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Scattering of plasmons in a quasi-two-dimensional electron gas containing a fixed-point charge
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We study the scattering of two-dimensioridaD) plasmons by the carrier density nonuniformity created by
a charged impurity. The plasmons are described by an integral equation obtained within the hydrodynamic
model of the 2D plasma containing a fixed-point charge. We obtain the energy of the scattered plasmons, and
evaluate the scattering cross section in the Born approximation. We find that at low energy it varies as the
square of the frequency of the incident plasmon. This behavior is markedly different from the three-
dimensional plasmon scattering where the scattering cross section goes to a nonzero value at zero momentum.
In addition, we employ the random-phase approximation to treat both correlation and finite thickness effects in
guantum wells. This allows us to extend these results for the 2D inhomogeneous hydrodynamic model to treat
intrasubband plasmons in semiconductor quantum weIB163-182006)02028-0

I. INTRODUCTION We also study a state formed as a linear combination of
plasma waves, with the frequencies below the frequencies of
Collective plasma excitations in quasi-two-dimensionalthe two-dimensional(iintrasubbang plasmon at the same
systems such as doped semiconductor quantum wells haveave vectors. We show that when the charge of the impurity
attracted considerable interest in recent years. In particulas opposite to the charge of the carriers, such a dispersing
the effects of confinement on plasmon dispersion have beemave-packet solution exists at densities above a certain
well studied>? In addition, recently the interaction of threshold.
guantum-well plasmons with impurities such as ionized In Sec. Il we begin by considering plasmons in a two-
acceptor$ and neutral donofshave been of interest. An dimensional plasméof electrons or holeésof zero thickness.
electron plasma interacting with a single ionized donor oWe do it in order not to obscure the essential physics of
acceptor can be represented by an electron gas containingrdgrasubband plasmons by finite thickness effects. We begin
fixed-point charge. In a three-dimensional electron gas théy using a hydrodynamic model for the electron plasma.
interaction with a fixed charge causes scattering of the plasrFhis turns out to be an adequate approximation for the long-
mons by the nonuniformity of the plasma density. Further-wavelength plasmons. In the context of this model we then
more, for a negative impurity charge the plasmons in arcorrect for the fact that the speed of sound should be deter-
electron gas can form a bound state localized in the vicinitymined from the velocity distribution of the degenerate elec-
of the impurity® tron gas rather than from the compressibility of the electron
In the case of a semiconductor quantum well with a finitefluid. Later on, in the appendixes we present a quantum-
electron or hole density, there are both intrasubband plagnechanical treatment using the random-phase approximation
mons which are associated with a single-carrier subband ari@®PA), and show that a long-wavelength approximation of
also intersubband plasmons which are associated with carrighe RPA produces an integral equation similar to the one
transitions between two subbarfd$he energy of the inter- obtained here in the hydrodynamic model.
subband plasmons has a positive lower bound. We have The presentation is organized as follows. In Sec. Il we
shown in an earlier study that this feature contributes to thelescribe the hydrodynamic two-dimension@D) model,
existence of the bound state of the intersubband plasmonand derive an integral equation that describes the interaction
On the other hand the dispersion curves of the intrasubbanof plasmons with a fixed-point charge. In Sec. Ill we con-
plasmons begin from zero energy and do not have an uppaider the appropriate scattering problem, and derive the scat-
bound. These plasmons are scattered by the density inhomtering cross section for the plasmons. In Sec. IV we discuss
geneity created by the Coulomb interactions of the plasmaome dispersing wave-packet solutions which are interesting
carriers(electrons or holgswith the charged impurity, but because they are composed of plasmons with frequencies
are not expected to form localized states. The main focus dbwer than those of free plasmons at the same values of the
the present work is to evaluate the scattering cross section @fave vector. In Appendix A we use the RPA to derive sum
these plasmons. We find, in particular, that at small waveules that allow us to obtain an integral equation for the
vectors the scattering cross section is linear in the wave ve@lasmon in an inhomogeneous electron gas without appeal to
tor, and correspondingly at low energy it varies as the squarthe hydrodynamic model. In Appendix B we incorporate fi-
of the frequency of the incident plasmon. This behavior isnite thickness effects to obtain the integral equation for the
very different from the three-dimensional casehere the scattering of the intrasubband plasmons in a quantum well.
Cross section goes to a nonzero constant at zero wave vectdn. Appendix C we obtain an expression for the energy flux
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vector for the two-dimensional electron plasma oscillations=or an adiabatic process the presspie t) is a function of
as a zero-thickness limit of the energy flux in a thin plasmahe densityp(r,t), and we can write
layer.
d
Vp=(—p) Vp=meVp, ®)
Il. HYDRODYNAMIC MODEL dp 0

FOR TWO-DIMENSIONAL ELECTRON GAS . .
wheres is the “speed of sound.” The appropriate valuesof

We treat an electron gas as a fluid with a three-will be discussed below.
dimensional(3D) scalar density fielgh,(r,z;t) and a vector For small oscillationsgp<n,, we linearize Eq(3) in &p
velocity field v,(rz;t), wherer is a two-dimensional2D) andv to obtain
position vectorz is a coordinate on the axis perpendicular to
the plasma layet, is a time variable, and subscript(bulk) 3?8p 5 -
indicate a 3D field. Define 2D and 3D gradient operators by 5z T (6/M)(No+8N)V=¢+(e/m)Von-V—s'V=5p

. . .0 =0. (9)
V=x +yw, VbEV+zE. (1

N

We apply the Fourier transformation defined in E@), set

A positive background that compensates for the totaEzL?rilgr E(q).rrEZ))(;naennOtl ;;z;a;r)‘ :2 dlr;tne(g(]qr)al equation relating the

charge of the electrons is assumed. For a zero-thickness

plasma layer the 3D density can be written as 2.76?n
2 0 2.2
(w ~m 47574 )5p(q,w)
po(r,2)=06(2)p(r). 2 s
The 3D fieldsp, andv,, appear in the equation of continuity _ 2me’ng J d’q’ g-q' sn(a—q") S5p(q’ )
and the equation of motiofthe Euler equatior®’ Projection esm (2m)? q’ Ng P @),
on thez=0 plane gives equations for a 2D plasma: (10)
ap _ where én(q) is a Fourier component of the change in the
at +V-(pv)=0, electron density due to the presence of the impurity of charge
(3) Zeleg, where the external chargée is screened by the di-
e, electric constant, . For a classical electron fluign would
mp 54— mp(v-V)v=—epE—-Vp, be determined by Debye screening, whereas here we are in-

terested in a degenerate electron gas where the Thomas-
where E is an electric-field projection on the=0 plane, ~Fermi screening is an appropriate chdfice:
E=XE,+YE,=—V¢, p is the electron fluid pressure which
describes effects of the electron kinetic energy, anis an _ E 1

; N on(q) 1 , 1y

electron effective mass. In an equilibriuptr)=nq+ on(r), €s £(q)
wheren, is the 2D density of electrons in the absence of the . D . .
chargeo(l) impurity, ano‘in(?/) is a change in the density dis- wherfas(q) is the static limit of the RPA for the dielectric
tribution due to the presence of the impurity. Due to the'Unction £(q,w). Therefore
compensating positive backgrourtei=0 in the equilibrium.

Under a perturbation, we have on(q) £ el

&5 G(q)+alare
The parameteq¢ is the 2D Thomas-Fermi wave vector
where 8p(r,t) describes the time-dependent plasma oscilla-

(12
p(r,t)=ng+én(r)+ Sp(r,t), (4)

tions, and determines the electric potentdt,z;t) through q :iz 2 (13)
the 3D Poisson equation ™ a, ageg(mg/m)’
Pp  dme wherea, is 2D Bohr radius equal to the one-half of the 3D
Vigp+ Sp(r)8(2), (5  Bohr radiusas, a,=h?mye?, mq is the vacuum electron

Jz €s mass, andn is the effective mass of the carrier in the 2D
where &, is a background dielectric constant. Define a 2DP/asma. The functio®(q) accounts for the finite size of the
Fourier transform so that Fermi surface,

* _ G(q)=1 if gq<2qr
5p(r,t)=(2w)*3f d2qf dw €@ Y55(q,w). (6)
o G(a)=1-[1-(2qe/q)?]"? if g>2qr, (14

Then, from Eq.(5) we obtairt whereqg is the 2D Fermi wave vector. For electrons in two
dimensions with two spin degrees of freedarp,is given by

B 2me
¢)(q1z)__§ 5P(CI)EXF1_Q|Z|) (7) qF:(ZWno)llz- (15)
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Within the hydrodynamic model the speed of sowith  with K given in Eq.(20).

Eq. (8) is determined from the inverse compressibility of the  For the free plasmons with wave vectorand frequency

degenerate electron gas, which gies=v 2/2. The hydro- Q,

dynamic model uses average quantipeendv, and does not

take into account correlation effects. A full derivation s5f fi(p)=(2m)28(p—k), k=02 23

involves the use of the Boltzman-Vlasov equation for the_l_he dependence of the free-plasmon frequency on the square
velocity distribution, and the long-wavelength expansion P P d Y q

should involve its higher momentsThis expansion givés r.oot of the wave vector leads to a scattering problem with a
s?=3(v 2)=3/2(v?), wherev, is a one-dimensional compo- Im?l_ahreSpfoCtg”g'tor for Eq21) is
nent of the velocity. Using a normalized velocity distribution propag

for the 2D degenerate electron gas,f(v)

= (Umv 2Y®(vg—v) wherevg is the Fermi velocity, we g*(p)= —
obtain p=k=1y
In real space the propagator is obtained from &4) by a

(24)

s?=3y2 (16) ; ; ;
4VF: Fourier transformation. Integrating over the angles, we have
This is identical to the result obtained with the RPA in a
self-consistent quantum modeland is different from the 2mg7( :_+kf dp 0(p (25)
value obtained from the inverse compressibility. In the fol-

lowing we use the form in Eq.16) for s2,

Let us define an auxilliary 3D density, and dimension- whereJ, is a Bessel function of the first km“d, andr here

less 2D densityN as is understood to be a dimensionless 2D veatta,. The
integral can be further transformed by using a particular in-
ny=ny/as, N=nya2. (17)  tegral representation of the Bessel function,

We define an auxilliary frequenay, to be the plasmon fre- 2 P

quency of the 3D gas with the densitg, and define the Jo(x)=(2/m) L d(t*~ 1)~ Ysin(xt). (26)

dimensionless frequendy:

The integral in Eq(25) can be separated into a sum of two
2_ N3 02= w 18 integrals, one of which has a nonsingular integrand, and an-

“p= ’ T w0 (18 other which has an integrand with poleskatiy and can be

evaluated in a complex plane. We obtain
We also define a dimensionless wave vector and a dimen-

sionless Fermi wave vector: ngi(r): iiWHE)l)(kr)'f‘U(kr), (27)

p=0a/grr=0a,, pr=(27N)*2 (19 where for largekr, u(kr)=1A&33+---, andH{" is a Hankel

] ) ) ] ) function of the first kind? Thus for largekr, asymptotically,
Now we can rewrite the integral equati@D) in a dimen-

sionless form, 2

1/2
Zﬁgi(r)”iiw m) e ™=k ... (28

2_n_3p2 — 27 ' '
(Q%=p=zp") 5p(p) J d*p’K(p.p")dp(p"), Notice that asymptotically the propagator for the problem

(200  with a linear spectrum turns out to be twice the propagator
. p-p’ G(p—p’) for the problem with a quadratic spectrum in two
KPP~ Zm e, P Glp—p )t PP dimensions:® : :
Using EQq.(23) in Eq. (21), we can obtain a series expan-
In Sec. Il we will consider the scattering states of this equasijon for the scattering states in momentum space. To identify
tion, and calculate the scattering cross section in the Bora scattering amplitude, we need solutions in real space. From
approximation. Eq. (21) we obtain

2= [t [ e
In order to simplify the derivation, in this section we keep (2 ) P= k+ Iy
only the leading term in_the Iong—wavelength expansion of X Q(k:p cosd,p sing). (29)
the free-plasmon dispersion relation, and so(%t: p. Then
we rewrite Eq.(20) for the scattering problem in the follow- Omitting the explicit dependence én let us define the even

Ill. PLASMON SCATTERING

ing form: and odd function$-,(p) andF(p):
(p—kKf(p)=Q(k;p), (22) 2Fo(p)=Q(k;p,0)+Q(k;—p,0),
(30
where 2F 1(p) = Q(k:p.0)— Q(K; — p.0).

o 2, , , Notice thatQ(k;p,00=Q(k;pr) becaused=p/\r. By expan-
Qkip)= j d*p"K(p,p")Ti(p"), (22 sion of Q in a Taylor series, we can show that
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Jo(rp)Fo(p)+ida(rp)F1(p) The density variations dp(rt) are obtained as
. Re(f | (r)exp(i w,t)}. Equation(C13) can be evaluated in po-

2wff(r)=f dp p
0

—k=Fi X ) .
Px+y (31) lar coordinates to give the radial component of the energy
flux at larger,
We write J; as a derivative of,, use the integral represen- 2
tation (26), gnd evaluate the integral in E(R1) similarly to j, =Bk, [f(0)] SirP(Kr— wyt), (37)
the evaluation of the propagator. Assume tRa{p) and r

F,(p) are analytical in the upper half-plane. Then we obtainWhereB is defined in Eq(C14). The energy flux in a scat-
2 (1) = =i A HE ( kr)F oK) = 1 H (= k) Fy (k)] tered wave through the circle of radiuds given by

+u(kr) where u(kr)=1k33+---. (32 Jr:Jj-F d|:fj.f rde. (38)

From this equation we obtain the asymptotic behavior of thel’aking an average over many time periods, we obtain
scattered wave fokr>1: '

1 (T r
(3)=lim(T—) = fo dt Jrzf de ;B2 - kol f(6)]2.
(39)

If Fo and F; are singular in the upper half-plane but the The 2D scattering cross section is, by definition, a ratio of
singularities are confined to poles and branch cuts away froracattering flux to the incident flux per unit length. We have
the real axes, then these poles and cuts will make contribuseen using dimensionless units above, and we now restore
tions tof  (r) that decay exponentially as €x@r) for larger  the original units by taking —ra,. Therefore
and do not contribute to the asymptotic behavior in B§). i

+The densi.ty variationSp(.r) is obtained as the real part of da/a2=<.rj—r> do=|f(6)|2de, (40)
f. (r). Equation(33) describes the scattering of the plasma (Jin)

density oscillations withf|? per unit length being constant at where f(6) is given in Eaq.(36). The total cross section is
larger. We will show now that Eq(33) describes the scat- obtaine((j z)y in%egrating g]\}ér t)He angle.

tering of plasmon energy by the density vanat!&m(r) In- In the limit of smallk, for the low-energy scattering cross
duced by the impurity charge. In order to do this we look alsaction we obtain

the real-space equation describing plasma oscillations in a

2D electron gas. Unlike the bulk case, the 2D real-space kZ2 w?mZ?

equation contains a term singular at the origin as a result of olay~
the linearp term in Q%(p). In order to obtain a physically

sensible result for the energy in the scattered wave, we corfFhis is markedly different both from bulk-plasmon
sider classical plasma oscillations in an electron layer of fiscattering and intersubband plasmon scattefilgcause in
nite thicknessd. This problem can be analyzed similarly to those cases goes to a nonzero value at zero wave vector. At
the surface-plasmon problefh.The equation is the bulk large wave vectors the scattering cros section obtained from
plasma equation with boundary conditions of zero normaEgs.(40) and(36) decreases asK.for qrp<k<<2qg, and as
velocity at the two surfaces=0 andz=d. In order not to  1/k° for k>2q.

burden the main text, we analyze the plasmon problem in a

1/2
wa:(r)%ie—in(%) ek Q(kk:kf). (33

= . 41
2N28§ 4wezssn8ag “D

layer of finite thickness in Appendix &. IV. WAVE-PACKET SOLUTIONS

Taking the limitd—0 in the finite layer plasmon problem OF THE INTEGRAL EQUATION
and using Eq(C13), we can evaluate the energy flux. Prior ) _
to the evaluation of the energy flu, , we consider the Born Let us consider Eq6) as a wave packet of plasma oscil-

approximation to the scattering probléf, seting lations with a dispersiom(q),
"N — 2 r_ —02; .
fi(p)=2m)*8(p’' —k) andk=0Q~ in Eg. (22). We obtain 8p(q,w) = (27)36p(Q) AL w— w(q)],

k cosf G(2k sind/2) (42)

Nes G(2k sing/2)+ 2k sing/2’ 6p(r,t)=f dq exdi(q-r—tw(q)]8p(q).
(34)

~ . Z
—Qg(kk;kr)=

o For the 3D plasmonisand also for intersubband plasmons in
where 6=r /\k. In the same approximation, quantum wellS,if Z has the same sign as the plasma carri-
ers, one finds localized solutionsbound states’) with

Ikr o(q)=wy, Which is a constant frequency below the mini-

fi (N~1(6) 7 (39 mum frequency of the free plasmons. There are no such so-
lutions for the 2D case or for intrasubband plasmons in a
where the scattering amplitude is given by quantum well. However, we can look for the solutions of the
form (42) with o (q)<we(q), Wherewy(q) is the dispersion
Zie i G law of the free 2D plasmons. In particular, we take
(0= oam ¥ Gracsmn 02(p)=a(p+3p?) @3
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APPENDIX A: RANDOM-PHASE APPROXIMATION
FOR THE INHOMOGENEOUS 2D ELECTRON GAS

00 The Hamiltonian for a system of independent electrons
0 12 (or holes interacting with a charged impurity is
n (10 " cm }
FIG. 1. The parametex, defined in Eq.(43), is shown as a Ho=K+Hc, (A1)

function of the 2D density. It relates the frequencies of the oscil-

lations contributing to the wave-packet solution of the integralwhereK is the kinetic-energy operator, ard,; describes
equation(45) to the dispersion law of the free plasmong(q) the interaction of the carriers with the fixed charge through
through w=a?wy(q). At each value of the density the two lowest the Coulomb interactioW(r-r’), which has a Fourier trans-
allowed values ofx are shown form=0.0665n;, ¢,=12.35, and  form

Z=40.

. . . . . 2mwe?

in Eq. (20), with a?<1. The integral equation will have so- Vy(2)= exp —a|z|). (A2)
lutions forZ<0, i.e., for a negative fixed charge in the elec- &sq

tron gas or for a positive fixed charge in a hole gas.

We can expand the density oscillations in 2D harmonics{zor_ a strictly 2D gasz—0 in Eq. (A2). The total Hamil-
onian is

Sp(Q) =n§0 ey (q), (44) H=Hgo+Hin, (A3)

whereH,,; describes carrier-carrier interactions. In our pre-
vious study of intersubband plasmons in a quantum well,
explicit expressions in the second quantization were given,
and the RPA and its long-wavelength approximation for an

and consider the@=0 solution, thes wave. It is obtained as
a solution of the following integral equation:

|z 1 (= dp’ p’ 2m inhomogeneous gas of carriers were derived. Here we adapt
Yo(p)= 1— a? N_Ss fo (2m)? 1+3p fo do that study for the cases of intrasubband plasmons and 2D
z plasmons.
G(Ap") , Let dp(k,w) describe a Fourier component of the variation
m Po(p’), of plasma density in response to a weak external perturbation

(45) &> In linear-response thechyhe change of the total car-
rier density in the presence of an external perturbation,
Ap'=(p®+p'?—2pp’cos)' op' = dp+ 8p®is related tosp®™ through the inverse dielec-
tric operator:
This equation can be symmetrized and cast in the form of a

one-dimensional integral equation with a symmetric real ker-

nel. The resulting equation can be solved numerically by the 5pT(k,w):Z e YK,k 0)p®(K’ ,w). (A4)

method described in our study of the intersubband K’

plasmons. We find that there is a discrete set of valuesof

for which a wave packet in Eq42) is a solution of the Inverting this equation and defining collective excitations by

integral equation. the conditionsp” #0, while 5p®'=0, we obtain the following
As an example we consider a 2D electron gas with mateequation for the collective excitations of the systeim

rial parameters appropriate for GaAs’m,=0.0665 and

e,=12.35. The resulting values af start at zero at some

value of the density, and then approach 1. In order to obtain f d’k’e(k,k";w)8p T (k’,w)=0. (AB)

a value ofa substantially different from 1 at reasonably high

densities, one needs a high valueZoPhysically this may be

realized by a small cluster of charged acceptors. As an illus- The Dyson equation in the RPA can be derived in close

tration we show the two lowestwave solutions foZ=40  analogy to that for a homogeneous 2D systefine carrier

in Fig. 1. This shows the existence of the wave-packet soludensity propagator is defined as a time-ordered density-

tions whose components have lower phase velocities thatiensity correlation function. The lowest-order term in the

free plasmons. perturbation expansion of its irreducible part is given by
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% The validity of the expansion is restricted tqu)/w<1.

Ho(k,k’;w):(ZW)_“f d*q sz’J do' For plasmons with a square-root dispersion lay(g)«=q,
o this condition will be satisfied for sufficiently smajl From

XG(9,9" 0+ w0 )G(k+q.k'+9";0"), the static limit of the RPA we obtaidgn(q) in the form of

the Thomas-Fermi screening as in Efj2). The sum rules
(AB)  are used in Eq.(A9). To the same order in the long-
whereG(k,k;w) is a one-particle propagator for the systemwavelength approximation as in Sec. Il, and using the dimen-
of independent electrons interacting with the impurity, i.e.,sionless variables defined in EQ.7)—(19), from Egs.(A8)
for the HamiltonianH, in Eq. (A1). and (A9) we obtain the following integral equation:
At zero temperature in t_he same approximation, the irre- 3 p?
ducible retarded propagatas given by 02—p— 5 ?) Sp(p)

RdIR(w)=RdI%w),

z d?p’ p-p’ G(p—p’
R 0 (A7) :_f pzpl? (I? P) T (A13)
IMIIR( )= (sgrw) iM% o). Neg J (2m)* p’ G(p—p')+|p—p'|
From the Dyson equation for the density propagator and thwhere functionG(p) is defined in Eq(14). _
definition of the dielectric operator, we obtain the RPA for For Z=0 the dispersion relation for free plasmons is ob-
in the operator forme=1-I1RV. With this we obtain the tained from the left-hand side of this equation as expansion
RPA for Eq.(A5). Omitting the explicitw dependence, in powers ofp,
Q2=p+3p?+--- . (A14)

f d?k'[8(k—k’)—TIR(k,k")V(k")]8p (k") =0. , . : .
To leading order in the wave vector, the integral equation
(A8) (A13), which is derived here as the long-wavelength ap-
proximation of the RPA, reproduces E®O) derived in the
hydrodynamic model of Sec. Il. The differences appear in
higher orders 0p?Q?, and are due to the neglect of corre-

Following the treatment of the bulk ca%&we obtain the
long-wavelength expansion faiR using the spectral repre-

sentation lations in the hydrodynamic approach.
R = dv o(k,k’;v)
hll (k,k’;w)=f P —— (A9) APPENDIX B: SCATTERING
‘°° Y OF INTRASUBBAND PLASMONS
where y—+0. The spectral density is given by IN QUANTUM WELL
" The RPA method discussed in Appendix A for the 2D
U(k,k'?w):J dt €“'A"X[p(k,t),p" (k",0)]), plasmons can be extended to the case of intrasubband plas-

mons in the quantum well, and thereby finite thickness ef-
(A10)  fects can be incorporated in the present work. In our previous
where p is a Heisenberg operator defined with the Ham“_stud)? we presented a detailed theory f_or the i_ntersu,_lbband
tonianH, A is the normalization area, and at zero temperaflasmons in the quantum-well plasma interacting with the
ture the averaging of the commutator is performed over théharged impurity. In a similar fashion we now obtain an
ground state oH. The real part ofI will be obtained taking integral equation that d_esenbes the scattering of mtresubbend
the principal value in Eq(A7). plasmons by the denelty inhomogeneity due to the impurity
We expand k) in powers ofy, and use the following charge. In the dimensionless form,
identity:

2 3 p3 2 _ 21 ! !
02—p—5 5z +cop?|dp(p)= | d*p’K(p.p")5p(p’),

. (A11) (B1)
t=+0

" - "o (t)
(2m) f dv v"o(v)=(—i)" o
. . ) whereK is given by the following form:
The right-hand side can be evaluated from the equations of

motion for the Heisenberg density operators defined with the ) z p-p’ G(Ap')S(Ap’)
Hamiltonian Hy in Eq. (A1), i%(dp/dt)=[p,He]. In this KPP = 5 2Ne. b’ Ap +G(Ap )F(Ap))’
way an infinite sequence of the sum rules is obtained. The ° B2)
terms with even powers af vanish. The first nonvanishing Ap'=|p—-p’|.

term is given by the following sum rule: L ) .
G(p) is given in Eq.(14), and the quantities;, S, andF are

L[ ’ %2 , , given by
@m | v votad'in= 1 a-ana-a).

(A12) o= | dz a2&2)2)l2-7 (83)

Heren(q) is a Fourier transform afi,+ &n(r), whereng is a
density of the uniform gas andn(r) is a change of the _f —plz 22
density due to the presence of the fixed chatgés,. S(p)= | dz e PH£3(2), (B4)
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F( =fd dZ (2)EX(z")e P27 - i
p)= | dz dZ&i(2)é5(2)e . (B A=E,(0) 7. (C®)

where &,(2) is a normalized subband wave function of the
one-dimensional confining potential of the quantum well.
From the free-plasmon dispersion relatigkil4), it is clear
that thep®Q? term isO(p?). The derivation in Sec. Ill ap- coth(bdy2)[1— exp( — dq)]—b[ 1+ exp( —dq)]

plies here, and the low-energy scattering cross seckiesD

limit) is given by Eq.(41). =2b(1-b?)s?0? w?. (C?)

The boundary conditions result in the following equation
for b, and implicitly for «:

For a thin layer we expand the exponentsG¢d?q?) and

take into account thav=w,/sq+O(dq). We define a 2D

density am,=dn;, and from Eq(C7) we obtain the disper-
The equation for free plasma oscillations in a layer ofsion relation

thicknessd can be obtained from the bulk equation

APPENDIX C: HYDRODYNAMIC MODEL
FOR A LAYER OF PLASMA

w?=(2mwe’nylem)q+s2q>+--- . (C8)
Sp+widp—s?Vidp=0, (C1)
) - ) Equation(C1) can be written as a Euler equation for a
with the boundary condition of zero normal velocity at the scajar fieldf = dp(r,, ,t) for the Lagrangian density

surfaces. The subscriptindicates a 3D vector. We define a

dimensionless variablé=zq, and perform a Fourier trans- 1., ., s 1 24
formation in time and coordinatesandy. We then have the L=51=3s |V f[*— 3 wpf?. (C9
following equation for the layer plasmons:
» 5 92 o The corresponding canonical momentum and Hamiltonian
s°q s°q° J density are given b
(Qz_l__z )6p<q,§>+—2 2 0(0,)=0 Y ate gen oy
“ “b % oL
€2 m= o=t H=nf-r, (C10

for 0<é<qd, with boundary conditions

v,(2=0)=v,(z=d) =0, 3 From Egs.(C1) and(C10), it is simple to show that
where w, is a bulk plasma frequency ard=w/w,. The
velocity field is determined by the Euler equation. In the
roper treatment of the problem we should keep the pressure
Sarigtion term i.elszgﬁo_plf we want to keep onls the ?ead- and therefore we can define the Hamiltonian flux veétas

ing term in the resulting dispersion law, the lirsit-0 can be

oH .
E+Vb-(szfvbf )=0, (C11)

- 2'
taken, but only in the entf The solution of Eqs(C2) and ju=sfVf. (C12
(C3) is given by In the finite layer problem we use Eq<4) and (C6) with
d Eq. (C12) to obtain a two-dimensional vector of energy flux
8p(q,&)=2A cosrb( i— 7q> (C4) expressed through the boundary value of the electric field,
j=B?op(r,)Vop(r,1), (C13
1+5%0% w5~ Q2
bZZW (C5) where
s°q/ oy,
In the limit sqg—0 anddq<1, A is related to the normal B— EA0)eswp (C14)
component of the electric field at tlze=0 surface: 4me’
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