
Dynamic dielectric properties of a bounded solid-state plasma and a two-dimensional electron
sheet: Inverse dielectric function and coupled collective modes

N. J. M. Horing, T. Jena, and H. L. Cui
Department of Physics and Engineering Physics, Stevens Institute of Technology, Hoboken, New Jersey 07030

J. D. Mancini
Department of Physics, Fordham University, Bronx, New York 10458

~Received 4 December 1995!

We examine the dynamic dielectric response properties of a planar two-dimensional~2D! electron system
embedded in and coupled to a semi-infinite, local dynamic dielectric medium whose bounding surface is
parallel to the 2D sheet at a distancez0 from it. For this system, we carry out an explicit position space
inversion of the longitudinal dielectric function, and analyze the concomitant coupled collective plasmon
dispersion relation.@S0163-1829~96!00828-4#

I. INTRODUCTION

The confined geometries of semiconductor nanostructures
have yielded an impressive array of plasmons1,2 for quantum
wells, wires, dots, periodic superlattices of such structures,
and other spatial configurations. Even within the simplest
description of the random-phase approximation, it is clear
that such longitudinal collective modes can couple and inter-
act among themselves. In this paper we treat the dynamic
dielectric properties of a planar two-dimensional~2D! elec-
tron sheet~in a quantum well or inversion layer! embedded
in and coupled to a semi-infinite, local dynamic dielectric
medium whose bounding surface is parallel to the 2D sheet
at a distancez0 from it. Our analysis involves the construc-
tion of the direct longitudinal dielectric function«~1,2!
~15x1 ,y1 ,z1 ,t15r1,t15 r̄ 1 ,z1 ,t1 , etc.! for the combined
system of this geometry, and its explicit inversion in position
representation. The importance of the inverse dielectric func-
tion K~1,2! stems from its significance as a propagator of
longitudinal potential in the dynamic, inhomogeneous sys-
tem at hand. Here, the effective potentialV~1! due to an
impressed potentialU~2! is given by the linear functional
relation V(1)5*d4(2)K(1,2)U(2), or K(1,2)5dV(1)/
dU(2) in terms of variational differentiation. One could al-
ternatively examine the electrostatic fields for the present
geometrical configuration to treat the coupled mode disper-
sion relation in a straightforward manner. However, our ex-
plicit determination of the inverse dielectric function of the
combined system provides not only the coupled mode fre-
quencies at the poles, but also their excitation amplitudes
~oscillator strengths! as given by the residues at the poles. In
this model calculation, the medium on the far side of the
local semi-infinite bulk dielectric is taken to be vacuum, as
shown in Fig. 1.

While there is spatial translational invariance of this sys-
tem in the plane parallel to the 2D electron sheet and the
semi-infinite plasma interface, so that Fourier transformation
r̄ 12r̄ 2→Q̄ and t12t2→v is useful, the essential spatial in-
homogeneity of this confined system in the perpendicularz
direction renders the Fourier-transform technique useless in
this direction. We therefore proceed with the determination

of the inverse dielectric functionK~1,2! explicitly by execut-
ing the inversion of the direct dielectric function«~1,2! in the
z representation, employing the condition

E d43K~1,3!«~3,2!5d4~122!5d3~r12r2!d~ t12t2!.

~1!

Or, using Fourier transformation in the parallel plane,

E
2`

`

dz3K~z1 ,z3 ;Q̄,v!«~z3 ,z2 ;Q̄,v!5d~z12z2!.

~2a!

SuppressingQ̄ andv,

E
2`

`

dz3K~z1 ,z3!«~z3 ,z2!5d~z12z2!. ~2b!

This inverse relation holds for the direct and inverse dielec-
tric functions of any~planar! plasma geometry, including
that of the 2D plasma sheet alone, that of the semi-infinite
dielectric medium alone, and that of the combined system
presently under consideration.

Our determination ofK~1,2! in direct position representa-
tion proceeds as follows: based on earlier experience3 with

FIG. 1. Planar 2D electron sheet parallel to and at a distancez0
from the interface of a semi-infinite plasma with vacuum.
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semi-infinite ~and slab! solid-state plasmas, we employ the
known result for the semi-infinite dielectric in the local limit,
Ksemi~1,2!, and invert it to obtain«semi~1,2! in position repre-
sentation using Eq.~2!. Considering next the 2D electron
sheet atz0, we employ the well-known 2D result4,5 for
«2D~1,2! and then combine polarizabilities with that of
«semi~1,2! to obtain the direct dielectric function of the com-
bined system «~1,2! in position representation as
«~1,2!5«semi~1,2!1«2D~1,2!2d4~1,2!. Finally, we again em-
ploy the inversion condition, Eq.~2!, to obtain the inverse
dielectric functionK~1,2! for the combined system from
«~1,2! in position representation.

The simple additivity of the polarizabilities employed
here is an aspect of the random-phase approximation~RPA!.
To clarify this point, we consider the defining relation

K~1,2!5
dV~1!

dU~2!
,

which describes the inverse dielectric functionK~1,2! as the
linear connection between the effective potentialV~1! and an
impressed potentialU~2!, alternatively expressed as

V~1!5E d42K~1,2!U~2!.

Considering the instantaneous electron-electron Coulomb in-
teractionv~122!5~e2/ur12r2u!d(t12t2), the effective poten-
tial is given by

V~1!5U~1!1E d43 v~123!r~3!,

where r~3! is the perturbed density in the presence of the
fields. Taking the variational derivatived /dU~2!, this yields

K~1,2!5
dV~1!

dU~2!
5d4~122!1E d43 v~123!

dr~3!

dU~2!
,

and using the chain rule for variational differentiation, we
have the integral equation

K~1,2!5d4~122!1E d43E d44 v~123!
dr~3!

dV~4!
K~4,2!.

Employing the inversion relation, Eq.~1!, this may be solved
exactly for the direct dielectric function

«~1,2!5d4~122!2E d43 v~123!
dr~3!

dV~2!
,

so that the polarizability may be identified as

«~1,2!2d4~122!54pa~1,2!52E d43 v~123!
dr~3!

dV~2!
.

The RPA is constituted of approximating 4pa~1,2! by its
free-electron form 4pa0, in the absence of Coulomb interac-
tions. With this,dr(3)/dV(4)5R(3,4), the density pertur-
bation response function, may be seen to be the lowest order
‘‘ring’’ diagram. @The sum of the infinite series of ring dia-
grams then placesR~3,4! in the kernel of the integral equa-
tion above, as one should expect.# For systems of the type
considered here, which have several distinct contributing

density distributions~e.g., the 2D electron sheet and the
semi-infinite plasma in which it is embedded!, r5(ir i , and
since the RPA involvesR(3,4)5dr(3)/dV(4)5( idr i(3)/
dV(4)5( iRi(3,4) in the absence of Coulomb interactions,
the determination ofR~3,4! involves only the sum of nonin-
teracting density, or ring diagram, contributions from the
various parts of the system. Correspondingly, in the RPA,
the noninteracting polarizability

4pa→4pa05(
i
4pa i0

is composed of contributions from the various parts of the
system in a simple additive manner.

II. INVERSION OF THE DIELECTRIC FUNCTION

Following the method outlined above, we determine the
joint dielectric function«~z,z8! of the combined semi-infinite
dielectric medium plus the 2D sheet by adding the individual
polarizabilities of the constituent parts in a position
z-representation. To find«semi~z,z8! of the semi-infinite me-
dium, we start from the result of Ref. 3 for its inverse dielec-
tric functionKsemi~z,z8!, taken here in the local cold plasma
limit,

Ksemi~z,z8!5h1~2z!@d~z2z8!1d~z8!eQzG#

1h1~z!@d~z2z8!/«2d~z8!e2QzG/«#,

~3!

whereG5~12«!/~11«!, andh1(z) is the Heaviside unit step
function. It is to be noted that this result properly incorpo-
rates the role of dynamic screening through the 3D bulk di-
electric function

«5114pa0
3D ~4!

and image strength potential~«21!/~«11!. Here, 4pa0
3D is

the 3D bulk polarizability having the local cold plasma limit
→2v p

2/v2, wherev p
254pr3De

2/m is the electron plasma
frequency squared, withm as effective band mass andr3D is
the 3D conduction-band electron density.

To determine the direct dielectric function«semi~z,z8! of
the semi-infinite plasma, we make an ansatz on the basis of
our earlier experience@h1(z) is the Heaviside unit step func-
tion: h1(z)51 for z.0, 0 for z,0, 1

2 for z50#:

«semi~z,z8!5h1~2z!@d~z2z8! f 1~z!1d~z8!g1~z!#

1h1~z!@d~z2z8! f 2~z!1d~z8!g2~z!#.

~5!

Here, f 1(z), f 2(z), g1(z) andg2(z) are continuous functions
to be determined by the inversion condition, Eq.~2b!, using
Ksemi~z,z8! as given by Eq.~3!, from which we obtain
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d~z2z8!5h1~2z!@d~z2z8! f 1~z!1d~z8!g1~z!1h1~2z8!d~z8! f 2~z8!GeQz1h1~20!d~z8!g1~0!GeQz

1h1~z8!d~z8! f 2~z8!GeQz1h1~0!d~z8!g2~0!GeQz#1
h1~z!

«
@d~z2z8! f 2~z!1d~z8!g2~z!

2h1~2z8!d~z8! f 1~z8!Ge2Qz2h1~20!d~z8!g1~0!Ge2Qz2h1~z8!d~z8! f 2~z8!Ge2Qz

2h1~0!d~z8!g2~0!Ge2Qz#. ~6!

Equating coefficients ofd~z2z8!, we have

15h1~2z! f 1~z!1h1~z! f 2~z!/«, ~7!

which implies that

for z.0→ f 2~z!5«, ~8a!

for z,0→ f 1~z!51. ~8b!

Furthermore, equating coefficients ofd~z8!, we obtain

05h1~2z!@g1~z!1h1~2z8! f 1~z8!GeQz1h1~20!g1~0!GeQz1h1~z8! f 2~z8!GeQz1h1~0!g2~0!GeQz#

1
h1~z!

«
@g2~z!2h1~2z8! f 1~z8!Ge2Qz2h1~20!g1~0!Ge2Qz2h1~z!8 f 2~z8!Ge2Qz2h1~0!g2~0!Ge2Qz#. ~9!

At the interfacez850, Eq. ~9! yields

05h1~2z!$g1~z!1~GeQz/2!@ f 1~0!1g1~0!1 f 2~0!

1g2~0!#%1
h1~z!

«
$g2~z!2~Ge2Qz/2!@ f 1~0!1g1~0!

1 f 2~0!1g2~0!#%. ~10!

Considering first the semi-infinite plasma regionz.0, Eq.
~10! becomes

05g2~z!2~Ge2Qz/2!@ f 1~0!1g1~0!1 f 2~0!1g2~0!#.
~11!

Sincef 1(z) and f 2(z) are continuous,f 1~0!51 andf 2~0!5«,
we have

05g2~z!2~Ge2Qz/2!@11«1g1~0!1g2~0!#. ~12a!

In the limit z→0, g1(z) andg2(z) are also continuous, and
we find

05g2~0!@12G/2#2Gg1~0!/22~11«!G/2. ~12b!

Considering next the vacuum regionz,0, Eq. ~10! yields

05g1~z!1~GeQz/2!@11«1g1~0!1g2~0!#, ~13a!

and, for the limitz→0, we have

05g1~0!@12G/2#1Gg2~0!/21~11«!G/2. ~13b!

Solving Eqs.~12b! and ~13b!, we obtain

g1~0!52g2~0!5~«21!/2. ~14!

Clearly,g1(0)1g2(0)50, so that substitution in Eqs.~12a!
and ~13a! yields

g1~z,0!5
«21

2
eQz, ~15a!

g2~z.0!5
12«

2
e2Qz. ~15b!

Hence, the direct dielectric function for the semi-infinite
plasma is given by

«semi~z8,z9!5h1~2z8!@d~z82z9!1d~z9!~«21!eQz8/2#

1h1~z8![d~z82z9!«1d~z9!(12«)e2Qz8/2].

~16!

Following the calculational program described above, we
now add the polarizability of the semi-infinite dielectric me-
dium to the polarizability of the 2D sheet of the electron
plasma to obtain the direct dielectric function of the com-
bined system in positionz-representation as

«~z,z8!5«semi~z,z8!1«2D~z,z8!2d~z,z8!. ~17!

The direct dielectric function of the 2D electron sheet atz0 in
three-dimensional~3D! space has been determined4,5 in the
positionz representation as

«2D~z,z8!5d~z2z8!14pa0
2De2Quz2z0ud~z82z0!,

~18!

where 4pa0
2D is the 2D polarizability of the electron sheet in

transverse momentum/frequency~Q̄,v! representation. This
2D polarizability is well known from semiconductor inver-
sion layer and quantum-well studies.1 In the local cold
plasma limit, it takes the form 4pa0

2D→22pr2De
2Q/mv2,

wherer2D is the 2D electron sheet density.
Forming the joint direct dielectric function«~z,z8! of the

combined system following Eqs.~16!–~18!, we obtain
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«~z,z8!5d~z2z8!14p$h1~2z!a0
3Dd~z8!eQz/2

1h1~z!a0
3D@d~z2z8!2d~z8!e2Qz/2#

1d~z82z0!a0
2De2Quz2z0u%. ~19!

Again, our experience suggests that the inverse dielectric
functionK(z,z8) should take the ansatz form

K~z,z8!5h1~2z!@d~z2z8! f 1~z!1d~z8!g1~z!#

1h1~z!@d~z2z8! f 2~z!1d~z8!g2~z!#

1d~z82z0! f ~z!, ~20!

with f (z), f 1(z), f 2(z), g1(z), andg2(z) to be determined
by the inversion condition Eq.~2! for the combined system.
This yields

d~z2z8!5h1~2z! f 1~z!d~z2z8!1h1~2z!g1~z!d~z8!1h1~z! f 2~z!d~z2z8!1h1~z!g2~z!d~z8!1 f ~z!d~z82z0!

1h1~2z!h1~20!4pa0
3DeQz@ f 1~0!1 f 2~0!1g1~0!1g2~0!#d~z8!/21h1~2z!4pa0

3DeQzf ~0!d~z82z0!/2

1h1~z!h1~2z!4pa0
3Df 1~z!d~z2z8!1h1~z!h1~2z!4pa0

3Dg1~z!d~z8!1h1~z!4pa0
3Df 2~z!d~z2z8!

1h1~z!4pa0
3Dg2~z!d~z8!2h1~z!h1~20!4pa0

3De2Qz@ f 1~0!1 f 2~0!1g1~0!1g2~0!#d~z8!/2

2h1~z!4pa0
3De2Qzf ~0!d~z82z0!/21h1~z!4pa0

3Df ~z0!d~z2z0!/21h1~2z0! f 1~z0!d~z82z0!

34pa0
2De2Quz2z0u1h1~2z0!g1~z0!d~z8!4pa0

2De2Quz2z0u1h1~z0! f 2~z0!d~z82z0!4pa0
2De2Quz2z0u

1h1~z0!g2~z0!d~z8!4pa0
2De2Quz2z0u1 f ~z0!d~z82z0!4pa0

2De2Quz2z0u. ~21!

Again, we equate coefficients of the variousd functions.
Equating the coefficients ofd~z2z8!, we find

15h1~2z! f 1~z!1h1~z! f 2~z!1h1~z! f 2~z!4pa0
3D ,

~22!

which yields, forz.0,

f 2~z.0!51/«, ~23!

and, forz,0,

f 1~z,0!51. ~24!

Furthermore, we equate coefficients ofd(z82z0) to obtain

05 f ~z!1h1~2z! f ~0!4pa0
3DeQz/21h1~z! f ~z!4pa0

3D

2h1~z! f ~0!4pa0
3De2Qz/2

1h1~2z0! f 1~z0!4pa0
2De2Quz2z0u

1h1~z0! f 2~z0!4pa0
2De2Quz2z0u

1 f ~z0!4pa0
2De2Quz2z0u. ~25!

To determinef ~0! and f (z0), we setz50 andz5z0 in Eq.
~25! in succession, obtaining two simultaneous equations for
f ~0! and f (z0). Takingz50 in Eq. ~25! first, we have

05 f ~0!~114pa0
3D/2!1@h1~2z0! f 1~z0!1h1~z0! f 2~z0!

1 f ~z0!#4pa0
2De2Qz0. ~26!

Since the 2D electron sheet is in the material medium~as
opposed to the vacuum region!, z0.0, and from Eq.~23! we
have f 2(z0)51/«. Thus Eq.~26! yields

f ~z0!52 f ~0!
«11

8pa0
2De2Qz0

2
1

«
. ~27!

Now, takingz→z0.0 in Eq. ~25!, we find

f ~z0!«5 f ~0!$e2Qz04pa0
3D/21@~11«!/~2e2Qz0!#%.

~28!

Solving Eqs.~27! and ~28! simultaneously forf ~0!, we find

f ~0!52
1

« F4pa0
3De2Qz0

2«
1

11«

2«e2Qz0
1

11«

8pa0
2De2Qz0G21

.

~29!

Turning now to the solution of Eq.~25!, we first consider the
casez.0, obtaining

f ~z.0!«5 1
2 f ~0!@4pa0

3De2Qz1~«11!e~Qz02Quz2z0u!#.
~30!

On the other hand, forz,0, Eq. ~25! yields

f ~z,0!5 1
2 f ~0!@24pa0

3DeQz1~«11!e~Qz02Quz2z0u!#.
~31!

f (z) may now be formed as

f ~z!5h1~z! f ~z.0!1h1~2z! f ~z,0!. ~32!

At this point, we focus on the determination ofg1(z) and
g2(z) by equating coefficients ofd~z8! in Eq. ~21!, from
which
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05h1~2z!@g1~z!1h1~20! f 1~0!4pa0
3DeQz/21h1~20!g1~0!4pa0

3DeQz/21h1~0! f 2~0!4pa0
3DeQz/2

1h1~0!g2~0!4pa0
3DeQz/2#1h1~z!@g2~z!~114pa0

3D!2h1~20! f 1~0!4pa0
3De2Qz/2

2h1~20!g1~0!4pa0
3De2Qz/22h1~0! f 2~0!4pa0

3De2Qz/2#1g2~z0!4pa0
2De2Quz2z0u. ~33!

However, recallf 1~0!51 and f 2~0!51/«, so that forz,0 we
have

05g1~z,0!14pa0
3DeQz@11g1~0!1g2~0!11/«#/4

1g2~z0!4pa0
2De2Quz2z0u, ~34!

and forz.0 we find

05«g2~z.0!24pa0
3De2Qz@11g1~0!1g2~0!11/«#/4

1g2~z0!4pa0
2De2Quz2z0u. ~35!

In order to match the limits fromz→01 andz→02, we first
considerz.0 and letz→0, with the result

05«g2~0!2~«21!@11g1~0!1g2~0!11/«#/4

1g2~z0!4pa0
2De2Qz0. ~36!

Next, we considerz,0 and letz→0, finding

05g1~0!1~«21!@11g1~0!1g2~0!11/«#/4

1g2~z0!4pa0
2De2Qz0. ~37!

Finally, we consider Eq.~35! in the limit z→z0.0, obtain-
ing

05«g2~z0!2~«21!e2Qz0@11g1~0!1g2~0!11/«#/4

1g2~z0!4pa0
2D . ~38!

We can now solve forg1~0!, g2~0!, and g2(z0) from Eqs.
~36!–~38! as follows:

g1~0!5S 11
4pa0

2De22Qz0

«14pa0
2D D S 1G2

4pa0
2De22Qz0

«14pa0
2D D 21

,

~39!

and substituting in Eq.~34! for g1 ~z,0!, we find

g1~z!5
12«

2
@11g1~0!#

3FeQz1 4pa0
2D

«14pa0
2D e

2Qz0e2Quz2z0uG , ~40!

and similarly forg2 ~z.0!, we use Eq.~35! to obtain

g2~z!5
«21

2«
@11g1~0!#

3Fe2Qz2
4pa0

2D

«14pa0
2D e

2Qz0e2Quz2z0uG . ~41!

Finally, we note that

g2~z0!5
«21

2

11g1~0!

«14pa0
2D e

2Qz0. ~42!

Returning to the ansatz of Eq.~20!, we see that it does in-
deed satisfy the inversion condition withf (z), f 1(z), f 2(z),
g1(z), andg2(z) as given above, yielding the result

K~z,z8!5h1~2z!@d~z2z8!1g1~z!d~z8!#1h1~z!@d~z2z8!/«1g2~z!d~z8!#1„h1~z!$ f ~0!@4pa0
3De2Qz/2

1~11«!e2Quz2z0u/~2e2Qz0!#/«%1h1~2z!$2 f ~0!@4pa0
3DeQz/22~11«!e2Quz2z0u/~2e2Qz0!#%…d~z82z0!.

~43!

III. COUPLED COLLECTIVE PLASMA OSCILLATIONS
OF THE COMBINED SEMI-INFINITE PLASMA

AND 2D ELECTRON SHEET

The coupled plasmons of the confined semi-infinite
plasma and 2D electron sheet are given by the frequency
poles ofK(z,z8). These poles can be identified by inspection
of the ways that the right-hand side of Eq.~43! can diverge.
There are several categories of such coupled plasmon fre-
quency poles.

~a! «50, the usual bulk plasma oscillation:

v25vp
254pe2r3D /m. ~44!

~b! «14pa0
2D50, a hybridization of the bulk and 2D plas-

mons:

v25vp
21v2D

2 . ~45!

~c! g1~0!→` and f ~0!→`:

1

G
2
4pa0

2De22Qz0

«14pa0
2D 50, ~46!

so that
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4v6
2 53vp

212v2D
2 6$~3vp

212v2D
2 !2

28~vp
41vp

2v2D
2 @11e22Qz0# !%1/2. ~47!

We examine two limits of interest in case~c!:

~i! As z0→`, we havev1
2 5v p

21v2D
2 as in case~b!, and

v2
2 5v p

2/2, the surface plasmon.
~ii ! As z0→0, we havev1

2 5v p
2, and a hybridization of the

surface plasmon and the 2D plasmonv2
2 5v p

2/21v2D
2 .

For finite nonvanishingz0, these modes are admixed and
coupled as indicated in Eq.~47!. In Fig. 2 we plotv6/vp as
a function ofz0 for a Si-SiO2 inversion layer, withr2D51011

cm22, r3D51016 cm23, andQ50.1QF ~QF is the 2D Fermi
wave number!. Furthermore, in Fig. 3 we plot the dispersion
curvesv6/vp as functions ofQ/QF for z0510, 100, and
1000 Å.

The plasmon roots arising from the frequency poles of Eq.
~43! are intuitively reasonable for the system at hand. The
bulk plasmonv25v p

2 will always exist deep inside the semi-
infinite bulk, and its hybridization with the 2D plasmon

v25v p
21v2D

2 is to be expected with installation of the 2D
plasma sheet, no matter how far the 2D sheet is from the
surface, including the limitz0→` deep in the bulk. Of
course, the surface plasmon emerges,v25v p

2/2, and its hy-
bridization with the 2D plasmon,v25v p

2/21v2D
2 , is most

robust when the 2D sheet overlays the surface,z0→0. For
finite values ofz0, the modes depend onz0, with the detailed
results exhibited in Fig. 2. Their relative excitation ampli-
tudes may be determined from the residues at the frequency
poles ofK(z,z8), using Eq.~43!, which provides the full
description of the dynamic linear response of the joint sys-
tem ~of the 2D plasma coupled to a semi-infinite plasma! to
a longitudinal potential field, for any separation~z0! between
the 2D sheet and the surface terminating the bulk plasma.
The direct position space inversion of the dielectric function
achieved here can also be extended to more complex nano-
structure systems to provide analytic, closed-form expres-
sions for their dynamic linear-response functions. This result
promises to facilitate a variety of calculations pertaining to
nanostructure potential interactions involving external per-
turbation as well as self-interaction.
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FIG. 2. v6/vp as a function ofz0 for a Si-SiO2 inversion layer,
with r2D51011 cm22, r3D51016 cm23, andQ50.1QF ~QF is the
2D Fermi wave number!.

FIG. 3. v6/vp as a function ofQ/QF for variousz0 values. Thin
solid curves:z0510 Å; solid curves:z05100 Å; dotted curves:
z051000 Å. Other parameters are the same as in Fig. 2.
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