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Theoretical investigation of excitonic surface states in multilayer organic quantum wells:
Radiative decay rates of the first and second surface excitons
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A theory of excitonic surface states in multilayer organic quantum wells is developed beyond the nearest-
neighbor approximation. Eigenenergies and envelope functions of eigenstates of several kinds of surface states
as well as band states are obtained, and the characteristics of surface states are clarified. The difference in
super-radiant decay rates of the first and second surface excitons can be explained in the framework of the
present theory. The results of numerical calculations are compared to the experimental data for two-
dimensional Frenkel excitons in anthracene crysf&86163-18206)06128-0

[. INTRODUCTION super-radiant decays of about 2 psec or shorter for the first
surface layer exciton, and of an order of18 psec for the
The study of various types of mesoscopic structures, fronexciton from the second surface layer. It is well knotfor a
semiconductor quantum dots to molecular multiple quantunmeview, see Ref. )2that the exciton energy level of the first
wells, is a field of intense current interest. Semiconductosurface layer in anthracene is observed at 204 trabove
low-dimensional structures exhibit many interesting opticalthe bulk exciton, and that of second surface layer is also
and transport properties that are of importance for applicaweakly observed at only 6 cit above the bulk exciton one.
tions in the optoelectric devices as well as for investigationThe nature of these shifts is well understood as being due to
of interactions and dynamics of confined carrier systemsthe absence of neighbors for molecules in the surface layers
Among those interesting properties, the effect of rapid radiaand the change in the value of the site shift. There are avail-
tive decay of excitongpicosecond and subpicosecond timeabe theorigs"** which would explain how different the ra-
scales of lifetimes commonly now called super-radiance, diative decays of the exciton at the first surface layer are
has attracted much attention, both theoretidalyand  from the bulk one in MOQW's. The main reason for the
experimentally*~" It is well known that in bulk crystals the super-radiant radiative decay of surface excitons is the insta-
exciton can interact with a photon which has the same wavaility property with respect to the emission of the excitonic
vector due to the translation symmetry of the system. As a&urface states due to the absence of translational symmetry in
result, a polariton, i.e., a mixed state of the exciton and phothe direction perpendicular to layer planes of MOQW's.
ton, is formed. The decay of excitons in the bulk crystal isHowever, there is still no answer to the question of why the
possible only by a leak of the polariton through the surfaceaadiative decay rate of the first surface exciton is different
of a crystal, or by radiative and nonradiative recombinationfrom that of the second surface layers, and also
at crystal imperfections. The situation in crystals of reducechow much, as is explored in the observations of Aaviksoo,
dimensionality changes drastically. Theoretical investigalippmaa, and Reindt.To our knowledge, for theories of
tions by Agranovich and DubovskiHanamurg, and An-  excitonic surface states, the nearest-layer approximation
dreani, Tassone, and Bassamiedicted the super-radiant de- (NLA) (Refs. 13—-18 was usually used, except for some
cay of excitons in the low-dimensional structures. In Ref. 2brief discussions on the second-nearest-layer approximation
Wannier-Mott excitons have been pointed out to decaySNLA) by Koster and Slatéf and Mahan and Obermdit.
super-radiantly through its mesoscopic transition dipole moin the framework of the NLA, the system has no surface state
ment in an order of a picosecond in GaAs quantum wells andf |R|>|A,|, whereR is the matrix element for the transfer
a subpicosecond in CdS quantum wells. Experimental obseof excitation between two nearest layers, andis the dif-
vations by Segawat al.* and Deveatet al® were in agree- ference between energies of the bulk exciton and the first
ment with the theory. Recently, great efforts have been madsurface one without taking into account the transfer energy
with the aim of creating strongly ordered crystalline organicbetween layers. IfR|<|A;| there are at most two surface
thin-film and multilayer structures, which are very promising states, which are localized near the two faces of finite thick-
systems for various device applications as well as for studyness systems. 1®So far, theories of excitonic surface states
ing molecular Frenkel and charge-transfer excitbid.Su-  have usually been based on assumptions of the nearest layer
perradiance of two-dimensiondRD) Frenkel excitons in approximation. This is because the interlayer interaction, in
multilayer organic quantum wellsMOQW's) was first ob-  fact, falls off very rapidly against separation between layers,
served experimentally by Aaviksoo, Lippmaa, and Réiimt  and also that theories in the NLA are sufficient to explain
the investigation of luminescence of a 2D Frenkel excitonvarious experiments. Another important reason for that is the
localized in the outermost layers of anthracene crystals. Imomplication as well as the difficulty in the SNLA and
Ref. 6, by means of a time-resolution technique, picosecondtigher-order approximations. Such a situation was reported
time-scale measurements at low temperatures have shovim the famous paper by Koster and SlaterHowever,
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with the rapid development of advanced manipulation tech- [l. MODEL AND GENERAL SOLUTION
nologies of semiconductors and organic materials, and laser
technologies, we are able to observe the delicate structures of ) o
elementary excitations near the band edge in the spectrum Consider a MOQW composed bf=2N+1 parallel infi-

and their dynamics. For example, dynamics of several surdit€ layers, with an interlayer spacing It is assumed that an
face states in anthracene crystals were clarified by Aavikso&Xcitation in a molecule mteracts_Wlth other_molecu_les in the
Lippmaa, and ReindtAnother example of the delicate prop- ground st:_ﬂe_and propagates via dipolar mteractlons_only.
erties is the reflection and luminescence spectra of the ar:nl:he electric f_|eId of a layer of dipoles falls 1°ff very .rapldly
thracene crystal observed by Nozue, Kawaharada, an\g'th perpendlcular dlstancg from the layér:* Accordingly .
Goto?® These spectra show that the energy levels of the firs{ < take into account the first- and second-nearest-layer in-
surface and second surface excitons are 25310and teractions. We further re_strlct ourselves to a syrr)metrlc Sys-
25107.2:0.2 cm !, respectively, and the bulk exciton is tem: there are two equivalent faces of MOQW's, each of

located at 25097 cm?. Correspondingly, the energy differ- which has two kinds of surface layefthe first and second

X . . urface layers
ences of the first and second surface excitons with respect 3 The Hamiltonian of the system can be writter2a&-2022

the bulk one ares;=213+1 cm ! and §,=10.2+0.2
cm™ 1, respectively. However, for thick enough layers of or-
ganic crystals, we have only one optically active surface
state, even if possible, in the framework of the NEAVhen
the higher-order layer interactions are taken into account,
electronic structures near the band edge are modified, and th Ty I .
higher-order surface states may pogsibly appear near tﬁ'&%ere, B“'Z(E?nl?) IS the. ann|h|lat|on(creat|or) opgrator of a
band edges even though the higher-order interactions af¥o-dimensional exciton in thenth layer with energy
small. E,(k) and a two-dimensional wave vector andM,,,, is the

In the present paper we investigate the behavior of thénatrix element for the transfer of excitation from thén
first and second surface excitons, and then attempt to undemolecular layer to thenth one. In the NLA,M,, has two
stand the difference in the radiative decay rates of the surfacequivalent contribution®d, 1 andRdy, ,—; regarded as
excitons. This becomes possible only by taking into accounthe nearest-layer interaction. In the SNLA, it has four con-
the propagation effects of elementary excitation not only betributions, i.e., two of the nearest-layer interaction, and oth-
tween nearest layers but also second-nearest layers. To €65,S6,, n.» andSdy, ,—», which are equal to each other and
this, we develop a theory of excitonic surface states in thgegarded as the second-nearest-layer interaction. We then
framework of the SNLA. It is easy to extend the SNLA to call R and S the nearest- and second-nearest-layer interac-
general cases. The results of the present paper show thattions, respectively. As we mentioned above, our system is
the SNLA, there are five classes of states: two of band statesymmetric with two equivalent first surface layers and two
and three of surface states, instead of two of surface states eguivalent second surface layers; accordingly it can be as-
in the paper of Koster and Slater. Furthermore, the resultsumed thaEy=E_y andEy_,;=E_y. ;. Here we count the
also show that the case which was discussed by Mahan arayers of the system from=—N to n=N.
Obermair is only one special case of our theory. The total
number of states of the system is not changed, but the num-
ber of surface states can be changed importantly depending
upon material constants. Now we have conditions for the In the model considered, interlayer interactions are taken
existence of at most four surface states in a finite thicknes#to account so that an excitation can propagate from layer to
system. For material parameters of crystals such as anthrigyer. As a result the excitation belongs to the whole system
cene, the system has four surface states. In this case, it igther than to separate layers. In this case we represent the
worth stressing that there are two surface states strongly Ig@igenfunction of the whole system as
calized in the two first surface laye(§irst surface statgs
while the others behave like damped oscillatory states which N
have maximum absolute values of wave functions at the sec- Y= 2 @n(E)BLz
ond surface layergsecond surface stajesThis behavior is n=-N
the main reason for the difference in the radiative decay rates
of excitons in the first and the second surface layers, as willyhere the envelope functions,(k) are to be determined so
be presented in the context of the present paper. that the Schdinger equation

Our paper is outlined as follows: In Sec. Il we present the
model of the considered MOQW's and the general solution
of the difference equations in the SNLA. In Sec. Il we make
classifications of five classes of states in the SNLA. These o ] .
classifications are useful to understand the energy scheme {5t Satisfied, withwi the eigenenergy of the whole structure.
excitons in MOQW's within the SNLA. In Sec. IV we Here and hereafted =1. Substitutions of Eqst1) and (2)
present the method for determining the allowed states of th#to Ed. (3) within the SNLA produce the following differ-
system. In this section the difference in the radiative decafnce equations for the eigenenergyand the envelope func-
rates of the first and second surface excitons is evaluatetion of the eigenstate,, (the wave vectok of the motion in
Section V is the discussion part of the present paper. the layer planes is omitted for brevity from now)on

A. Model

H=2 3 En<IZ)B§RBn;+§ Mom(K)B! Bricl, (D)
k m#=n

B. Difference equations and general solution

0), @

HP = wiPi ()]
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(0—Ep)en=R(@ns+1+ @n_1) Substitution of the general solutioil) into the differ-
ence equatioigd) with the use of conditiori13) leads to the
+S(@n+2t@n-2), “N+1<n<N-1, following possibilities:(i) p#0, y=0, and the eigenenegy is
(4) given by
(0—Ep)on=Ren_ 1+ Son. 2, 5) w=Ey+2R cogp)+2S cog2p); (19

(i) y=0, p=mj (j integed, and the eigenenergy is given
(w—En-1)en-1=R(ent on-2) + Son-3, (6) by
(0—E_ )@ n=Re_ni1+Se_ nias (7) w=Ey+(—1)12R cosl{y)+2S cosh2y); (15

(i) R+4S cosfp)coshf)=0, and the eigenenergy is given
(0=E_n+1)e-n+1=R(@-NT@-N+2) +S@_ni3, (8) by

whereEO(IZ)=En(IZ) for —=N+1<n<N-1 is the enezgy of w=Ey+ 2R cogp)cosh y)+2S cog2p)cosh2y). (16)
L—4 internal layers. Here it should be noted tiEgi(k) is

the energy of the exciton imth layer without taking into It is worth noting that caséii ) exists only in the SNLA,
account the transfer energy between layers. The solution ofhile cases(i) and (i) are already known in the NLA?
the difference equatiofd) can be sought in the form However, here the situation is not the same as in the NLA, in
which states belonging to casé$ and (ii) are classified as
en=X"=exdi(p-+iy)nd], (9 band states and surface states, respectively. Now there are

possibilities in which states originating from ca§e must

wherep andy are real, and their allowed values are to bepe ciassified as band states, and the situation becomes more
determined by using the boundary condition equatiéis complicated, as will be seen in Sec. IIL.

(8).
Inserting(9) into (4) we obtain the following equation for

. lll. CLASSIFICATIONS OF BAND
the eigenenergy:

AND SURFACE STATES

w=Eo+R(X+Xx"1)+S(x*+x7?). (10 We have two classes of band states and three classes of
surface states depending upon the relative valuéyg4s. In

this section, classification of these states is discussed, and we
will determine the eigenenergies and envelope functions of
aéigenstates of these surface states by using boundary condi-
tion equationg5)—(8) in Sec. Il A.

Here, it is worth noting that, ik is the solution of Eq(10)
and has a complex form, then !, x*, andx* ~! also satisfy
the equation and that the general solution is some line
combinations ok, x~1, x*, andx* "1

ep=AX"+BXx "+ Cx*"+Dx* ", (11
A. Band states

whereA, B, C, andD are the coefficients and can be deter-
mined from the difference equations as well as the normal
ization condition of the wave functions.

Using (9), the equation for the eigenenergy0) can be
rewritten as

States with energies given by Ed.4) [case(i)] are also
called band states as in the NLA. In the SNLA, however,
there are two different classes of band states.

1. (p,p’)-band states

w—En=2R cod (p+ivy)d]1+2S cod2(p+ivy)d The eigenenergy from the ca&¢ has the extreme value
° 1(p+indl 12p+ivd] —(R?+85%)/4S at cosp)=—R/4S when |R/4S|<1, and
=2R cogpd)cosh yd) +2S cog2pd)coshi2yd) 2S(1+|R/S)) at cosp)==+1. It can be proved that if

o . |R/4S| < 1, the band energy in E414) extends over the fol-
I sin(pd)sinh(yd)[R+4S cogpd)costiyd)]. lowing regions[region B1 in Figs. la) and Xb)]:
(12

Eo— Q) <w=<(Ey—Q,;) if S>0, (17)
Here and hereaftde=E(0) is taken as the energy refer- (Eo~ f2m (Eo=hs
ence. For a fixed value ab, we have two pairs off,y) (Eo+ Q) >w=(Ey+Q,) if S<0, (18)
satisfying Eqg.(12) as long asS is finite. This is the first ) )
different point of the SNLA from the NLA. The dispersion Where Q,,=(R°+8S%)/4|S| and Q;=2(|R|-|S]). Here
relation w(p,y) of the exciton is obtained by coupling Eq. there are two pure values of wave vectprandp’ corre-
(12) with the boundary conditions Eqg5)—(8). Because sponding to one valug of energy, so that both fqnctmns
o, Eg, R, andS in our system are real quantities, the imagi- c0s@) and cosg’) satisfy the eigenvalue equatiofi4).
nary part on the right-hand side of EfL2) must vanish, These two solutions cgs(and cosf’) of the equation relate

leading to the following condition for one paip(y): to each other by

sin(p)sinh y)[ R+ 4S cog p)cosi y)]=0. (13

Here, in(13) and hereafter we uge andy in the unit of the
interlayer spacingl. and the corresponding energyis given by

R
cos(p)+cos(p’)=—g, (19
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FIG. 1. Energy scheme of states wiR/4S|<1. (a) R=—1.2 FIG. 2. Energy scheme of states witR/4S|>1. () R=—5
cm™! and S=—-0.6 cm !'<0. (b) R=1.2 cm ! and S=0.6 cm ! and S=-0.625 cm *<0. (b) R=5 cm ! and S=0.625
cm~1>0. Case(i) energyw as a function ofp, solid curve. Case cm~'>0. Case(i) energyw as a function ofp, solid curve. Case
(i) w as a function ofy, dashed-dotted curves. Curves  and (i) w as a function ofy, dashed-dotted curves. Curves ) and
(—) correspond to €1)Isign(R)sign(S)=+1 and —1, respec- (—) correspond to € 1)'sign(R)sign(S)=+1 and —1, respec-

tively. Case(iii) w as a function ofp, dashed curve. tively. Case(iii) w as a function ofy, dashed curve.
w=Ey+2R cogp)+2S cog2p) ¢3n(p,p’)=Bysin(np)+Bisin(np’). (23
=Ey+2R cogp’)+2S cog2p’). (200 These band states should be called thep()-band states

[(p,p')-BS]in order to distinguish them from the other band
In this case, these states are characterized by two re&fates which may appear in the SNLA as below.
wave vectorg andp’ which are determined in Sec. Il B by

using the boundary condition&)—(8) as well as relation 2. (p,y)-band states
(19). The envelope functions of eigenstates, therefore, take Considering caséi), we can see that =0 (i.e., in the
the general form NLA) the energies given by E¢15) always go out of the
levels of band energy given by E{l4), and, therefore, in
en=A'cognp)+B’sin(np)+C’cognp’)+D'sin(np’). the NLA, these states are classified as surface states. This

(21)  also means that in the NLA, states belonging to diigere

always classified as surface states. In the SNLA, we have
We note at once that, because of the symmetry of the systeyaies with their energies given by EG5) outside of the

the elgeqsta;tes m‘fSt be either symmettic(p,p’) or anti-  pang energy, that are also called surface states. There are

symmetriceg,(p,p’). From Eq.(21) it can be easily proved  ther possibilities that the corresponding states must be clas-
Fhat envelope functions of these eigenstates have the followsified as band states. As can be seen clearly from(E5).
ing forms: and also from Figs. 1 and @egionsB2 in these figures
. if R and S have the same signfpposite signs and |
®gn(P,p’)=Ascognp)+Ajcognp’), (220 is  seclected so that —1)l=—1(+1) or



54 THEORETICAL INVESTIGATION OF EXCITONIC ... 2743

(—1)sign(R)sign(S)=—1 (signs rule 1, where signR) equatiqns of Eqs(15) and (16). The eigenenergies will.k_)e
and sign®) are signs oR andS, respectively, there are the determined in Sec. Il B 1 by using the boundary conditions

regions of energyw given by Eq.(15), in which the states EQs.(5)—(8).
must be classified as band states. The energy regions of these

band states are 1. (7j,7’j)-surface states
- It can be proved that if the conditiofR/4S|>1 and
— <w=(Ey+ > <
(B~ ) =w=(Eptp) i S=0, 24 (—1)'sign(R)sign(S)= —1 (signs rule 1 are satisfied, the
(Eg—Q,)<w<(Eg+Q,) if S<O (25) function o given by Eq. (15 has extreme value

—(R?+85%)/4S at cosh§)=—(—1)YR/4S. In this case the
where Q,=2(|R|+|S]). For the present class of energy function has regions in which, corresponding to one
(p,y)-band states, one pair op(y) comes from caséii), value of energyw, there are two valuey andy’ with the
i.e., (mj,y) with the energyw=Ey+(—1)'2Rcosh§) same valug. The energy regions of these stafesgions
+2Scosh(2y) and another pair ofg, y) comes from casé), S1 in Figs. Za) and Zb)] are
i.e., (p,0) with the energyw=Ey+ 2R cosf)+2Scos(d),
so that the eigenstate is described as a linear combination of (Eo— Q) <w<(Ey—Q,) if S>0, (31)
these wave functions.

Analytically, in these regions we have (Eo+Qy)<w<(Eg+Q.) if S<O. (32)
w=Ey+2R cogp)+2S cog2p) ) ]
, In these regions, both functions cogh(@nd cosh{’) are
=Eo+(—1)'2R coshy)+2S cosl2y).  (26)  solutions of Eq(15); therefore we have a relation

It is clear from Eq.(26) that if p and y correspond to one

value of energyw in the above regions, both functions cosh{y)+cost(y') = — (—1)'R 33
cosfp) and (—1)'cosh¢) are to be the two solutions of the 2S
following equation:
where  j is selected to satisfy condition
4Sy+2Ry—(25+w—Eq)=0; (27 (—1)sign(R) sign(S)=—1 (signs rule 1. In these regions,

therefore the relation between these two solutions is the energies of the surface states are given by

w=Eo+(—1)12R cosH y)+2S cosh27y)

. R
cogp)+(—1)coshy)=—oc. (28) _
=Ep+(—1)!2R cosiy')+2S cosh2y'). (34
These band states should be called theyj-band states
[(p,v)-BS]. These surface states are characterized by two pure imagi-

Note that the ,p’)-BS may appear if the condition nary valuesy andiy’ of wave vectors and an integerThe
|R/4S|< 1 hold only, while the p,y)-BS may appear with- envelope functions of the symmetric and antisymmetric
out any restriction oR and S#0. Moreover, from(17) and  eigenstates take the forms
(18) and(24) and(25) we can see that the energy regions of
(p,p’)-BS and @,vy)-BS never overlap each other. There- o2 {(vi,7')=(—1)"[A,coshny)+Ajscosiny’)],
fore, there are no situations in which the states belong to (35)
different classes of band states and correspond to one value
of energy simultaneously.

In the case of |, y)-BS, the states are to be characterized
by one pure reap, one pure imaginary valuey of wave
vectors, and one integer valye This may be called @ theqe surface states should be classified as
guasilocalized state embedded in the continuum spectrum (Sh

@3(7i,¥'1)=(—1)M[Bysinh(ny)+Bjsiniiny’)].
(36)

the banq energy. The envelope functions of the symmetri tyér’nyfigns]utﬁzcstﬁztiigég é)f SSuSr]f;anrgg[;(;dBtmgwsh
and antisymmetric eigenstates have the following forms: Note that for the energy regions ofy{,v'j)-SS [Egs.
s _ 10 4anj (31) and (32)], corresponding to one value of energy, there
#nl(P.y) =AzC0gnp) +Ax(—1)%coshiny), (29 are two different values oy and y’ with the same integer
a _ : 1o anje valuej. The energy regions of they{,y'j)-SS appear if the
¢en(P,7)=Bsinnp) + By(—~ 1)Msinfiny). (30 condition|R/4S|>1 and the signs rule 1 are fulfilled. On the
other hand, the energy in Eq. (15) with a given sign value
B. Surface states of the expression<{ 1) ( both values+ 1 and—1) is mono-
Let us pay attention to cas@é) again. Schematically, the tonic funqtion with respect tg except in the above regions
energy functionw in Eq. (15) corresponds to states belong- ©f (vj,7'])-SS[regionsS1 in Figs. Za) and 2b)]. How-
ing to three different classes of states. The first corresponc®Ver, it also has other regions without restrictionFofand
to energy regions given b24) and(25), which are classified  S# 0 in which there are two pairg,j andy',j’, with j and
as (p,y)-BS. The others belong to surface states as below. I’ satisfying condition ¢ 1)!(—1)! = —1, corresponding to
this subsection, we discuss states originating from the energyne value of energy as can be seen below.
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2.(vj,7'j")-surface states It can be easily proved from Eq16) and clearly seen
from Figs. 1 and 2 that the regions of the energy function

It can be proved from Eq(15) and more clearly from
P a19) y w given by Eq.(16) are(regionsS3 in these figures

Figs. 1 and 2 that the energy in the regidnsgionsS2 in
these figures

0<(Eq— Q) if S>0, (44)
>(Eg+Q if S>0, 3
0= (Bt 1)) S w>(Eg+Q,) if S<O. (45)
w<(Eo—Q;) if S<O (39 Therefore, states belonging to cd§e) are classified as sur-
goes out of the band levels, and therefore the correspondiri§Ce States because their energies always go out of the band
states are classified as surface states. energy.

In these regions, corresponding to one value of energy N this case, these surface states are characterized by com-

w, there are two pairsy,j and y',j’ which satisfy the Plex values p*iy) of wave vectors, and therefore should

eigenenergy equatiofl5). In this case, generally we have be classified asp(, y)-surface state§(p,y)-SS|. The sym-
metric and antisymmetric eigenstates are of the forms

w=Ey+(—1)12R cosh y)+2S cosh27y) _ _
@3(P,y) =Ascod (p+iy)n]+Ascog (p—iy)n]
=Ey+(—1)I"2R cosiy’) +2S cost{2y').

(39 =(As+Ag)cognp)coshiny)
From Eq.(39) we have the following relation: +i(A{—Asg)sin(np)sinh(ny), (46)
. , R & (p,y)=Bssin (p+iy)n]+BLsin (p—i
(~Dicostiy)+(~1)i costiy )=~ 5. (40 @sr(P,¥)=Bssin (p+iy)n]+Bgsin (p—iy)n]
=(Bs+Bg)sin(np)cost{ny)
It is clear that if (—1)I=(—1)}" then Eq.(40) becomes re- +i(Bs— BL)cognp)sini(ny). (a7

lation (33) obtained above, which is valid only if the condi-

tion |R/4S|>1 and (—1)'sign(R)sign(S) = —1 are satisfied. Note that(),, in (17) and(18), (31) and(32), and(44) and
In this case, as clearly presented in Sec. 1l B 1 the energy4s) has the same formulaRé+8S2)/4|S| but different
regions are given by31) and (32), and the corresponding  meanings. I(17) and(18), Q1 is the extreme value of func-
states are classified aj(y'])-SS. Therefore, if the WO jon (4, —E) in Eq. (14) if the condition|R/4S|<1 holds,
pairsy,j andy’,j’ correspond to one value of energy in the e in (31) and (32) it is the extreme value of function

regions given by37) and(38), the’n the values of and |’ (w—Eg) given by (15) with |R/4S|>1. In (44) and (45),
must satisfy condition{ 1)/(—1))' =—1 (signsrule 2 In Q. (-Q,) is the minimum (maximum of function
this case, these states are characterized by two pgirand  (w—E,) given by Eq.(16) if S<0 (S>0) with any values
y',j’, and should be classified agj(y'j’)-surface states of R and S#0. It is clear that the energy regions of the
[(vi,7v'i")-SSl. different classes of states do not overlap each other.

The envelope functions of the symmetric and antisymmet-
ric eigenstates of theyj,y'j’)-SS can be proved to have the C. Some remarks

following forms:
(1) In the SNLA, there are two classes of band states

S (i i A 1\N] re_1ynj’ ’ (p,p)-BS, and p,y)-BS, and three classes of surface states
QDSn( YY) ) A4( 1) cosl’(n7)+A4( 1) Cosr(n%;]_;j (vj ,’}/,j ')-SS, i ,'y’j)-SS, and p, y)-SS. It is worth notic-
ing that, in any case, there are no situations in which, corre-
a (i AT R (—1\Niai 1o ani’ o / sponding to one value of energy, there are states which be-
s 71,17 =Ba(~1)Tsininy) +B4(— 1) S|nP(n7E4)2.) long to different classes of states.
(2) The case which was discussed by Mahan and
Note that the j,'j’)-SS may appear without any re- Obermait® is nothing other than thep(p’)-BS presented
striction of R and S#0, while the /j,v'j)-SS may appear above. As can be seen in Sec. Ill A1, these band states may
only if the condition|R/4S|>1 holds. This means that for appear if the conditionR/4S|<1 is satisfied. In Ref. 18 the
|R/4S|>1 there may be two different classes of surfaceauthors gave several typical values ®fand S [v(1) and

states also originating from casi). v(2) in this papef, and the values ofR/4S| are typically
larger than 2. It is clear from the results in Sec. Il A that, if
3. (p,y)-surface states we consider only §,p')-BS in the SNLA as in Ref. 18, we

do not have enough information about the band states of

For case(ii), the eigenenergy is given by EQL6) system. In principle, these band states may appear only if

w=Ey+ 2R cogp)cosh y)+2S cog2p)cosh2y), |R/4S|<1.
° . s{p)- e 12p) ”r( v (3) The SNLA had also been discussed by Koster and
and the following relation comes from conditi¢h3): Slater'” In their paper, Koster and Slater predicted that there

are only two classes of surface states, one characterized by
two pure imaginary valuep(y,y')-surface statds and the

43 .
43 other characterized by one complex value of wave vectors

codp)=" 73 coshy)
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are on the same side, but on different sides from the
! ‘ (vi,v'i")-SS. In fact, the arguments of the authors in Ref.
] 17 were formally based on our eigenenergy equation Eq.
(14). They had no concrete conditions such as @8) as in

the present paper.

All the above conclusions are based on the energy scheme
and eigenvalue equatiois4)—(16). However, the number of
states belonging to each class and the allowed values of
states, i.e., §,y) defined in Eq.(9) [or the values of
(p.p"), (P,7), (7i,7']), and (yj,7']") depending on the
class of the statésre to be determined by using the bound-
ary condition equationg5)—(8) (called the special equa-
tions). At the same time, the eigenenergies of the exciton are
determined by putting the allowed values of states into Eqs.

envelope function ¢ %,
o

G [ SV ! ! Ll L L (14)—(16). In Sec. IV the method to determine the allowed
-8 6 4 -2 0 2 4 6 8 states, i.e., the eigenenergies of the system, is presented. At-
@) layer n tention is to be paid to the surface states, and to the differ-
ence in radiative decay rates of the first and second surface
LI e s s s B B T excitons.

IV. FIRST AND SECOND SURFACE EXCITONS
A. Determinations of allowed states

Substituting of the envelope functions of eigenstates ob-
tained in Sec. Il into the boundary condition equatidbs-
(8), we obtain equations which can determine the allowed
values of states of our syste(nalled state equationsFor
each allowed state, there are six quantities which must be
determined, i.e., two coefficienss; ,A{ or B;,B; (i from 1
to 5) for each envelope function of eigenstates, and two al-
lowed pairs p,y) which determine the eigenenergy. Condi-

envelope function ¢ 3y,
(@]

S - Ll L1 ! TR tion (13) and the signs rules 1 and 2 reduce these six quan-
-8 6 4 -2 0 2 4 6 8 tities to four. On the other hand, as two pairs of special
®) layer n equations, i.e., the boundary conditiof® and (6) and (7)

and (8), are equivalent in our symmetric system, we have
FIG. 3. Behavior of the envelope function of the first surface WO independent boundary conditions. In addition, we have
states withS=—0.625 cni', R=—5 cm %, A;=—204 cm 1, one relation between two solutions of eigenenergy equations
andA,=—6 cm L. (a) For the symmetric statdb) For the anti- for each class of states, e.g., E¢89), (28), (33), (40), or
symmetric state. (43), and one normalization condition for the wave func-
) tions. Therefore, it is sufficient to determine the allowed
[(p.7)-surface statds However, as presented in Sec. Il B, giates of the system. In principle, the general method for
there are three classes of surface states, and in the casesygtermining the allowed values of state is the same for all
two classes, 1j,7'j')-SS and ¢j,7'])-SS, besides tWo (|asses of states. However, for each class of states we have
purely imaginary values of wave vectors,'), we have to  gne distinguished kind of state equation, including one equa-
use integer valuejs(andj ') to describe the surface states. In tjon for symmetric and another for antisymmetric states. In

these cases, the values of integéandj ') play an important  the following subsections we will derivate state equations for
role. The surface states of these two classes cannot Rge (p,4)-SS, as an example.

formed if signs rules 1 and 2 are not taken into account. Here

it is worth mentioning that, in the SNLA, the state at a given 1. Equations for symmetric states
energy is described by two wave vectors rather than just one ) _ )
as in the NLA (for more details see Ref. 18Another In this subsection, as an example, we present the deriva-

argument of Koster and Slater is that they predicted thafion of the state equation for symmetric states jpf)-SS.
energy levels of states belonging toy,§')- and Substitution of Eq(46) into the spe_zmal equa_tlor(§) and(6)
(p,y)-surface states always locate on opposite sides of th@r (7) and(8), we have the following equations:

band energy. This means that, if energy levels of

(y,v")-surface states are above the top of band energy, then As{A;co§N(p+iy)]+R cod(N+1)(p+iy)]

the energies off{, y)-surface states are below the bottom of .

band energy, and vice vergsee Fig. 3 in Ref. 1j7 As pre- +Scog(N+2)(p+iv)l}

sented in Sec. Il B, if|R/4S|<1 the (yj,y'j’)-SS and — _ A’ i i
(p,y)-SS are on opposite sides of the band states; but if AstA1cogN(p=iy) ]+ R cog (N+1)(p—i7)]
|R/4S|>1, the energy levels ofyj,y'j)-SS and p,y)-SS +Scog(N+2)(p—iy)]} (48
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and Combining Eqgs(53) and (54) and relation(43), we can de-
_ _ termine the allowed values @f and y of the states graphi-
As{A,cod (N=1)(p+iy)]+Scod (N+1)(p+iy)]} cally. The coefficient8s andB/, are also determined in the

, . same way as in the case of symmetric states.
=~ Ay{A,co§ (N=1)(p=iv)] Y Y
+Scog(N+1)(p—iy)]} (49) 3. Number of states
B _ By the same method as presented in Secs. IVA1 and
Wher_e'_Al__EO_EN and,AZ_EO_EN—l' , IV A2, we can establish state equations to determine the
Eliminating As and A5 from the above equations, we ar- gjjowed values of all classes of states, and solve them graphi-

rive at an equation which has a complex form: cally. Carefully considering all these classes, we obtain some
) ) ) ] conclusions about the number of states as well as their char-
(at+ib)(c—id)=(a—ib)(c+id), (50 acteristics depending not only on the absolute values of pa-

rametersA;, A,, R, andS, but also on the signs of these
quantities as follows.

(@ |R|>|A4]: no surface states, and number of band
states = L=2N+1. |R/4S|>1, L states of p,vy)-BS;
|R/4S|< 1, L states of p,p’)-BS and f,y)-BS.

wherea, b, ¢, andd are real expressions obtained from Egs.
(48) and (49). From Eq.(50) we obtain an equation of the

form ad=bc which is the state equation for the symmetric
states of p,y)-SS. The left-hand side of the equation is as

follows: (b) |A,|<|R|<|A4|: two surface states, and - 2) band
states. sigrh) =sign(A,), two states of §j,y'j)-SS or two
{A1cogNp)cosiiNy)+R cod (N+1)plcosti(N+1)] states of p,v)-SS:(i) if S>0, energies of the surface states
+S cog(N+2)p]cosh(N+2)y]} lie below the botom of the band enerdy) if S<O, energies
. ) of the surface states lie above the top of the band energy.
X{Agsi (N—1)p]sini{(N—1)y] sign(S)= —sign(A,), two states of §j,y'j’)-SS: (i) if
+S si(N+1)p]sin (N+1) ]}, (51 S>0, energies of the surface states lie above the top of the
band energyfii) if S<O0, energies of the surface states lie
and the right-hand side is below the botom of the band energy.
(©) |R|<|A,|<|A4|: four surface states, andl ¢ 4) band
{A;sin(Np)sinh(Ny)+R sin (N+1)p]sinH (N+1)y] states. sigrp)=sign(A,), four states of g,y)-SS and

(vi,v'1)-SS: (i) if S>0, energies of the surface states lie

+S sin(N+2)p]sinf{ (N+2) y]} below the botom of the band enerdy) if S<0, energies of

X {A,co§ (N—1)p]cosh(N—1)y] the surface states lie above the top of the band energy.
sign(S) = —sign(d,), four states of §j,v'j’)-SS: (i) if
+Scog(N+1)p]Jcosh(N+1)y]}. (520 s>0, energies of the surface states lie above the top of the

band energyfii) if S<O0, energies of the surface states lie
below the botom of the band energy.

It is worth noting that the total number of states is the
o . . i same as in the nearest-layer approximation, but the number
malization requirement o, are sufficient to determine co- ¢, tace states can be changed importantly depending upon
efficientsAs andAs. The eigenenergies(p, y) are obtained  he material constants. Now we have a condition for the ap-
by inserting the allowed values @fand y into Eq. (16). pearance of at most four surface states. The ratid&/ofo
|A;| and|A,| decide the number of surface states, while the
signs ofS and A, play an important role in determining the

By the same method as presented above, we obtain aglass of surface states, as well as the location of surface
other state equation for antisymmetric states pfy)-SS, levels comparing with the band levels. In solving the state
with the left-hand side of the equation having the form equationg51)—(54) graphically, trivial and unphysical solu-

tions such agy=0, p=0, or 7 are excluded. When the sys-
{A;sin(Np)cosiiNy)+R sif(N+1)p]cosh (N+1)y] tem has only two surface states, these states are strongly
. localized in the first surface layers. In this case the physics is
+S sif[(N+2)p]cost (N+2) y]} the same as in the NLA. The additional effect comes from

Combining Egs(51) and(52) and relation(43), we can de-
termine graphically the allowed values pfand y of the
states. Special equatioi48) and (49), along with the nor-

2. Equations for antisymmetric states

X {A,cog (N—1)p]sin{ (N—1)7] the case in which the system has four surface states. _As
presented above, the condition for that case is
+S cog (N+1)p]lsinif (N+1)y]}, (53  |A4|>]A5>]|R|. In Sec. IV B, we will investigate the be-

havior of four surface states, and evaluate the different radia-

and the right-hand side tive decay rates of the first and second surface excitons.

{AicogNp)sini(Ny) +R cog (N+1)p]sin{ (N+1)y] B. First and second surface excitons

+S cog (N+2)p]sinf{(N+2) y]} Let us now consider the case in which the system has four

< IAsiM(N=1 N—1 surface states. The conditions for that case s
{Azsin( Jplcosh( )7] |A1|>]A,|>|R|. Solving the state equations for all three

+S sinf (N+1)p]cosh (N+1)y]}. (54) kinds of surface states with various values\qf, A,, R, and
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S, we have the following possibilities(a) four states of 1— —— . . —— .
(vi,y']")-SS,(b) four states of f,y)-SS,(c) four states of
(vi,v'})-SS, and(d) two states of p,y)-SS and two states

of (v],7'j)-SS.

Among four surface states, there are two stées sym-
metric and another antisymmetribelonging to the same
class of states and having the same energy, which can be
regarded as first surface states, and the other(bme sym-
metric and one antisymmetjicbelonging to one class of
states and having the same energy, regarded as second sur-
face states. The first states have energies higbeer) than
the second ones if the surface levels are abetow) the
top (botom of the band energy. It should be noted that the
twofold degeneracy of the surface states is due to the sym-
metry of the system under consideration. The first and sec- -1
ond surface states may belong to one class of sfateses 8 6 -4 -2 0 2 4 6 8
(@), (b), and(c)], but they may also belong to two different
classegcase(d)], i.e., the classificatiofR| <|A,|<|A,| and
S<0 with A;<0. In case(d), the first surface states belong T ' ' T ' ‘
to (p,y)-SS and the second ones belong 49,0/’ j)-SS.

Once we obtain the allowed values of states, we can ob-
tain the eigenenergies by Eq4.4)—(16), and then use the
special equations and the nomalization requirement
|w2==N__|¢2%?=1 to determine coefficientd; A/ or
B;,B/, i.e., envelope functions of eigenstates of all classes
are determined. The behavior of the first and second surface
states is described in Figs. 3 and 4 with the parameters cho-
sen asA;=—204 cm !, A,=—6 cm™ !, R=—5 cm %,
andS=—0.625 cm 1. These values may correspond to an-
thracene crystal, as will be discussed below. As can be ‘
clearly seen from these figures, the first surface sfatehis r l T
case belonging tog, y)-Sg are strongly localized in the first T R T S (N T !
surface layers, and the amplitude of the envelope function is -8 -6 -4 -2 0 2 4 6 8
very small at the second surface layers, and nearly equal to
zero in all the whole system. The envelope function of the
second State.én. this case the 4j,7'j)-SS| behaves asa FIG. 4. Behavior of the envelope function of the second surface
damped oscillation. It is nearly equa_l to zero at the first SUraies withs= —0.625 cm'l, R=—5 cm 1, A;=—204 cm L,
face layer, shows a maximum amplitude at the second on@nga,=—6 cm*. (a) For the symmetric statdb) For the anti-
and is damped oscillating into deeper layers of the system. fymmetric state.
the number of layers of the system is large enough, the en-
velope function of the second states are nearly equal to zero
in the middle part of the system. The behavior of the first and _
second surface states described above is very meaningful foEn-1=—6 ¢m™~. We have no observed data f&r and
understanding why the first and second surface excitons: _and lestlmgte thgse by.usmg the numerical results of
shows different radiative decay rates. One can see that tHehilpotf* for dipolar interaction between th@02) layers of
first excitonic surface states are strongly localized at the firsenthracene. The relative magnitudes of the nearest l&yers
surface layer, and nearly vanish over the other part of th@nd the second-nearest lay&slipolar interactions, as well
system. Therefore these states can radiatively decay, emittirag the signs oR andS, depend on the direction of transition
a radiation field outside the system with large oscillatordipole moments. Therefore we choose several combinations
strength due to a coherent superposition of the transition dief R and S as follows: R,S) = (£2 cm~1,£0.2 cm™?),
pole moments at each layer. The second states are less radi@2 cm™,=0.02 cm'?), (=5 cm™%,+0.5 cm™?), and
tive than the first ones because the oscillating behavior of the=5 cm™1,=0.625 cmi ). Then the discussion of the
envelope function partially cancels out the transition dipolepresent section is applicable to this system, resulting in four
moment of each layer. surface states. When the number of layers is larger than six,

As the first problem which can be addressed in terms ofve are free from a delicate finite-size effect of the number of
the envelope functions of eigenstates of excitonic surfaceurface state€ Furthermore, for a number of layers larger
states, we will show the reason for the quite different radiathan 10, the symmetric and antisymmetric states are degen-
tive decay rates of the first and second surface excitongrate in energy, and the two surfaces are almost independent.
which were observed by Aaviksoo, Lippmaa, and Refhot. We are now able to evaluate the radiative decay rates for the
We choose material constants corresponding to anthracerestate of the exciton in terms of the electric dipole moment
crystal®? A;=E,—Ey=-204 cm! and A,=E, of the total system:

—

envelope function ¢ %,

=z
3
<
(0]
=
)

envelope function ¢ ,,
o
<

{b) layer n

1
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TABLE I. Relative magnitude of radiative decay ralés/I", and energy difference$, and 5, depending
on (R,S), with A;=—204 cm %, A,=—6 cm™, and signR)=sign(S).

R (cm™?) S(em™Y) Classof 1stSS  Classof 2nd SS 6, (cm™Y) &, (ecm™Y)  T',/T2

+2 +0.2 (vi,7']")-SS (i, y'j")-SS 204.02 6.61 1.94
+2 +0.02 (i v'i")-SS i, y'j")-SS 204.01 6.59 1.78
-2 -0.2 (,7)-SS ®,7)-SS 204.02 6.61 1.94
-2 -0.02 ®,7)-SS (vi,y'])-SS 204.01 6.59 1.78
+5 +0.625 @i.y'i")-SS (i.y'j")-SS 204.14 9.45 7.6
-5 ~0.625 ©.7)-SS (vi.y'])-SS 204.14 9.45 7.6

_ Noo I';/T,=1.95. ForS=—0.02 cm ! with others fixed, we
P,= E KPan (55 obtain p=2.0886 andy=4.615 for the first surface states
n=-N [(p,y)-SS|, giving 6,=204.019 cm?!; y=1.1193 and

and the eigenfunctions obtained in this section describe thg’ =4.5706, givings,=6.59 cm 1, for the second surface
envelope functions analytically. The transition dipole mo-states[(yj,y’j)-SS]; andT',/T',=1.78. If we increase the
ment & per unit layer depends on the wave vector in thevalue of |R|, the results change importantly. For example,
plane and the coherent range of the excitation in the planavith R=—5 cm™! and S=—-0.625 cm !, we obtain
Here, however, we assumed the consjartoth for the first P=1.79335 andy=2.8941 for the first surface states
and second surface excitons and for each layer because tH®.¥)-SSl, giving §;=204.14 cm!; y=0.53517 and
radiative decay of the exciton with in-plane wave vectory’=1.7094, givingd,=9.45 cm ! for the second surface
nearly equal to zero is dominant. Then the relative magnistated(vyj,y’j)-SS], andI';/T",=7.6 (the change o8 leads
tude of the radiative decay rates is evaluated only in terms oo an unimportant change in resulté\s already mentioned
the envelope function of the first and the second surface exabove, the values’;=213+1 cm ! and 6,=10.2+0.2
citons ¢, and ¢, ,, as follows: cm~! were observed by Nozue, Kawaharada, and Gdto,
and the difference in the radiative decay rdfgsl’,~8 was
observed by Aaviksoo, Lippmaa, and Reifié¢irom Table |,
one can see that jR|=2 cm™! the results are different from
the experimental observations Refs. 6 and 19. These differ-
ences become smaller than that if the calculations are carried

. — 71 .
see that there are only contributions of two symmetric state%uzlw'thJR' 3 ?hr;d 4icm N (tthen result;rarz nv(\),t jhfwr}fln
in radiative decay rates among the four surface states. Th a eR _ as S S h N OI .ecTessl y“ % € eh’ h

characteristics of the first and second surface states are ngt9N(R)=—sign(S), the results in Table Il show that the

merically studied with the use of the material constants agdiative decay rate of the second surface exciton becomes
Ay=Ey—Ey=—-204 cm ! and A,=E,—Ey_,=-6 larger than that of the first one. This is because the magni-

cm~1, and several combinations BfandS having the same tude of thg envglope func_tion of Fhe second surface s_tate in
signs and opposite signs are given in Tables | and II, respedhis case, i.e., sigif) = —sign(S), is not a damped oscilla-
tively. One can see from Table[l.e., signR)= sign(S)]  tion but one that extends over a few layers with the same
that the energy differences,=w,—E, and 8,=w,—E,,  Sign. These results for the case sight —sign(S) given in

(0, and w, are the energies of the first and second surfacd able Il [with sign() =sign(A )] are not only unphysical
states, respectivelyas well as the relative magnitude of the but also contrary to the experimental observations.
radiative decay rates, are not sensitive to the valus, dfut Finally we evaluate the absolute values of the radiative
that these quantities depend importantly &%. For ex- lifetime for the first and second surface excitons. The transi-
ample, with the fixed valulR=—2 cm™!, for S=—0.2  tion dipolemomenﬂ per unit layer depends on the coherent
cm~ ! we obtainp,;=1.7278 andy,=3.4637 for the first length L*=\27#/TM of the two-dimensional excitof,
surface stategin this case §,vy)-SS giving §,=204.02 wherel is its spectrum half-width anil its effective mass.
cm~ !, p,=2.6567 and y,=1.6990, giving 5,=6.61 The radiative decay ratds, andI’, for the first and second
cm™ !, for the second surface statd$p,y)-SS|; and surface excitons are evaluated by

E~|ﬁl|2=|2r,:l=fN(Pl,n|2
Ty B2 IZhe_neonl?

HereT'; andT', are the radiative decay rates of the first and
second surface excitons, respectively. From &) one can

(56)

TABLE II. Relative magnitude of radiative decay ratég/I", and energy difference$;, and §, depend-
ing on (R,S), with A;=—204 cm 1, A,=—6 cm 2, and signR) = —sign(S).

R (cm™?) S(em™) Classof 1stSS Classof 2nd SS 6, (cm™Y) &, (cm™Y)  T',/T2

-2 +0.2 (vi,y'j")-SS (i.y'j")-SS 204.22 6.61 0.575
-2 +0.02 (i.y'j")-SS (i.y'j")-SS 204.01 6.59 0.505
+2 -0.2 (0,7)-SS ©,7)-SS 204.02 6.61 0.575

+2 -0.02 ®,7)-SS (vi,y'])-SS 204.01 6.59 0.505
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N

2 ¢i,n
N

n=—

2 estimated that the value ¢R| is about~5 cm™?1, because

, (57)  this is a case giving results which seem to be in agreement
with experimental observations of Aaviksoo, Lippmaa, and

for i=1 and 2, wherd ,=2X10° sec ! is the radiative Reinof as well as of Nozue, Kawaharada, and GGto.

decay rate of a single molecule andhe size of a unit cell. At this point, there may arise a question about the role of

The lifetimesT,=1/"; andT,= 1/T, are estimated to be on S. As will be seen belowS plays an important role, even

the order of 1 and 10 ps, respectively. Here we evaluatethough its value is small. Let us considg# 0 in the case

L* to be 700 A by using’=10% sec’ !, andM=10"2"g,  (P,7)-SS. The following argument, however, is valid for all

and used the size of unit cell=7 A. We neglected the classes. IS=0, Eq.(49) becomes

nonradiative channels, and this looks to be justified because . , .

the observed dephasing rate of the same order of magni- A2{AsCod (N=1)(p+iy)]+Ascod (N=1)(p=iy)]}

teuxci?t gr? the estimated radiative decay rate for the first surface =, _,=0 (58)

T,=Ty(L*/u)?

and the difference equatiort4)—(6) can be rewritten as

V. DISCUSSION (0=Eo)en=R(@n+1t @n-1)(=N+1<n<N-1),

In the present paper, we have developed a theory of exci- (59
tonic surface states in multilayer organic quantum wells in (0—Ep)on=Ron_1 (60)
the framework of the second-nearest-layer approximation. ’

For the first time, to our knowledge, two classes of band (w—En_1)en-1=R(on+ on_2), (61)
states p,p)-BS and f,vy)-BS and three classes of surface
states §j,y']’)-SS, (yj,y'])-SS, and p,y)-SS in the " - .

SNLA are clearly classified. For each class of states we caffd: 58 WS can zee;]thalz—O:wN,l—?. In thés (r:]asef, Eq.
specify the envelope function of eigenstates as well as thgo) = ¢n=0 and then Eq(6D) = ¢n-»=0, and then from
eigenenergy. Our results show that the case which was di&d- (39 we haveg,=0 for all n. Therefore,A, must be

cussed by Mahan and Oberntdits only one special case, €dual to zero ifS=0. In other words, ifA,#0, thenS+0.
i.e., our (0,p’)-BS. More importantly, the surface states in Because of that, if we want to understand the delicate prop-
our, theory, seem to be very useful t(’) understanding the b orties due to the difference between first and second surface

havior of the first and second top-surface excitons, everfYe's: we should take into account the second-nearest-layer
though they are presented by complicated equations adatgractmn, i.e., the SNLA. The reason for different super-

wave functions than those in theories within the N{Refs. radiant decay rates of the first and second surface excitons
13-15 or results in the SNLA by Koster and Slattand has been understood physically as presented in the present

Mahan and Obermatf It should be stressed again that in the paper. This is the first problem which can be explained

SNLA, there are three classes of surface states, and that f§fithin the framework of the SNLA. The theory can be fur-
two of the three, i.e., theyj,y']’)-SS and §j,7'])-SS, we ther Qeveloped to.other systems, for example, to the nonsym-
have to use integer valugsj’ to distinguish the surface metric system which have just been considered in the KA.

states. The energy scheme of five classes of states as p econd, it is very interesting to understand what additional

sented in the paper is useful to consider the energy levels &fects happen in the_ reflection and transmission of th_e Sys-
>iems, both symmetric and nonsymmetric systems in the

[Egs. (5) and (6) are equivalent to Eqg7) and (8)]. From

f i i ith th . F =
surface states in comparison with the band energy. For e ramework of the SNLA. These problems will be addressed

ample, from the scheme, we can immediately determin
41 the future.

which class of states is the first and second surface stat
when there are four surface states belonging to two different
classes of states.

Let us now discuss about the sign and magnitude ahd The authors wish to thank Dr. Y. Nozue, Professor
S. One can see that if the site shiftg andA, have the same Nguyen Ba An, Professor M. Kuwata-Gonokami, and Dr. Y.
signs as in experimental observatibr@;=—204 cm™?  Segawa for valuable discussions. One of(NST.D) would
andA,=—6 cm™ 1), thenR and S have the same signs in like to express his deep gratitude to the Nishina Memorial
general. The case in whidkandS have opposite signsvith Foundation for the fellowship. This work is supported by a
A; andA, have the same sighkads to results of the radia- Grant-in-Aid for Scientific Research on the Priority Area
tive decay rates contrary to the observations presented itMutual and Quantum Control of Radiation and Electronic
Sec. IV B. The numerical results given in Table | are alsoSystems” from the Ministry of Education, Science and Cul-
meaningful in the discussion about the valugRif. It can be  ture of Japan.
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