PHYSICAL REVIEW B VOLUME 54, NUMBER 4 15 JULY 1996-II

Dynamic dielectric properties of a bounded solid-state plasma and a two-dimensional electron
sheet: Inverse dielectric function and coupled collective modes
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We examine the dynamic dielectric response properties of a planar two-dimen@byadlectron system
embedded in and coupled to a semi-infinite, local dynamic dielectric medium whose bounding surface is
parallel to the 2D sheet at a distangg from it. For this system, we carry out an explicit position space
inversion of the longitudinal dielectric function, and analyze the concomitant coupled collective plasmon
dispersion relation.S0163-1826)00828-4

[. INTRODUCTION of the inverse dielectric functiol (1,2 explicitly by execut-
ing the inversion of the direct dielectric functiefl,2) in the
The confined geometries of semiconductor nanostructures representation, employing the condition

have yielded an impressive array of plasmdfer quantum
wells, wires, dots, periodic superlattices of such structures, 4 — 29— _ _
and other spatial configurations. Even within the simplest d*3K(L32(3.9=5(1-2)=5(r~r2) d(ts~ty).
description of the random-phase approximation, it is clear (1)
that SUCh |0ngitudinal CO“ectiVe mOdeS can Couple and interOr, using Fourier transformation in the para"e| p|ane,
act among themselves. In this paper we treat the dynamic

dielectric properties of a planar two-dimensiofi2D) elec- o — —
tron sheet(in a quantum well or inversion layeembedded _de3K(21*23vQ-“’)8(Z3'ZZ’Q"*’): 8(21=2p).
in and coupled to a semi-infinite, local dynamic dielectric (2a)

medium whose bounding surface is parallel to the 2D sheet o —
at a distance, from it. Our analysis involves the construc- Suppressing and o,
tion of the direct longitudinal dielectric functiom(1,2)

(1=Xy,Y1,21,t;=r1,t;=ry,2,,t;, etc) for the combined f dz:K (21,25)£(23,25) = 8(21— 2,). (2b)
system of this geometry, and its explicit inversion in position —

r_epresentation. The imp(_)rtan_ce_o_f the inverse dielectric funcThis inverse relation holds for the direct and inverse dielec-
tion K(1,2 stems from its significance as a propagator of . ; i .
tric functions of any(planay plasma geometry, including

longitudinal potential in the dynamic, inhomogeneous sys-, SO
tem at hand. Here, the effective potentiall) due to an that of the 2D plasma sheet alone, that of the semi-infinite

: : e . : dielectric medium alone, and that of the combined system
impressed potential (2) is given by the linear functional : :

relation V(1)=[d*(2)K(1,2U(2), or K(1,2)=sv(1) Presently under consideration. N

6U(2) in terms of variational differentiation. One could al- .. Our determination oK(.1,2) in direct po_smon rep_rgsgnta—
ternatively examine the electrostatic fields for the presenrtIon proceeds as follows: based on earlier experiemdth
geometrical configuration to treat the coupled mode disper-
sion relation in a straightforward manner. However, our ex-
plicit determination of the inverse dielectric function of the
combined system provides not only the coupled mode fre-
guencies at the poles, but also their excitation amplitudes
(oscillator strengthsas given by the residues at the poles. In
this model calculation, the medium on the far side of the
local semi-infinite bulk dielectric is taken to be vacuum, as
shown in Fig. 1.

While there is spatial translational invariance of this sys-
tem in the plane parallel to the 2D electron sheet and the
semi-infinite plasma interface, so that Fourier transformation
T,—-r,—Q andt,—t,—w is useful, the essential spatial in-
homogeneity of this confined system in the perpendicalar
direction renders the Fourier-transform technique useless in FIG. 1. Planar 2D electron sheet parallel to and at a distagce
this direction. We therefore proceed with the determinatiorfrom the interface of a semi-infinite plasma with vacuum.
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semi-infinite (and slab solid-state plasmas, we employ the density distributions(e.g., the 2D electron sheet and the
known result for the semi-infinite dielectric in the local limit, semi-infinite plasma in which it is embedde@g==,p;, and
Ksem(1,2), and invert it to obtaire,.,(1,2) in position repre-  since the RPA involve®R(3,4)= 6p(3)/6V(4)=2=,6pi(3)/
sentation using Eq(2). Considering next the 2D electron §V(4)=32;Ri(3,4) in the absence of Coulomb interactions,
sheet atzy, we employ the well-known 2D resfft for  the determination oR(3,4) involves only the sum of nonin-
g,p(1,2 and then combine polarizabilities with that of teracting density, or ring diagram, contributions from the
esemi1,2) to obtain the direct dielectric function of the com- various parts of the system. Correspondingly, in the RPA,
bined system £(1,2) in position representation as the noninteracting polarizability
£(1,2=g¢emf1,2+£,5(1,2 —6%1,2. Finally, we again em-
ploy the inversion condition, Eq2), to obtain the inverse
dielectric functionK(1,2) for the combined system from
£(1,2) in position representation.

The simple additivity of the polarizabilities employed
here is an aspect of the random-phase approxim@Res).
To clarify this point, we consider the defining relation

dama—A4Tayg= 2 4,
|

is composed of contributions from the various parts of the
system in a simple additive manner.

SV(1)
K(1,2= ==,
oU(2) Il. INVERSION OF THE DIELECTRIC FUNCTION
which describes the inverse dielectric functiéfl,2) as the Following the method outlined above, we determine the
linear connection between the effective poterMél) and an  joint dielectric functione(z,z’) of the combined semi-infinite
impressed potentidl (2), alternatively expressed as dielectric medium plus the 2D sheet by adding the individual
polarizabilities of the constituent parts in a position
V(l):j d*2K(1,2U(2). z-representation. To finds,,(z,z") of the semi-infinite me-
dium, we start from the result of Ref. 3 for its inverse dielec-

Considering the instantaneous electron-electron Coulomb irfic functionKg.n(z,2'), taken here in the local cold plasma
teractionv (1-2)=(e?|r,—r,) t,—t,), the effective poten- limit,
tial is given by

Kseml(z.2') =14 (=2)[8(z—2") + 8(z)e¥T]

— 4 _
V(l)_u(lHJd 30(1-3)p(3), +9.(2[8(z—2 ) e~ 8(2')e~ T /e],

where p(3) is the perturbed density in the presence of the (3)
fields. Taking the variational derivativé&/sU (2), this yields
SV(1) 5p(3) wherel'=(1—¢)/(1+¢), and7,(2) is the Heaviside unit step
K(1,2)= =541— 2)+f d*3v(1-3) ——— P function. It is to be noted that this result properly incorpo-
5U(2) sU(2)’ rates the role of dynamic screening through the 3D bulk di-

and using the chain rule for variational differentiation, we l€ctric function
have the integral equation

5p(3) e=1+4mad® 4
oV(4)

K(1,2=6%1— 2)+fd43f
_ . . _ . and image strength potentiéd—1)/(e+1). Here, 4ra3"
Employing the inversion relation, E(L), this may be solved  the 3D bulk polarizability having the local cold plasma limit

exactly for the direct dielectric function ——wjle’, Where wj=4mp;pe’/m is the electron plasma
3) frequency squared, witim as effective band mass apg, is
Sp the 3D conduction-band electron density.
1,2=641—2—fd43 1-3 ; : tron densry.
s(1,2 ( ) v( ) V(2) SV(2)’ To determine the direct dielectric functianen(z,z’) of

the semi-infinite plasma, we make an ansatz on the basis of
our earlier experiendey.. (z) is the Heaviside unit step func-
5p(3) tion: 7, (z)=1 for z>0, 0 for z<0, 3 for z=0]:

N(?2)

The RPA is constituted of approximatingrd(1,2) by its Ssem(2,2') =71 (=2)[ 8(2=2)14(2) + 8(2)1(2)]
free-electron form #ay, in the absence of Coulomb interac- +74(2)[8(z2—2")f5(2)+ 8(2')g2(2)].
tions. With this, 5p(3)/6V(4)=R(3,4), the density pertur-

bation response function, may be seen to be the lowest order (5
“ring” diagram. [The sum of the infinite series of ring dia-

grams then placeR(3,4) in the kernel of the integral equa- Here,f,(2), f,(2), 9,(z) andg,(z) are continuous functions
tion above, as one should expedtor systems of the type to be determined by the inversion condition, E2p), using
considered here, which have several distinct contributind{,.,(z,z') as given by Eq(3), from which we obtain

so that the polarizability may be identified as

£(1,2—-8%(1-2)=4ma(1,2)= —f d*3v(1-3)
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8(z=2")=n.(-2)[8(z—2)f1(2) + 8(2')91(2) + 74 (—=2') 8(2') fo(2) T €%+ 7, (—0) 8(2')g1(0) '€

—7:(0)8(2')g2(0)l'e” 7.
Equating coefficients of(z—z’), we have

which implies that

2787
+7.(2)8(2') (2 )Te?*+ 1, (0)5(2')gx(0)['e??] + 7I+T(Z) [8(z=2")f3(2)+ 8(2")92(2)
—7.(=2")8(z)f (2 )Te = 5. (= 0)8(2')g1(0)le” ¥~ 7. (2)8(z')f(z')[e”

(6)

1= 9. (=2)f1(D)+ 7. (D)F2(2)/e, (7)
for z>0—f,(2)=¢, (8a)

for z<0—f,(2)=1. (8b)

Furthermore, equating coefficients &fz'), we obtain

0=7,(=2)[92(2) + 7+ (—2")F1(2')T €%+ 7, (—0)g1(0)T €%+ 7, (2') (2" )T €%+ 7, (0)g,(0)I'e?]

74(2)
€

+

At the interfacez’ =0, Eq.(9) yields
0=7,(—2){g1(2) +(I'e?¥2)[f1(0) +g1(0)+f,(0)

7+(2)
e

+92(0) 1} + {92(2)— (Te” ¥¥2)[f1(0) +9,(0)

+12(0)+92(0) ]} (10

Considering first the semi-infinite plasma regier0, Eq.
(10) becomes

0=0,(2)—(F'e” %2)[f1(0)+g;(0)+f,(0)+ 92(0)](-11)

Sincef,(z) andf,(z) are continuousf,(0)=1 andf,(0)=e,
we have

0=05(2)—(Te” %¥2)[1+e+9,(0)+g,(0)]. (123

In the limit z—0, g,(z) andg,(z) are also continuous, and
we find
0=g,(0)[1-T/2]-T'g.(0)/2—(1+¢&)['/2. (12b

Considering next the vacuum regiar<0, Eq.(10) yields

0=0:(2)+(I'e®¥2)[1+2+9g1(0)+7,(0)], (133
and, for the limitz—0, we have
0=g1(0)[1-T/2]+T'g,(0)/2+(1+¢&)['/2. (13b
Solving Egs.(12b) and(13b), we obtain
91(0)=—02(0)=(e—1)/2. (14)

Clearly,g4(0)+g,(0)=0, so that substitution in Eq$123
and (139 yields

[92(2) = 74 (—=2)f1(2)Te” %= 7. (= 0)gs(0)Te” = 7,(2) f5(z' )T e” ¥~ 7, (0)g,(0)Te" 7. (9)

eQ?, (1539

1-¢
9,(z>0)= —5 e Q2 (15b)

Hence, the direct dielectric function for the semi-infinite
plasma is given by

Esem(2',2")= 7, (=2')[8(2' —2")+ 8(2") (s — 1) /2]

+9.(Z)[8(Z =2 e+ 8(Z")(1—&)e Q7 /2].
(16)

Following the calculational program described above, we
now add the polarizability of the semi-infinite dielectric me-
dium to the polarizability of the 2D sheet of the electron
plasma to obtain the direct dielectric function of the com-
bined system in positior-representation as

17

The direct dielectric function of the 2D electron sheetgn
three-dimensional3D) space has been determifi@dn the
positionz representation as

(2,2 Y=¢egem(2,2') +€p(2,2')— 8(2,2").

e20(2,2')=8(z—2') +4ma3Pe A7 2l 5z — 7,),
(18)

where 4ra2P is the 2D polarizability of the electron sheet in
transverse momentum/frequen@®,w) representation. This
2D polarizability is well known from semiconductor inver-
sion layer and quantum-well studisin the local cold
plasma limit, it takes the form #a3P— —2mp,pe’Q/Mmw?,
wherep,p is the 2D electron sheet density.

Forming the joint direct dielectric functios(z,z") of the
combined system following Eq$16)—(18), we obtain
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8(2,2')=8(z—2")+4m{n,.(—2)a3Ps(z")e%2
+7.(2)a3 8(z—2')— 8(z' e~ Q¥2]

+8(2' —2) a3Pe~ A7~} (19
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K(z,2')=n.(—2)[8(z—2")f1(2)+ 6(2')91(2)]
+7(2)[8(2—2")fx(2)+ 5(2')9,(2)]
+8(2' —zp)f(2), (20

with f(z), f,1(2), f,(2), 91(2), andg,(z) to be determined

Again, our experience suggests that the inverse dielectriby the inversion condition Ed2) for the combined system.

functionK(z,z') should take the ansatz form

This yields

8(z—2) =1 (—2)f1(208(z—2" )+ 7. (—2)91(2) 8(2') + 7. (DT 2(2) 8(2—2') + 74 (2)92(2) (2 ) + F(2) 8(2' — 20)
+7,(—2) 7 (—0)4madPeq f1(0)+f,(0)+91(0)+92(0)]18(2' )12+ 7., (— 2)4ma3Pe(0) 8(z' — 20)/2

+ 0 (2) 9 (— 24T 1(2) 8(2—2') + 1 (2) 14 (— 2473 91(2) (2 ) + 1 (2)dmagfo(2) 8(z—2")

+7.(2)47ag’y,(2) 8(2') — 7+(2) 7+ (—0)dmaiPe U ,(0)+f,(0)+0:(0)+gy(0)]8(z")/2

— 7. (2)4magPe” O (0)8(2' —20)/2+ 1. (2)4mag f(29) 8(2— 20)/2+ 74 (— 20) F1(20) (2’ — 20)

X 4maiPeQ7=%l+ 5 (—20)01(20) 8(2' )4

2De~Qlz=20l+ 5 () F5(20) 8(2' — 2g) 47 aZPe™ QA7 %l

+74(20)92(20) (2’ YA ma2Pe™ 720l + £(2,) 8(2' — zg)4ma2Pe= Q17 %l, (22)

Again, we equate coefficients of the variodsfunctions.

Equating the coefficients af(z—2z'), we find

1=7,(—2)f1(2)+ 7. (2)T2(2)+ 7, (D) (2) 47,

(22)
which yields, forz>0,
fo(z>0)=1/¢, (23
and, forz<Q0,
f1(z<0)=1. (24)

Furthermore, we equate coefficientsdf’ —z;) to obtain

0=F(2)+ 7. (—2)f(0)4ma3Pe¥2+ 1. (2)f(2)47ad®
—7.(2)f(0)4mwaiPe %2
+ 1.4 (—29) F1(zg)dmaPe =2l
+71(20)fo(20)4ma e A%l

+f(z0)4madPe~ Q72 (25)

To determinef(0) and f(z), we setz=0 andz=z, in Eq.

e+1 1
f(zo)=—1(0) 8ralle %% & (27)

Now, takingz—z,>0 in Eq.(25), we find

f(z9)e=1(0){e" Q@4mwai®2+[(1+¢)/(2e”%)]}.
(28)

Solving Egs.(27) and (28) simultaneously foif (0), we find

1 47TagDe_QZO -1

f(0)=—~

N 1+e N l+e
2¢ 2ee %% 8raiPe Q%
(29)

Turning now to the solution of E425), we first consider the
casez>0, obtaining

f(z>0)e=3f(0)[4ma3Pe %%+ (e+1)eQ%~Qlz=2],
(30

On the other hand, faz<0, Eq.(25) yields

f(z<0)=3f(0)[ — 4ma3Pe?+ (s +1)e Q% Qlz=2],

(25) in succession, obtaining two simultaneous equations for (3D

f(0) andf(zy). Takingz=0 in Eq. (25 first, we have

0="F(0)(1+4mad’l2)+[ 7. (—20)f1(Zo) + 7+ (20) Fa(20)

+f(z9)]4ma3Pe %, (26)

f(z) may now be formed as

f(2)=7.(2)f(z>0)+ 7. (- 2)f(z<0). (32

Since the 2D electron sheet is in the material media® At this point, we focus on the determination 9f(z) and

opposed to the vacuum regipz,>0, and from Eq(23) we

havef,(z,) =1/e. Thus Eq.(26) yields

0,(z) by equating coefficients of(z’) in Eg. (21), from

which
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0=7,(—2)[91(2)+ 7, (—0)f1(0)47 a3 e 2+ 5, (—0)g,(0)47 a3 e?U2+ 7, (0)f,(0) 47 a3 e %2
+7.(0)92(0) 47 a3’ %2] + 7, (2)[92(2)(1+ 47 ad") — 7. (—0)f(0)4mag e %2
— 7+(—0)91(0)4maiPeQU2— 5, (0)f,(0)4masPe 2]+ g,y(zg)4maiPe Q7 2l, (33

However, recalff(0)=1 andf,(0)=1/e, so that forz<0 we AmajPe 0%\ (1 AmajPe Q%) 1
have g:(0)={ 1+ 20 || 7 7D ;
et+4mag r et+4mag
0=0,(z<0)+47aiPeq1+g,(0)+g,(0)+1/c]/4 (39
+02(zo)4maiPe Qlz7l, (34  and substituting in Eq34) for g, (z<0), we find
and forz>0 we find e
0=egy(z>0)—4maiPe °q1+g;(0)+0,(0)+1/c]/4 9:(2)= =~ 1+ 6:(0)]
+ 2D 7Q\zfzo\. 2D
2z © %9 x| ez U0 e-ome-oiud |, (4p)
In order to match the limits from—0" andz—0~, we first stdmag

considerz>0 and letz—0, with the result
and similarly forg, (z>0), we use Eq(35) to obtain

0=¢0,(0)—(e—1)[1+04(0)+0g,(0)+1/c]/4

+ga(zo)dmaiPe %% (36) 0:(2)= 2~ [1+6,(0)]
Next, we considez<0 and letz—0, finding ¢

477a%D
0=0,(0)+(e—1)[1+g;(0)+g,(0)+1/c]/4 X|e Q- ——— e Qe Qlz-al| (41
et+4mag
+0o(zg)4ma’Pe %, (37) |
Finally, we consider Eq(35) in the limit z—z,>0, obtain- Finally, we note that
o e-1 140,0) o,
0=205(20) — (&~ )& Q%[ 1+ g;(0) +g5(0) + 1/s ]/4 02200 = 5 T ama®® 42
+0a(zg)4ma’dP. (38)

Returning to the ansatz of EO), we see that it does in-
We can now solve fog;(0), g,(0), andg,(z,) from Egs. deed satisfy the inversion condition witliz), f,(z), f»(z),
(36)—(38) as follows: 01(2), andg,(z) as given above, yielding the result

K(z,2')=9.(-2)[8(z—2")+91(2) 8(2' )]+ 1.(2)[ 82— 2 ) e +95(2) (') ]+ (. (2){(0)[ 47"~ Q2
+(1+e)e A2/ (287 %))/e} + 7, (— 2){ — f(0)[4maiPeR¥2— (1+&)e~ 22/ (28 %) 1) 8(2' — zo).

(43
|
Ill. COUPLED COLLECTIVE PLASMA OSCILLATIONS (b) s+47ra(2)D=O, a hybridization of the bulk and 2D plas-
OF THE COMBINED SEMI-INFINITE PLASMA mons:
AND 2D ELECTRON SHEET

The coupled plasmons of the confined semi-infinite w?= w3+ wp. (45
plasma and 2D electron sheet are given by the frequency
poles ofK(z,z"). These poles can be identified by inspection  (c) g,(0)— and f (0)—ce:
of the ways that the right-hand side of E¢3) can diverge.
There are several categories of such coupled plasmon fre- 1 4ma2Pe—29%
quency poles. il T | (46)

(a) e=0, the usual bulk plasma oscillation: I'  e+4mad’

w?= wi=4me?psp/m. (449 so that



2790 N. J. M. HORING, T. JENA, H. L. CUI, AND J. D. MANCINI 54

b .
12| ~ .
2y
3 a,
3 1 ] 3
H H
3 3
0 1 1 1 i
0 200 400 600 800 1000 0 0.2 04 0.6 0.8 1
z (4) Q/QF
FIG. 2. w./w, as a function of, for a Si-SiG, inversion layer, FIG. 3. w./w, as a function 0/ Qg for variousz, values. Thin
with pyp=10" cm 2, psp=10" cm™3, andQ=0.1Q¢ (Qf is the  solid curves:z,=10 A; solid curves:z,=100 A; dotted curves:
2D Fermi wave number 2,=1000 A. Other parameters are the same as in Fig. 2.
402 =302+ 203 {(302+205p)> o’=w’+wsp is to be expected with installation of the 2D
* 2D 2D p .
plasma sheet, no matter how far the 2D sheet is from the
—8(wy+ whwip[ 1+ 2Q%])}12 (47)  surface, including the limitzg— deep in the bulk. Of

course, the surface plasmon emergezr—wzlz and its hy-
bridization with the 2D plasmone? w2/2+w2D, is most
o robust when the 2D sheet overlays the surfage;0. For
w2 (I_) a':—\z‘jzzoge sm?aggvsggmoa;] +w2D as in casdb), and finite values c_)fzo, t.he r_nodes dep_end @, with t_he Qetailed _
(ii) As 200, we havew+—wp, and ahybr|d|zat|on ofthe results exhibited in F.Ig. 2. Their relatlye excitation ampli-
surface plasmon and the 2D plasmof=w /2+w2D tudes may be determlned from the r.eS|dues'at the frequency
poles ofK(z,z"), using Eq.(43), which provides the full
For finite nonvanishing,, these modes are admixed and description of the dynamic linear response of the joint sys-
coupled as indicated in E@47). In Fig. 2 we plotw./w, as  tem (of the 2D plasma coupled to a semi-infinite plagrma
a funct|on ofz, for a Si-SiQ inversion layer, withp,p= 1011 a longitudinal potential field, for any separati) between
cm 2, p3p=10" cm 3, andQ=0.1Q¢ (Qr is the 2D Fermi  the 2D sheet and the surface terminating the bulk plasma.
wave number Furthermore, in Fig. 3 we plot the dispersion The direct position space inversion of the dielectric function
curves w./w, as functions ofQ/Qg for z,=10, 100, and achieved here can also be extended to more complex nano-
1000 A. structure systems to provide analytic, closed-form expres-
The plasmon roots arising from the frequency poles of Egsions for their dynamic linear-response functions. This result
(43) are mtumvely reasonable for the system at hand. Thepromlses to facilitate a variety of calculations pertaining to
bulk plasmonw?= wpwnl always exist deep inside the semi- nanostructure potential interactions involving external per-
infinite bulk, and its hybridization with the 2D plasmon turbation as well as self-interaction.

We examine two limits of interest in case):
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