure 2 shows the pinning
force for different scattering strengths. For smallZ the pin-
ning force is sinusoidal. For stronger potentials a deviation
occurs, which leads to higher harmonics in the Fourier spec-
trum. The behavior of the pinning force is qualitatively the
same as calculated by Ref. 17.

B. N/C junction

Consider a normal-metal/charge-density wave~N/C! junc-
tion with an interface atx50. In the CDW region the order
parameterD(x) near the interface is not constant, but decays
smoothly over a finite length of the order of the coherence
length, as indicated schematically in Fig. 3. This is the CDW
proximity effect. To determineD(x) near the interface one
has to solve the gap equation~5!.18 Here we disregard the
proximity effect and assume a step function pair potential,
which is a common assumption in S/N junctions. Ad func-
tion potential is added to the interface to model an interface
defect or impurity. For simplicity we assume the CDW and
the normal-metal to be one dimensional and the average
electron densities to be equal. Mismatch in electron densities

will result in an additional potential barrier, which can
readily be included by using the transfer matrixM as defined
in Eq. ~15!.

The wave functions in both regions are

C~x!55
A

Ak8
S 10D eik8x1 B

Ak8
S 01D e2 ik8x, x,0

C

Ak
S vk
uke

2 iwD eikx1 D

Ak
S ukeiwvk

D e2 ikx, x.0

~25!

with wave vector k85e/\vF in the normal-metal and
k5Ae22D2/\vF in the CDW region. The wave function in
the normal-metal region is decoupled (D50 impliesvk51
anduk50). Matching the wave functions using Eq.~13! we
obtain after some algebra

r 115
~12 iZ !uke

2 iw2 iZvk
~11 iZ !vk1 iZuke

2 iw ,

r 2252
~11 iZ !uke

iw1 iZvk
~11 iZ !vk1 iZuke

2 iw ,

t125t215
Avk22uk

2

~11 iZ !vk1 iZuke
2 iw , ~26!

where we have used the relationAk/k85Avk22uk
2. Figure 4

shows the reflection and transmission probabilities for
Z50 and Z51 (w50). Electron states in the gap
(2D,e,0)are totally reflected. IfD50 the normal reflec-
tion and transmission probabilities are obtained:
T5(11Z2)21 and R512T. Note that in contrast to the
Blonder-Tinkham-Klapwijk model1 of superconductor junc-
tions the transmission probability depends on the macro-
scopic phase of the CDW. This phase dependence has im-
portant consequences for the quasiparticle conductance,
which will be treated in Ref. 12. The determinant of the
scattering matrix is

detS~e,w!52
~12 iZ !vk2 iZuke

1 iw

~11 iZ !vk1 iZuke
2 iw . ~27!

For a perfect interface withZ50 the expression obviously
does not depend onw. Therefore, the CDW is not pinned
and the translational degeneracy of the CDW is conserved.
For ZÞ0 the CDWis pinned.

Calculation of the electron density in the normal-metal
region (x,0) for Z50 yields

FIG. 2. The dependence of the pinning force from a single im-
purity as a function of the CDW position for different barrier
strengthsZ.

FIG. 3. The proximity effect at a N/C interface~schematic!. In
the CDWD(x) recovers its bulk valueD at a distance of the order
of j0 from the interface.
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n~x!5sH kFp 1E
0

kF
2ukvkcos~2kx1w!dkJ . ~28!

We see that the electron density consists of a constant term
and a rapidly oscillating term which decays algebraically like
1/x. The last term is very similar to a Friedel oscillation
caused by a potential defect in the electron gas. Here the
Friedel oscillation is not induced by an impurity, but by the
CDW system, and depends on its phase.17

C. C/N/C junction

The coupling of phase-coherent ground states which are
spatially separated by a normal metal has strong effects on
the physical properties of the system. We will now investi-
gate the mechanism and the consequences of phase coupling
in a C/N/C junction. Consider two one-dimensional CDW
materials separated by a normal metal with lengthL, as
sketched in Fig. 5~a!. As in the previous section we approxi-
mate this C/N/C junction by a step model for the pair-
potential shown in Fig. 5~b!. The spatial dependence of the
order parameter is then

D~x!5H Deiw1, x,0

0, 0,x,L

Deiw2, x.L.

~29!

There is a total phase difference,w5w22w1 , over the junc-
tion. For simplicity we assume again that the average elec-
tron densities are the same in the normal-metal and the
CDW. The energy spectrum of this double junction is given
by the eigenvalues of the BdG equation. There will be bound
states in the gap and a scattering continuum below and above
the gap, which is modified by the presence of the junction.

As before, solving the BdG equations and matching the
wave functions results in the reflection and transmission co-
efficients. The determinant of the scattering matrix is

detS~e,w!52
vk
2eik8L2uk

2e2 ik8L2 iw

vk
2e2 ik8L2uk

2eik8L1 iw
, ~30!

wherek8 is the wave vector in the normal-metal region. The
energy-phase relation becomes

dE

dw
52

1

2pE2eF

2D

deH 12
vk
22uk

2

vk
41uk

422uk
2vk

2cos~2k8L1w! J
1(

n

den
dw

. ~31!

The first term is an integration over the continuous energy
spectrum and the sum is taken over all bound states. The
second term in the brackets of this equation, which we will
call n in the following, is the factor by which the density of
states of the normal region is modified by the presence of the
CDW’s. The total term is thus the difference in the density of
states of the normal region. Note thatn has a maximum
when 2k8L1w52pn (n, an integer! and a minimum when
2k8L1w5p(2n11). The maximum corresponds to the
resonant scattering condition

nmax5
1

vk
22uk

2 5
e

Ae22D2
5
NCDW~e!

N0~e!
, ~32!

whereNCDW andN0 denote the bulk density of states in the
CDW and normal-metal regions, respectively. The bound
statesen formed in the gap of this junction are given by the
poles of the scattering matrix and satisfy

2 arccosS e

D D12kFL1
2

p

e

D

L

j0
1w52pn. ~33!

The first term is due to the penetration of the gap states into
the CDW’s. AboveD the bound states broaden into the reso-
nant scattering continuum. This can be seen from the trans-
mission probability

T~e!5

S e

D D 221

S e

D D 22cos2S e

pD

L

j0
1x D for e.D, ~34!

wherex5kFL1w/2, which is plotted in Fig. 6. Oscillations
with periodp2j0 /L are identified and explained as a quasi-

FIG. 4. Reflection~solid! and transmission probabilities~dotted!
at the N/C interface for barrier strengthsZ50 andZ51 as a func-
tion of energy.

FIG. 5. ~a! Schematic picture of the C/N/C junction.~b! Scat-
tering potential which describes a mesoscopic junction. Bound
states are formed in the gap.
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particle interference effect caused by scattering from the gap
structure. In the field of superconductivity similar geometri-
cal resonances are known as Tomasch oscillations.20 The
modulation of the quasiparticle conductance could be ob-
served in thed2V/dI2 analysis of anI -V transport measure-
ment. It is emphasized that these expressions are very similar
to those for the Josephson junction as calculated in Refs.
21–23, where the resonant states correspond to the transfer
of a Cooper pair. One crucial difference is that in our system,
dE/dw, does not express a zero bias electrical Josephson
current. The electrical current is zero in a C/N/C junction,
since the transmission coefficient from left to right equals the
transmission coefficient from right to left. In Sec. IV we will
relatedE/dw to a flow of electron-hole pairs, which carry
zero charge but momentumQ.

Phase coupling is determined by scattering states in the
continuous spectrum (e,2D) and by localized states
(2D,e,0). The total energy depends only on the phase
difference over the junction. This means that at an ideal in-
terface there is no intrinsic pinning. If one CDW is moved
adiabatically, dissipationless sliding CDW transport through
the normal region is possible. This is equivalent to a super-
current flowing in a S/N/S junction. As shown in Sec. III B,
an N/C contact will modulate the electron density in the
normal metal, which resembles a Friedel oscillation, but de-
pends on the phase of the CDW. The phase coupling in the
C/N/C junction can thus be understood as a phase locking of
Friedel oscillations, arising from both interfaces. The mecha-
nism is similar to the nonlocal exchange Ruderman-Kittel-
Kasuyan-Yosida~RKKY ! interaction in magnetic multilay-
ers via spin-density oscillations.3

For future experiments it should be relevant to include
impurities or defects at the interfaces. We now include two
d function potentialsV(x)5H1d(x)1H2d(x2L) at the in-
terfaces of the C/N/C heterostructure, withL55j0 . Figure 7
shows the response of phasew2 as a function of phasew1 for
which the energy is minimal (H15H2). If w1 is changed
adiabatically slow in time, the change ofw2 in time is non-
linear and shows a phase jump.

IV. THREE MESOSCOPIC JUNCTIONS

We have already mentioned similarities between the
phase coupling in the S/N/S and the C/N/C junctions. We

will now investigate these analogies further and also com-
pare them with the ferromagnet/normal-metal/ferromagnet
~F/N/F! junction. Mathematically the phase coupling is cal-
culated almost identically for all three systems, namely by
solving Bogoliubov–de Gennes type of equations in the
three regions and by matching of the wave functions. The
physics is very different, however. A phase difference over
the junction results in a current. In S/N/S junctions, Andreev
scattering generates a supercurrent through the normal metal
region in response to a phase difference over the junction.2 In
F/N/F junctions, depending on the width of the normal-
metal, nonlocal exchange coupling of the magnetization di-
rections may cause a stable antiparallel (p) coupling via
spin-density oscillations.24 In Refs. 3 and 24 it has been
shown that a difference in magnetization moments results in
a net spin current flowing through the normal layer. We ar-
gue that the phase coupling in the C/N/C junction can be
formulated in terms of a momentum current, or to put it
differently, by coherent transport of electron-hole pairs.

In Sec. II we have linearized the energy spectrum near the
Fermi energy. If we keep the quadratic dependence of the
energy dispersion, the BdG equations are given by

S H D

D* H D S fgD 5eS fgD 5 i\] tS fgD , ~35!

where H52\2]x
2/2m2eF1U(x) and D5D(x)exp(iQx).

The quasiparticle currentj qp can directly be calculated as

j qp5
\

m
$Im~ f * ]xf !1Im~g* ]xg!%. ~36!

In the approximation that the one-dimensional electron gas is
perturbed only in the vicinity of the Fermi energy, a widely
used expression for the momentump per particle is

p5\kF$u f u22ugu2%, ~37!

where the terms in brackets are the difference between right
and left going electron states. The force] tp can be calcu-
lated using the BdG equation and this procedure results in

FIG. 6. The transmission probability as a function of energy.
Geometrical resonances with periodp2j0 /L are identified as Tom-
asch oscillations.

FIG. 7. The response of the phasef2 to an adiabatic change of
the phasef1 for different impurity strengthsZ. The change off2 is
nonlinear forZÞ0.
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] tp1]xj p54kFIm~D f * g!, ~38!

where j p is defined as

j p5
\2kF
m

$Im~ f * ]xf !2Im~g* ]xg!%. ~39!

In this one-dimensional model,j p corresponds to theTxx
component of the stress tensor and is equivalent to the flow
of x-momentum density in thex direction. Note that this
equation only differs by a minus sign from Eq.~36!. In bulk
CDW systems,j qp50 at the gap edgee5D, whereas the
momentum currentj p;kF . This is similar to bulk supercon-
ductors wherej qp50, but the electrical currentj e;kF .
Equation~38! is equivalent to the conservation law for the
quasiparticlechargein a superconductor.1 Here it is the con-
servation law for the quasiparticlemomentum. The right-
hand side is a source~or drain! term connecting the quasi-
particles with the condensate. In one dimensionj p is related
to the pinning force@Eq. ~18!# via

dE

dw
52

\

2
Jp , ~40!

where the total momentum currentJpis the sum over all
occupied statesJp51/\kF( j p.

The phase coupling in the three junctions under consider-
ation can be summarized by the following ‘‘universal’’ iden-
tities:

F/N/F:
dE

dw
52

\

2
Js ,

S/N/S:
dE

dw
52

\

2
Je ,

C/N/C:
dE

dw
52

\

2
Jp . ~41!

The currents are determined by

Js5
\

m(
k

$Im~ f * ]xg!2Im~g* ]xf !%,

Je5
\

m(
k

$Im~ f * ]xf !1Im~g* ]xg!%,

Jp5
\

m(
k

$Im~ f * ]xf !2Im~g* ]xg!%, ~42!

where f andg represent spin up and spin down electrons in
magnetic junctions, electron and hole like states in the super-

conductor junctions and right and left going electrons in the
charge-density wave junctions. These wave functions are cal-
culated from the following equations

F/N/F: SH1 D

D* H2
D S fgD 5eS fgD ,

S/N/S: S H D

D* 2H* D S fgD 5eS fgD , ~43!

C/N/C: S H D

D* H D S fgD 5eS fgD ,
whereH1 , H2 , andD in the F/N/F junction are defined by
H65H6hz andD5hx1 ihy , with hx,y,z the components of
the magnetization vector. The magnetic junction is simpler
as far as the self-consistency condition is concerned, because
spin-up and spin-down electrons have the same mass,
whereas in the superconductor and charge-density-wave
junction the effective mass of the quasiparticles and quasi-
holes has to be taken into account.

V. SUMMARY

We have investigated coherence effects of charge-density
waves in mesoscopic systems by solving the CDW
Bogoliubov–de Gennes equations with suitable boundary
conditions. The scattering matrix theory, using the BdG so-
lutions as a basis, provides a simple method for ground state
energy calculations. From this model, transport properties
like quasiparticle conductances can easily be extracted.12We
have studied the N/C interface, with and without an impurity.
It is found that an ideal interface will not pin the CDW. The
interaction between the impurity potential and the CDW has
a strong effect on the transmission and reflection probabili-
ties. The electron density in the normal region is modulated
like a Friedel oscillation, but is induced by the CDW and
depends on its phase. These Friedel oscillations are the ori-
gin of the phase coupling in a C/N/C junction, analogous to
exchange coupling in magnetic systems via spin-density os-
cillations. Tomasch-like oscillations due to quantum size ef-
fects are identified in the C/N/C junction. The phase-
dependent energy is related to a momentum current,
indicating a coherent flow of electron-hole pairs.
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