
Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains

A. V. Zolotaryuk* and K. H. Spatschek
Institut für Theoretische Physik, Heinrich-Heine-Universita¨t Düsseldorf, D-40225 Du¨sseldorf, Germany

A. V. Savin
Institute for Physico-Technological Problems, 119034 Moscow, Russia
~Received 19 April 1995; revised manuscript received 2 January 1995!

The dynamical theory of a quantum quasiparticle moving in a deformable anharmonic chain is extended into
the supersonic region. Besides a supersonic self-trapping mode, which is a direct extension of the well-known
subsonic Davydov-Scott mode, two additional dynamically stable transfer mechanisms have been discovered
in this region:~i! the capture and transfer of the self-trapping state by a supersonic acoustic~lattice! soliton and
~ii ! the pairing of two lattice solitons via their interaction with a quasiparticle.@S0163-1829~96!01222-2#

I. INTRODUCTION

The transports of vibrational energy and charge in mo-
lecular systems~e.g., in protein! are fundamental processes
in physics, chemistry, and biology. One of the most promis-
ing actual transfer theories is the Davydov-Scott~DS! self-
trappingmechanism, extensively described in Refs. 1 and 2,
which originated from the classical works of Landau3 and
Pekar.4 According to this mechanism, two-component soli-
tons ~moving polaronlike states!, being stabilized by the
counterbalance of theintersite resonance interactionand the
exciton-phonon coupling, have been proved5 to bedynami-
cally stablecarriers of vibrational energy. The latter is re-
leased by hydrolysis of adenosine triphosphate~ATP! at one
end of ana-helix protein molecule and transported to the
other one. The amount of this vibrational energy is about
0.422 eV. It is partly stored in the high-frequency intramo-
lecular C5 O stretching mode~amide-I vibrations with fre-
quency about 1665 cm21).

There are two approaches to the soliton modeling of the
transport of vibrational energy in biological macromolecules.
The original one is based on the exciton Hamiltonian scheme
where, besides the usual electric dipole-dipole coupling be-
tween neighboring peptide groups, Davydov and Kyslukha6

have introduced the short-range interaction of amide-I vibra-
tions with low-frequency longitudinalacousticphonons of
the molecular chain. This interaction is caused by the depen-
dence of the amide-I energy on the distances between neigh-
boring peptide groups. As a result, the linear expansion term
of this dependence gives rise to thenonlinearity of the
self-interaction of excitons in the Davydov-Kyslukha
model.6 This model admits theacousticself-trapping soli-
tary wave solution called Davydov’s soliton. The improved
version of this model7 is described by a pair ofcoupled
difference-differential equations. The self-consistent soliton
solution of these equations exists only forsubsonicveloci-
ties.

The second approach to the soliton modeling of the en-
ergy transport in biological systems has been suggested and
developed by Takeno8 on the basis of hisclassicaloscillator-
lattice model. This two-sublattice model is a chain of har-
monically coupled peptide groups and it describes the dy-

namical self-trapping of the high-frequency~intrapeptide!
amide-I oscillations through their coupling with low-
frequency vibrations of the peptide groups~as whole ob-
jects!. The two-component solitary wave solution of the re-
sulting equations of motion gives rise to asubsonic moving
breather (envelope soliton)accompanied by a pulse of lattice
compression. On the other hand, Davydov’s wave function,
which actually describes the adiabatic limit of the exciton-
phonon picture, leads to the classical dynamical equations
coinciding with the Schro¨dinger limit of the Klein-Gordon
equation for the high-frequency component in the Takeno
model. Therefore, both approaches are actually classical de-
scriptions.

In the case of the dynamical self-trapping, the coupling of
the amide-I mode to lattice vibrations in a polypeptide chain
is usually modeled by someharmonic potential. Such an
approximation is satisfactory in the standard polaron theory,
when the dynamical self-trapping of excitons is due to their
coupling to anoptical mode of the lattice~e.g., as in crys-
talline acetanilide9!. However, in the case of the dynamical
acousticself-trapping of a quantum of the amide-I mode or
an excess electron,10 the harmonic~linear! approximation of
the acoustic phonon mode is valid only for sufficiently small
values of the velocity of the self-trapped states, since with
increasing velocities the amplitudes of the localized com-
pressions of the chain rapidly increase up to infinity. As a
result, adjacent chain molecules~peptide groups! would pass
through each other, which, of course, is a completely un-
physical situation. In order to avoid this difficulty in the DS
theory ahardening~positive! anharmonicity must be added
to the harmonic potential. Then, with decreasing distances
between neighboring molecules, the intermolecular potential
will increase faster than the usualquadraticbehavior. As a
result, the dynamical acoustic self-trapping theory can be
extended to the whole interval ofsubsonicvelocities, in-
cluding the speed of longitudinal sound.11

On the other hand, any positive anharmonicity in a lattice
results in the appearance of the well-known extremely stable
supersonic acoustic( latt ice) solitons12 ~e.g., the Toda
solitons13! which can also be considered as effective carriers
of energy in biological systems.14 Their dynamical stability
is due to the balance of the intermolecular anharmonicity and
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the lattice dispersion. The mixture oftwo types of dispersion
~the intersite resonance energy and the lattice discreteness!
and of two types of nonlinearities~the exciton-phonon cou-
pling and the lattice anharmonicity! gives rise to very com-
plicated dynamics of such a system. So far only a few at-
tempts are known to have tackled this problem analytically
and numerically;15–26still its solution is far from being fully
understood from the physical point of view. In this paper, on
the basis of analytical and numerical studies, we show that
the DS subsonic self-trapping modebifurcatesat the velocity
of longitudinal sound, at least, intothreedynamically stable
supersonic soliton modes. One of them is still characterized
by the self-trapping mechanism, however with supersonic
velocities, while the appearance of the other two is due to the
coupling of the self-trapping states with the lattice solitons.

The paper is organized as follows. Section II is to a large
extent also an introductory part. There, we present the basic
equations of motion to be studied in the next sections ana-
lytically and numerically. Then, the paper is divided into two
parts. The first one is strictly analytical. The self-trapping
~polaron! states and their interaction with the lattice solitons
are investigated in Sec. III. In the next section, explicit soli-
ton solutions for a cubic anharmonicity of the lattice are
presented. There, the energies of the newly found soliton
modes are discussed. After that first analytical part, in the
second part of the paper numerical simulations are presented.
The variational approach of Sec. V, together with the results
of Sec. IV, is the basis for the subsequent numerical proce-
dures. Detailed numerical results are shown in Sec. VI. The
paper is concluded by a short summary and outlook.

II. BASIC EQUATIONS

In what follows we call a quantum of the amide-I excita-
tion or an excess electron a quantum quasiparticle. The main
assumptions in the DS theory extended to many
quasiparticles1,2,27 are the following:~i! dealing with only
longitudinal degrees of the one-dimensional~1D! lattice,
~ii ! the presence of nearest-neighbor interactions both for the
lattice and for the quasiparticles, and~iii ! the absence of
interaction between quasiparticles. Under these assumptions,
the basic equations of motion, which describe the coupling
of a conserved numbern of noninteracting quantum quasi-
particles to an anharmonic deformable molecular chain, can
be obtained in the exciton formalism by using the
generalizedDavydov wave function.21,27–29 As a result,
they can be formulated in the dimensionless form11,27

i
dFn

dt
52D~Fn1122Fn1Fn21!2

g

2
~rn211rn!Fn ,

d2rn
dt2

5U8~rn11!22U8~rn!1U8~rn21!2
g

2
~ uFn12u2

2uFn11u22uFnu21uFn21u2!, ~1!

where the prime denotes a derivative with respect to the ar-
gument. The corresponding Hamiltonian is

H5(
n

H Fn* F2D~Fn1122Fn1Fn21!1
g

2
~un11

2un21!FnG1
1

2 S dundt D 21U~un2un11!J . ~2!

HereFn(t) is a discrete wave function of the quasiparticle
while the relative displacement fieldrn(t)5un(t)
2un11(t) describes the lattice compression~if positive! or
stretching~if negative!. The dimensionless displacementun
of the nth chain molecule from its equilibrium position is
scaled by the lattice constantl . The dimensionless time is
given by t5v0t/ l wherev0 is the velocity of longitudinal
sound in the chain. Then the time unit corresponds to the
duration of sound propagation over the distancel . For the
quantum subsystem, the characteristic frequencyv0 / l is used
to define an energy unit, so that the intersite energyD and
the coupling constantg are given in units of\v0 / l . The
lattice energy@as well as the total chain energy given by Eq.
~2!# is measured in units ofMv0

2 with M being the mass
of a chain molecule. The intermolecular potential
U(r)5r2/21A(r) is supposed to be of a general form and
its anharmonic partA(r) is required to satisfy the following
properties:~i! r22A(r) is a monotonically increasing func-
tion on the half-axis 0,r,` and ~ii ! limr→0r

22A(r)50.
The wave functionFn(t) is normalized by

(
n

uFn~t!u25ns[Q, ~3!

wheres is a scaling parameter which measures the ratio of
the characteristic energies of both the quantum and lattice
subsystems:s5(\v0 / l )/Mv0

25\/Mv0l . This parameter
may be interpreted as the ‘‘charge’’ ofone quasiparticle.
Therefore the~dimensionless! quantityQ can be considered
as the nontopological charge of the whole system withn
quasiparticles. The dimensionless form~1! of the equations
of motion with the normalization condition~3! appears to be
convenient because it does not depend explicitly on the num-
ber n. For all n we have the same dynamical equations and
the dependence onn appears only in Eq.~3!. The limiting
case of a pure anharmonic lattice corresponds to zero charge
(Q50) in the constraint~3!.

The pair ofcoupleddifference-differential equations~1!
with the constraint~3! is a starting system to be studied in
this paper. The present form is convenient from the point of
view of numerical simulations because the wave oscillations
of the high-frequency part~carrier! of the complex field
Fn(t) are reduced to a minimum level. In the
decoupling limit ( g→0) the linear band of the small-
amplitude wavesFn(t)5exp@i(nk2«bt)# with the dimen-
sionless wave number of the carrierkP@2p,p# is

«b54Dsin2
k

2
. ~4!

Then the~dimensionless! group velocity is given by

s[
v
v0

5
d«b
dk

52Dsink. ~5!
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At the middle of the band (k5p/2), the group velocity has
its maximum (sb52D). Therefore, in order to have a quasi-
particle motion in the supersonic regime, the inequality
D.1/2 must be imposed on the parameters of the chain.

To investigate analytically the set of equations~1! in a
general caseg.0, we separate the wave functionFn(t) into
low- and high-frequency parts. In other words, we look for
solutions of Eqs.~1! in the form of a modulated plane wave,

Fn~t!5fn~t!e$ i @nk2~«b1«!t#%, ~6!

where the real functionsfn(t) describe a wave envelope
with weak variation from site to site. In this paper we are
interested only in localized solutions withzero boundary
conditions. This means that both the lattice fieldsfn(t) and
rn(t) have to decrease to zero sufficiently fast when
n→6`. The free quasiparticle energy«b in Eq. ~6! is given
by Eq. ~4! while the perturbed (bound) energy
«5«(k),0 has to be determined.

Substituting the representation~6! into the equations of
motion ~1!, we obtain the following equations for the enve-
lope fn(t), the relative displacement fieldrn(t), and the
spectral parameter«:

dfn

dt
5Dsink~fn212fn11!, ~7!

Dcosk~fn1122fn1fn21!1
g

2
~rn211rn!fn1«fn50,

~8!

d2rn
dt2

5U8~rn11!22U8~rn!1U8~rn21!

2
g

2
~fn12

2 2fn11
2 2fn

21fn21
2 !. ~9!

According to the constraint~3!, solutions for the envelope
fn(t) have to be found on the multidimensional sphere

(
n

fn
2~t!5Q. ~10!

Next, we assume both the lattice fieldsfn and rn to be
weakly varying from site to site. Then the continuum ap-
proximation can be adopted in calculating these fields. Note
that when investigating only wide excitations, we may miss
interesting effects due to strong localization.30–34 Since in
Eq. ~6! the carrier wave is still considered as a discrete lattice
field, more exactly, this approximation can be referred to as
a quasicontinuum limit.35 Hence, in Eqs.~7!–~10!, we re-
place n→x,fn(t)→f(x,t), and rn(t)→r(x,t). Thereby
the differences in Eqs.~7!–~10! are replaced by spatial de-
rivatives. As a result, Eq. ~7! is transformed to
ft12Dsinkfx50. In the case of a stationary envelope, it is
simply reduced to the band spectrum~4!. The other equa-
tions are transformed to

Dcoskfxx1grf1«f50, ~11!

rtt2U8~r!xx2
1

12
rxxtt1g~f2!xx50, ~12!

where the eigenfunctionf(x,t) is normalized by
*f2dx5Q. Equation ~11! represents a stationary Schro¨-
dinger equation. Its potentialr(x,t) has to be determined
from Eq. ~12!. Note that the inhomogeneity of the deforma-
tion r(x,t) depends onf(x,t), i.e., the solution of Eq.~11!.
For bound~localized! states, the ground-state energy« has to
be negative. This is only possible when the term cosk in Eq.
~11! is positive. Therefore, for localized solutions, the inter-
val of admissible values for the wave numberk is reduced to
uku,p/2. We take the interval 0<k,p/2 and using Eq.~5!
we can determine the numberk in terms of the velocitys
through the equationDcosk5(D22s2/4)1/2.

Compared to the previous studies,11 the lattice equation
~12! contains an extra fourth-order derivative term. This dis-
persion term appears due to the discreteness of the lattice.
Instead of Eq.~12!, another form can be used,18 namely,

rtt2U8~r!xx2
1

12
rxxxx1g~f2!xx50. ~13!

Both Eqs.~12! and ~13! are of the Boussinesq type with the
linear dispersion laws v25k2/(11k2/12) and
v25k2(12k2/12), respectively. Compared to the latter, the
dispersion law for Eq.~12! is well defined for allk. There-
fore it is referred to as theimprovedBoussinesq equation.36

Equation ~13! is called theill-posed Boussinesq equation.
However, as was mentioned before, for the bound states we
have k,p/2 and therefore the basic discrete equation~8!
will also work in this region within the ill-posed approxima-
tion. Note that in both cases the dispersion is negative; i.e.,
the group velocity decreases with increasing wave numbers
k.

For stationary profiles moving in the framej5x2st,
Eqs.~11! and ~12! @or ~13!# become

af91grf1«f50, br91~12s2!r1
d

dr
A~r!5gf2.

~14!

Here the coefficientsa and b are defined through
a5Dcosk andb5s2/12. This value forb, which depends on
the velocitys, occurs for the improved Boussinesq equation
~12!. In the other case, Eq.~13!, the value isb51/12. Notice
also that for sufficiently largeD the long-wavelength ap-
proximation (k→0) can be applied. Then it is allowed to set
approximatelya5D, even for supersonic velocities (s.1).
In any case, we should emphasize that solutions of Eqs.~14!
do not depend significantly on the explicit velocity depen-
dences ofa andb. Thus, in the following we ignore in the
analytical considerations the velocity dependences ofa and
b. However, for numerical applications, to be given below,
we shall, of course, keep the variations with velocity. The
wave functionf(j) in Eqs.~14! is normalized by

E f2~j!dj5Q. ~15!

Finally, for analytical calculations of the total energy of
the system when lattice dispersion is taken into account, we
need a correct quasicontinuum approximation of the Hamil-
tonian function~2!. Using Eq.~6!, we find
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H5H$f;b,r%5Q«b1E dxFDcoskfx
22gf2r

1
1

2
bx~12]x

2/12!21bx1U~r!G , ~16!

which corresponds to Eqs.~11! and ~12!. Then the Schro¨-
dinger equation~11! follows from the variation

d

df SH2«E f2dxD50. ~17!

Obviously, Eq.~12! appears from the Hamiltonian equations

bt52
dH
dr

5gf22U8~r!, ~18!

rt5
dH
db

52~12]x
2/12!21bxx . ~19!

Using the relation r52ux , we find from Eq. ~19!
bx5(12]x

2/12)ut . Substituting this relation into the Hamil-
tonian~16! and using Eq.~11!, we can evaluate the following
expression for calculating the total energy:

E5Q~«b1«!1E dxF12 ut
21

1

24
uxt
2 1U~r!G . ~20!

The first term on the right-hand side~RHS! is the band en-
ergy of n free quasiparticles, the second one is their bound
energy in the deformation potentialr(x,t), and the integral
term represents the total energy of the pure lattice deforma-
tion. Note that the second term in the integral on the right-
hand side of Eq.~20! takes into account the lattice dispersion
originating from the fourth-order derivative term in Eq.~12!.
For traveling wave~TW! solutions with constant profiles the
expression~20! is reduced to

E5Q~«b1«!1E djFs22 r21
b

2
r821U~r!G . ~21!

The basic equations~1! with the integrals of motion~2!
and ~3! are used in this paper for numerical simulations.
Equations~8! and ~9! are useful in the numerical procedure
developed in Sec. VI for seeking both the soliton compo-
nentsfn andrn . Finally, the continuum equations~14! with
the integrals~15! and ~21! are starting objects for analytical
studies. The thereby obtained soliton solutions are used as
initial conditions in numerical simulations. Even when the
discrete equations are used in numerical studies, we deal
only with wide soliton profiles for both the lattice fieldsfn
andrn .

III. SELF-TRAPPING „POLARON … STATES AND THEIR
INTERACTION WITH LATTICE SOLITONS

In this section we show on the basis of an analysis of Eqs.
~14! that in the supersonic regiontwo transport mechanisms
can exist. One of them is due to the nonlinearity induced by
the interaction of quantum quasiparticles with classical lat-
tice vibrations while the other one is caused by the anharmo-
nicity in the lattice vibrations themselves. Starting with Eqs.
~14!, we notice that for any potential well2r(j) there is, at

least, one bound state«. Therefore, one can conclude the
existence of a symmetric bell-shaped wave functionf(j) if
the functionr(j) is also assumed to be of a symmetric bell-
shaped form. Then the one-to-one mappingsj↔f and
j↔r take place for 0<j,` and therefore the function
f(r)[f@j(r)# can be defined within the domain
0<r<r0 . Using zero boundary conditions, Eqs.~14! can be
transformed to the following integral equation:

j56Ab/2E
r0

r

Z~r !21/2
dr

r
, ~22!

where the functionZ is defined by

Z~r!5gr22E
0

r

f2~r !dr1
1

2
~s221!2r22A~r!. ~23!

The amplituder0.0 of the soliton componentr(j) is a
nontrivial solution of the equationZ(r)50 .

The necessary condition for the existence of a soliton so-
lution is thatZ(r) be convexand positive on the interval
0,r,r0 . Thus, in the case of a pure lattice (g50), exactly
the existence of the well-known supersonic (s.1) lattice
solitons follows from the function~23!. When a quasiparticle
is present in the system (g.0), then the behavior of the
functionf(r) in the limit r→0 (j→6`) determines what
kind of two-component solitons can exist. Indeed, in the case
of a linear behavior of the functionf2(r) at r→0, and
only in this case, limr→0r

22*0
rf2(r )dr is finite and there-

fore for Z(r).0 ~in some finite interval 0,r,r0), in gen-
eral, the first~self-trapping! term on the RHS of Eq.~23! is
important. This means that theself-trappingtransfer mecha-
nism is possible with bothsubsonicand supersonicveloci-
ties; it will be referred to as thep ~polaron! mode. The pres-
ence of a positive anharmonicityA(r) leads to some
spreading of the soliton profile, essentially improving at high
velocities the conditions for the continuum approximation.
Without A(r), only the subsonic self-trappingmechanism
works in the system.

Another possibility for the existence of soliton solutions is
a sufficiently rapid ~nonlinear! behavior of the function
f2(r) in the limit r→0, such that the inequality
g*0

rf2(r )dr,A(r) is satisfied for some finite interval
0,r,r0 . In this case, the contribution originating from
A(r) is responsible for the stabilization of soliton motion,
while the first ~integral! term on the RHS of Eq.~23! only
changes the soliton profile and increases the amplituder0 . A
soliton of this type cannot be referred to as a polaron. A
family of these solutions describes thecaptureand transfer
of a quasiparticle~which always is self-trapped itself! by an
acoustic soliton or, in other words, thecouplingof the self-
trapping state with a supersonic lattice soliton. Because of
that, it may be called thel -p ~lattice-polaron! mode.

To be more concrete, we now determine the lowest eigen-
values« of the nonlinear spectral problem given by Eqs.
~14!. Since we look for bell-shaped soliton profiles, the vari-
ablej can be eliminated from these equations.37,38Then one
gets forf(r)[f@j(r)#
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d2f

dr2
W1F S df

dr D 22f
d2f

dr2
2

b

2aG~gr1«!f

2
df

dr Fab S df

dr D 22 1

2G S dWdr
2gf2D50, ~24!

whereW5(12s2)r2/21A(r). Substituting the asymptotic
relation

f2~r!>Ca21r
a ~25!

for r→0, with a positive constantCa21 , into Eq. ~24!, we
find the whole spectrum of the lowest eigenvalues«. This
spectrum consists oftwo bands. The first one corresponds to
a51 and describes the ground-state energy eigenvalues of
the p mode:

«52am2[«p , m25~C0g211s2!/4b. ~26!

This mode has both subsonic and supersonic velocities in the
vicinity of the sound velocitys51 . The second band corre-
sponds toa.1 and describes the eigenvalues of thel -p
mode:

«52aa2h2[« l -p , h25~s221!/4b. ~27!

As follows from Eqs.~27!, the bound states for thel -p mode
can exist only fors.1, so that onlysupersonicsolitons of
this kind can propagate. The constantC0 and the powera
are determined by the normalization condition~6!. They can
be calculated once the potentialU(r) is given explicitly.

IV. EXPLICIT SOLITON SOLUTIONS
FOR A CUBIC ANHARMONICITY

The general conclusions on the existence oftwo super-
sonic transport mechanisms by the two-component solitons
with constant bell-shaped profiles in both the components,
given in Sec. III, can be illustrated and further extended in
the particular case of the intermolecular potential with a
positive cubic anharmonicity:

A~r!5
1

3
gr3, g.0. ~28!

The essential point is that under the additional condition
ag/bg[k53, both bell-shapedsolutions of the set of Eqs.
~14! and ~15! can be givenexplicitly. The constraintk53
fixes some value of the velocitys due to the dependence of
the coefficientsa andb in Eqs.~14! on this parameter. How-
ever, this dependence does not drastically change the dynam-
ics of the system. Moreover, when we use the ill-posed
Boussinesq equation~13!, in the long-wavelength limit
(k→0) we have18 a5D andb51/12. Therefore, instead of
fixing some value of the velocitys, we may approximately
impose a constraint on the parameters of the system, namely,
4Dg/g.1.

Assuming the ansatz~25! in the whole interval
0,r,r0 , we can get from Eqs.~22! and ~23! the explicit
profiles of both thep and l -p modes. Thus, in the case
a51, we find thenormalizedsoliton profile

fp~j!5SQm

2 D 1/2cosh21~mj!,rp~j!5
2a

g
m2cosh22~mj!,

~29!

wherem satisfies the cubic equation

4m~m22h2!53m0
3 . ~30!

Here the velocity parameterh is defined in Eqs.~27! and
m05(Qg2/12ab)1/3 can be referred to as the characteristic
inverse width of a soliton. This equation has a positive
unique root on the whole interval 0<s,`. The limit
b→0 andg→0 under the conditionk53 immediately leads
to Davydov’s subsonic solution,1,2,5 and therefore it may be
referred to as the Davydov limit. Note that the constraint
k53 in the solution~29! and ~30! appears as a result of
imposing the linear behavior (a51) in the ansatz~25! on
the whole interval 0,r,r0 .

The l -p soliton solution (a.1) can also be presented
explicitly in the case of a cubic anharmonicity, even without
the constraintk53.18,22 It corresponds toa52 in the ansatz
~25!. The ~non-normalized! two-component soliton solution
is

f l -p~j!5dS k21

2 D 1/2h2cosh22~hj!,

r l -p~j!5
6a

g
h2cosh22~hj!, ~31!

whered56A2ab/g . Here the bound energy« and the pa-
rameterh are given by Eqs.~27! with a52 . The explicit
form of thel -p solution~31! can be normalized@according to
Eq. ~29!# only at the fixed value of the velocitys5s1 given
by

h5
1

2 S 2

k21D
1/3

m0[h1 . ~32!

Similarly to thep solution~29! and~30!, the latter constraint
is due to imposing the quadratic behavior of the function
f2(r) @a52 in the ansatz~25!#, again, on the whole interval
0,r,r0 . For other valuessÞs1 , the wave function and
deformation potential given by Eqs.~31! will slightly change
their profiles, when, of course, the normalization condition
~15! is taken into account. In this case, the asymptotic power
a will also deviate from the value 2. In the particular case,
when the constraintk53 is imposed, the ‘‘projection’’ of
the profile~31! onto the sphere~15! can be given explicitly.
The projected profile is stillbell-shapedand its explicit form
can be derived by using a two-soliton solution24 of the Jacobi
inversion problem for the He´non-Heiles two-particle system.
The valuek53 is one of the integrable cases of the system
of Eqs.~14! and in this particular case thel -p ~bell-shaped!
profile takes the form

f l -p~j!5
d

3
a~a221!h2Q21~j!cosh21~ahj!,

~33!

r l -p~j!5
2a

g
~a221!h2Q22~j!@a2cosh22~ahj!
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1tanh2~ahj!cosh22~hj!#,

whereQ(j)5a2tanh(ahj)tanh(hj) and the parametera is
a root of the equation

a~a221!2E
21

1 Fa2ytanhS tanh21y

a D G22

dy5
3

2 S m0

h D 3.
~34!

This equation gives the functiona5a(s) and therefore the
spectral parameter«5«(s) can be determined according to
Eqs.~27!. In the particular caseh5h15m0/2, given by Eq.
~32!, the solution of Eq.~34! is a52 and the two-component
profile ~33! is reduced to Eqs.~31!. For other values of the
velocity s ~or the parameterh) Eq. ~34! should be solved
numerically.

The binding energyEb5Ep1El2El2p of the l -p state can
also be calculated numerically for anys.1. However, for
s5s1 andk53, whenh5m0/2 @see Eq.~32!#, these calcu-
lations can easily be done analytically by using the solutions
~26!–~31!. In this case, Eq.~30! can be solved explicitly, and
its positive root ism5m0 . Moreover, we find that the bound
energy « is the same for both thep and l -p states:
«p5« l2p52am0

2 . Next, ther components in Eqs.~29! and
~31! are reduced to

rp~j!5
2a

g
m0
2cosh22~m0j!,

r l -p~j!5
3a

2g
m0
2cosh22S m0

2
j D , ~35!

and the Boussinesq limit (a→0, g→0, andk→1) of the l -
p mode becomes

r l~j!5
a

2g
m0
2cosh22S m0

2
j D . ~36!

Substituting these profiles into the general expression~21!
for the total energy, we findEb516a2bm0

5/5g2.0. This
proves that a polaron and a lattice soliton do couple, creating
a new coupled lattice-polaron state. It follows from Eqs.
~35! and~36! that the amplitude of the chain deformation in
the case of the lattice-polaron state exceeds that of a pure
lattice soliton, as can also be seen from the function~23! for
a general form of the anharmonicityA(r).

Finally, one can observe that in the limits→1 the profile
~33! is transformed into thep soliton solution given by Eqs.
~29! and ~30!. Therefore, we can conclude that ats51 the
subsonicDS self-trapping modebifurcates, or splits, into the
two supersonic soliton modesp and l -p described by Eqs.
~26!, ~29!, ~30! and Eqs.~27!, ~33!, ~34!, respectively.

V. VARIATIONAL APPROACH

In this section we develop a variational approach which
can be applied to the case of ageneralintermolecular poten-
tial U(r). To this end, we notice that the stationary equa-
tions ~14! can be represented as the variational equations
d(L1«*f2dx)/df50 anddL/dr50 with the Lagrangian
function

L5E djF2af8
2
1gf2r1

b

2
r821

1

2
s2r22U~r!G .

~37!

The Lagrange multiplier« has to be determined from the
first of Eqs.~14!. Multiplying it by f(j), integrating from
2` to `, and using the normalization condition~15!, we
obtain

«5Q21E ~af822gf2r!dj. ~38!

Since we are looking for bell-shaped soliton solutions, we
choose the trial functions in the form

f~j!5~Qm/ca!1/2cosh2a~mj!, r~j!5r0cosh
22~mj!,

~39!

where ca5*cosh22azdz and thethree variational param-
etersa, m, andr0 are to be determined from the extremum
conditions]L/]a50, ]L/]m50, and]L/]r050. The first
of these conditions yields the relation

r05a~a11!am2/g. ~40!

The two other conditions lead to equations which can be
written in symmetric form, if we take into account Eq.~40!:

F~r0!

m
5
2

3 S s2m 2
4

5
bm D r01Qg

2a

~a11!~2a11!
,

~41!
G~r0!

m
5
2

3 S s2m 1
4

5
bm D r01Qg

a

2a11
,

where the functionsF andG are defined by

F~r0!5
1

r0
E
0

r0S 12
r

r0
D 21/2

U~r!
dr

r
,

G~r0!5
1

2
@F~r0!1r0F8~r0!#. ~42!

Finally, substituting the trial functions~39! into Eq.~38!, we
obtain

«52a2am2. ~43!

In the particular case of the cubic anharmonicity~28!, the
general equations~41! become

~m22h2!m5
9~22a!

~a11!2~2a11!
m0
3 ,

~44!

@ 1
6a~a11!km22h2#m5

9~a13!

4~a11!2~2a11!
m0
3 .

It can easily be verified that, in all the particular cases treated
above analytically, Eqs.~44! admit exact solutions, as should
be expected. In particular, both the Davydov (b→0 and
g→0) and Boussinesq (a→0, g→0, andk→1) limits can
be drawn from these equations. They also contain thep and
l -p solutions given by Eqs.~29! and~30! at k53. In a gen-
eral case, whenaÞ1 or 2, Eqs.~44! can be solved numeri-
cally.
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Note that the soliton amplituder0 and the bound energy«
are calculated according to Eqs.~40! and ~43!, respectively.

VI. NUMERICAL INVESTIGATION
OF THE SOLITON SOLUTIONS

In this section we develop a numerical approach for seek-
ing wide soliton profiles of the envelopefn and the displace-
ment fieldrn . It will allow us to find all the soliton modes
treated analytically in the previous sections and some more
specific solutions. Then, taking the soliton solutions asinitial
conditions for numerical simulations of the equations of mo-
tion ~1!, we can gain some insight into their stability. In other
words, thefinal profiles of both the lattice fieldsfn and
rn(t) obtained by standard simulations at sufficiently large
times t allow us to decide whether or not the numerically
obtained initial soliton is astablesolution of Eqs.~1!.

The main idea of the numerical scheme is to accomplish
in an appropriate way adiscretizationof time derivatives in
the difference-differentialequations of motion transforming
them intodifferenceequations. Then soliton solutions can be
obtained under minimization of the corresponding Lagrang-
ian or some other finite-dimensional function. For the present
case, we need to discretize the derivatived2rn /dt2 on the
right-hand side of Eq.~9!. For TW solutions, which are
weakly varying from site to site, such a procedure can be
carried out by requiring thatd2rn.s2r9. The next step is to
replace the continuum derivativer9 by an appropriatespatial
differencederivative. The dispersion of the acoustic longitu-
dinal waves in the continuum limit requires expansions in the
relative displacements of the chain molecules up to the
fourth order. We approximately substitute Eq.~9! by

s2Frn1122rn1rn212
1

12
~rn1224rn11

16rn24rn211rn22!G
5U8~rn11!22U8~rn!1U8~rn21!

2
g

2
~fn12

2 2fn11
2 2fn

21fn21
2 !. ~45!

The difference equation~45! can be ‘‘integrated’’ twice
and, as a result, we get

s2rn2
s2

12
~rn1122rn1rn21!1

g

2
~fn

21fn11
2 !2U8~rn!

50. ~46!

Both Eqs.~8! and~46! can be represented in the Lagrangian
form

]

]fn
SL1«(

n
fn
2D 50,

]L
]rn

50, ~47!

where the Lagrangian is defined by

L5L$fn ,rn%5(
n

F2a~fn112fn!
21

g

2
~fn

21fn11
2 !rn

1
1

2
s2rn

21
b

2
~rn112rn!

22U~rn!],

~48!

and the Lagrange multiplier« is calculated according to Eq.
~8!:

«52
1

2Q(
n

]L
]fn

fn52a2
1

Q(
n

F2afnfn11

1
g

2
~fn

21fn11
2 !rnG . ~49!

A soliton solution of Eqs.~8! and ~46! follows from the
conditional extremum of the Lagrangian~48!:

L→extr:(
n

fn
25Q. ~50!

For the chain ofN molecules we have chosen cyclic bound-
ary conditions; i.e., we putn215N if n51, andn1151 if
n5N. The number of lattice cellsN has been chosen in such
a way that the cyclic boundary conditions do not affect the
soliton profile. It is sufficient to takeN to be 10 times larger
than the soliton width.

For all subsonic velocities, the function2L is obviously
bounded from below, and therefore the self-trapping mode
can be found as a conditional minimum of the minimization
problem

2L→min:(
n

fn
25Q ~51!

by applying the steepest-descent method. In particular, the
self-trapping soliton solution can be obtained by the descent,
starting from the vector$fn

0 ,rn
0%n51

N , where fN/2
0 5Q1/2,

fn
050 if nÞN/2, andrn50 for all n51, . . . ,N. The grid

spacing for the first step of the descent is taken to be
h051. Let $fn

k ,rn
k%n51

N be a vector andhk be a grid spacing
obtained at thekth step. Then, we define the next step by the
iteration

fn
k115c1~fn

k1c2hkLfn
!, rn

k115rn
k1c2hkLrn

, ~52!

where the constantsc1 andc2 are defined by

c15FQ Y(
n

~fn
k1c2hkLfn

!2G1/2,
c25F(

n
~Lfn

2 1Lrn

2 !G21/2

. ~53!

HereLfn
andLrn

are the partial derivatives with respect to

fn and rn , respectively. The iteration is accepted if
L$fn

k11 ,rn
k11%,L$fn

k ,rn
k%. In this case,hk115hk . Other-

wise, we puthk5hk/2 and repeat the iteration process. The
descent process is completed when the grid spacinghk be-
comes less than somee which characterizes the required
accuracy of minimization.
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It should be noticed that in principle the lattice dispersion
term ~with b.0) in ~48! is not needed to obtain the subsonic
solutions. This mode can be obtained even ifb50. However,
for s.1, there are neither minimum nor maximum points at
the Lagrangian surface~48!. The extremum points, which
correspond to supersonic soliton solutions, are only of the
saddle type, and therefore it is impossible to find any super-
sonic solution by minimization of the function~48!. The
most convenient way is to seek the vector$fn%n51

N as a
conditional minimum of the problem

2L1[(
n

Fa~fn112fn!
22

g

2
~fn

21fn11
2 !rnG

→minf1 , . . . ,fN
:(
n

fn
25Q, ~54!

while the relative displacementsrn should be found as un-
conditional minima of the problem

F25
1

2(n Lrn

2 →minr1 , . . . ,rN
. ~55!

The special analytical solutions for thep and l -p soliton
modes, found in the previous sections, have been chosen as
starting points for the descent. The self-consistency process
is considered to be completed if the discrete functional

F5
1

2(n @Lfn

2 1Lrn

2 # ~56!

reaches its minimum. The function~56! may be considered
as a ‘‘deformation’’ of the Lagrangian surface~48!, carried
out in such a way that all the saddle points are transformed
into minimum points at the deformed surface. Those minima
which correspond to bell-shaped profiles are chosen as ap-
propriate soliton solutions of our problem. Other minima de-
scribing, e.g., bell-shaped configurations accompanied by
any ripples, etc., are excluded from further consideration.

The system of Eqs.~1! has been integrated by the stan-
dard fourth-order Runge-Kutta method with constant grid
spacingh. The accuracy of the integration can be checked by
the conserved integrals of motion given by Eqs.~2! and~3!.
The grid spacingh50.025, which provides the conservation
of the integrals of motion during total time of integration
with an accuracy to five leading digits, has been used. Typi-
cal results of numerical simulations of the equations of mo-
tion ~1! are as follows.

In Fig. 1, profiles of the DS self-trapping mode at the
sound velocity (s51) are shown. The profiles are plotted at
the initial time (t50) and the final timet51000.05 after
movement over 1000 chain sites. The initial profiles have
been found by the numerical minimization scheme. As can
clearly be seen from this figure, there is perfect coincidence
of the initial and final profiles.

Profiles of thel -p soliton at the initial time (t50) and
the final time (t5996.05) are depicted in Fig. 2. Note that at
the final time we have a passage over 1000 chain sites. The
initial profile has been found by the minimization scheme
while the final profile has been obtained by the numerical
simulations of the equations of motion~1!. The initial and

final profiles are plotted and they coincide perfectly. The
velocity of the soliton iss51.004.

In Fig. 3, the profiles of thel -p soliton at the initial time
(t50) and the final time (t5956.05) after the passage over
1000 chain sites are shown. Initially the soliton velocity is
s51.05 and its final value iss51.046. The difference be-
tween the final and initial velocities is due to decreasing the
accuracy of the minimization scheme for narrow soliton pro-
files.

The pairing of two lattice solitons by a quasiparticle at the
velocity s51.004 is demonstrated in Fig. 4. Both the initial
(t50) and the final (t5996.82) profiles are presented. Dur-
ing this time the soliton has passed 1000 chain sites. The
initial profiles have been obtained by the numerical minimi-
zation scheme while the final profiles have been found as a
result of the numerical simulations of the equations of mo-
tion ~1!. The initial and final profiles coincide perfectly. The
equilibrium distance between the lattice solitons is not so
large; the wave functionfn is still one-humped and a weak
two-humpness of the deformation field appears at this value
of velocity s.

The pairing of two lattice solitons by a quasiparticle at the
velocity s51.05 is more clearly shown in Fig. 5. The initial

FIG. 1. Profiles of the Davydov-Scott self-trapping mode at the
sound velocity (s51) for the initial time (t50) and the final time
t51000.05. They completely overlap when plotted at the same
positions.
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profiles~curves 1, 2, 3! have been found by the minimization
techniques while the final profiles~curves 4, 5, 6! have been
obtained as a result of numerical simulations of Eqs.~1!. The
final coupled state has passed 1000 chain cells, the initial
time is t50, and the final time ist5945.05. The final ve-
locity has the values51.046. The difference between the
final and initial velocities is due to decreasing accuracy of
the minimization scheme when the soliton profiles become
narrow. Only initially this discrepancy happens; afterwards
the soliton has a permanent profile and the constant velocity
s51.046. The equilibrium distance between the lattice soli-
tons has been increased, so that both the wave function and
the relative displacement field have two humps.

Thus, from the numerical simulations carried out in this
paper we can draw two important conclusions. First, they
confirm our analytical predictions on the existence oftwo
supersonic transport mechanisms:~i! supersonic self-
trappingand ~ii ! capture of the self-trapping solitons by the
lattice solitons. Second, and more important in view of ad-
ditional new results, they demonstrate thestabil ity of the
predicted coherent structures. Therefore, stable supersonic
mechanisms for transport by solitons exist.

To conclude the numerical part of this paper, one should
mention thespectralmethod developed recently34 for nu-

merically seeking stationary soliton profiles in discrete sys-
tems. This method could also be applied to studies of the
equations of motion~1!, and some problems concerning the
interaction of a quasiparticle with a nonlinear lattice seem to
be of future interest. First, the bifurcation of the self-trapping
mode could be proved in a more straightforward way and the
completeset of supersonic soliton modes could be derived,
e.g., a 3l -p mode, etc. New bifurcation points in the super-
sonic region might exist. Second, the minimization scheme
allows us to treat onlycontinuumsolutions while the spectral
method is a useful tool for seeking stationary intrinsically
discretesolutions.34

VII. SUMMARY AND OUTLOOK

In this paper, we have investigated the dynamics of a
finite and conserved number of noninteracting quasiparticles
~quanta of an intramolecular excitation or excess electrons!
coupled to longitudinal phonons of a 1D anharmonic lattice
~molecular chain!. The interatomic~intermolecular! potential
has been considered to be of a general form withhardening
anharmonicity satisfying all the physical requirements. As a
result, in such a chain we have discovered the bifurcation of
the DS self-trapping~polaron! mode at the sound velocity

FIG. 2. The profiles of thel -p soliton at the initial time
(t50) and the final time (t5996,05). After backshift in space,
they coincide perfectly. The velocity of the soliton iss51.004.

FIG. 3. Same as Fig. 2, but now initially the soliton velocity is
s51.05 and its final value iss51.046. The solid line is fort50
while the dashed line is for the backshifted profile att5956.05.
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into three supersonic, dynamically stable modes:~i! the
pure self-trapping pmode which exists with both subsonic
and supersonic velocities;~ii ! thecapture and transferof the
self-trapping state byone acoustic~lattice! soliton, i.e., an
l -p mode; and~iii ! thepairing of two lattice solitons at some
fixed distancevia their interaction with a quasiparticle, i.e., a
2l -p mode. Thel -p as well as the 2l -p modes only exist in
two-componentsupersonicsoliton forms. In other words, the
self-trapping mode exists with both subsonic and supersonic
velocities. When it overcomes the sound velocity, then, at
least, one or two lattice solitons can attach the polaron, cre-
ating together with it acoupledstate. The total energy of this
coupled two-component soliton state increases. However, the
energy is less than the sum of the energies of the~two-
component! polaron state and of the~one-component! lattice
soliton when they are moving with the same velocity but
displaced at sufficiently large distance, considered as nonin-
teracting objects. In the particular case of a cubic anharmo-
nicity with a fixed value of the soliton velocity, this result
has been proved analytically.

While studying the existence ofsupersonicsoliton modes
and their dynamical stability, we have developed a numerical
method which may be also useful in other studies. More

exactly, both thep and l -p soliton modes have been treated
analytically and, although there are some difficulties with
different constraints, it was possible to come to important
conclusions concerning the physical mechanisms of the su-
personic transport of quantum quasiparticles~intramolecular
excitations or extra electrons!. So far, the pairing of two
lattice solitons has been discovered only numerically. There-
fore, the numerical studies in this paper are important for two
reasons:~i! They prove the dynamical stability of thep and
l -p soliton solutions~obtained analytically! which have bell-
shaped profiles for both the wave function and the deforma-
tion field. ~ii ! In addition, we expect that apairing of more
than two lattice solitons may also occur and the present
method could be applied and adapted to such studies.

The essential point of this paper is that we have thor-
oughly taken into accountdispersion effects due to the lattice
discreteness. Previous studies of the 1D acoustic polaron
problem in anharmonic lattices could only treat self-trapping
states with subsonic velocities, 0<s<1. When the disper-
sion term withb.0 is involved in the dynamical process of
soliton stabilization, then a hardening lattice anharmonicity
~with, e.g., a cubic coefficientg.0) will play a crucial role,

FIG. 4. The pairing of two lattice solitons by a quasiparticle at
the velocity s51.004. Both the initial (t50) and final
(t5996.82) profiles are presented. The initial and final profiles
coincide perfectly, even after a passage of 1000 chain cells.

FIG. 5. Same as Fig. 4, but at the velocitys51.05. The initial
profiles ~solid lines! have been found by the minimization tech-
niques while the final~backshifted! profiles ~dashed lines! have
been obtained as a result of numerical simulations of the equations
of motion ~1! at t5945.05. The final velocity iss51.046.
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resulting in the appearance of supersonic states. In this case,
due to the dispersionb and the nonlinearityg, the supersonic
‘‘continuation’’ of the DS self-trapping mode takes place.
On the other hand, the well-known lattice~acoustic! solitons
can appear and couple to the self-trapping mode~to be ‘‘at-
tached’’ to it!. The four parameters—two dispersionsa ~in
the quantum subsystem! andb ~in the lattice subsystem!, and
two nonlinearitiesg ~coupling of both the subsystems! and
g ~anharmonicity in the lattice subsystem!—are involved in
the process of stabilized soliton motion. The interplay pa-
rameterk5ag/bg appears in the theory. It can be consid-
ered as the ratio of the ‘‘reduced’’ nonlinearity in the lattice
subsystem (g/b) to the reduced nonlinearity in the quantum
subsystem (g/a). The valuek51 is critical; in this paper it
was defined as the Boussinesq limit. In the regionk.1, the
coupling of the self-trapping soliton with the lattice soliton
happens, while fork,1 a quasiparticle only with higher-
energy levels~when the soliton envelopefn has, e.g., one
node! can be coupled. However, the latter states have been
shown numerically to be dynamically unstable.

Finally, it should be emphasized that the present paper is
devoted only to those two-component soliton solutions of the
equations of motion~1! which have a stationary profile~one-
phase or one-speed soliton solutions!. One of these compo-
nents represents a moving wave function of a quasiparticle.
The latter is described by the envelopefn(t) of a permanent
profile with the carrier frequency given by the eigenvalue
«. The motion of this envelope soliton is accompanied by the
lattice deformation fieldrn(t), which also has a permanent
profile. If the time evolution~in the framework of a numeri-
cal scheme! of such profiles is stationary, we call them dy-
namically stable soliton solutions. In this paper, the physical
mechanism for each soliton mode is discussed. However, in
the case when the Davydov and Boussinesq~lattice! solitons
are initially displaced at some finite distance, some attractive

interaction between them appears, and, as a result, the soli-
tons start tooscillate when passing through each other. Such
an oscillating motion has been observed numerically in a
recent paper25 which appeared just when this work was al-
ready completed. This motion describes thecollision process
of the Davydov and Boussinesq solitons when their centers
are initially displaced at some finite distance. However, if the
centers of these solitons are placed at the same position, a
stationary bell-shaped~in both the componentsf and r),
two-component profile, describing the coupledl -p state, ex-
ists. The latter~stationary! state has been treated in this paper
exactly. In the case of a cubic anharmonicity~28!, the l -p
coupling has been shown to occur ifk.1.

Two aspects are also important to emphasize:~i! The ex-
istence of supersonic solitons means that the solitonic trans-
port mechanism in, e.g., biophysical systems will be much
more effective than thought before.~ii ! Since the lattice soli-
tons participate in themixedtransfer mechanism, the super-
sonic transport is expected to bethermallymore stable than
the pure self-trapping. The dynamics of nonstationary
strongly localized states in anharmonic chains26,39 and the
thermal stability40–42 of supersonic nonlinear excitations are
other topics of future interest.
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