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We demonstrate the bounding of the effective properties of random multiscale microstructures by means of
essential and natural boundary conditions. The proposed method involves moderate sized lattices, not modified
in the boundary zone, thereby allowing much faster calculations than the method of periodic boundary condi-
tions. In case of a random two-phase lattice, scaling laws have been found for a wide range of contrasts. In the
case of a disk-inclusion composite having circular inclusions with graded interphases, the presence of a graded
interphase dramatically changes the effective conductivity compared to that of a composite with perfect
interfaces.@S0163-1829~96!01122-8#

I. INTRODUCTION

The past decade has seen a great activity in physics of
heterogeneous systems. More specifically, much attention
has been focused on problems involving conductivity and
elasticity of two- and multiphase materials. While various
rigorous analytical results and effective-medium theories
have been developed for simple~periodic! microstruc-
tures,1–4 computer simulations proved to be a valuable
complement to the theoretical studies of composites in case
of more materials. One example of the latter is a functionally
graded material~FGM!, that is, a material having a graded
multiscale microstructure.

In this paper we adapt a method of two scale-dependent
bounds to problems in thermal conductivity, and demonstrate
its power and advantages on random media problems. In Sec.
II, following an approach being developed in mechanics of
heterogeneous solids,5,6 we show that the effective conduc-
tivity on infinite length scales can be bounded with the help
of the essential~Dirichlet! and natural~Neumann! boundary
conditions. This methodology is illustrated in Sec. III in the
context of two two-dimensional~2D! problems:~i! a two-
phase random chessboard at 50% volume fraction for a range
of contrasts from 1 through 104, and~ii ! a composite mate-
rial with perfect circular inclusions. Finite-size scaling is
analyzed extensively in the first case.

Section IV discusses the main problem of this paper: ther-
mal conductivity of a matrix-inclusion composite of circular
inclusions ~disks! with functionally graded interfaces, e.g.,
Refs. 7–10. In accordance with the method of two scale-
dependent bounds, results of numerical calculations on the
effective conductivities are presented for a range of contrasts
from 1 through 104 at various matrix-inclusion volume frac-
tions, where the contrast is defined as the ratio of conductiv-
ity of the inclusion phase to the matrix phase. We find that
the presence of a rather narrow graded matrix-inclusion in-
terphase dramatically changes the effective conductivity as
compared to the one of a composite with perfect inclusions.
Scaling laws dependent on the contrast are also derived. Fi-

nally, in Sec. V, we develop an effective-medium theory for
functionally graded composites, which performs well at low
contrasts. Conclusions and recommendations for further
work are summarized in Sec. VI.

II. BOUNDING OF EFFECTIVE PROPERTIES BY
ESSENTIAL AND NATURAL BOUNDARY CONDITIONS

Let us consider arandom microstructure~or random me-
dium! to be a familyB5$B(v);vPV% of deterministic me-
diaB(v), wherev is an indicator of a given realization, and
V is an underlying sample space. Next, we introduce a so-
calledwindow Bd(v) of scale

d5
L

d
, ~1!

whereL is the window~or sample! size andd is the size of
a heterogeneity, Fig. 1. The material is a matrix-inclusion
composite with thermal conductivity of phases beingC(m)

andC(d) in the matrix (m) and the disk-inclusion (d) phases,
respectively. This microstructure is assumed to have spa-
tially homogeneous statistics~invariant with respect to trans-
lations! and to be ergodic~volume averages equal ensemble
averages!.

FIG. 1. A window of sizeL placed onto a matrix-inclusion
composite having inclusions~round disks! of diameterd.
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In order to define effective properties we have to consider
d values larger than 1, and two types of boundary conditions:
~a! essential~Dirichlet, ‘‘temperature-controlled’’!

T5¹T•xW , ~2!

which yield a tensorCd
e (e stands for essential boundary

conditions!, whereT is the temperature,¹T is the spatial
average temperature gradient, andxW is a position vector, and
~b! natural~Neumann, ‘‘flux-controlled’’!:

qW̄ •nW 5qW •nW , ~3!

which yield the tensorCd
n5(Sd

n)21 (n stands for natural

boundary conditions!, where qW is the heat flux,qW̄ is the
spatial average heat flux, andnW is the outer unit normal to the
window’s boundary. In the above we employ boldface for a
second-rank tensor, and an overbar for a spatial average over
the window domain. Note thatd→` is the conventional
continuum limit typically sought in the effective-medium
theories, while numerical simulations correspond to some fi-
nite d.

We observe thatCd
e is, in general, different fromCd

n as it
provides anupper estimateon the effective thermal conduc-
tivity of the given specimen, while the latter represents a
lower estimate. In fact, it can be shown5,6,11 ~see also the
Appendix! from the variational principles, that the effective
macroscopic conductivity tensorCeff is bounded by two ten-
sors^Cd

e& and^Sd
n&21, where^ & denotes the ensemble aver-

aging, i.e., averaging over the space of all realizationsV. In
elasticity problems one uses the principles of minimum po-
tential energy and complementary energy. Both ensemble
averages bound the effective conductivity the more the scale
d approaches its continuum limitd→`. Thus, a hierarchy of
d-dependent bounds onCeff can be derived

CR[~SR!21[^S1
n&21<^Sd8

n &21<^Sd
n&21<Ceff

<^Cd
e&<^Cd8

e &<^C1
e&[CV, ;d8,d. ~4!

In ~4! CV andCR denote the~elementary! Voigt and Reuss
bounds,1 corresponding to windows at the smallest scale
(d51). In other words, the effective response depends on
the boundary conditions, and the influence of the latter dis-
appears as the sample becomes infinite. The order relation
employed in ~4! is to be understood as follows: for two
second-rank tensorsA andB, the order relationB<A means
tW•B• tW< tW•A• tW for any vectortWÞ0W. In the special case of the
microstructure being characterized by isotropic statistics,
Ceff is isotropic, i.e.,Ceff5ICeff whereI is the identity ten-
sor.

Another method of calculating effective properties typi-
cally used in solid-state physics, is based on the concept of a
periodic window~with a heterogeneous microstructure of pe-
riodicity L or, equivalently,d), i.e., periodic boundary con-
ditions

T~xW !5T~xW1LW !1¹T•LW , ;xWP]B, ~5!

qW ~xW !52qW ~xW1LW !, ;xWP]B.

HereLW 5LeW , whereeW is the unit vector. The effective con-
ductivity obtained under such boundary conditions is de-
noted byCd

per. The ensemble average of this tensor, just as
^Cd

e& and ^Sd
n&21, is isotropic for a microstructure of space-

homogeneous and isotropic statistics. However, the method
based on periodic boundary conditions has some major
drawbacks compared to the one based on bounding the ef-
fective conductivity by essential and natural boundary con-
ditions: ~i! It modifies the actual microstructure to ensure its
geometric periodicity;~ii ! it yields only one estimate on
Ceff, i.e., ^Cd

per&, and thus, in order to compensate for the
scale ~i.e., d) dependence, it requires much larger lattices
than those employed by the method proposed here;~iii ! in
cases of material instabilities~such as fracture propagation,
or shear band formation! it restricts the range of possible
response modes to the spatially periodic ones only.

A calculation involving both types of boundary conditions
avoids unnaturally modifying the material~as it needs to be
done using the periodic boundary conditions!, while at the
same time providing two rigorous bounds onCeff for what-
everd. The choice ofd corresponds directly to the amount
of computational effort involved, so that, the more extensive
the computational time and effort, the closer are the bounds
on Ceff. It will be illustrated in the next section, however,
that the method based on bounding by essential and natural
boundary conditions already results in very close bounds at
relatively small windows.

In order to solve the field equations of a two-phase com-
posite we employ a finite difference scheme. The idea is to
approximate the planar continuum by a very fine mesh. In
the following, we shall assume that a square mesh for dis-
cretization of the temperature fieldT is used. The governing
equations are thus

T~ i , j !@kr1kl1ku1kd#2T~ i1 l,j !kr2T~ i2 l,j !kl

2T~ i , j1 l !ku2T~ i , j2 l !kd50. ~6!

Here i and j are the coordinates of mesh points, andkr ,
kl , ku andkd are defined from the series spring model

kr5@1/C~ i , j !11/C~ i1 l,j !#21,

kl5@1/C~ i , j !11/C~ i2 l,j !#21,
~7!

ku5@1/C~ i , j !11/C~ i , j1 l !#21,

kd5@1/C~ i , j !11/C~ i , j2 l !#21,

whereC( i , j ) is the property at a pointi , j .

III. A RANDOM TWO-PHASE LATTICE
AND A DISK-MATRIX COMPOSITE

Numerical examples of calculation of bounds~4! are
given for the elasticity problems in Ref. 6, and for the con-
ductivity problems in Ref. 12; the latter reference also gives
second-order as well as two-point statistics of both scale-
dependent tensors. In order to illustrate the connection to the
classical bounding methods in physics of random media, we
study two systems here:~i! a random two-phase lattice, and
~ii ! a composite with disk inclusions. The first problem is
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possibly the simplest setting in which to calculate the hier-
archy of bounds for a large range of length scales. It is
worthwhile to mention that the random lattice has a con-
tinuum counterpart in a random two-phase chessboard,
which for a 50% volume fraction of both phases has been
solved explicitly in Refs. 13 and 14 with the result

Ceff5AC1C2. ~8!

In ~8! C1 andC2 are the respective conductivities of two
phases. Other volume fractions have been studied recently in
Ref. 15. The conductivity of a random chessboard is thus a
good classical problem on which to test and illustrate our
method.

In Figs. 2–4 we show results of̂Cd
e& and ^Sd

n&21 for
contrast ratiosC2 /C1510, 102, and 103, respectively. The
window sizes ared54 and 10, and an additionald520 for
the contrast 103. For comparison, the classical Voigt, Reuss,
and Hashin upper and lower bounds (CV,CR,Cu

H , andC1
H)

are plotted as well. The latter are given by the following
well-known equations~see, e.g., Ref. 16!

CV5C1f 21C2f 2 ,

CR5@ f 1 /C11 f 2 /C2#
21,

~9!

Cu
H5C21 f 1@1/@C12C2#1 f 2/2C2#

21,

C1
H5C11 f 2@1/@C22C1#1 f 1/2C1#

21,

where f 1 and f 2 stand for the volume fraction of either
phase. From Figs. 2–4 an improvement in bounds with in-
creasingd may be observed, which leads, already atd54, to
estimates comparable, or better, than the Hashin bounds.

All the presented plots were obtained from numerical cal-
culations involving one node of a latter per one board of the
chessboard. This is, of course, a crude approximation with
respect to the singularity problem at the corners and, there-
fore, does not represent a piecewise continuum system for
which the Hashin bounds and~8! are correct. Consequently,
the effective conductivities in our two-phase lattices are low-
ered, i.e., increasing the number of nodes per board, would
lead to an increase of these conductivities, and to a slight
asymptotic raising of thêCd

e& and ^Sd
n&21 values towards

those calculated by the continuum theories. It is possible to
account for the corner points by using specialized numerical
methods, but an adaptation of such a technique to a large
domain involving many corners, in order to grasp the scale
effects, would be a formidable task. This is a separate issue
that we do not pursue here.

Finite-size scaling of̂Cd
e& and^Sd

n&21 is obtained by cal-
culating larger lattices up tod5400 at volume fraction of
50%. We find the bounds to scale as

^Cd
e&;exp~2d2p!, ^Sd

n&21;exp~d2q!, ~10!

wherep andq are themselves functions of the contrasta.
The latter are actually found to be of hyperbolic form

FIG. 2. Bounds onCeff of a random two-phase lattice at contrast
10, for all considered volume fractions, showing^Cd

e& and ^Sd
n&21

at d54 and 10; also shown are the Hashin boundsCu
H andCl

H .

FIG. 3. Bounds onCeff of a random two-phase lattice at contrast
100, for all considered volume fractions, showing^Cd

e& and
^Sd

n&21 at d54 and 10; also shown are the Hashin boundsCu
H and

Cl
H .

FIG. 4. Bounds onCeff of a random two-phase lattice at contrast
1000, for all considered volume fractions, showing^Cd

e& and
^Sd

n&21 at d54, 10, and 20; also shown are the Hashin bounds
Cu
H andCl

H .
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p~a!53.8a0.14, q~a!52.4a0.59. ~11!

Note that the limits ofa→1 anda→` are correctly recov-
ered here. In the first casêCd

e&→^Sd
n&21→C15C2 , while

in the second caseC1 is the limit. Based on some calcula-
tions of random disk composites and random polygon mosa-
ics, which we have investigated so far, we conjecture that
these are universal relations for finite-size scaling of both
bounds in two-phase random systems.

Considering the casea→` leads one to ask about the
performance of both bounds at the percolation transition for
our ‘‘site problem.’’ It is known~e.g., Ref. 16! that the latter
occurs at the volume fraction;59.23%, and thus we per-
formed calculations just below, right at, and just above this
volume fraction. We have found that both bounds correctly
display the percolation transition that is accompanied, as one
might expect, by strong fluctuations which decrease with in-
creasingd. Note that, because we use one lattice node per
square, we truly deal with a site problem on a random lattice
rather than a continuum problem on a random chessboard.

Turning now to the disk-matrix composite, in Fig. 5 we
present a comparison of thed-dependent bounds~4! with the
classical VoigtCV, ReussCR, as well as the upper and lower
Hashin bounds Cu

H ,Cl
H . This figure depicts the

d-dependent upper and lower bounds on the effective con-
ductivity tensor of windowsB(v) for d54,10,20 as a func-
tion of the volume fraction of disks whenC155.0 and
C250.5. In order to avoid the problem of narrow necks
forming between neighboring inclusions, a minimum spacing
of inclusions’ centers equal to 1.4 of their diameter has been
enforced. With this restriction an upper volume fraction of
about 30% can be reached, and thus we terminate all the
plots in Fig. 5 at this value. The classical Voigt, Reuss, as
well as the upper and lower Hashin bounds calculated ac-
cording to ~9! are also shown. It is well known17 that the
lower ~upper! Hashin bound corresponds to a system of disks
of higher ~lower! conductivity than that of the matrix, and

thus the upper and lower bounds converge to theCl
H bound

asd increases. However, one would need a window of infi-
nite size (d→`) to actually obtain this homogenization
limit.

IV. FUNCTIONALLY GRADED COMPOSITES

Interfaces in heterogeneous materials influence their local
fields and effective properties.7,8 Theoretical studies in this
area represent the interface as either a well-defined bounding
surface between two phases~inclusion disks and matrix!, or
as a diffuse region of random interpenetration of these two
phases having a certain microstructure, which is called an
interphase.9 Thus, in the case of a two-dimensional disk-
matrix composite, the interface is either a well-defined circle
where the properties change discontinuously, or a two-
dimensional ring-shaped interphase, see Fig. 6. In this paper
we focus on the thermal conductivity of such a system. Note
that by virtue of mathematical analogies, the problem is
equivalent to the problem of the effective transverse conduc-
tivity of a unidirectional composite material, the effective
shear modulus of such a material, and several other problems
in transport theories. Relevant examples, where the diffuse
zone is of a non-negligible size, are interphases in carbon-
fiber epoxy composites and in ceramics.

In the following, the disk-matrix interphase is taken as a
finite thickness zone of two randomly mixed phases of disk
and matrix material. We assume that the matrix~1! and the
disk ~2! phases are locally homogeneous and isotropic, that
is, they are described by two constant isotropic conductivi-
tiesC1 andC2 . Contrastis defined byC2 /C1 .

In such a composite we find three different length scales:
~i! the fine structure of the interphase region,~ii ! the size and
spacing of functionally graded inclusions, and~iii ! the mac-
roscopic dimension of the composite. Spatial randomness on
the first two of these precludes any rigorous analytical solu-
tion of the problem.

The random mixture of two types of phases~matrix, 1;

FIG. 5. The scale-dependent upper and lower bounds^Cd
e& and

^Sd
n&21 on the effective stiffness tensorCeff, plotted vs volume

fraction f 2 of inclusions, for windows atd54, 10, 20; the respec-
tive Voigt, Reuss, and Hashin bounds are also shown.

FIG. 6. A matrix-inclusion composite with functionally graded
interphases; 47.2% volume fraction of the inclusion~black! phase.

54 281BOUNDING OF EFFECTIVE THERMAL CONDUCTIVITIES OF . . .



disk, 2! in the interphase is represented by a random distri-
bution of two phases which is described by an indicator
function:

x~rW,v!5H 1 if rWPV2 ,

0 if rWPV1 ,
rW5~r ,u!, vPV, ~12!

where Vs is the domain occupied by a phases51 or 2,
respectively;V is the sample space, or space of all possible
realizations; andv is one realization of an interphase.

The indicator functionx is characterized in terms of the
probability distributionP$x(r )% where r is the radius of a
disk inclusion in its local polar coordinate system. For a
functionally graded interphase we assumeP$x(r )% to be axi-
symmetric and linear,

P$x~r !51%5Ar1B, ~13!

whereA andB are determined by the conditions

P$x~a!51%51 and P$x~b!51%50, ~14!

in which a is the disk radius~i.e., the inner radius of the
interphase!, andb is the outer radius of interphase. Since the
disk and the matrix phases are both taken as locally isotropic,
Eqs.~12! and ~13! are consistent with the statement that the
conductivityC equalsIC2 at r<a, andIC1 at r>b.

In order to calculate the effective conductivity tensor
Ceff of such a composite, an appropriate computational
method is required. To that end we consider a window whose
mesh domain is discretized with a 100031000 finite differ-
ence mesh, where every mesh node represents a micrograin
of the composite. In this example the inner and outer radii of
inclusions area550 andb560, respectively, with the inclu-
sions’ centers being not closer than 120 units apart; the het-
erogeneities in the interphase are of size 1~i.e., the single
micrograin size!. Thus, a calculation ofd based on the inner
~outer! diameter of inclusions givesd510 ~8.333, respec-
tively!, while a calculation based on the size of interphase
heterogeneities givesd51000. The volume fraction of the
inclusion phase (C2) in Fig. 6 equals 47.2%.

The actual computation of a boundary value problem on a
100031000 finite difference mesh involves the solution of a
linear algebraic problem with 106 degrees of freedom, which
is solved by a standard linear algebra package.18

In Fig. 7 we present six bounds on the effective conduc-
tivity Ceff of the composite of Fig. 1 for a range of contrast
from 1 through 104. As expected, the Voigt and Reuss
bounds become very wide with the increasing contrast, and
the Hashin bounds perform only slightly better. On the other
hand, the bounds obtained from the essential and natural
boundary conditions are very close, even at contrast 104, as
compared to the performance of the Hashin bounds. This is
especially remarkable in view of the fact that a window only
ten times larger than the disk size has been employed. Inter-
estingly, the use of a window only three times larger would
result in bounds very comparable to those of Hashin, indi-
cating how fast the present method converges with an in-
creasingd.

From the log-log diagram in Fig. 7 it can be seen that
Ce5ICe shows a scaling with the contrast, i.e.,
Ce5(C2 /C1)

0.7. On the other hand,Cn5ICn scales with

nearly the same exponent up to 103, and for higher contrasts
a different dependency is observed.

Another major conclusion concerns the effect of the pres-
ence of an interphase onCeff of a functionally graded com-
posite as compared to the case of perfect inclusions. Note
that the case of perfect disks falls exactly on the lower
Hashin bound. Thus, we see that small fuzziness, i.e., a fuzzy
inclusion with a ring of thickness 20% of the disk radiusa
dramatically increasesCeff as compared to the perfect disks
case. The reason for this is that fuzzy zones tend to intercon-
nect the inclusion phase through the composite, although no
percolation takes place at the volume fractions studied here.

V. EFFECTIVE-MEDIUM THEORY
FOR A FUNCTIONALLY GRADED COMPOSITE

A natural way to establish an effective medium theory for
a graded composite is to use the composite cylinder assem-
blage~CCA! model of Hashin and Rosen.19,20 In this model
the unidirectional composite is represented as a set of com-
posite cylinders which completely fill the space. Each com-
posite cylinder consists of a cylindrical fiber~i.e., a disk in
the transverse conductivity problem! enclosed in two con-
centric cylinders, the inner one representing the interphase
and the outer one the matrix. Furthermore, each composite
cylinder has a similar geometry such thata/b and a/c are
constant, wherea, b, andc are the radius of the fiber, the
outside radius of the interphase, and the outside radius of the
matrix ~and the composite cylinder!, respectively.21

When calculating the effective conductivity of the com-
posite we can apply, in principle, either essential or natural
boundary conditions, but for the composite cylinder assem-
blage model both will yield identical results. In this presen-
tation we choose to apply a uniform temperature gradient
field¹T5(T̄,1,0) such that on the boundary of the composite
we have

Tur5c5T̄,1c cosu. ~15!

FIG. 7. Ceff of a composite with graded interphases such as
shown in Fig. 6. Shown are the Voigt, Reuss, Hashin upper and
lower bounds, andCd

e andCd
n[(Sd

n)21 at d510 with respect to the
inner disk diameter, as well as the results of the effective-medium
theory ~CCA model!—all as a function of contrast.
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The governing equation for our problem is the heat equation
which for case of no coupling between mechanical and ther-
mal fields and steady-state condition is

2divqW 5C~s!DT50, s5d,m ~16!

for two homogeneous and isotropic regions of disk and ma-
trix, and

2divqW 5¹~C~ i !
•¹T!50 ~17!

in the inhomogeneous interphase. While the properties of
fiber and matrix are constant, those of the interphase are
assumed to be of the form

C~ i !5ArQ, ~18!

where A and Q are found from two end conditions:
C( i )5C(d) and C(m) at r5a and r5b, respectively. The
distribution ~18! is the only type of a function that allows a
closed-form solution of the set of governing equations, see
Eq. ~22! below. It has been found to very well approximate
the actual graded microstructure of the interphase.9

Equation~16! is the Laplace’s equation which yields the
temperature fields in the fiber as

T~d!5A~d!r cosu, 0<r<a, ~19!

and in the matrix as

T~m!5@A~m!r1B~m!/r #cosu, b<r<c. ~20!

Equation~17! for the interphase region takes the following
form in polar coordinates:

C~ i !
]2T

]r 2
1F]C~ i !

]r
1
1

r
C~ i !G]T]r 1

C~ i !

r 2
]2T

]u2
50. ~21!

The general solution is

T5~A~ i !r l11B~ i !r l2!cosu, a<r<b. ~22!

Finally, we evaluate the five unknown constantsA(d), A( i ),
B( i ), A(m), B(m) by using the boundary conditions

T~d!5T~ i !

q~d!5q~ i ! J at r5a, ~23!

T~ i !5T~m!

q~ i !5q~m! J at r5b, ~24!

T~m!5¹̄Tccosu at r5c ~25!

with

q~s!52C~s!
]T~s!

]r
, s5d,i ,m. ~26!

This permits to calculate the effective conductivityCeff by
equating the flux on the boundary of our composite cylinder
q(m)(c) with the flux in the equivalent homogeneous cylin-
der having the effective properties

q~m!~c!52Ceff¹T cosu, ~27!

which yields

Ceff5ICeff, Ceff5
C~m!

¹T
SA~m!2

B~m!

c2 D . ~28!

It is found that the above model predicts effective-medium
properties well for low contrasts only; this is investigated in
detail in Ref. 22. ForC2 /C1 greater than 10,C

eff tends to be
underestimated as is shown in Fig. 7. The reason for this lies
in the inability of the composite cylinder model to grasp the
connectivity effects between all the disks with graded inter-
phases in the composite medium, that lead to a dramatic
change inCeff with respect to the perfect disk composite.

Four other effective-medium methods could be developed
for this type of a composite with functionally graded inter-
phases:~a! a generalized self-consistent method~three phase
model! ~see references in Ref. 20!, ~b! a Mori-Tanaka model
~see references in Refs. 4 and 20!, ~c! a differential scheme,23

~d! a self-consistent model~see references in Refs. 4 and 20!.
Methods~a! and~b! would result in the same solution as the
CCA. On the other hand,~c! and~d! would result in coupled
differential equations requiring a quite extensive analysis.
Also, such methods are known to be questionable and possi-
bly invalid at high contrasts.

VI. CONCLUSIONS

We have shown that the method of essential and natural
boundary conditions leads to a very practical procedure of
bounding the effective conductivity of random-
heterogeneous media. For any choice of a length scale two
boundary value problems need to be solved that always re-
sult in rigorous bounds onCeff. The resulting hierarchy of
bounds shows that with the increasing length scale ever more
accurate bounds can be achieved. The method may be used
on small length scales without a need of solving large lattices
as is done in case of the periodic boundary conditions.

The rapid convergence of both bounds with increasingd
has been illustrated on two simple examples: that of a disk-
matrix composite for whichCeff is know to be given by the
lower Hashin bounds, and that of a random two-phase lattice.
The latter case served to derive finite-size scaling formulas
for both bounds. The formulas are proposed to have a wider,
more universal, applicability than just for random lattices.

The rapid convergence of both bounds is especially useful
in the problem of a composite with graded interphases. It is
observed that boundary value problems on the length scale of
just ten times the size of inclusions can be bounded even at
very high contrasts, up to 103 and 104. Furthermore, we
determined that the presence of a narrow graded interphase
has a dramatic effect onCeff as compared to the case of
perfect disks. In fact,Ceff is found to scale as (C2 /C1)

0.7

over contrasts ranging from 1 through 103.
The approach developed in this paper represents new

treatments of~i! transport problems and~ii ! functionally
graded materials. In general, a more complete study of~ii ! is
required that will consider a larger parameter space, include
different types of spatial inhomogeneity, and explore the ef-
fects of other material geometries. Finally, it should be noted
that the same method can be applied to transport and elastic-
ity problems of a number of other types of multiscale micro-
structures.
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APPENDIX

For the completeness of the paper we sketch here a proof
of the hierarchies~4! of bounds onCeff. Let us introduce a
partition of a square-shaped windowBd(v), of volume
Vd , into four smaller square-shaped windows
Bd8
S (v),s51, . . . ,4, ofsized85d/2 and volumeVd8 each.

Also, let us introduce a restricted version of the essential
boundary condition~2!, i.e.,

Tr5¹T•x. ~A1!

Condition~A1! is more restricting then the original~2! in the
sense that~A1! applies to the boundaries of allBd8

S (v) rather
than justBd(v); the superscript ‘ ‘r ’ ’ indicates a restriction.
Now, observe that a variational principle1,3 implies that the
rate of irreversible entropy productionF r(v) stored in the
body

Bd~v!5 ø
s51

4

Bd8
s

~v!

under the essential boundary condition~A1! bounds the en-
tropy rateF(v) stored in the same body under~2!

1

2
Vd¹T•Cd

e
•¹T5F~v!<F r~v!

5(
s51

4
1

2
Vd8¹T•Cd

e,s
•¹T. ~A2!

HereCd
e andCd8

e,s are the effective conductivity tensors of
Bd(v) and Bd8

s (v), respectively. Upon carrying out en-
semble averaging and noting spatial homogeneity and ergod-
icity of B, we obtain from~A2!

^Cd
e&<^Cd8

e &. ~A3!

In this way, a sequence of upperd-dependent bounds is ob-
tained onCeff5C`

e .
Just like we introduced a restricted version of the essential

boundary conditions, we can also introduce such a version of
the natural boundary condition~3!, that is

qW̄ •nW 5qW •nW , ~A4!

which applies to the boundaries of all fourBd8
s (v). Next, it

follows from the dual variational principle, that the comple-
mentary entropy production rateF*

r
(v), as a function of

the heat flux, stored in the body

Bd~v!5 ø
s51

4

Bd8
s

~v!

under condition~A4! bounds the entropy rateF* (v) stored
in the same body under~3!:

1

2
VdqW̄ •Sd

n
•qW̄ 5F* ~v!<F*

r
~v!

5(
s51

4
1

2
Vd8qW̄ •Sd

n,s
•qW̄ . ~A5!

Here Sd
n and Sd8

n,s are the effective resistivity tensors of
Bd(v) and Bd8

s (v), respectively. Upon carrying out en-
semble averaging and noting spatial homogeneity and ergod-
icity of B, we obtain from~A5!

^Sd
n&<^Sd8

n &. ~A6!

The sequence of lowerd-dependent bounds onCeff is ob-
tained by simply inverting~A6!. Combining this with~A3!,
we obtain the hierarchy~4!.
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