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A theory of excitonic surface states in multilayer organic quantum wells is developed beyond the nearest-
neighbor approximation. Eigenenergies and envelope functions of eigenstates of several kinds of surface states
as well as band states are obtained, and the characteristics of surface states are clarified. The difference in
super-radiant decay rates of the first and second surface excitons can be explained in the framework of the
present theory. The results of numerical calculations are compared to the experimental data for two-
dimensional Frenkel excitons in anthracene crystals.@S0163-1829~96!06128-0#

I. INTRODUCTION

The study of various types of mesoscopic structures, from
semiconductor quantum dots to molecular multiple quantum
wells, is a field of intense current interest. Semiconductor
low-dimensional structures exhibit many interesting optical
and transport properties that are of importance for applica-
tions in the optoelectric devices as well as for investigation
of interactions and dynamics of confined carrier systems.
Among those interesting properties, the effect of rapid radia-
tive decay of excitons~picosecond and subpicosecond time
scales of lifetimes! commonly now called super-radiance,
has attracted much attention, both theoretically1–3 and
experimentally.4–7 It is well known that in bulk crystals the
exciton can interact with a photon which has the same wave
vector due to the translation symmetry of the system. As a
result, a polariton, i.e., a mixed state of the exciton and pho-
ton, is formed. The decay of excitons in the bulk crystal is
possible only by a leak of the polariton through the surface
of a crystal, or by radiative and nonradiative recombination
at crystal imperfections. The situation in crystals of reduced
dimensionality changes drastically. Theoretical investiga-
tions by Agranovich and Dubovski,1 Hanamura,2 and An-
dreani, Tassone, and Bassani3 predicted the super-radiant de-
cay of excitons in the low-dimensional structures. In Ref. 2
Wannier-Mott excitons have been pointed out to decay
super-radiantly through its mesoscopic transition dipole mo-
ment in an order of a picosecond in GaAs quantum wells and
a subpicosecond in CdS quantum wells. Experimental obser-
vations by Segawaet al.,4 and Deveauet al.5 were in agree-
ment with the theory. Recently, great efforts have been made
with the aim of creating strongly ordered crystalline organic
thin-film and multilayer structures, which are very promising
systems for various device applications as well as for study-
ing molecular Frenkel and charge-transfer excitons.8–11 Su-
perradiance of two-dimensional~2D! Frenkel excitons in
multilayer organic quantum wells~ MOQW’s! was first ob-
served experimentally by Aaviksoo, Lippmaa, and Reinot6 in
the investigation of luminescence of a 2D Frenkel exciton
localized in the outermost layers of anthracene crystals. In
Ref. 6, by means of a time-resolution technique, picosecond
time-scale measurements at low temperatures have shown

super-radiant decays of about 2 psec or shorter for the first
surface layer exciton, and of an order of 1562 psec for the
exciton from the second surface layer. It is well known~for a
review, see Ref. 12! that the exciton energy level of the first
surface layer in anthracene is observed at 204 cm21 above
the bulk exciton, and that of second surface layer is also
weakly observed at only 6 cm21 above the bulk exciton one.
The nature of these shifts is well understood as being due to
the absence of neighbors for molecules in the surface layers
and the change in the value of the site shift. There are avail-
abe theories13,14 which would explain how different the ra-
diative decays of the exciton at the first surface layer are
from the bulk one in MOQW’s. The main reason for the
super-radiant radiative decay of surface excitons is the insta-
bility property with respect to the emission of the excitonic
surface states due to the absence of translational symmetry in
the direction perpendicular to layer planes of MOQW’s.
However, there is still no answer to the question of why the
radiative decay rate of the first surface exciton is different
from that of the second surface layers, and also
how much, as is explored in the observations of Aaviksoo,
Lippmaa, and Reinot.6 To our knowledge, for theories of
excitonic surface states, the nearest-layer approximation
~NLA ! ~Refs. 13–18! was usually used, except for some
brief discussions on the second-nearest-layer approximation
~SNLA! by Koster and Slater17 and Mahan and Obermair.18

In the framework of the NLA, the system has no surface state
if uRu.uD1u, whereR is the matrix element for the transfer
of excitation between two nearest layers, andD1 is the dif-
ference between energies of the bulk exciton and the first
surface one without taking into account the transfer energy
between layers. IfuRu,uD1u there are at most two surface
states, which are localized near the two faces of finite thick-
ness systems.13–16So far, theories of excitonic surface states
have usually been based on assumptions of the nearest layer
approximation. This is because the interlayer interaction, in
fact, falls off very rapidly against separation between layers,
and also that theories in the NLA are sufficient to explain
various experiments. Another important reason for that is the
complication as well as the difficulty in the SNLA and
higher-order approximations. Such a situation was reported
in the famous paper by Koster and Slater.17 However,
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with the rapid development of advanced manipulation tech-
nologies of semiconductors and organic materials, and laser
technologies, we are able to observe the delicate structures of
elementary excitations near the band edge in the spectrum
and their dynamics. For example, dynamics of several sur-
face states in anthracene crystals were clarified by Aaviksoo,
Lippmaa, and Reinot.6 Another example of the delicate prop-
erties is the reflection and luminescence spectra of the an-
thracene crystal observed by Nozue, Kawaharada, and
Goto.19 These spectra show that the energy levels of the first
surface and second surface excitons are 2531061 and
25107.260.2 cm21, respectively, and the bulk exciton is
located at 25097 cm21. Correspondingly, the energy differ-
ences of the first and second surface excitons with respect to
the bulk one ared1521361 cm21 and d2510.260.2
cm21, respectively. However, for thick enough layers of or-
ganic crystals, we have only one optically active surface
state, even if possible, in the framework of the NLA.20When
the higher-order layer interactions are taken into account,
electronic structures near the band edge are modified, and the
higher-order surface states may possibly appear near the
band edges even though the higher-order interactions are
small.

In the present paper we investigate the behavior of the
first and second surface excitons, and then attempt to under-
stand the difference in the radiative decay rates of the surface
excitons. This becomes possible only by taking into account
the propagation effects of elementary excitation not only be-
tween nearest layers but also second-nearest layers. To do
this, we develop a theory of excitonic surface states in the
framework of the SNLA. It is easy to extend the SNLA to
general cases. The results of the present paper show that in
the SNLA, there are five classes of states: two of band states
and three of surface states, instead of two of surface states as
in the paper of Koster and Slater. Furthermore, the results
also show that the case which was discussed by Mahan and
Obermair is only one special case of our theory. The total
number of states of the system is not changed, but the num-
ber of surface states can be changed importantly depending
upon material constants. Now we have conditions for the
existence of at most four surface states in a finite thickness
system. For material parameters of crystals such as anthra-
cene, the system has four surface states. In this case, it is
worth stressing that there are two surface states strongly lo-
calized in the two first surface layers~first surface states!
while the others behave like damped oscillatory states which
have maximum absolute values of wave functions at the sec-
ond surface layers~second surface states!. This behavior is
the main reason for the difference in the radiative decay rates
of excitons in the first and the second surface layers, as will
be presented in the context of the present paper.

Our paper is outlined as follows: In Sec. II we present the
model of the considered MOQW’s and the general solution
of the difference equations in the SNLA. In Sec. III we make
classifications of five classes of states in the SNLA. These
classifications are useful to understand the energy scheme of
excitons in MOQW’s within the SNLA. In Sec. IV we
present the method for determining the allowed states of the
system. In this section the difference in the radiative decay
rates of the first and second surface excitons is evaluated.
Section V is the discussion part of the present paper.

II. MODEL AND GENERAL SOLUTION

A. Model

Consider a MOQW composed ofL52N11 parallel infi-
nite layers, with an interlayer spacingd. It is assumed that an
excitation in a molecule interacts with other molecules in the
ground state and propagates via dipolar interactions only.
The electric field of a layer of dipoles falls off very rapidly
with perpendicular distance from the layer.18,21 Accordingly
we take into account the first- and second-nearest-layer in-
teractions. We further restrict ourselves to a symmetric sys-
tem: there are two equivalent faces of MOQW’s, each of
which has two kinds of surface layers~the first and second
surface layers!.

The Hamiltonian of the system can be written as12–15,20,22

H5(
kW

(
n

FEn~kW !BnkW
†
BnkW1 (

m5” n
Mnm~kW !BmkW

†
BnkWG , ~1!

whereBnkW(BnkW
† ) is the annihilation~creation! operator of a

two-dimensional exciton in thenth layer with energy
En(kW ) and a two-dimensional wave vectorkW , andMnm is the
matrix element for the transfer of excitation from thenth
molecular layer to themth one. In the NLA,Mnm has two
equivalent contributionsRdm,n11 andRdm,n21 regarded as
the nearest-layer interaction. In the SNLA, it has four con-
tributions, i.e., two of the nearest-layer interaction, and oth-
ers,Sdm,n12 andSdm,n22 , which are equal to each other and
regarded as the second-nearest-layer interaction. We then
call R andS the nearest- and second-nearest-layer interac-
tions, respectively. As we mentioned above, our system is
symmetric with two equivalent first surface layers and two
equivalent second surface layers; accordingly it can be as-
sumed thatEN5E2N andEN215E2N11 . Here we count the
layers of the system fromn52N to n5N.

B. Difference equations and general solution

In the model considered, interlayer interactions are taken
into account so that an excitation can propagate from layer to
layer. As a result the excitation belongs to the whole system
rather than to separate layers. In this case we represent the
eigenfunction of the whole system as

CkW5 (
n52N

N

wn~kW !BnkW
† u0&, ~2!

where the envelope functionswn(kW ) are to be determined so
that the Scho¨dinger equation

HCkW5vkWCkW ~3!

is satisfied, withvkW the eigenenergy of the whole structure.
Here and hereafter\51. Substitutions of Eqs.~1! and ~2!
into Eq. ~3! within the SNLA produce the following differ-
ence equations for the eigenenergyv and the envelope func-
tion of the eigenstatewn ~the wave vectorkW of the motion in
the layer planes is omitted for brevity from now on!:
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~v2E0!wn5R~wn111wn21!

1S~wn121wn22!, 2N11,n,N21,

~4!

~v2EN!wN5RwN211SwN22 , ~5!

~v2EN21!wN215R~wN1wN22!1SwN23 , ~6!

~v2E2N!w2N5Rw2N111Sw2N12 , ~7!

~v2E2N11!w2N115R~w2N1w2N12!1Sw2N13 , ~8!

whereE0(kW )5En(kW ) for 2N11,n,N21 is the energy of
L24 internal layers. Here it should be noted thatEn(kW ) is
the energy of the exciton innth layer without taking into
account the transfer energy between layers. The solution of
the difference equation~4! can be sought in the form

wn5xn5exp@ i ~p1 ig!nd#, ~9!

wherep andg are real, and their allowed values are to be
determined by using the boundary condition equations~5!–
~8!.

Inserting~9! into ~4! we obtain the following equation for
the eigenenergy:

v5E01R~x1x21!1S~x21x22!. ~10!

Here, it is worth noting that, ifx is the solution of Eq.~10!
and has a complex form, thenx21, x* , andx*21 also satisfy
the equation and that the general solution is some linear
combinations ofx, x21, x* , andx*21:

wn5Axn1Bx2n1Cx* n1Dx*2n, ~11!

whereA, B, C, andD are the coefficients and can be deter-
mined from the difference equations as well as the normal-
ization condition of the wave functions.

Using ~9!, the equation for the eigenenergy~10! can be
rewritten as

v2E052R cos@~p1 ig!d#12S cos@2~p1 ig!d#

52R cos~pd!cosh~gd!12S cos~2pd!cosh~2gd!

2 i sin~pd!sinh~gd!@R14S cos~pd!cosh~gd!#.

~12!

Here and hereafterE0[E0(0) is taken as the energy refer-
ence. For a fixed value ofv, we have two pairs of (p,g)
satisfying Eq.~12! as long asS is finite. This is the first
different point of the SNLA from the NLA. The dispersion
relationv(p,g) of the exciton is obtained by coupling Eq.
~12! with the boundary conditions Eqs.~5!–~8!. Because
v, E0 , R, andS in our system are real quantities, the imagi-
nary part on the right-hand side of Eq.~12! must vanish,
leading to the following condition for one pair (p,g):

sin~p!sinh~g!@R14S cos~p!cosh~g!#50. ~13!

Here, in~13! and hereafter we usep andg in the unit of the
interlayer spacingd.

Substitution of the general solution~11! into the differ-
ence equation~4! with the use of condition~13! leads to the
following possibilities:~i! pÞ0, g50, and the eigenenegy is
given by

v5E012R cos~p!12S cos~2p!; ~14!

~ii ! g50, p5p j ( j integer!, and the eigenenergy is given
by

v5E01~21! j2R cosh~g!12S cosh~2g!; ~15!

~iii ! R14S cos(p)cosh(g)50, and the eigenenergy is given
by

v5E012R cos~p!cosh~g!12S cos~2p!cosh~2g!. ~16!

It is worth noting that case~iii ! exists only in the SNLA,
while cases~i! and ~ii ! are already known in the NLA.20

However, here the situation is not the same as in the NLA, in
which states belonging to cases~i! and ~ii ! are classified as
band states and surface states, respectively. Now there are
possibilities in which states originating from case~ii ! must
be classified as band states, and the situation becomes more
complicated, as will be seen in Sec. III.

III. CLASSIFICATIONS OF BAND
AND SURFACE STATES

We have two classes of band states and three classes of
surface states depending upon the relative values ofR/4S. In
this section, classification of these states is discussed, and we
will determine the eigenenergies and envelope functions of
eigenstates of these surface states by using boundary condi-
tion equations~5!–~8! in Sec. III A.

A. Band states

States with energies given by Eq.~14! @case~i!# are also
called band states as in the NLA. In the SNLA, however,
there are two different classes of band states.

1. „p,p8…-band states

The eigenenergy from the case~i! has the extreme value
2(R218S2)/4S at cos(p)52R/4S when uR/4Su,1, and
2S(11uR/Su) at cos(p)561. It can be proved that if
uR/4Su,1, the band energy in Eq.~14! extends over the fol-
lowing regions@region B1 in Figs. 1~a! and 1~b!#:

~E02Vm!,v<~E02V1! if S.0, ~17!

~E01Vm!.v>~E01V1! if S,0, ~18!

where Vm5(R218S2)/4uSu and V152(uRu2uSu). Here
there are two pure values of wave vectorsp and p8 corre-
sponding to one value of energyv, so that both functions
cos(p) and cos(p8) satisfy the eigenvalue equation~14!.
These two solutions cos(p) and cos(p8) of the equation relate
to each other by

cos~p!1cos~p8!52
R

2S
, ~19!

and the corresponding energyv is given by
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v5E012R cos~p!12S cos~2p!

5E012R cos~p8!12S cos~2p8!. ~20!

In this case, these states are characterized by two real
wave vectorsp andp8 which are determined in Sec. II B by
using the boundary conditions~5!–~8! as well as relation
~19!. The envelope functions of eigenstates, therefore, take
the general form

wn5A8cos~np!1B8sin~np!1C8cos~np8!1D8sin~np8!.
~21!

We note at once that, because of the symmetry of the system,
the eigenstates must be either symmetricwBn

s (p,p8) or anti-
symmetricwBn

a (p,p8). From Eq.~21! it can be easily proved
that envelope functions of these eigenstates have the follow-
ing forms:

wBn
s ~p,p8!5A1cos~np!1A18cos~np8!, ~22!

wBn
a ~p,p8!5B1sin~np!1B18sin~np8!. ~23!

These band states should be called the (p,p8)-band states
@(p,p8)-BS# in order to distinguish them from the other band
states which may appear in the SNLA as below.

2. „p,g…-band states

Considering case~ii !, we can see that ifS50 ~i.e., in the
NLA ! the energies given by Eq.~15! always go out of the
levels of band energy given by Eq.~14!, and, therefore, in
the NLA, these states are classified as surface states. This
also means that in the NLA, states belonging to case~ii ! are
always classified as surface states. In the SNLA, we have
states with their energies given by Eq.~15! outside of the
band energy, that are also called surface states. There are
other possibilities that the corresponding states must be clas-
sified as band states. As can be seen clearly from Eq.~15!
and also from Figs. 1 and 2~regionsB2 in these figures!,
if R and S have the same signs~opposite signs! and j
is seclected so that (21) j521(11) or

FIG. 1. Energy scheme of states withuR/4Su,1. ~a! R521.2
cm21 and S520.6 cm21,0. ~b! R51.2 cm21 and S50.6
cm21.0. Case~i! energyv as a function ofp, solid curve. Case
~ii ! v as a function ofg, dashed-dotted curves. Curves (1) and
(2) correspond to (21) jsign(R)sign(S)511 and 21, respec-
tively. Case~iii ! v as a function ofp, dashed curve.

FIG. 2. Energy scheme of states withuR/4Su.1. ~a! R525
cm21 and S520.625 cm21,0. ~b! R55 cm21 and S50.625
cm21.0. Case~i! energyv as a function ofp, solid curve. Case
~ii ! v as a function ofg, dashed-dotted curves. Curves (1) and
(2) correspond to (21) jsign(R)sign(S)511 and 21, respec-
tively. Case~iii ! v as a function ofg, dashed curve.
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(21) jsign(R)sign(S)521 ~signs rule 1!, where sign(R)
and sign(S) are signs ofR andS, respectively, there are the
regions of energyv given by Eq.~15!, in which the states
must be classified as band states. The energy regions of these
band states are

~E02V1!,v<~E01V2! if S.0, ~24!

~E02V2!,v<~E01V1! if S,0, ~25!

where V252(uRu1uSu). For the present class of
(p,g)-band states, one pair of (p,g) comes from case~ii !,
i.e., (p j ,g) with the energyv5E01(21) j2R cosh (g)
12Scosh(2g) and another pair of (p,g) comes from case~i!,
i.e., (p,0) with the energyv5E012R cos(p)12Scos(2p),
so that the eigenstate is described as a linear combination of
these wave functions.

Analytically, in these regions we have

v5E012R cos~p!12S cos~2p!

5E01~21! j2R cosh~g!12S cosh~2g!. ~26!

It is clear from Eq.~26! that if p andg correspond to one
value of energyv in the above regions, both functions
cos(p) and (21) jcosh(g) are to be the two solutions of the
following equation:

4Sy212Ry2~2S1v2E0!50; ~27!

therefore the relation between these two solutions is

cos~p!1~21! jcosh~g!52
R

2S
. ~28!

These band states should be called the (p,g)-band states
@(p,g)-BS#.

Note that the (p,p8)-BS may appear if the condition
uR/4Su,1 hold only, while the (p,g)-BS may appear with-
out any restriction ofR andSÞ0. Moreover, from~17! and
~18! and~24! and~25! we can see that the energy regions of
(p,p8)-BS and (p,g)-BS never overlap each other. There-
fore, there are no situations in which the states belong to
different classes of band states and correspond to one value
of energy simultaneously.

In the case of (p,g)-BS, the states are to be characterized
by one pure realp, one pure imaginary valueig of wave
vectors, and one integer valuej . This may be called a
quasilocalized state embedded in the continuum spectrum of
the band energy. The envelope functions of the symmetric
and antisymmetric eigenstates have the following forms:

wBn
s ~p,g!5A2cos~np!1A28~21!n jcosh~ng!, ~29!

wBn
a ~p,g!5B2sin~np!1B28~21!n jsinh~ng!. ~30!

B. Surface states

Let us pay attention to case~ii ! again. Schematically, the
energy functionv in Eq. ~15! corresponds to states belong-
ing to three different classes of states. The first corresponds
to energy regions given by~24! and~25!, which are classified
as (p,g)-BS. The others belong to surface states as below. In
this subsection, we discuss states originating from the energy

equations of Eqs.~15! and ~16!. The eigenenergies will be
determined in Sec. III B 1 by using the boundary conditions
Eqs.~5!–~8!.

1. „g j ,g8j …-surface states

It can be proved that if the conditionuR/4Su.1 and
(21) jsign(R)sign(S)521 ~signs rule 1! are satisfied, the
function v given by Eq. ~15! has extreme value
2(R218S2)/4S at cosh(g)52(21)jR/4S. In this case the
energy function has regions in which, corresponding to one
value of energyv, there are two valuesg andg8 with the
same valuej . The energy regions of these states@regions
S1 in Figs. 2~a! and 2~b!# are

~E02Vm!,v,~E02V1! if S.0, ~31!

~E01V1!,v,~E01Vm! if S,0. ~32!

In these regions, both functions cosh(g) and cosh(g8) are
solutions of Eq.~15! ; therefore we have a relation

cosh~g!1cosh~g8!52
~21! jR

2S
, ~33!

where j is selected to satisfy condition
(21) jsign(R) sign(S)521 ~signs rule 1!. In these regions,
the energies of the surface states are given by

v5E01~21! j2R cosh~g!12S cosh~2g!

5E01~21! j2R cosh~g8!12S cosh~2g8!. ~34!

These surface states are characterized by two pure imagi-
nary valuesig andig8 of wave vectors and an integerj . The
envelope functions of the symmetric and antisymmetric
eigenstates take the forms

wSn
s ~g j ,g8 j !5~21!n j@A2cosh~ng!1A28cosh~ng8!#,

~35!

wSn
a ~g j ,g8 j !5~21!n j@B2sinh~ng!1B28sinh~ng8!#.

~36!

These surface states should be classified as
(g j ,g8 j )-surface states@(g j ,g8 j )-SS# in order to distinguish
them from the other classes of surface states.

Note that for the energy regions of (g j ,g8 j )-SS @Eqs.
~31! and ~32!#, corresponding to one value of energy, there
are two different values ofg andg8 with the same integer
value j . The energy regions of the (g j ,g8 j )-SS appear if the
conditionuR/4Su.1 and the signs rule 1 are fulfilled. On the
other hand, the energyv in Eq. ~15! with a given sign value
of the expression (21) j ~ both values11 and21) is mono-
tonic function with respect tog except in the above regions
of (g j ,g8 j )-SS @regionsS1 in Figs. 2~a! and 2~b!#. How-
ever, it also has other regions without restriction ofR and
SÞ0 in which there are two pairsg, j andg8, j 8, with j and
j 8 satisfying condition (21) j (21) j 8521, corresponding to
one value of energy as can be seen below.
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2. „g j ,g8j 8…-surface states

It can be proved from Eq.~15! and more clearly from
Figs. 1 and 2 that the energy in the regions~regionsS2 in
these figures!

v.~E01V2! if S.0, ~37!

v,~E02V2! if S,0 ~38!

goes out of the band levels, and therefore the corresponding
states are classified as surface states.

In these regions, corresponding to one value of energy
v, there are two pairsg, j and g8, j 8 which satisfy the
eigenenergy equation~15!. In this case, generally we have

v5E01~21! j2R cosh~g!12S cosh~2g!

5E01~21! j 82R cosh~g8!12S cosh~2g8!.
~39!

From Eq.~39! we have the following relation:

~21! jcosh~g!1~21! j 8cosh~g8!52
R

2S
. ~40!

It is clear that if (21) j5(21) j 8 then Eq.~40! becomes re-
lation ~33! obtained above, which is valid only if the condi-
tion uR/4Su.1 and (21) jsign(R)sign(S)521 are satisfied.
In this case, as clearly presented in Sec. III B 1 the energy
regions are given by~31! and ~32!, and the corresponding
states are classified as (g j ,g8 j )-SS. Therefore, if the two
pairsg, j andg8, j 8 correspond to one value of energy in the
regions given by~37! and ~38!, then the values ofj and j 8
must satisfy condition (21) j (21) j 8521 ~signs rule 2!. In
this case, these states are characterized by two pairsg, j and
g8, j 8, and should be classified as (g j ,g8 j 8)-surface states
@(g j ,g8 j 8)-SS#.

The envelope functions of the symmetric and antisymmet-
ric eigenstates of the (g j ,g8 j 8)-SS can be proved to have the
following forms:

wSn
s ~g j ,g8 j 8!5A4~21!n jcosh~ng!1A48~21!n j8cosh~ng8!,

~41!

wSn
a ~g j ,g8 j 8!5B4~21!n jsinh~ng!1B48~21!n j8sinh~ng8!.

~42!

Note that the (g j ,g8 j 8)-SS may appear without any re-
striction ofR andSÞ0, while the (g j ,g8 j )-SS may appear
only if the conditionuR/4Su.1 holds. This means that for
uR/4Su.1 there may be two different classes of surface
states also originating from case~ii !.

3. „p,g…-surface states

For case~iii !, the eigenenergy is given by Eq.~16!

v5E012R cos~p!cosh~g!12S cos~2p!cosh~2g!,

and the following relation comes from condition~13!:

cos~p!52
R

4S cosh~g!
. ~43!

It can be easily proved from Eq.~16! and clearly seen
from Figs. 1 and 2 that the regions of the energy function
v given by Eq.~16! are ~regionsS3 in these figures!:

v,~E02Vm! if S.0, ~44!

v.~E01Vm! if S,0. ~45!

Therefore, states belonging to case~iii ! are classified as sur-
face states because their energies always go out of the band
energy.

In this case, these surface states are characterized by com-
plex values (p6 ig) of wave vectors, and therefore should
be classified as (p,g)-surface states@(p,g)-SS#. The sym-
metric and antisymmetric eigenstates are of the forms

wSn
s ~p,g!5A5cos@~p1 ig!n#1A58cos@~p2 ig!n#

5~A51A58!cos~np!cosh~ng!

1 i ~A582A5!sin~np!sinh~ng!, ~46!

wSn
a ~p,g!5B5sin@~p1 ig!n#1B58sin@~p2 ig!n#

5~B51B58!sin~np!cosh~ng!

1 i ~B52B58!cos~np!sinh~ng!. ~47!

Note thatVm in ~17! and~18!, ~31! and~32!, and~44! and
~45! has the same formula (R218S2)/4uSu but different
meanings. In~17! and~18!, Vm is the extreme value of func-
tion (v2E0) in Eq. ~14! if the condition uR/4Su,1 holds,
while in ~31! and ~32! it is the extreme value of function
(v2E0) given by ~15! with uR/4Su.1. In ~44! and ~45!,
Vm(2Vm) is the minimum ~maximum! of function
(v2E0) given by Eq.~16! if S,0 (S.0) with any values
of R and SÞ0. It is clear that the energy regions of the
different classes of states do not overlap each other.

C. Some remarks

~1! In the SNLA, there are two classes of band states
(p,p)-BS, and (p,g)-BS, and three classes of surface states
(g j ,g8 j 8)-SS, (g j ,g8 j )-SS, and (p,g)-SS. It is worth notic-
ing that, in any case, there are no situations in which, corre-
sponding to one value of energy, there are states which be-
long to different classes of states.

~2! The case which was discussed by Mahan and
Obermair18 is nothing other than the (p,p8)-BS presented
above. As can be seen in Sec. III A 1, these band states may
appear if the conditionuR/4Su,1 is satisfied. In Ref. 18 the
authors gave several typical values ofR and S @v(1) and
v(2) in this paper#, and the values ofuR/4Su are typically
larger than 2. It is clear from the results in Sec. III A that, if
we consider only (p,p8)-BS in the SNLA as in Ref. 18, we
do not have enough information about the band states of
system. In principle, these band states may appear only if
uR/4Su,1.

~3! The SNLA had also been discussed by Koster and
Slater.17 In their paper, Koster and Slater predicted that there
are only two classes of surface states, one characterized by
two pure imaginary values@(g,g8)-surface states#, and the
other characterized by one complex value of wave vectors
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@(p,g)-surface states#. However, as presented in Sec. III B,
there are three classes of surface states, and in the cases of
two classes, (g j ,g8 j 8)-SS and (g j ,g8 j )-SS, besides two
purely imaginary values of wave vectors (g,g8), we have to
use integer valuesj ~and j 8) to describe the surface states. In
these cases, the values of integerj ~and j 8) play an important
role. The surface states of these two classes cannot be
formed if signs rules 1 and 2 are not taken into account. Here
it is worth mentioning that, in the SNLA, the state at a given
energy is described by two wave vectors rather than just one
as in the NLA ~for more details see Ref. 18!. Another
argument of Koster and Slater is that they predicted that
energy levels of states belonging to (g,g8)- and
(p,g)-surface states always locate on opposite sides of the
band energy. This means that, if energy levels of
(g,g8)-surface states are above the top of band energy, then
the energies of (p,g)-surface states are below the bottom of
band energy, and vice versa~see Fig. 3 in Ref. 17!. As pre-
sented in Sec. III B, ifuR/4Su,1 the (g j ,g8 j 8)-SS and
(p,g)-SS are on opposite sides of the band states; but if
uR/4Su.1, the energy levels of (g j ,g8 j )-SS and (p,g)-SS

are on the same side, but on different sides from the
(g j ,g8 j 8)-SS. In fact, the arguments of the authors in Ref.
17 were formally based on our eigenenergy equation Eq.
~14!. They had no concrete conditions such as Eq.~13! as in
the present paper.

All the above conclusions are based on the energy scheme
and eigenvalue equations~14!–~16!. However, the number of
states belonging to each class and the allowed values of
states, i.e., (p,g) defined in Eq. ~9! @or the values of
(p,p8), (p,g), (g j ,g8 j ), and (g j ,g8 j 8) depending on the
class of the states# are to be determined by using the bound-
ary condition equations~5!–~8! ~called the special equa-
tions!. At the same time, the eigenenergies of the exciton are
determined by putting the allowed values of states into Eqs.
~14!–~16!. In Sec. IV the method to determine the allowed
states, i.e., the eigenenergies of the system, is presented. At-
tention is to be paid to the surface states, and to the differ-
ence in radiative decay rates of the first and second surface
excitons.

IV. FIRST AND SECOND SURFACE EXCITONS

A. Determinations of allowed states

Substituting of the envelope functions of eigenstates ob-
tained in Sec. III into the boundary condition equations~5!–
~8!, we obtain equations which can determine the allowed
values of states of our system~called state equations!. For
each allowed state, there are six quantities which must be
determined, i.e., two coefficientsAi ,Ai8 or Bi ,Bi8 ( i from 1
to 5! for each envelope function of eigenstates, and two al-
lowed pairs (p,g) which determine the eigenenergy. Condi-
tion ~13! and the signs rules 1 and 2 reduce these six quan-
tities to four. On the other hand, as two pairs of special
equations, i.e., the boundary conditions~5! and ~6! and ~7!
and ~8!, are equivalent in our symmetric system, we have
two independent boundary conditions. In addition, we have
one relation between two solutions of eigenenergy equations
for each class of states, e.g., Eqs.~19!, ~28!, ~33!, ~40!, or
~43!, and one normalization condition for the wave func-
tions. Therefore, it is sufficient to determine the allowed
states of the system. In principle, the general method for
determining the allowed values of state is the same for all
classes of states. However, for each class of states we have
one distinguished kind of state equation, including one equa-
tion for symmetric and another for antisymmetric states. In
the following subsections we will derivate state equations for
the (p,g)-SS, as an example.

1. Equations for symmetric states

In this subsection, as an example, we present the deriva-
tion of the state equation for symmetric states of (p,g)-SS.
Substitution of Eq.~46! into the special equations~5! and~6!
or ~7! and ~8!, we have the following equations:

A5$D1cos@N~p1 ig!#1R cos@~N11!~p1 ig!#

1S cos@~N12!~p1 ig!#%

52A58$D1cos@N~p2 ig!#1R cos@~N11!~p2 ig!#

1S cos@~N12!~p2 ig!#% ~48!

FIG. 3. Behavior of the envelope function of the first surface
states withS520.625 cm21, R525 cm21, D152204 cm21,
andD2526 cm21. ~a! For the symmetric state.~b! For the anti-
symmetric state.
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and

A5$D2cos@~N21!~p1 ig!#1S cos@~N11!~p1 ig!#%

52A58$D2cos@~N21!~p2 ig!#

1S cos@~N11!~p2 ig!#%, ~49!

where,D15E02EN andD25E02EN21 .
EliminatingA5 andA58 from the above equations, we ar-

rive at an equation which has a complex form:

~a1 ib !~c2 id !5~a2 ib !~c1 id !, ~50!

wherea, b, c, andd are real expressions obtained from Eqs.
~48! and ~49!. From Eq.~50! we obtain an equation of the
form ad5bc which is the state equation for the symmetric
states of (p,g)-SS. The left-hand side of the equation is as
follows:

$D1cos~Np!cosh~Ng!1R cos@~N11!p#cosh@~N11!g#

1S cos@~N12!p#cosh@~N12!g#%

3$D2sin@~N21!p#sinh@~N21!g#

1S sin@~N11!p#sinh@~N11!g#%, ~51!

and the right-hand side is

$D1sin~Np!sinh~Ng!1R sin@~N11!p#sinh@~N11!g#

1S sin@~N12!p#sinh@~N12!g#%

3$D2cos@~N21!p#cosh@~N21!g#

1S cos@~N11!p#cosh@~N11!g#%. ~52!

Combining Eqs.~51! and ~52! and relation~43!, we can de-
termine graphically the allowed values ofp and g of the
states. Special equations~48! and ~49!, along with the nor-
malization requirement onC, are sufficient to determine co-
efficientsA5 andA58 . The eigenenergiesv(p,g) are obtained
by inserting the allowed values ofp andg into Eq. ~16!.

2. Equations for antisymmetric states

By the same method as presented above, we obtain an-
other state equation for antisymmetric states of (p,g)-SS,
with the left-hand side of the equation having the form

$D1sin~Np!cosh~Ng!1R sin@~N11!p#cosh@~N11!g#

1S sin@~N12!p#cosh@~N12!g#%

3$D2cos@~N21!p#sinh@~N21!g#

1S cos@~N11!p#sinh@~N11!g#%, ~53!

and the right-hand side

$D1cos~Np!sinh~Ng!1R cos@~N11!p#sinh@~N11!g#

1S cos@~N12!p#sinh@~N12!g#%

3$D2sin@~N21!p#cosh@~N21!g#

1S sin@~N11!p#cosh@~N11!g#%. ~54!

Combining Eqs.~53! and ~54! and relation~43!, we can de-
termine the allowed values ofp andg of the states graphi-
cally. The coefficientsB5 andB58 are also determined in the
same way as in the case of symmetric states.

3. Number of states

By the same method as presented in Secs. IV A 1 and
IV A 2, we can establish state equations to determine the
allowed values of all classes of states, and solve them graphi-
cally. Carefully considering all these classes, we obtain some
conclusions about the number of states as well as their char-
acteristics depending not only on the absolute values of pa-
rametersD1 , D2 , R, andS, but also on the signs of these
quantities as follows.

~a! uRu.uD1u: no surface states, and number of band
states 5 L[2N11. uR/4Su.1, L states of (p,g)-BS;
uR/4Su,1, L states of (p,p8)-BS and (p,g)-BS.

~b! uD2u,uRu,uD1u: two surface states, and (L22) band
states. sign(S)5sign(D1), two states of (g j ,g8 j )-SS or two
states of (p,g)-SS:~i! if S.0, energies of the surface states
lie below the botom of the band energy;~ii ! if S,0, energies
of the surface states lie above the top of the band energy.
sign(S)52sign(D1), two states of (g j ,g8 j 8)-SS: ~i! if
S.0, energies of the surface states lie above the top of the
band energy;~ii ! if S,0, energies of the surface states lie
below the botom of the band energy.

~c! uRu,uD2u,uD1u: four surface states, and (L24) band
states. sign(S)5sign(D1), four states of (p,g)-SS and
(g j ,g8 j )-SS: ~i! if S.0, energies of the surface states lie
below the botom of the band energy;~ii ! if S,0, energies of
the surface states lie above the top of the band energy.
sign(S)52sign(D1), four states of (g j ,g8 j 8)-SS: ~i! if
S.0, energies of the surface states lie above the top of the
band energy;~ii ! if S,0, energies of the surface states lie
below the botom of the band energy.

It is worth noting that the total number of states is the
same as in the nearest-layer approximation, but the number
of surface states can be changed importantly depending upon
the material constants. Now we have a condition for the ap-
pearance of at most four surface states. The ratios ofuRu to
uD1u and uD2u decide the number of surface states, while the
signs ofS andD1 play an important role in determining the
class of surface states, as well as the location of surface
levels comparing with the band levels. In solving the state
equations~51!–~54! graphically, trivial and unphysical solu-
tions such asg50, p50, orp are excluded. When the sys-
tem has only two surface states, these states are strongly
localized in the first surface layers. In this case the physics is
the same as in the NLA. The additional effect comes from
the case in which the system has four surface states. As
presented above, the condition for that case is
uD1u.uD2u.uRu. In Sec. IV B, we will investigate the be-
havior of four surface states, and evaluate the different radia-
tive decay rates of the first and second surface excitons.

B. First and second surface excitons

Let us now consider the case in which the system has four
surface states. The conditions for that case is
uD1u.uD2u.uRu. Solving the state equations for all three
kinds of surface states with various values ofD1 , D2 , R, and
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S, we have the following possibilities:~a! four states of
(g j ,g8 j 8)-SS,~b! four states of (p,g)-SS,~c! four states of
(g j ,g8 j )-SS, and~d! two states of (p,g)-SS and two states
of (g j ,g8 j )-SS.

Among four surface states, there are two states~one sym-
metric and another antisymmetric! belonging to the same
class of states and having the same energy, which can be
regarded as first surface states, and the other two~one sym-
metric and one antisymmetric!, belonging to one class of
states and having the same energy, regarded as second sur-
face states. The first states have energies higher~lower! than
the second ones if the surface levels are above~below! the
top ~botom! of the band energy. It should be noted that the
twofold degeneracy of the surface states is due to the sym-
metry of the system under consideration. The first and sec-
ond surface states may belong to one class of states@cases
~a!, ~b!, and ~c!#, but they may also belong to two different
classes@case~d!#, i.e., the classificationuRu,uD2u,uD1u and
S,0 with D1,0. In case~d!, the first surface states belong
to (p,g)-SS and the second ones belong to (g j ,g8 j )-SS.

Once we obtain the allowed values of states, we can ob-
tain the eigenenergies by Eqs.~14!–~16!, and then use the
special equations and the nomalization requirement
uCu25(n52N

N uwn
a,su251 to determine coefficientsAi ,Ai8 or

Bi ,Bi8, i.e., envelope functions of eigenstates of all classes
are determined. The behavior of the first and second surface
states is described in Figs. 3 and 4 with the parameters cho-
sen asD152204 cm21, D2526 cm21, R525 cm21,
andS520.625 cm21. These values may correspond to an-
thracene crystal, as will be discussed below. As can be
clearly seen from these figures, the first surface states@in this
case belonging to (p,g)-SS# are strongly localized in the first
surface layers, and the amplitude of the envelope function is
very small at the second surface layers, and nearly equal to
zero in all the whole system. The envelope function of the
second states@in this case the (g j ,g8 j )-SS# behaves as a
damped oscillation. It is nearly equal to zero at the first sur-
face layer, shows a maximum amplitude at the second one,
and is damped oscillating into deeper layers of the system. If
the number of layers of the system is large enough, the en-
velope function of the second states are nearly equal to zero
in the middle part of the system. The behavior of the first and
second surface states described above is very meaningful to
understanding why the first and second surface excitons
shows different radiative decay rates. One can see that the
first excitonic surface states are strongly localized at the first
surface layer, and nearly vanish over the other part of the
system. Therefore these states can radiatively decay, emitting
a radiation field outside the system with large oscillator
strength due to a coherent superposition of the transition di-
pole moments at each layer. The second states are less radia-
tive than the first ones because the oscillating behavior of the
envelope function partially cancels out the transition dipole
moment of each layer.

As the first problem which can be addressed in terms of
the envelope functions of eigenstates of excitonic surface
states, we will show the reason for the quite different radia-
tive decay rates of the first and second surface excitons,
which were observed by Aaviksoo, Lippmaa, and Reinot.6

We choose material constants corresponding to anthracene
crystal:6,12 D15E02EN52204 cm21 and D25E0

2EN21526 cm21. We have no observed data forR and
S, and estimate these by using the numerical results of
Philpott21 for dipolar interaction between the~001! layers of
anthracene. The relative magnitudes of the nearest layersR
and the second-nearest layersS dipolar interactions, as well
as the signs ofR andS, depend on the direction of transition
dipole moments. Therefore we choose several combinations
of R andS as follows: (R,S) 5 (62 cm21,60.2 cm21),
(62 cm21,60.02 cm21), (65 cm21,60.5 cm21), and
(65 cm21,60.625 cm21). Then the discussion of the
present section is applicable to this system, resulting in four
surface states. When the number of layers is larger than six,
we are free from a delicate finite-size effect of the number of
surface states.20 Furthermore, for a number of layers larger
than 10, the symmetric and antisymmetric states are degen-
erate in energy, and the two surfaces are almost independent.
We are now able to evaluate the radiative decay rates for the
a state of the exciton in terms of the electric dipole moment
of the total system:

FIG. 4. Behavior of the envelope function of the second surface
states withS520.625 cm21, R525 cm21, D152204 cm21,
andD2526 cm21. ~a! For the symmetric state.~b! For the anti-
symmetric state.
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PW a5 (
n52N

N

mW wa,n , ~55!

and the eigenfunctions obtained in this section describe the
envelope functions analytically. The transition dipole mo-
ment mW per unit layer depends on the wave vector in the
plane and the coherent range of the excitation in the plane.
Here, however, we assumed the constantmW both for the first
and second surface excitons and for each layer because the
radiative decay of the exciton with in-plane wave vector
nearly equal to zero is dominant. Then the relative magni-
tude of the radiative decay rates is evaluated only in terms of
the envelope function of the first and the second surface ex-
citonsw1,n andw2,n , as follows:

G1

G2
'

uPW 1u2

uPW 2u2
5

u(n52N
N w1,nu2

u(n52N
N w2,nu2

. ~56!

HereG1 andG2 are the radiative decay rates of the first and
second surface excitons, respectively. From Eq.~56! one can
see that there are only contributions of two symmetric states
in radiative decay rates among the four surface states. The
characteristics of the first and second surface states are nu-
merically studied with the use of the material constants as
D1[E02EN52204 cm21 and D2[E02EN21526
cm21, and several combinations ofR andS having the same
signs and opposite signs are given in Tables I and II, respec-
tively. One can see from Table I@i.e., sign(R)5 sign(S)#
that the energy differencesd1[v12E0 and d2[v22E0 ,
(v1 andv2 are the energies of the first and second surface
states, respectively!, as well as the relative magnitude of the
radiative decay rates, are not sensitive to the value ofS, but
that these quantities depend importantly onuRu. For ex-
ample, with the fixed valueR522 cm21, for S520.2
cm21 we obtainp151.7278 andg153.4637 for the first
surface states@in this case (p,g)-SS# giving d15204.02
cm21, p252.6567 and g251.6990, giving d256.61
cm21, for the second surface states@(p,g)-SS#; and

G1 /G251.95. ForS520.02 cm21 with others fixed, we
obtain p52.0886 andg54.615 for the first surface states
@(p,g)-SS#, giving d15204.019 cm21; g51.1193 and
g854.5706, givingd256.59 cm21, for the second surface
states@(g j ,g8 j )-SS#; andG1 /G251.78. If we increase the
value of uRu, the results change importantly. For example,
with R525 cm21 and S520.625 cm21, we obtain
p51.793 35 andg52.8941 for the first surface states
@(p,g)-SS#, giving d15204.14 cm21; g50.535 17 and
g851.7094, givingd259.45 cm21 for the second surface
states@(g j ,g8 j )-SS#, andG1 /G257.6 ~the change ofS leads
to an unimportant change in results!. As already mentioned
above, the valuesd1521361 cm21 and d2510.260.2
cm21 were observed by Nozue, Kawaharada, and Goto,19

and the difference in the radiative decay ratesG1 /G2;8 was
observed by Aaviksoo, Lippmaa, and Reinot.6 From Table I,
one can see that ifuRu52 cm21 the results are different from
the experimental observations Refs. 6 and 19. These differ-
ences become smaller than that if the calculations are carried
out with uRu53 and 4 cm21 ~the results are not shown in
Table I as this is not necessary!. However, if
sign(R)52sign(S), the results in Table II show that the
radiative decay rate of the second surface exciton becomes
larger than that of the first one. This is because the magni-
tude of the envelope function of the second surface state in
this case, i.e., sign(R)52sign(S), is not a damped oscilla-
tion but one that extends over a few layers with the same
sign. These results for the case sign(R)52sign(S) given in
Table II @with sign(D1)5sign(D2)# are not only unphysical
but also contrary to the experimental observations.

Finally we evaluate the absolute values of the radiative
lifetime for the first and second surface excitons. The transi-
tion dipolemomentmW per unit layer depends on the coherent
length L*5A2p\/GM of the two-dimensional exciton,23

whereG is its spectrum half-width andM its effective mass.
The radiative decay ratesG1 andG2 for the first and second
surface excitons are evaluated by

TABLE II. Relative magnitude of radiative decay ratesG1 /G2 and energy differencesd1 andd2 depend-
ing on (R,S), with D152204 cm21, D2526 cm21, and sign(R)52sign(S).

R ~cm21) S ~cm21) Class of 1st SS Class of 2nd SS d1 ~cm21) d2 ~cm21) G1 /G2

22 10.2 (g j ,g8 j 8)-SS (g j ,g8 j 8)-SS 204.22 6.61 0.575
22 10.02 (g j ,g8 j 8)-SS (g j ,g8 j 8)-SS 204.01 6.59 0.505
12 20.2 (p,g)-SS (p,g)-SS 204.02 6.61 0.575
12 20.02 (p,g)-SS (g j ,g8 j )-SS 204.01 6.59 0.505

TABLE I. Relative magnitude of radiative decay ratesG1 /G2 and energy differencesd1 andd2 depending
on (R,S), with D152204 cm21, D2526 cm21, and sign(R)5sign(S).

R ~cm21) S ~cm21) Class of 1st SS Class of 2nd SS d1 ~cm21) d2 ~cm21) G1 /G2

12 10.2 (g j ,g8 j 8)-SS (g j ,g8 j 8)-SS 204.02 6.61 1.94
12 10.02 (g j ,g8 j 8)-SS (g j ,g8 j 8)-SS 204.01 6.59 1.78
22 20.2 (p,g)-SS (p,g)-SS 204.02 6.61 1.94
22 20.02 (p,g)-SS (g j ,g8 j )-SS 204.01 6.59 1.78
15 10.625 (g j ,g8 j 8)-SS (g j ,g8 j 8)-SS 204.14 9.45 7.6
25 20.625 (p,g)-SS (g j ,g8 j )-SS 204.14 9.45 7.6
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G i5G0~L* /u!2U (
n52N

N

f i ,nU2, ~57!

for i51 and 2, whereG0523108 sec21 is the radiative
decay rate of a single molecule andu the size of a unit cell.
The lifetimesT151/G1 andT251/G2 are estimated to be on
the order of 1 and 10 ps, respectively. Here we evaluated
L* to be 700 Å by usingG51012 sec21, andM510227 g,
and used the size of unit cellu57 Å. We neglected the
nonradiative channels, and this looks to be justified because
the observed dephasing rate7 is of the same order of magni-
tude as the estimated radiative decay rate for the first surface
exciton.

V. DISCUSSION

In the present paper, we have developed a theory of exci-
tonic surface states in multilayer organic quantum wells in
the framework of the second-nearest-layer approximation.
For the first time, to our knowledge, two classes of band
states (p,p)-BS and (p,g)-BS and three classes of surface
states (g j ,g8 j 8)-SS, (g j ,g8 j )-SS, and (p,g)-SS in the
SNLA are clearly classified. For each class of states we can
specify the envelope function of eigenstates as well as the
eigenenergy. Our results show that the case which was dis-
cussed by Mahan and Obermair18 is only one special case,
i.e., our (p,p8)-BS. More importantly, the surface states in
our theory seem to be very useful to understanding the be-
havior of the first and second top-surface excitons, even
though they are presented by complicated equations and
wave functions than those in theories within the NLA~Refs.
13–15! or results in the SNLA by Koster and Slater17 and
Mahan and Obermair.18 It should be stressed again that in the
SNLA, there are three classes of surface states, and that for
two of the three, i.e., the (g j ,g8 j 8)-SS and (g j ,g8 j )-SS, we
have to use integer valuesj , j 8 to distinguish the surface
states. The energy scheme of five classes of states as pre-
sented in the paper is useful to consider the energy levels of
surface states in comparison with the band energy. For ex-
ample, from the scheme, we can immediately determine
which class of states is the first and second surface states
when there are four surface states belonging to two different
classes of states.

Let us now discuss about the sign and magnitude ofR and
S. One can see that if the site shiftsD1 andD2 have the same
signs as in experimental observations6 (D152204 cm21

andD2526 cm21), thenR andS have the same signs in
general. The case in whichR andShave opposite signs~with
D1 andD2 have the same signs! leads to results of the radia-
tive decay rates contrary to the observations presented in
Sec. IV B. The numerical results given in Table I are also
meaningful in the discussion about the value ofuRu. It can be

estimated that the value ofuRu is about;5 cm21, because
this is a case giving results which seem to be in agreement
with experimental observations of Aaviksoo, Lippmaa, and
Reinot6 as well as of Nozue, Kawaharada, and Goto.19

At this point, there may arise a question about the role of
S. As will be seen below,S plays an important role, even
though its value is small. Let us considerS50 in the case
(p,g)-SS. The following argument, however, is valid for all
classes. IfS50, Eq. ~49! becomes

D2$A5cos@~N21!~p1 ig!#1A58cos@~N21!~p2 ig!#%

5D2wN2150 ~58!

and the difference equations~4!–~6! can be rewritten as

~v2E0!wn5R~wn111wn21!~2N11,n,N21!,
~59!

~v2EN!wN5RwN21 , ~60!

~v2EN21!wN215R~wN1wN22!, ~61!

@Eqs. ~5! and ~6! are equivalent to Eqs.~7! and ~8!#. From
Eq. ~58! we can see thatD250⇒wN2150. In this case, Eq.
~60! ⇒wN50 and then Eq.~61! ⇒wN2250, and then from
Eq. ~59! we havewn50 for all n. Therefore,D2 must be
equal to zero ifS50. In other words, ifD2Þ0, thenSÞ0.
Because of that, if we want to understand the delicate prop-
erties due to the difference between first and second surface
layers, we should take into account the second-nearest-layer
interaction, i.e., the SNLA. The reason for different super-
radiant decay rates of the first and second surface excitons
has been understood physically as presented in the present
paper. This is the first problem which can be explained
within the framework of the SNLA. The theory can be fur-
ther developed to other systems, for example, to the nonsym-
metric system which have just been considered in the NLA.20

Second, it is very interesting to understand what additional
effects happen in the reflection and transmission of the sys-
tems, both symmetric and nonsymmetric systems in the
framework of the SNLA. These problems will be addressed
in the future.
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