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We demonstrate the bounding of the effective properties of random multiscale microstructures by means of
essential and natural boundary conditions. The proposed method involves moderate sized lattices, not modified
in the boundary zone, thereby allowing much faster calculations than the method of periodic boundary condi-
tions. In case of a random two-phase lattice, scaling laws have been found for a wide range of contrasts. In the
case of a disk-inclusion composite having circular inclusions with graded interphases, the presence of a graded
interphase dramatically changes the effective conductivity compared to that of a composite with perfect
interfaces[S0163-182606)01122-9

[. INTRODUCTION nally, in Sec. V, we develop an effective-medium theory for
functionally graded composites, which performs well at low
The past decade has seen a great activity in physics aontrasts. Conclusions and recommendations for further
heterogeneous systems. More specifically, much attentiowork are summarized in Sec. VI.
has been focused on problems involving conductivity and
elasticity of two- and multiphase materials. While various Il. BOUNDING OF EEFECTIVE PROPERTIES BY
rigorous analytical results and effective-medium theories cgseNTIAL AND NATURAL BOUNDARY CONDITIONS
have been developed for simpl@eriodig microstruc-
tures’™* computer simulations proved to be a valuable Let us consider @andom microstructuréor random me-
complement to the theoretical studies of composites in casgium to be a familyB={B(w);w € 1} of deterministic me-
of more materials. One example of the latter is a functionallydia B(w), wherew is an indicator of a given realization, and
graded materia(FGM), that is, a material having a graded (2 is an underlying sample space. Next, we introduce a so-
multiscale microstructure. calledwindow By(w) of scale
In this paper we adapt a method of two scale-dependent
bounds to problems in thermal conductivity, and demonstrate L
its power and advantages on random media problems. In Sec. o= a’ @
I, following an approach being developed in mechanics of
heterogeneous solid€, we show that the effective conduc- wherel is the window(or samplé size andd is the size of
tivity on infinite length scales can be bounded with the helpa heterogeneity, Fig. 1. The material is a matrix-inclusion
of the essentia(Dirichlet) and naturalNeumann boundary  composite with thermal conductivity of phases bei@§”
conditions. This methodology is illustrated in Sec. IIl in the andC(@ in the matrix m) and the disk-inclusiond) phases,
context of two two-dimensional2D) problems:(i) a two-  respectively. This microstructure is assumed to have spa-
phase random chessboard at 50% volume fraction for a ranggly homogeneous statisti¢gvariant with respect to trans-
of contrasts from 1 through $pand (i) a composite mate- |ationg and to be ergodi¢volume averages equal ensemble
rial with perfect circular inclusions. Finite-size scaling is averagep
analyzed extensively in the first case.
Section |V discusses the main problem of this paper: ther-
mal conductivity of a matrix-inclusion composite of circular o
inclusions (diskg with functionally graded interfaces, e.g.,
Refs. 7—-10. In accordance with the method of two scale-

dependent bounds, results of numerical calculations on the @
effective conductivities are presented for a range of contrasts L
from 1 through 16 at various matrix-inclusion volume frac- o

tions, where the contrast is defined as the ratio of conductiv- o

ity of the inclusion phase to the matrix phase. We find that o ®

the presence of a rather narrow graded matrix-inclusion in- o

terphase dramatically changes the effective conductivity as
compared to the one of a composite with perfect inclusions. FIG. 1. A window of sizeL placed onto a matrix-inclusion
Scaling laws dependent on the contrast are also derived. Féemposite having inclusiongound disk$ of diameterd.
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In order to define effective properties we have to consideHere =g, wheree is the unit vector. The effective con-
o values larger than 1, and two types of boundary conditionsguctivity obtained under such boundary conditions is de-

(a) essentialDirichlet, “temperature-controlled) noted byC%®". The ensemble average of this tensor, just as
— . (CS) and(S}) %, is isotropic for a microstructure of space-
T=VT-x, 2 homogeneous and isotropic statistics. However, the method

which yield a tensorC§ (e stands for essential boundary based on periodic boundary conditions has Some. major
nditions, whereT is the temperaturéy T is the spatial drawbacks compared to the one based on bounding the ef-

co ’ i pﬂ_ . P fective conductivity by essential and natural boundary con-

average temperature gradient, anis a position vector, and gitions: (i) It modifies the actual microstructure to ensure its

(b) natural(Neumann, “flux-controlled’): geometric periodicity;(ii) it yields only one estimate on
- .. ceff i.e., (C?, and thus, in order to compensate for the
q-n=qg-n, 3 scale(i.e., 6) dependence, it requires much larger lattices

than those employed by the method proposed hire;in
- — cases of material instabilitiesuch as fracture propagation,
boundary conditions whereq is the heat flux,q is the  or shear band formatiorit restricts the range of possible
spatial average heat flux, ands the outer unit normal to the response modes to the spatially periodic ones only.
window’s boundary. In the above we employ boldface for a A calculation involving both types of boundary conditions
second-rank tensor, and an overbar for a spatial average ovavoids unnaturally modifying the materi@s it needs to be
the window domain. Note thaf—oo is the conventional done using the periodic boundary conditinpnahile at the
continuum limit typically sought in the effective-medium same time providing two rigorous bounds 64" for what-
theories, while numerical simulations correspond to some fiever 6. The choice of§ corresponds directly to the amount
nite 4. of computational effort involved, so that, the more extensive

We observe tha€$ is, in general, different fron€ as it ~ the computational time and effort, the closer are the bounds
provides arupper estimaten the effective thermal conduc- 0On C®. 1t will be illustrated in the next section, however,
tivity of the given specimen, while the latter represents athat the method based on bounding by essential and natural
lower estimate In fact, it can be showtf''! (see also the boundary conditions already results in very close bounds at
Appendi¥ from the variational principles, that the effective relatively small windows.
macroscopic conductivity tens@®" is bounded by two ten- In order to solve the field equations of a two-phase com-
sors(C%) and(S}) "%, where( ) denotes the ensemble aver- Posite we employ a finite dn‘f_erence scheme. The idea is to
aging, i.e., averaging over the space of all realizatndn ~ @pproximate the planar continuum by a very fine mesh. In
elasticity problems one uses the principles of minimum pohe following, we shall assume that a square mesh for dis-
tential energy and complementary energy. Both ensemb@retizgtion of the temperature fieldis used. The governing
averages bound the effective conductivity the more the scal@quations are thus

oo

o ot g T T T

which vyield the tensorC}=(S})~! (n stands for natural

CRE(SR)715<82>71<<Sg,>71$<sg>71$Ceff =T(i,j+ )k, —T(i,j—1)kg=0. (6)
Herei and|j are the coordinates of mesh points, and
<(CH)=(CS)=(CH=C, Vo' <s. 4 ki, ky andky are defined from the series spring model
In (4) C¥ and CR denote thelelementary Voigt and Reuss ke =[1/C(i,j)+1/C(i+1.p]™Y,

boundst corresponding to windows at the smallest scale

_ - F iy
(5=1). In other words, the effective response depends on ki=[1/C@.p+1Ci -1

the boundary conditions, and the influence of the latter dis- (7)
appears as the sample becomes infinite. The order relation k,=[1/C(i,j)+1/C(i,j+1)]" L,

employed in(4) is to be understood as follows: for two

second-rank tensos andB, the order relatiol<A means kg=[1/C(i,j)+1/C(i,j—1)] %,

t-B-t<t-A-t for any vectort #0. In the special case of the hereC(i 1) is th W at L

microstructure being characterized by isotropic statisticsV'€"€ (i,) is the property at a poirit j.

c® is isotropic, i.e.,C®f=IC®" wherel is the identity ten-

sor. IIl. A RANDOM TWO-PHASE LATTICE
Another method of calculating effective properties typi- AND A DISK-MATRIX COMPOSITE

cally u_sed_in solid-_state physics, is based_ on the concept of a \umerical examples of calculation of boundé) are
periodic window(with a heterogeneous microstructure of pe'given for the elasticity problems in Ref. 6, and for the con-

r|_0_d|C|ty L or, equivalently,s), i.e., periodic boundary con- ductivity problems in Ref. 12; the latter reference also gives
ditions second-order as well as two-point statistics of both scale-
- . s — - dependent tensors. In order to illustrate the connection to the
T(X)=T(x+L)+VT-L, VxedB, ®)  classical bounding methods in physics of random media, we
. L ) study two systems heréi) a random two-phase lattice, and
g(x)=—q(x+L), VxedB. (ii) a composite with disk inclusions. The first problem is
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FIG. 2. Bounds orC®" of a random two-phase lattice at contrast
10, for all considered volume fractions, showi(@$) and(S}) !
at =4 and 10; also shown are the Hashin bou@ifsandC!™ .

FIG. 4. Bounds orC®" of a random two-phase lattice at contrast
1000, for all considered volume fractions, showikg$) and
(Sy~! at =4, 10, and 20; also shown are the Hashin bounds
) . o ) . Chandc!'.
possibly the simplest setting in which to calculate the hier-
archy of bounds for a large range of length scales. It isyre plotted as well. The latter are given by the following
worthwhile to mention that the random lattice has a con-yg|i-known equationgsee, e.g., Ref. 16
tinuum counterpart in a random two-phase chessboard,
which for a 50% volume fraction of both phases has been CV=C,f,+Cof,,
solved explicitly in Refs. 13 and 14 with the result

CR:[f1/C1+f2/02]_1,

ce=C,C,. (8) )
In (8) C, and C, are the respective conductivities of two CH=C,+f,[1[C1—C,]+f,12C,] 7Y,
phases. Other volume fractions have been studied recently in
Ref. 15. The conductivity of a random chessboard is thus a CH=C,+f.[1/C.—C.1+f./2C.1"1
good classical problem on which to test and illustrate our 1= Cot T UCom CaJH 1/2C, ]
method. where f, and f, stand for the volume fraction of either

In Figs. 2—4 we show results «fC$) and (S})~* for  phase. From Figs. 2—4 an improvement in bounds with in-
contrast ratiosC,/C,=10, 1¢, and 16, respectively. The creasings may be observed, which leads, alreadyat4, to
window sizes areS=4 and 10, and an additional=20 for  estimates comparable, or better, than the Hashin bounds.
the contrast 13 For comparison, the classical Voigt, Reuss,  All the presented plots were obtained from numerical cal-
and Hashin upper and lower bounc@V(CR,CE', and C[') culations involving one node of a latter per one board of the
chessbhoard. This is, of course, a crude approximation with
respect to the singularity problem at the corners and, there-

* fore, does not represent a piecewise continuum system for
e 4 O ] which the Hashin bounds ar(8) are correct. Consequently,
©4 m 10 O the effective conductivities in our two-phase lattices are low-
o ered, i.e., increasing the number of nodes per board, would
1o 8 lead to an increase of these conductivities, and to a slight
30 asymptotic raising of théC$) and(S}) ! values towards

those calculated by the continuum theories. It is possible to
account for the corner points by using specialized numerical
methods, but an adaptation of such a technique to a large
domain involving many corners, in order to grasp the scale
effects, would be a formidable task. This is a separate issue
that we do not pursue here.

g Finite-size scaling of C$) and(S}) ! is obtained by cal-

PR E L e e culating larger lattices up té=400 at volume fraction of

0.0 0.1 0.2 0.3 04 05 06 07 0.8 0.9 1.0 50% We f|nd the bounds tO Scale as

20 -

10

ff .
FIG. 3. Bounds .orCe of arandom twg-phase Iatt!ce gt contrast (CY~exp(— 5P, (S[})*1~exp( 579), (10)
100, for all considered volume fractions, showiq€$) and
(S)~* at 6=4 and 10; also shown are the Hashin bouffsand ~ wherep andq are themselves functions of the contrast
cl. The latter are actually found to be of hyperbolic form
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FIG. 5. The scale-dependent upper and lower boy@f$ and
(S~ on the effective stiffness tens@®", plotted vs volume
fraction f, of inclusions, for windows aé=4, 10, 20; the respec-
tive Voigt, Reuss, and Hashin bounds are also shown.

FIG. 6. A matrix-inclusion composite with functionally graded
interphases; 47.2% volume fraction of the inclusibtack) phase.

thus the upper and lower bounds converge toGebound
p(a)=3.82" q(a)=2.4a°%° (12) as § increases. However, one would need a window of infi-

o ' nite size —) to actually obtain this homogenization
Note that the limits oflx— 1 anda—« are correctly recov- |imit.

ered here. In the first cage€$)— (S} ~1—C,=C,, while
in the second cas€, is the limit. Based on some calcula-
tions of random disk composites and random polygon mosa-

ics, which we have investigated so far, we conjecture that |nterfaces in heterogeneous materials influence their local
these are universal relations for finite-size scaling of botlfields and effective properti€s Theoretical studies in this
bounds in two-phase random systems. area represent the interface as either a well-defined bounding
Considering the case— leads one to ask about the surface between two phasésclusion disks and matrjx or
performance of both bounds at the percolation transition fogs a diffuse region of random interpenetration of these two
our “site problem.” It is known(e.g., Ref. 16that the latter  phases having a certain microstructure, which is called an
occurs at the volume fractiorr 59.23%, and thus we per- interphase Thus, in the case of a two-dimensional disk-
formed calculations just below, right at, and just above thismatrix composite, the interface is either a well-defined circle
volume fraction. We have found that both bounds correctlyyhere the properties change discontinuously, or a two-
display the percolation transition that is accompanied, as ongimensional ring-shaped interphase, see Fig. 6. In this paper
might expect, by strong fluctuations which decrease with inwe focus on the thermal conductivity of such a system. Note
creasingé. Note that, because we use one lattice node pethat by virtue of mathematical analogies, the problem is
square, we truly deal with a site problem on a random latticeequivalent to the problem of the effective transverse conduc-
rather than a continuum problem on a random chessboardtivity of a unidirectional composite material, the effective
Turning now to the disk-matrix composite, in Fig. 5 we shear modulus of such a material, and several other problems
present a comparison of tiedependent bound#) with the  in transport theories. Relevant examples, where the diffuse
classical VoigtC", Reus<CR, as well as the upper and lower zone is of a non-negligible size, are interphases in carbon-
Hashin bounds C{,C/'. This figure depicts the fiber epoxy composites and in ceramics.
S-dependent upper and lower bounds on the effective con- In the following, the disk-matrix interphase is taken as a
ductivity tensor of window8(w) for §=4,10,20 as a func- finite thickness zone of two randomly mixed phases of disk
tion of the volume fraction of disks whe€;=5.0 and and matrix material. We assume that the matfixand the
C,=0.5. In order to avoid the problem of narrow necks disk (2) phases are locally homogeneous and isotropic, that
forming between neighboring inclusions, a minimum spacings, they are described by two constant isotropic conductivi-
of inclusions’ centers equal to 1.4 of their diameter has beeties C; andC,. Contrastis defined byC,/C;.
enforced. With this restriction an upper volume fraction of In such a composite we find three different length scales:
about 30% can be reached, and thus we terminate all th@) the fine structure of the interphase regi@n), the size and
plots in Fig. 5 at this value. The classical Voigt, Reuss, aspacing of functionally graded inclusions, afiidl) the mac-
well as the upper and lower Hashin bounds calculated adoscopic dimension of the composite. Spatial randomness on
cording to(9) are also shown. It is well knownf that the  the first two of these precludes any rigorous analytical solu-
lower (uppe) Hashin bound corresponds to a system of diskgion of the problem.
of higher (lower conductivity than that of the matrix, and  The random mixture of two types of phas@satrix, 1;

IV. FUNCTIONALLY GRADED COMPOSITES
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disk, 2 in the interphase is represented by a random distri- 100000
bution of two phases which is described by an indicator
function:

® effective medium theory (CCA model)

1000.0 4

*

- 1 |f e V2, N ;]

x(r,w)= L r=(r,0), we, (12 10001
0 if reVy, <
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where Vg is the domain occupied by a phase1 or 2, 1007
respectively() is the sample space, or space of all possible
realizations; andv is one realization of an interphase. 10
The indicator functiony is characterized in terms of the
probability distributionP{x(r)} wherer is the radius of a o .
disk inclusion in its local polar coordinate system. For a ! 1 100 1000 10000
functionally graded interphase we assu{e/(r)} to be axi- C,/C,
symmetric and linear,

FIG. 7. C* of a composite with graded interphases such as
P{x(r)=1}=Ar+B, (13)  shown in Fig. 6. Shown are the Voigt, Reuss, Hashin upper and
lower bounds, an€$ andCh=(S}) ~! at =10 with respect to the
inner disk diameter, as well as the results of the effective-medium
theory (CCA mode}—all as a function of contrast.

whereA andB are determined by the conditions
P{x(a)=1}=1 and P{x(b)=1}=0, (14

in which a is the disk radiug(i.e., the inner radius of the nearly the same exponent up to*1@nd for higher contrasts
interphasg andb is the outer radius of interphase. Since they different dependency is observed.
disk and the matrix phases are both taken as locally isotropic, another major conclusion concerns the effect of the pres-
Egs.(12) and(13) are consistent with the statement that thegnce of an interphase d@= of a functionally graded com-
conductivity C equalsiC; atr<a, andIC; atr=b. posite as compared to the case of perfect inclusions. Note
In order to calculate the effective conductivity tensorihat the case of perfect disks falls exactly on the lower
C*" of such a composite, an appropriate computationaHashin bound. Thus, we see that small fuzziness, i.e., a fuzzy
method is required. To that end we consider a window whosghc|usion with a ring of thickness 20% of the disk radiais
mesh domain is discretized with a 1000000 finite differ-  dramatically increase€® as compared to the perfect disks
ence mesh, where every mesh node represents a micrograifse. The reason for this is that fuzzy zones tend to intercon-
of the composite. In this example the inner and outer radii ofect the inclusion phase through the composite, although no

inclusions area=50 andb=60, respectively, with the inclu-  percolation takes place at the volume fractions studied here.
sions’ centers being not closer than 120 units apart; the het-

erogeneities in the interphase are of siz@.&., the single
microgra_in sizg Thu_s, a cglculatﬁon ob based on the inner V. EFFECTIVE-MEDIUM THEORY
(outey diameter of inclusions gives=10 (8.333, respec- FOR A FUNCTIONALLY GRADED COMPOSITE
tively), while a calculation based on the size of interphase
heterogeneities gived=1000. The volume fraction of the A natural way to establish an effective medium theory for
inclusion phase(,) in Fig. 6 equals 47.2%. a graded composite is to use the composite cylinder assem-
The actual computation of a boundary value problem on &lage(CCA) model of Hashin and Roséft?’ In this model
1000x 1000 finite difference mesh involves the solution of athe unidirectional composite is represented as a set of com-
linear algebraic problem with fGlegrees of freedom, which Posite cylinders which completely fill the space. Each com-
is solved by a standard linear algebra packége. posite cylinder consists of a cylindrical fib@re., a disk in
In Fig. 7 we present six bounds on the effective conducthe transverse conductivity problgrenclosed in two con-
tivity C®" of the composite of Fig. 1 for a range of contrast centric cylinders, the inner one representing the interphase
from 1 through 16. As expected, the Voigt and Reuss and the outer one the matrix. Furthermore, each composite
bounds become very wide with the increasing contrast, an@ylinder has a similar geometry such trelb anda/c are
the Hashin bounds perform only slightly better. On the othefconstant, where, b, andc are the radius of the fiber, the
hand, the bounds obtained from the essential and natur@utside radius of the interphase, and the outside radius of the
boundary conditions are very close, even at contrabt 46  Matrix (and the composite cylindemespectively’*
compared to the performance of the Hashin bounds. This is When calculating the effective conductivity of the com-
especially remarkable in view of the fact that a window only Posite we can apply, in principle, either essential or natural
ten times larger than the disk size has been employed. Inteoundary conditions, but for the composite cylinder assem-
esting|y, the use of a window On|y three times |arger W0u|db|age model both will yleld identical results. In this presen-
result in bounds very comparable to those of Hashin, inditation we choose to apply a uniform temperature gradient
cating how fast the present method converges with an infield VT=(T ;,0) such that on the boundary of the composite
creasingd. we have
From the log-log diagram in Fig. 7 it can be seen that
C®=IC® shows a scaling with the contrast, i.e., _
C®=(C,/C;)%". On the other handC"=IC" scales with T|,—c=T ic coss. (15)
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The governing equation for our problem is the heat equation (m) B(m
which for case of no coupling between mechanical and ther- (A )

mal fields and steady-state condition is

—divg=C®AT=0, s=d,m (16)

for two homogeneous and isotropic regions of disk and ma

trix, and

—divg=V(C.VT)=0 17

Ceff:_c_
VT

m_—__|

ceff=cef 5 (28)

C

It is found that the above model predicts effective-medium
properties well for low contrasts only; this is investigated in
detail in Ref. 22. FoC,/C; greater than 10C® tends to be
underestimated as is shown in Fig. 7. The reason for this lies
in the inability of the composite cylinder model to grasp the
connectivity effects between all the disks with graded inter-

in the inhomogeneous interphase. While the properties gbhases in the composite medium, that lead to a dramatic
fiber and matrix are constant, those of the interphase arehange inC®™ with respect to the perfect disk composite.

assumed to be of the form

ch=ArQ, (18

Four other effective-medium methods could be developed
for this type of a composite with functionally graded inter-
phases(a) a generalized self-consistent methtlsree phase

where A and Q are found from two end conditions: Mode) (see references in Ref. R@b) a Mori-Tanaka model

CW=c@ and C(™ atr=a andr=b, respectively. The

(see references in Refs. 4 and @) a differential schemé&’

distribution (18) is the only type of a function that allows a (d) & self-consistent modésee references in Refs. 4 and 20
closed-form solution of the set of governing equations, sed/ethods(a) and(b) would result in the same solution as the

Eqg. (22) below. It has been found to very well approximate

the actual graded microstructure of the interphase.

CCA. On the other handg) and(d) would result in coupled
differential equations requiring a quite extensive analysis.

Equation(16) is the Laplace’s equation which yields the AlS0, such methods are known to be questionable and possi-

temperature fields in the fiber as
TD=ADr cosy, O<r=a, (19
and in the matrix as

TM=[AMr+BM/r]cosy, b=r=c. (20

Equation(17) for the interphase region takes the following

form in polar coordinates:

0T oC 1 T c) o1

The general solution is
T=(AVrM+BOr 2)coyy, a<r=b. (22)

Finally, we evaluate the five unknown constaAf®, A®,
BM, AM_ B(M by using the boundary conditions

T(d):T(i)
q<d)=q<i)] atr=a, (23
T(I):T(m)
q“):q(m)] at r=b, (24)
TM=VTccos at r=c (25
with
aT® .
q¥=-c® ——, s=dim. (26)

This permits to calculate the effective conductivigf™ by

equating the flux on the boundary of our composite cylinde
q™(c) with the flux in the equivalent homogeneous cylin-

der having the effective properties

q™(c)=—C*"VT cos, (27
which yields

bly invalid at high contrasts.

VI. CONCLUSIONS

We have shown that the method of essential and natural
boundary conditions leads to a very practical procedure of
bounding the effective conductivity of random-
heterogeneous media. For any choice of a length scale two
boundary value problems need to be solved that always re-
sult in rigorous bounds o&®". The resulting hierarchy of
bounds shows that with the increasing length scale ever more
accurate bounds can be achieved. The method may be used
on small length scales without a need of solving large lattices
as is done in case of the periodic boundary conditions.

The rapid convergence of both bounds with increasing
has been illustrated on two simple examples: that of a disk-
matrix composite for whictC® is know to be given by the
lower Hashin bounds, and that of a random two-phase lattice.
The latter case served to derive finite-size scaling formulas
for both bounds. The formulas are proposed to have a wider,
more universal, applicability than just for random lattices.

The rapid convergence of both bounds is especially useful
in the problem of a composite with graded interphases. It is
observed that boundary value problems on the length scale of
just ten times the size of inclusions can be bounded even at
very high contrasts, up to #0and 1@. Furthermore, we
determined that the presence of a narrow graded interphase
has a dramatic effect o€ as compared to the case of
perfect disks. In factC® is found to scale as@,/C,)%’
over contrasts ranging from 1 through®10

The approach developed in this paper represents new
treatments of(i) transport problems andi) functionally
Igraded materials. In general, a more complete studjyi ois
required that will consider a larger parameter space, include
different types of spatial inhomogeneity, and explore the ef-
fects of other material geometries. Finally, it should be noted
that the same method can be applied to transport and elastic-
ity problems of a number of other types of multiscale micro-
structures.
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APPENDIX

For the completeness of the paper we sketch here a proof

of the hierarchie$4) of bounds onC®". Let us introduce a
partition of a square-shaped windof#¥s(w), of volume

Vs, into four smaller square-shaped
B‘;’,(w),s=1, ...,4, ofsize §' = 6/2 and volumeV s each.

Just like we introduced a restricted version of the essential
boundary conditions, we can also introduce such a version of
the natural boundary conditiai®), that is

g-n=q-n, (A4)

which applies to the boundaries of all foB@,(w). Next, it

windows follows from the dual variational principle, that the comple-

mentary entropy production ratb*r(w), as a function of

Also, let us introduce a restricted version of the essentiathe heat flux, stored in the body

boundary conditior(2), i.e.,

T=VT-x. (A1)

Condition(Al) is more restricting then the originé?) in the
sense thatAl) applies to the boundaries of aﬁiﬁ,(w) rather
than justB s(w); the superscript "’ indicates a restriction.
Now, observe that a variational principfeimplies that the
rate of irreversible entropy productich'(w) stored in the
body

4
Bs(®)= U B(w)
s=1
under the essential boundary conditi@kl) bounds the en-
tropy rate® (w) stored in the same body und&)

1 - -
SVoVT-C5VT=d(w)<d(w)

V5 VT-CS.VT.

! (A2)
=12

4
Bs(w)= U B} (o)
s=1

under condition/A4) bounds the entropy ra®* (w) stored
in the same body undé€B):

1 — - r
SVl Sy =0 (0) =0 ()

(A5)

Here S} and Sj° are the effective resistivity tensors of
Bs(w) and Bz,(w), respectively. Upon carrying out en-
semble averaging and noting spatial homogeneity and ergod-
icity of B, we obtain from(A5)

(SH=(S}). (A6)

The sequence of lowes-dependent bounds 0@°" is ob-
tained by simply invertingA6). Combining this with(A3),
we obtain the hierarch).
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