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We study the scattering of two-dimensional~2D! plasmons by the carrier density nonuniformity created by
a charged impurity. The plasmons are described by an integral equation obtained within the hydrodynamic
model of the 2D plasma containing a fixed-point charge. We obtain the energy of the scattered plasmons, and
evaluate the scattering cross section in the Born approximation. We find that at low energy it varies as the
square of the frequency of the incident plasmon. This behavior is markedly different from the three-
dimensional plasmon scattering where the scattering cross section goes to a nonzero value at zero momentum.
In addition, we employ the random-phase approximation to treat both correlation and finite thickness effects in
quantum wells. This allows us to extend these results for the 2D inhomogeneous hydrodynamic model to treat
intrasubband plasmons in semiconductor quantum wells.@S0163-1829~96!02028-0#

I. INTRODUCTION

Collective plasma excitations in quasi-two-dimensional
systems such as doped semiconductor quantum wells have
attracted considerable interest in recent years. In particular
the effects of confinement on plasmon dispersion have been
well studied.1,2 In addition, recently the interaction of
quantum-well plasmons with impurities such as ionized
acceptors3 and neutral donors4 have been of interest. An
electron plasma interacting with a single ionized donor or
acceptor can be represented by an electron gas containing a
fixed-point charge. In a three-dimensional electron gas the
interaction with a fixed charge causes scattering of the plas-
mons by the nonuniformity of the plasma density. Further-
more, for a negative impurity charge the plasmons in an
electron gas can form a bound state localized in the vicinity
of the impurity.5

In the case of a semiconductor quantum well with a finite
electron or hole density, there are both intrasubband plas-
mons which are associated with a single-carrier subband and
also intersubband plasmons which are associated with carrier
transitions between two subbands.2 The energy of the inter-
subband plasmons has a positive lower bound. We have
shown in an earlier study that this feature contributes to the
existence of the bound state of the intersubband plasmon.3

On the other hand the dispersion curves of the intrasubband
plasmons begin from zero energy and do not have an upper
bound. These plasmons are scattered by the density inhomo-
geneity created by the Coulomb interactions of the plasma
carriers~electrons or holes! with the charged impurity, but
are not expected to form localized states. The main focus of
the present work is to evaluate the scattering cross section of
these plasmons. We find, in particular, that at small wave
vectors the scattering cross section is linear in the wave vec-
tor, and correspondingly at low energy it varies as the square
of the frequency of the incident plasmon. This behavior is
very different from the three-dimensional case,5 where the
cross section goes to a nonzero constant at zero wave vector.

We also study a state formed as a linear combination of
plasma waves, with the frequencies below the frequencies of
the two-dimensional~intrasubband! plasmon at the same
wave vectors. We show that when the charge of the impurity
is opposite to the charge of the carriers, such a dispersing
wave-packet solution exists at densities above a certain
threshold.

In Sec. II we begin by considering plasmons in a two-
dimensional plasma~of electrons or holes! of zero thickness.
We do it in order not to obscure the essential physics of
intrasubband plasmons by finite thickness effects. We begin
by using a hydrodynamic model for the electron plasma.
This turns out to be an adequate approximation for the long-
wavelength plasmons. In the context of this model we then
correct for the fact that the speed of sound should be deter-
mined from the velocity distribution of the degenerate elec-
tron gas rather than from the compressibility of the electron
fluid. Later on, in the appendixes we present a quantum-
mechanical treatment using the random-phase approximation
~RPA!, and show that a long-wavelength approximation of
the RPA produces an integral equation similar to the one
obtained here in the hydrodynamic model.

The presentation is organized as follows. In Sec. II we
describe the hydrodynamic two-dimensional~2D! model,
and derive an integral equation that describes the interaction
of plasmons with a fixed-point charge. In Sec. III we con-
sider the appropriate scattering problem, and derive the scat-
tering cross section for the plasmons. In Sec. IV we discuss
some dispersing wave-packet solutions which are interesting
because they are composed of plasmons with frequencies
lower than those of free plasmons at the same values of the
wave vector. In Appendix A we use the RPA to derive sum
rules that allow us to obtain an integral equation for the
plasmon in an inhomogeneous electron gas without appeal to
the hydrodynamic model. In Appendix B we incorporate fi-
nite thickness effects to obtain the integral equation for the
scattering of the intrasubband plasmons in a quantum well.
In Appendix C we obtain an expression for the energy flux
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vector for the two-dimensional electron plasma oscillations
as a zero-thickness limit of the energy flux in a thin plasma
layer.

II. HYDRODYNAMIC MODEL
FOR TWO-DIMENSIONAL ELECTRON GAS

We treat an electron gas as a fluid with a three-
dimensional~3D! scalar density fieldrb~r ,z;t! and a vector
velocity field vb~rz;t!, where r is a two-dimensional~2D!
position vector,z is a coordinate on the axis perpendicular to
the plasma layer,t is a time variable, and subscriptb ~bulk!
indicate a 3D field. Define 2D and 3D gradient operators by

“[ x̂
]

]x
1 ŷ

]

]y
, “b[“1 ẑ

]

]z
. ~1!

A positive background that compensates for the total
charge of the electrons is assumed. For a zero-thickness
plasma layer the 3D density can be written as

rb~r ,z!5d~z!r~r !. ~2!

The 3D fieldsrb andvb appear in the equation of continuity
and the equation of motion~the Euler equation!.6,7 Projection
on thez50 plane gives equations for a 2D plasma:

]r

]t
1“•~rv!50,

~3!

mr
]v

]t
1mr~v•“ !v52erE2“p,

where E is an electric-field projection on thez50 plane,
E5x̂Ex1ŷEy52“f, p is the electron fluid pressure which
describes effects of the electron kinetic energy, andm is an
electron effective mass. In an equilibriumr~r !5n01dn~r !,
wheren0 is the 2D density of electrons in the absence of the
charged impurity, anddn~r ! is a change in the density dis-
tribution due to the presence of the impurity. Due to the
compensating positive background,E50 in the equilibrium.
Under a perturbation, we have

r~r ,t !5n01dn~r !1dr~r ,t !, ~4!

wheredr~r ,t! describes the time-dependent plasma oscilla-
tions, and determines the electric potentialf~r ,z;t! through
the 3D Poisson equation

“

2f1
]2f

]z2
5
4pe

«s
dr~r !d~z!, ~5!

where«s is a background dielectric constant. Define a 2D
Fourier transform so that

dr~r ,t !5~2p!23E d2qE
2`

`

dv ei ~q•r2vt !dr~q,v!. ~6!

Then, from Eq.~5! we obtain1

f~q,z!52
2pe

«sq
dr~q!exp~2quzu!. ~7!

For an adiabatic process the pressurep~r , t! is a function of
the densityr~r ,t!, and we can write6

“p5S dpdr D
0

“r5ms2“r, ~8!

wheres is the ‘‘speed of sound.’’ The appropriate value ofs
will be discussed below.

For small oscillations,dr!n0, we linearize Eq.~3! in dr
andv to obtain

]2dr

]t2
1~e/m!~n01dn!“2f1~e/m!“dn•“f2s2“2dr

50. ~9!

We apply the Fourier transformation defined in Eq.~6!, set
z50 in Eq. ~7!, and obtain an integral equation relating the
Fourier componentsdr~q,v! anddn~q!:

S v22
2pe2n0

«sm
q2s2q2D dr~q,v!

5
2pe2n0

«sm
E d2q8

~2p!2
q•q8

q8

dn~q2q8!

n0
dr~q8,v!,

~10!

where dn~q! is a Fourier component of the change in the
electron density due to the presence of the impurity of charge
Ze/«s , where the external chargeZe is screened by the di-
electric constant«s . For a classical electron fluid,dn would
be determined by Debye screening, whereas here we are in-
terested in a degenerate electron gas where the Thomas-
Fermi screening is an appropriate choice:8

dn~q!5
Z

«s
S 12

1

«~q! D , ~11!

where«~q! is the static limit of the RPA for the dielectric
function «~q,v!. Therefore

dn~q!5
Z

«s

G~q!

G~q!1q/qTF
. ~12!

The parameterqTF is the 2D Thomas-Fermi wave vector9

qTF5
1

a2
5

2

a0«s~m0/m!
, ~13!

wherea2 is 2D Bohr radius equal to the one-half of the 3D
Bohr radiusa3, a05q2/m0e

2, m0 is the vacuum electron
mass, andm is the effective mass of the carrier in the 2D
plasma. The functionG(q) accounts for the finite size of the
Fermi surface,10

G~q!51 if q,2qF

G~q!512@12~2qF /q!2#1/2 if q.2qF , ~14!

whereqF is the 2D Fermi wave vector. For electrons in two
dimensions with two spin degrees of freedom,qF is given by

qF5~2pn0!
1/2. ~15!
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Within the hydrodynamic model the speed of sounds in
Eq. ~8! is determined from the inverse compressibility of the
degenerate electron gas, which givess25v F

2/2. The hydro-
dynamic model uses average quantitiesr andv, and does not
take into account correlation effects. A full derivation ofs2

involves the use of the Boltzman-Vlasov equation for the
velocity distribution, and the long-wavelength expansion
should involve its higher moments.7 This expansion gives7

s253^v x
2&53/2^v2&, wherevx is a one-dimensional compo-

nent of the velocity. Using a normalized velocity distribution
for the 2D degenerate electron gas, f (v)
5(1/pv F

2)Q(vF2v) where vF is the Fermi velocity, we
obtain

s25 3
4vF

2. ~16!

This is identical to the result obtained with the RPA in a
self-consistent quantum model,1 and is different from the
value obtained from the inverse compressibility. In the fol-
lowing we use the form in Eq.~16! for s2.

Let us define an auxilliary 3D densityn3 and dimension-
less 2D densityN as

n3[n0 /a3 , N[n0a2
2. ~17!

We define an auxilliary frequencyvp to be the plasmon fre-
quency of the 3D gas with the densityn3, and define the
dimensionless frequencyV:

vp
2[

4pe2n3
«sm

, V2[
v2

vp
2 . ~18!

We also define a dimensionless wave vector and a dimen-
sionless Fermi wave vector:

p[q/qTF5qa2 , pF[~2pN!1/2. ~19!

Now we can rewrite the integral equation~10! in a dimen-
sionless form,

~V22p2 3
2p

2!dr~p!5E d2p8K~p,p8!dr~p8!,

~20!

K~p,p8!5
Z

~2p!2N«s

p•p8

p8

G~p2p8!

G~p2p8!1up2p8u
.

In Sec. III we will consider the scattering states of this equa-
tion, and calculate the scattering cross section in the Born
approximation.

III. PLASMON SCATTERING

In order to simplify the derivation, in this section we keep
only the leading term in the long-wavelength expansion of
the free-plasmon dispersion relation, and so setV0

25p. Then
we rewrite Eq.~20! for the scattering problem in the follow-
ing form:

~p2k! f k~p!5Q~k;p!, ~21!

where

Q~k;p!52E d2p8K~p,p8! f k~p8!, ~22!

with K given in Eq.~20!.
For the free plasmons with wave vectork and frequency

V,

f k
0~p!5~2p!2d~p2k!, k5V2. ~23!

The dependence of the free-plasmon frequency on the square
root of the wave vector leads to a scattering problem with a
linear spectrum.

The propagator for Eq.~21! is

g6~p!5
1

p2k7 ig
. ~24!

In real space the propagator is obtained from Eq.~24! by a
Fourier transformation. Integrating over the angles, we have

2pg6~r !5
1

r
1kE

0

`

dp
J0~pr !

p2k7 ig
, ~25!

whereJ0 is a Bessel function of the first kind,
11,12andr here

is understood to be a dimensionless 2D vectorr /a2. The
integral can be further transformed by using a particular in-
tegral representation of the Bessel function,

J0~x!5~2/p!E
1

`

dt~ t221!21/2sin~xt!. ~26!

The integral in Eq.~25! can be separated into a sum of two
integrals, one of which has a nonsingular integrand, and an-
other which has an integrand with poles atk6 ig and can be
evaluated in a complex plane. We obtain

2pg6~r !56 ipH0
~1!~kr !1u~kr !, ~27!

where for largekr, u(kr)51/k3r 31•••, andH 0
~1! is a Hankel

function of the first kind.12 Thus for largekr, asymptotically,

2pg6~r !'6 ipS 2

pkr D
1/2

e2 ip/4e6 ikr1••• . ~28!

Notice that asymptotically the propagator for the problem
with a linear spectrum turns out to be twice the propagator
for the problem with a quadratic spectrum in two
dimensions.11

Using Eq.~23! in Eq. ~21!, we can obtain a series expan-
sion for the scattering states in momentum space. To identify
a scattering amplitude, we need solutions in real space. From
Eq. ~21! we obtain

f k
6~r !5

1

~2p!2
E
0

`

dp
p

p2k7 ig E
0

2p

du eipr cosu

3Q~k;p cosu,p sinu!. ~29!

Omitting the explicit dependence onk, let us define the even
and odd functionsF0(p) andF1(p):

2F0~p!5Q~k;p,0!1Q~k;2p,0!,
~30!

2F1~p!5Q~k;p,0!2Q~k;2p,0!.

Notice thatQ~k;p,0!5Q~k;pr̂ ! becauseu5p` r . By expan-
sion ofQ in a Taylor series, we can show that
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2p f k
6~r !5E

0

`

dp p
J0~rp !F0~p!1 iJ1~rp !F1~p!

p2k7 ig
.

~31!

We write J1 as a derivative ofJ0, use the integral represen-
tation ~26!, and evaluate the integral in Eq.~31! similarly to
the evaluation of the propagator. Assume thatF0(p) and
F1(p) are analytical in the upper half-plane. Then we obtain

2p f k
6~r !56 ip@H0

~1!~6kr !F0~k!6 iH 1
~1!~6kr !F1~k!#

1u~kr ! where u~kr !51/k3r 31••• . ~32!

From this equation we obtain the asymptotic behavior of the
scattered wave forkr@1:

2p f k
1~r !' ie2 ip/4S 2p

kr D
1/2

eikrQ~kk̂;kr̂ !. ~33!

If F0 and F1 are singular in the upper half-plane but the
singularities are confined to poles and branch cuts away from
the real axes, then these poles and cuts will make contribu-
tions to f k~r ! that decay exponentially as exp~-Ar! for larger
and do not contribute to the asymptotic behavior in Eq.~32!.

The density variationdr~r ! is obtained as the real part of
f k

1(r ). Equation~33! describes the scattering of the plasma
density oscillations withu f u2 per unit length being constant at
large r . We will show now that Eq.~33! describes the scat-
tering of plasmon energy by the density variationdn~r ! in-
duced by the impurity charge. In order to do this we look at
the real-space equation describing plasma oscillations in a
2D electron gas. Unlike the bulk case, the 2D real-space
equation contains a term singular at the origin as a result of
the linearp term in V2(p). In order to obtain a physically
sensible result for the energy in the scattered wave, we con-
sider classical plasma oscillations in an electron layer of fi-
nite thicknessd. This problem can be analyzed similarly to
the surface-plasmon problem.13 The equation is the bulk
plasma equation with boundary conditions of zero normal
velocity at the two surfacesz50 andz5d. In order not to
burden the main text, we analyze the plasmon problem in a
layer of finite thickness in Appendix C.14

Taking the limitd→0 in the finite layer plasmon problem
and using Eq.~C13!, we can evaluate the energy flux. Prior
to the evaluation of the energy fluxJH , we consider the Born
approximation to the scattering problem,11 setting
f k~p8!5~2p!2d~p82k! andk5V2 in Eq. ~22!. We obtain

2QB~kk̂;kr̂ !5
Zk cosu

N«s

G~2k sinu/2!

G~2k sinu/2!12k sinu/2
,

~34!

whereu5r `k. In the same approximation,

f k
1~r !' f ~u!

eikr

Ar
, ~35!

where the scattering amplitude is given by

f ~u!52
Zie2 ip/4

N«sA2p
Ak cosu

G

G12k sinu/2
. ~36!

The density variations dr~r ,t! are obtained as
Re$f k

1~r !exp(ivkt)%. Equation~C13! can be evaluated in po-
lar coordinates to give the radial component of the energy
flux at larger ,

j r5B2r̂kvk

u f ~u!u2

r
sin2~kr2vkt !, ~37!

whereB is defined in Eq.~C14!. The energy flux in a scat-
tered wave through the circle of radiusr is given by

Jr5E j• r̂ dl5E j• r̂ r du. ~38!

Taking an average over many time periods, we obtain

^Jr&5 lim~T→`!
1

T E
0

T

dt Jr5E du 1
2B

2
r̂

r
kvku f ~u!u2.

~39!

The 2D scattering cross section is, by definition, a ratio of
scattering flux to the incident flux per unit length. We have
been using dimensionless units above, and we now restore
the original units by takingr→ra2 . Therefore

ds/a25
^r j r&

^ j inc&
du5u f ~u!u2du, ~40!

where f ~u! is given in Eq.~36!. The total cross section is
obtained by integrating over the angle.

In the limit of smallk, for the low-energy scattering cross
section we obtain

s/a2'
kZ2

2N2«s
2 5

v2mZ2

4pe2«sn0
3a2

3 . ~41!

This is markedly different both from bulk-plasmon
scattering5 and intersubband plasmon scattering3 because in
those casess goes to a nonzero value at zero wave vector. At
large wave vectors the scattering cros section obtained from
Eqs.~40! and~36! decreases as 1/k for qTF!k,2qF , and as
1/k5 for k@2qF .

IV. WAVE-PACKET SOLUTIONS
OF THE INTEGRAL EQUATION

Let us consider Eq.~6! as a wave packet of plasma oscil-
lations with a dispersionv(q),

dr~q,v!5~2p!3dr~q!d@v2v~q!#,
~42!

dr~r ,t !5E d2q exp@ i ~q•r2tv~q!#dr~q!.

For the 3D plasmons5 and also for intersubband plasmons in
quantum wells,3 if Z has the same sign as the plasma carri-
ers, one finds localized solutions~‘‘bound states’’! with
v(q)5vb , which is a constant frequency below the mini-
mum frequency of the free plasmons. There are no such so-
lutions for the 2D case or for intrasubband plasmons in a
quantum well. However, we can look for the solutions of the
form ~42! with v(q),v0(q), wherev0(q) is the dispersion
law of the free 2D plasmons. In particular, we take

V2~p!5a2~p1 3
2p

2! ~43!
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in Eq. ~20!, with a2,1. The integral equation will have so-
lutions forZ,0, i.e., for a negative fixed charge in the elec-
tron gas or for a positive fixed charge in a hole gas.

We can expand the density oscillations in 2D harmonics,

dr~q!5 (
n50

`

einucn~q!, ~44!

and consider then50 solution, thes wave. It is obtained as
a solution of the following integral equation:

c0~p!5
uZu

12a2

1

N«s
E
0

` dp8

~2p!2
p8

11 3
2p

E
0

2p

du

3
G~Dp8!

G~Dp8!1Dp8
c0~p8!,

~45!

Dp8[~p21p8222pp8cosu!1/2.

This equation can be symmetrized and cast in the form of a
one-dimensional integral equation with a symmetric real ker-
nel. The resulting equation can be solved numerically by the
method described in our study of the intersubband
plasmons.3 We find that there is a discrete set of values ofa
for which a wave packet in Eq.~42! is a solution of the
integral equation.

As an example we consider a 2D electron gas with mate-
rial parameters appropriate for GaAs:m/m050.0665 and
«s512.35. The resulting values ofa start at zero at some
value of the density, and then approach 1. In order to obtain
a value ofa substantially different from 1 at reasonably high
densities, one needs a high value ofZ. Physically this may be
realized by a small cluster of charged acceptors. As an illus-
tration we show the two lowests-wave solutions forZ540
in Fig. 1. This shows the existence of the wave-packet solu-
tions whose components have lower phase velocities than
free plasmons.
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APPENDIX A: RANDOM-PHASE APPROXIMATION
FOR THE INHOMOGENEOUS 2D ELECTRON GAS

The Hamiltonian for a system of independent electrons
~or holes! interacting with a charged impurity is

H05K1Hc- i , ~A1!

whereK is the kinetic-energy operator, andHc- i describes
the interaction of the carriers with the fixed charge through
the Coulomb interactionV~r -r 8!, which has a Fourier trans-
form

Vq~z!5
2pe2

«sq
exp~2quzu!. ~A2!

For a strictly 2D gas,z→0 in Eq. ~A2!. The total Hamil-
tonian is

H5H01H int , ~A3!

whereH int describes carrier-carrier interactions. In our pre-
vious study of intersubband plasmons in a quantum well,
explicit expressions in the second quantization were given,
and the RPA and its long-wavelength approximation for an
inhomogeneous gas of carriers were derived. Here we adapt
that study for the cases of intrasubband plasmons and 2D
plasmons.

Let dr~k,v! describe a Fourier component of the variation
of plasma density in response to a weak external perturbation
drext. In linear-response theory9 the change of the total car-
rier density in the presence of an external perturbation,
drT5dr1drext is related todrext through the inverse dielec-
tric operator:

drT~k,v!5(
k8

«21~k,k8;v!drext~k8,v!. ~A4!

Inverting this equation and defining collective excitations by
the conditiondrTÞ0, whiledrext50, we obtain the following
equation for the collective excitations of the systemH:

E d2k8«~k,k8;v!drT~k8,v!50. ~A5!

The Dyson equation in the RPA can be derived in close
analogy to that for a homogeneous 2D system.2 The carrier
density propagator is defined as a time-ordered density-
density correlation function. The lowest-order term in the
perturbation expansion of its irreducible part is given by

FIG. 1. The parametera, defined in Eq.~43!, is shown as a
function of the 2D densityn. It relates the frequencies of the oscil-
lations contributing to the wave-packet solution of the integral
equation~45! to the dispersion law of the free plasmonsv0(q)
throughv5a2v0(q). At each value of the density the two lowest
allowed values ofa are shown form50.0665m0 , es512.35, and
Z540.
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P0~k,k8;v!5~2p!24E d2q d2q8E
2`

`

dv8

3G~q,q8;v1v8!G~k1q,k81q8;v8!,

~A6!

whereG~k,k8;v! is a one-particle propagator for the system
of independent electrons interacting with the impurity, i.e.,
for the HamiltonianH0 in Eq. ~A1!.

At zero temperature in the same approximation, the irre-
ducible retarded propagator9 is given by

RePR~v!5ReP0~v!,
~A7!

ImPR~v!5~sgnv!ImP0~v!.

From the Dyson equation for the density propagator and the
definition of the dielectric operator, we obtain the RPA for«,
in the operator form«̂51-PRV. With this we obtain the
RPA for Eq.~A5!. Omitting the explicitv dependence,

E d2k8@d~k2k8!2PR~k,k8!V~k8!#drT~k8!50.

~A8!

Following the treatment of the bulk case,8,3 we obtain the
long-wavelength expansion forPR using the spectral repre-
sentation

qPR~k,k8;v!5E
2`

` dn

2p

s~k,k8;n!

v2n1 ig
, ~A9!

whereg→10. The spectral density is given by

s~k,k8;v!5E
2`

`

dt eivtA21^@ r̂~k,t !,r̂1~k8,0!#&,

~A10!

where r̂ is a Heisenberg operator defined with the Hamil-
tonianH, A is the normalization area, and at zero tempera-
ture the averaging of the commutator is performed over the
ground state ofH. The real part ofP will be obtained taking
the principal value in Eq.~A7!.

We expand 1/~v-n! in powers ofn, and use the following
identity:

~2p!21E
2`

`

dn nns~n!5~2 i !n
]ns~ t !

]tn U
t510

. ~A11!

The right-hand side can be evaluated from the equations of
motion for the Heisenberg density operators defined with the
Hamiltonian H0 in Eq. ~A1!, i\(]r/]t)5[r,H0]. In this
way an infinite sequence of the sum rules is obtained. The
terms with even powers ofn vanish. The first nonvanishing
term is given by the following sum rule:

~2p!21E
2`

`

dn ns~q,q8;n!5
\2

m
q•q8n~q2q8!.

~A12!

Heren~q! is a Fourier transform ofn01dn~r !, wheren0 is a
density of the uniform gas anddn~r ! is a change of the
density due to the presence of the fixed chargeZe/«s .

The validity of the expansion is restricted to (qvF)/v,1.
For plasmons with a square-root dispersion law,v(q)}Aq,
this condition will be satisfied for sufficiently smallq. From
the static limit of the RPA we obtaindn(q) in the form of
the Thomas-Fermi screening as in Eq.~12!. The sum rules
are used in Eq.~A9!. To the same order in the long-
wavelength approximation as in Sec. II, and using the dimen-
sionless variables defined in Eq.~17!–~19!, from Eqs.~A8!
and ~A9! we obtain the following integral equation:

S V22p2
3

2

p3

V2D dr~p!

5
Z

N«s
E d2p8

~2p!2
p•p8

p8

G~p2p8!

G~p2p8!1up2p8u
, ~A13!

where functionG(p) is defined in Eq.~14!.
For Z50 the dispersion relation for free plasmons is ob-

tained from the left-hand side of this equation as expansion
in powers ofp,

V0
25p1 3

2p
21••• . ~A14!

To leading order in the wave vector, the integral equation
~A13!, which is derived here as the long-wavelength ap-
proximation of the RPA, reproduces Eq.~20! derived in the
hydrodynamic model of Sec. II. The differences appear in
higher orders ofp2/V2, and are due to the neglect of corre-
lations in the hydrodynamic approach.

APPENDIX B: SCATTERING
OF INTRASUBBAND PLASMONS

IN QUANTUM WELL

The RPA method discussed in Appendix A for the 2D
plasmons can be extended to the case of intrasubband plas-
mons in the quantum well, and thereby finite thickness ef-
fects can be incorporated in the present work. In our previous
study3 we presented a detailed theory for the intersubband
plasmons in the quantum-well plasma interacting with the
charged impurity. In a similar fashion we now obtain an
integral equation that describes the scattering of intrasubband
plasmons by the density inhomogeneity due to the impurity
charge. In the dimensionless form,

S V22p2
3

2

p3

V2 1c0p
2D dr~p!5E d2p8K~p,p8!dr~p8!,

~B1!

whereK is given by the following form:

K~p,p8!5
Z

~2p!2N«s

p•p8

p8

G~Dp8!S~Dp8!

Dp81G~Dp8!F~Dp8!
,

~B2!
Dp8[up2p8u.

G(p) is given in Eq.~14!, and the quantitiesc0, S, andF are
given by

c05E dz dz8j1
2~z!j1

2~z8!uz2z8u, ~B3!

S~p!5E dz e2puzuj1
2~z!, ~B4!
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F~p!5E dz dz8j1
2~z!j1

2~z8!e2puz2z8u, ~B5!

wherej1(z) is a normalized subband wave function of the
one-dimensional confining potential of the quantum well.
From the free-plasmon dispersion relation~A14!, it is clear
that thep3/V2 term isO(p2). The derivation in Sec. III ap-
plies here, and the low-energy scattering cross section~k→0
limit ! is given by Eq.~41!.

APPENDIX C: HYDRODYNAMIC MODEL
FOR A LAYER OF PLASMA

The equation for free plasma oscillations in a layer of
thicknessd can be obtained from the bulk equation

dr̈1vp
2dr2s2“b

2dr50, ~C1!

with the boundary condition of zero normal velocity at the
surfaces. The subscriptb indicates a 3D vector. We define a
dimensionless variablej5zq, and perform a Fourier trans-
formation in time and coordinatesx andy. We then have the
following equation for the layer plasmons:

S V2212
s2q2

vp
2 D dr~q,j!1

s2q2

vp
2

]2

]j2
dr~q,j!50

~C2!

for 0,j,qd, with boundary conditions

vz~z50!5vz~z5d!50, ~C3!

wherevp is a bulk plasma frequency andV5v/vp . The
velocity field is determined by the Euler equation. In the
proper treatment of the problem we should keep the pressure
variation term, i.e.,s2Þ0. If we want to keep only the lead-
ing term in the resulting dispersion law, the limits→0 can be
taken, but only in the end.13 The solution of Eqs.~C2! and
~C3! is given by

dr~q,j!52A coshbS j2
dq

2 D , ~C4!

b25
11s2q2/vp

22V2

s2q2/vp
2 . ~C5!

In the limit sq→0 and dq!1, A is related to the normal
component of the electric field at thez50 surface:

A5Ez~0!
«svp

4pe2s
. ~C6!

The boundary conditions result in the following equation
for b, and implicitly forv:

coth~bdq/2!@12exp~2dq!#2b@11exp~2dq!#

52b~12b2!s2q2/vp
2. ~C7!

For a thin layer we expand the exponents toO(d2q2) and
take into account thatb5vp/sq1O(dq). We define a 2D
density asn05dn3 , and from Eq.~C7! we obtain the disper-
sion relation

v25~2pe2n0 /«sm!q1s2q21••• . ~C8!

Equation~C1! can be written as a Euler equation for a
scalar fieldf5dr~rb ,t! for the Lagrangian density

L5
1

2
ḟ 22 1

2s
2u“b f u22

1
2vp

2 f 2. ~C9!

The corresponding canonical momentum and Hamiltonian
density are given by

p5
]L
]ṙ

5 ḟ , H5p ḟ2L. ~C10!

From Eqs.~C1! and ~C10!, it is simple to show that

]H

]t
1“b•~s

2 ḟ“bf !50, ~C11!

and therefore we can define the Hamiltonian flux vector14 as

jH5s2 ḟ“ f . ~C12!

In the finite layer problem we use Eqs.~C4! and ~C6! with
Eq. ~C12! to obtain a two-dimensional vector of energy flux
expressed through the boundary value of the electric field,

j5B2dṙ~r ,t !“dr~r ,t !, ~C13!

where

B5
Ez~0!«svp

4pe2
. ~C14!
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