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Supersonic mechanisms for charge and energy transfers in anharmonic molecular chains
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The dynamical theory of a quantum quasiparticle moving in a deformable anharmonic chain is extended into
the supersonic region. Besides a supersonic self-trapping mode, which is a direct extension of the well-known
subsonic Davydov-Scott mode, two additional dynamically stable transfer mechanisms have been discovered
in this region:(i) the capture and transfer of the self-trapping state by a supersonic adtaititie) soliton and
(i) the pairing of two lattice solitons via their interaction with a quasiparti$©163-18206)01222-2

I. INTRODUCTION namical self-trapping of the high-frequendintrapeptide
amide-l oscillations through their coupling with low-

The transports of vibrational energy and charge in mo{requency vibrations of the peptide groufss whole ob-
lecular systemge.g., in proteif are fundamental processes jects. The two-component solitary wave solution of the re-
in physics, chemistry, and biology. One of the most promis-sulting equations of motion gives rise tosabsonic moving
ing actual transfer theories is the Davydov-Sa@f) self-  breather (envelope solito@ccompanied by a pulse of lattice
trapping mechanism, extensively described in Refs. 1 and 2compression. On the other hand, Davydov’s wave function,
which originated from the classical works of Landaand  which actually describes the adiabatic limit of the exciton-
Pekar* According to this mechanism, two-component soli- phonon picture, leads to the classical dynamical equations
tons (moving polaronlike states being stabilized by the coinciding with the Schrdinger limit of the Klein-Gordon
counterbalance of thatersite resonance interacticend the  equation for the high-frequency component in the Takeno
exciton-phonon couplinghave been provédo bedynami- model. Therefore, both approaches are actually classical de-
cally stablecarriers of vibrational energy. The latter is re- scriptions.
leased by hydrolysis of adenosine triphospH&{€P) at one In the case of the dynamical self-trapping, the coupling of
end of ana-helix protein molecule and transported to the the amide-I mode to lattice vibrations in a polypeptide chain
other one. The amount of this vibrational energy is abouis usually modeled by somearmonic potential. Such an
0.422 eV. It is partly stored in the high-frequency intramo-approximation is satisfactory in the standard polaron theory,
lecular C= O stretching modéamide-| vibrations with fre- when the dynamical self-trapping of excitons is due to their
quency about 1665 cm'). coupling to anoptical mode of the latticde.g., as in crys-

There are two approaches to the soliton modeling of thealline acetanilid®. However, in the case of the dynamical
transport of vibrational energy in biological macromolecules.acousticself-trapping of a quantum of the amide-l mode or
The original one is based on the exciton Hamiltonian scheman excess electrdfl,the harmonidlinearn approximation of
where, besides the usual electric dipole-dipole coupling bethe acoustic phonon mode is valid only for sufficiently small
tween neighboring peptide groups, Davydov and Kyslfkhavalues of the velocity of the self-trapped states, since with
have introduced the short-range interaction of amide-I vibraincreasing velocities the amplitudes of the localized com-
tions with low-frequency longitudinadcousticphonons of pressions of the chain rapidly increase up to infinity. As a
the molecular chain. This interaction is caused by the depernresult, adjacent chain moleculgseptide groupswould pass
dence of the amide-I energy on the distances between neigtiirough each other, which, of course, is a completely un-
boring peptide groups. As a result, the linear expansion terrphysical situation. In order to avoid this difficulty in the DS
of this dependence gives rise to thenlinearity of the theory ahardening(positive anharmonicity must be added
self-interaction of excitons in the Davydov-Kyslukha to the harmonic potential. Then, with decreasing distances
model® This model admits thacousticself-trapping soli- between neighboring molecules, the intermolecular potential
tary wave solution called Davydov’s soliton. The improved will increase faster than the uswgliadratic behavior. As a
version of this modélis described by a pair ofoupled result, the dynamical acoustic self-trapping theory can be
difference-differential equations. The self-consistent solitorextended to the whole interval afubsonicvelocities, in-
solution of these equations exists only furbsonicveloci-  cluding the speed of longitudinal soufd.
ties. On the other hand, any positive anharmonicity in a lattice

The second approach to the soliton modeling of the enfesults in the appearance of the well-known extremely stable
ergy transport in biological systems has been suggested arstipersonic acoustiqlattice) solitons? (e.g., the Toda
developed by Takerimn the basis of hislassicaloscillator-  solitong®) which can also be considered as effective carriers
lattice model. This two-sublattice model is a chain of har-of energy in biological system$.Their dynamical stability
monically coupled peptide groups and it describes the dyis due to the balance of the intermolecular anharmonicity and
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the lattice dispersion. The mixture b o types of dispersion

(the intersite resonance energy and the lattice discreteness HZE
and oftwo types of nonlinearitiegthe exciton-phonon cou- ;
pling and the lattice anharmonicjtgives rise to very com-

plicated dynamics of such a system. So far only a few at- —Up-1)P,
tempts are known to have tackled this problem analytically

and numerically?>?°still its solution is far from being fully Here®,(7) is a discrete wave function of the quasiparticle

understood from the physical point of view. In this paper, onwhile the relative displacement fieldp,(7)=u,(7)

the basis of analytical and numerical studies, we show that U, 1(7) describes the lattice compressitifipositive) or

the DS subsonic self-trapping mobdgurcatesat the velocity stretching(if negative. The dimensionless displacemeant

of longitudinal sound, at least, inthreedynamically stable  of the nth chain molecule from its equilibrium position is

supersonic soliton modes. One of them is still characterizedcgled by the lattice constaht The dimensionless time is

by the self-trapping mechanism, however with SUpersonigiyen by r=yt/l whereu, is the velocity of longitudinal

velocities, while the appearance of the other two is due to th€,nd in the chain. Then the time unit corresponds to the

coupling of the self-trapping states with the lattice solitons yration of sound propagation over the distahcéor the
The paper is organized as follows. Section Il is to a 'arge_quantum subsystem, the characteristic frequendy is used

extent also an int.roductory part. Thgre, we present.the basi, qefine an energy unit, so that the intersite enddggnd
equations of motion to be studied in the next sections anag,, coupling constang are given in units ofiug/l. The

lytically and numerically. Then, the paper is divided into two |4ice energyfas well as the total chain energy given by Eq.
parts. The first one is _st_rlctly ar_1a|yt|c_al. The s_elf-trap_plng(z)] is measured in units ofMv2 with M being the mass
(polaron states and their interaction with the lattice solitons f a chain molecule Theo intermolecular  potential

are investigated in Sec. Ill. In the next section, explicit SO“'U(p)=p2/2+A(p) is supposed to be of a general form and

tc;ZSZ?}Itlgéon'?hg’; atﬁgbé(r:]ea:nihea;m;?:ﬁ;tyng\jvlthiofr:gcioﬁtrggs anharmonic parf\(p) is required to satisfy the following
b : ' 9 y roperties:(i) p~2A(p) is a monotonically increasing func-

modes are discussed. After that first analytical part, in the. . A P >
second part of the paper numerical simulations are presented? 2" the half-axis &p<e and (i) lim,_op™"A(p) =0.
The variational approach of Sec. V, together with the results The wave function®y(r) is normalized by

of Sec. IV, is the basis for the subsequent numerical proce-

dures. Detailed numerical results are shown in Sec. VI. The > | Pn(1)|2=vo=Q, (3)
paper is concluded by a short summary and outlook. n

g
Q:[_D(®n+1_2®n+q>nl)+ E(unJrl

1/du,\?
R e +UU—Upi1) (- 2

whereo is a scaling parameter which measures the ratio of

Il. BASIC EQUATIONS the characteristic energies gf both the quantum and lattice
subsystems:o = (fvy/l)/Mvg=#/Muvol. This parameter
In what follows we call a quantum of the amide-I excita- may be interpreted as the ‘“charge” afne quasiparticle.
tion or an excess electron a quantum quasiparticle. The maipherefore thgdimensionlessquantityQ can be considered
assumptions in the DS theory extended to manyas the nontopological charge of the whole system with
quasiparticles*?” are the following: (i) dealing with only  quasiparticles. The dimensionless fotf) of the equations
longitudinal degrees of the one-dimensior@dD) lattice,  of motion with the normalization conditiof8) appears to be

(ll) the presence of nearest'nEighbor interactions both for th@onvenient because it does not depend exp||c|t|y on the num-

lattice and for the quasiparticles, ariii) the absence of pery. For all v we have the same dynamical equations and

interaction between quasiparticles. Under these assumptiong,e dependence on appears only in Eq(3). The limiting

the basic equations of motion, which describe the couplingase of a pure anharmonic lattice corresponds to zero charge
of a conserved number of noninteracting quantum quasi- (Q=0) in the constraint3).

particles to an anharmonic deformable molecular chain, can The pair ofcoupleddifference-differential equationd)

be obtained in the exciton formalism by using theyith the constrain(3) is a starting system to be studied in
generalizedDavydov wave functiori?""* As a result, this paper. The present form is convenient from the point of
they can be formulated in the dimensionless fofrf view of numerical simulations because the wave oscillations
of the high-frequency partcarriep of the complex field
®,(r) are reduced to a minimum level. In the

do g L , )
i n:_D(q)n+l_2q)n+q)nfl)__(pnfl+Pn)q)nv decquplmg limit (g—>9) th_e linear ban_d of the_small
dr 2 amplitude wavesd, (7)=exdi(nk—e,7)] with the dimen-
sionless wave number of the carrlee[ — m, 7] is
d’p g Kk
5.2 =Y (s = 20" (pr) +U’ (pn-1) = 5 (| Pl ep=4Dsir?. @

—|®p 2= @2+ 4]?), (D Then the(dimensionlessgroup velocity is given by

where the prime denotes a derivative with respect to the ar- _v_ dey, _ .
. S =—=——=2Dsink. (5)
gument. The corresponding Hamiltonian is ve dk
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At the middle of the bandi(= #/2), the group velocity has where the eigenfunction ¢(x,7) is normalized by
its maximum §,=2D). Therefore, in order to have a quasi- [ $2dx=Q. Equation (11) represents a stationary Schro
particle motion in the supersonic regime, the inequalitydinger equation. Its potentigd(x,7) has to be determined
D>1/2 must be imposed on the parameters of the chain. from Eqg.(12). Note that the inhomogeneity of the deforma-
To investigate analytically the set of equatiofi3 in a  tion p(x,7) depends omb(x, ), i.e., the solution of Eq11).
general casg>0, we separate the wave functidn,(7) into  For bound(localized states, the ground-state enekgiias to
low- and high-frequency parts. In other words, we look forbe negative. This is only possible when the termkdasEq.
solutions of Eqs(1) in the form of a modulated plane wave, (11) is positive. Therefore, for localized solutions, the inter-
3 Gk (ep+e)7]) val of admissible values for the wave numibeis reduced to
Pn(7)=¢n(7)e b ' (6) |k|< /2. We take the interval €k< /2 and using Eq(5)

where the real functionss,() describe a wave envelope We can determine the numbkrin terms of the velocitys

with weak variation from site to site. In this paper we arethrough the equatiobcosk=(D*~s74)'2 _
interested only in localized solutions withero boundary Compared to the previous studi€sthe lattice equation
conditions. This means that both the lattice fieftlg 7) and (12 F:ontalns an extra fourth-order Qerlvat|ve term. This d|§-
po(7) have to decrease to zero sufficiently fast whenP€rsion term appears due to the discreteness of the lattice.
n— +oo. The free quasiparticle eneray, in Eq. (6) is given  Instead of Eq(12), another form can be uséinamely,

by Eq. (4 while the perturbed Kound energy 1

e=¢g(k)<0 has to be determined. NTY. _ = 2y _

Substituting the representatid@) into the equations of Prr= U)o 15Pr0act 0(67)6=0. (13
motion (1), we obtain the following equations for the enve-
lope ¢,(7), the relative displacement fielg,(7), and the
spectral parameter:

Both Egs.(12) and(13) are of the Boussinesq type with the
linear  dispersion laws w?=k?%/(1+k?/12) and
w?=k?(1—k?/12), respectively. Compared to the latter, the
do, _ dispersion law for Eq(12) is well defined for allk. There-
g, ~ DSirk(¢n-1~¢n+1), (7)  foreitis referred to as thenproved Boussinesq equatiofi.
Equation (13) is called theill-posed Boussinesq equation.
g However, as was mentioned before, for the bound states we
Dcok(pni1—2dnt dpn_1)+ E(pn_1+pn)¢n+s¢n=0, have k<m/2 and therefore the basic discrete equat{én
will also work in this region within the ill-posed approxima-
(8) tion. Note that in both cases the dispersion is negative; i.e.,
the group velocity decreases with increasing wave numbers

dzpn ’ ’ ’
d-2 =U"(pn+1)—2U"(pn) +U ' (pn-1) k.

For stationary profiles moving in the framg=x—s7,
Egs.(11) and(12) [or (13)] become

g
—5(Bho— b= datdn). (9
" _ ” _ 2 _ — 2
According to the constraintd), solutions for the envelope 2% T8p¢+ed=0, bp"+(1=s7)p+ dp Alp)=9¢"
¢n(7) have to be found on the multidimensional sphere (14

) Here the coefficientsa and b are defined through
; ¢n(7)=Q. (10 a=Dcok andb=s?/12. This value fob, which depends on
the velocitys, occurs for the improved Boussinesq equation

weakly varying from site to site. Then the continuum ap-also that for sufficiently larged the long-wavelength ap-
proximation can be adopted in calculating these fields. Not®roximation k—0) can be applied. Then it is allowed to set
that when investigating only wide excitations, we may missapproximatelya=D, even for supersonic velocitiesX1).
interesting effects due to strong localizat®¥n®* Since in  In any case, we should emphasize that solutions of Ed.
Eq. (6) the carrier wave is still considered as a discrete lattic&lo not depend significantly on the explicit velocity depen-
field, more exactly, this approximation can be referred to aglences ofa andb. Thus, in the following we ignore in the
a quasicontinuum limit> Hence, in Eqs(7)—(10), we re-  analytical considerations the velocity dependencea ahd
place n—x, ¢,(7)— ¢(x,7), and p,(7)—p(x,7). Thereby b. However, for numerical applications, to be given below,
the differences in Eq97)—(10) are replaced by spatial de- We shall, of course, keep the variations with velocity. The
rivatives. As a result, Eq.(7) is transformed to Wwave functioné(§) in Egs.(14) is normalized by
¢.+2Dsinkg,=0. In the case of a stationary envelope, it is

simply reduced to the band spectrud). The other equa- 2 _
tions are transformed to $°(§)dé=Q. (15
Dcokgy+gpdp+ed=0, 11 Finally, for analytical calculations of the total energy of

the system when lattice dispersion is taken into account, we
need a correct quasicontinuum approximation of the Hamil-

1
1 _ 2 —
prr= U (P 12pxx”+g(¢ )o=0, (12 tonian function(2). Using Eq.(6), we find



Dcok¢—gd’p

H= {489}~ Qv+ | dx

1 o
+ Eﬁx(l_ 95112) " By + U(p)}, (16)

which corresponds to Eq$11) and (12). Then the Schro
dinger equatior(11) follows from the variation

s
8¢

Obviously, Eq.(12) appears from the Hamiltonian equations

=0. 17

H— sf $2dx

(18

== (1= 35112 " Byy. (19

SarT]
Using the relation p=—u,, we find from Eqg. (19
,8X=(1—a§/12)u7. Substituting this relation into the Hamil-
tonian(16) and using Eq(11), we can evaluate the following
expression for calculating the total energy:

1
2
24

The first term on the right-hand sid&HS) is the band en-

1 2
EZQ(sb-}-s)-l-f dx §u7+ +U(p)|. (20
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least, one bound state. Therefore, one can conclude the
existence of a symmetric bell-shaped wave functgi¥) if
the functionp(¢) is also assumed to be of a symmetric bell-
shaped form. Then the one-to-one mappingis ¢ and
¢—p take place for &<£<« and therefore the function
d(p)=¢p[&(p)] can be defined within the domain
0=<p=<pq. Using zero boundary conditions, Eq%4) can be
transformed to the following integral equation:

e== b2 [ 202 @2
Po

where the functiorZ is defined by

1
Z<p>=gp*2f:¢2(r>dr+§<s2—1>—p*2A<p>. 23

The amplitudepy>0 of the soliton componenp(¢) is a
nontrivial solution of the equatiod(p)=0 .

The necessary condition for the existence of a soliton so-
lution is thatZ(p) be convexand positive on the interval
0<p<pq- Thus, in the case of a pure latticg=€ 0), exactly
the existence of the well-known supersong>(1) lattice
solitons follows from the functiof23). When a quasiparticle
is present in the systeng{0), then the behavior of the

ergy of v free quasiparticles, the second one is their boundynction #(p) in the limit p—0 (£é— +) determines what

energy in the deformation potentia(x,r), and the integral

kind of two-component solitons can exist. Indeed, in the case

term represents the total energy of the pure lattice deformast 5 |inear behavior of the functionp?(p) at p—0, and

tion. Note that the second term in the integral on the right-

hand side of Eq(20) takes into account the lattice dispersion
originating from the fourth-order derivative term in EG2).
For traveling wavegTW) solutions with constant profiles the
expression20) is reduced to

2

> 2+E 2+U 21
5P TSP (p)|- (2D

E=Q(epte)t f dé

The basic equationél) with the integrals of motior(2)
and (3) are used in this paper for numerical simulations.
Equations(8) and(9) are useful in the numerical procedure
developed in Sec. VI for seeking both the soliton compo
nents¢, andp, . Finally, the continuum equatior{$4) with
the integralg(15) and(21) are starting objects for analytical
studies. The thereby obtained soliton solutions are used
initial conditions in numerical simulations. Even when the
discrete equations are used in numerical studies, we de
only with wide soliton profiles for both the lattice fields,
andp, .

Ill. SELF-TRAPPING (POLARON) STATES AND THEIR
INTERACTION WITH LATTICE SOLITONS

only in this case, lig_qp~2[§¢%(r)dr is finite and there-
fore for Z(p) >0 (in some finite interval & p<p,), in gen-
eral, the first(self-trapping term on the RHS of Eq(23) is
important. This means that trself-trappingtransfer mecha-
nism is possible with botlsubsonicand supersonicveloci-
ties; it will be referred to as thp (polaror) mode. The pres-
ence of apositive anharmonicity A(p) leads to some
spreading of the soliton profile, essentially improving at high
velocities the conditions for the continuum approximation.
Without A(p), only the subsonic self-trappingnechanism
works in the system.

Another possibility for the existence of soliton solutions is
a sufficiently rapid (nonlinea) behavior of the function
¢*(p) in the limit p—0, such that the inequality

agsf’5<;52(r)dr<A(p) is satisfied for some finite interval

0<p<pg-. In this case, the contribution originating from
Al(p) is responsible for the stabilization of soliton motion,
while the first(integra) term on the RHS of Eq(23) only
changes the soliton profile and increases the amplipgde\
soliton of this type cannot be referred to as a polaron. A
family of these solutions describes thaptureand transfer

of a quasiparticldwhich always is self-trapped its¢lby an
acoustic soliton or, in other words, tleupling of the self-

In this section we show on the basis of an analysis of Eqsirapping state with a supersonic lattice soliton. Because of

(14) that in the supersonic regidwo transport mechanisms

that, it may be called the-p (lattice-polaron mode.

can exist. One of them is due to the nonlinearity induced by To be more concrete, we now determine the lowest eigen-
the interaction of quantum quasiparticles with classical latvaluese of the nonlinear spectral problem given by Egs.
tice vibrations while the other one is caused by the anharmo4). Since we look for bell-shaped soliton profiles, the vari-
nicity in the lattice vibrations themselves. Starting with Egs.able¢ can be eliminated from these equatidfhs® Then one
(14), we notice that for any potential welt p(£) there is, at  gets for¢(p)=¢[&(p)]
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d2¢ d¢ 2 d2¢ QM 1/2 . 2a ) S
WV\H—[(E) _¢W_£ (gpt+e)d %(5)—(7) cosh (M§),Pp(§)—gﬂ cosh “(ué),

2 (29
dglajds|? 1][dw
“dplbldp) T2 5‘9(# =0, (24 wherepu satisfies the cubic equation
— 3
where W= (1—s?)p?/2+ A(p). Substituting the asymptotic 4u(pu®=7°)=3pug. (30)

relation

¢%(p)=C,-1p" (25)
for p—0, with a positive constart,,_,, into Eq.(24), we
find the whole spectrum of the lowest eigenvaluesThis
spectrum consists afvo bands. The first one corresponds to
a=1 and describes the ground-state energy eigenvalues
the p mode:

e=—apu’=e,, u?=(Cog—1+s?)/4b. (26)

Here the velocity parametey is defined in Eqs(27) and
wo=(Qg?/12ab)'” can be referred to as the characteristic
inverse width of a soliton. This equation has a positive
unigue root on the whole interval 9s<oo. The limit
b— 0 andy— 0 under the conditior = 3 immediately leads
to Davydov’s subsonic solutiol?® and therefore it may be
(r)?ferred to as the Davydov limit. Note that the constraint
k=3 in the solution(29) and (30) appears as a result of
imposing the linear behaviora(=1) in the ansatZ25) on
the whole interval 8p<pg.

The I-p soliton solution @>1) can also be presented

This mode has both subsonic and supersonic velocities in tHePlicitly in the case of a cubic anharmonicity, even without

vicinity of the sound velocitys=1 . The second band corre-
sponds toa>1 and describes the eigenvalues of thp
mode:

(27)

As follows from Eqs.(27), the bound states for tHep mode
can exist only fors>1, so that onlysupersonicsolitons of
this kind can propagate. The const&y and the powerx
are determined by the normalization conditi@). They can
be calculated once the potentldlp) is given explicitly.

e= —aa27]258|_p, 7°=(s*—1)/4b.

IV. EXPLICIT SOLITON SOLUTIONS
FOR A CUBIC ANHARMONICITY

The general conclusions on the existencawb super-

sonic transport mechanisms by the two-component solitons
with constant bell-shaped profiles in both the components,

the constrainic= 318221t corresponds tar=2 in the ansatz

(25). The (non-normalizey two-component soliton solution

is

k—1
2

112
Pi-p(é)= 5( ) n?cosh ?(pé),

6a
Pp(§)= 5 n?cosh ?(5¢), (3D
where 5=6./2ab/g . Here the bound energy and the pa-
rametern are given by Eqs(27) with a=2 . The explicit
form of thel-p solution(31) can be normalizeflccording to
Eqg. (29)] only at the fixed value of the velocity=s; given

=

13
M= 71

1
=3

2
k—1

(32

given in Sec. lll, can be illustrated and further extended in . .
the particular case of the intermolecular potential with aSimilarly to thep solution(29) and(30), the latter constraint

positive cubic anharmonicity:

1
Alp)=37p° 7>0. (29

The essential point is that under the additional conditio
ay/bg= =3, both bell-shapedolutions of the set of Eqs.
(14) and (15) can be giverexplicitly. The constraint«=3
fixes some value of the velocity due to the dependence of
the coefficientsa andb in Egs.(14) on this parameter. How-

ever, this dependence does not drastically change the dyna

ics of the system. Moreover, when we use the ill-pose
Boussinesq equatior{13), in the long-wavelength limit
(k—0) we havé® a=D andb=1/12. Therefore, instead of
fixing some value of the velocitg, we may approximately

impose a constraint on the parameters of the system, namely,

4D ylg=1.

Assuming the ansatz(25 in the whole interval
0<p<py, We can get from Eq922) and (23) the explicit
profiles of both thep and |-p modes. Thus, in the case
a=1, we find thenormalizedsoliton profile

o

m

is due to imposing the quadratic behavior of the function
¢?(p) [a=2 in the ansat£25)], again, on the whole interval
0<p<pqy. For other values#s,;, the wave function and
deformation potential given by Eq&1) will slightly change
their profiles, when, of course, the normalization condition
15) is taken into account. In this case, the asymptotic power
a will also deviate from the value 2. In the particular case,
when the constraink=3 is imposed, the “projection” of
the profile(31) onto the spher€l5) can be given explicitly.
The projected profile is stibbell-shapecdand its explicit form
can be derived by using a two-soliton solufidof the Jacobi
nversion problem for the H®n-Heiles two-particle system.
he valuex=3 is one of the integrable cases of the system
of Egs.(14) and in this particular case tHep (bell-shapey
profile takes the form

P
b1p(6)=5a(a’~1) 7?0 " }(§)cosh Yane),
(33
2a
pip(€)= E(az— 1) 7*0 ~%(§)[ a’cosh X(ané)
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=2
+tantf(ané)cosh *(7é)], Ezj d —a¢>’2+g¢2p+gp’2+ %SZpZ—U(p) _
where0 (¢) = a—tanh@né)tanh(r¢) and the parameter is 37
a root of the equation
The Lagrange multipliee has to be determined from the
) 5[t tanh ty\ ]2 3 mo 3 first of Eqgs.(14). Multiplying it by ¢(&), integrating from
a(a”—1) .[71 a—ytan o dy_i ) —o to o, and using the normalization conditiqd5), we

(34)  obtain

This equation gives the functiom= «(s) and therefore the _ ,
spectral parameter=¢(s) can be determined according to e=Q J (ag'?—g¢’p)de. (38)
Egs.(27). In the particular casey= 7= uy/2, given by Eq.
(32), the solution of Eq(34) is =2 and the two-component
profile (33) is reduced to Eq9.31). For other values of the
xﬁlr?g:iyc;éor the parameter;) Eq. (34) should be solved B(&)=(Qulc,)Ycosh (ué), p(&)=pocosh 2(ué),

oy (39

The binding energy,=&,+ & — &, of thel-p state can . o

also be calculated numerically for ay-1. However, for ~Wherec,=Jcosh“*{d{ and thethree variational param-
s=s, and k=3, whenn= uy/2 [see Eq(32)], these calcu- €terse, u, andp, are to be determined from the extremum
lations can easily be done analytically by using the solutiongonditionsdL/da=0, dL/du=0, anddL/dpo=0. The first
(26)—(31). In this case, Eq(30) can be solved explicitly, and ©Of these conditions yields the relation
its positive root isu= uy. Moreover, we find that the bound
energy € is the same for both thg and |-p states:
Ep=&|_p= —au3. Next, thep components in Eq§29) and  The two other conditions lead to equations which can be

Since we are looking for bell-shaped soliton solutions, we
choose the trial functions in the form

po=a(a+1)au?lg. (40)

(31) are reduced to written in symmetric form, if we take into account Ed0):
2a , F(po) 2 52 4b ‘0 2a
pp<§>=5uocosh (106), . 3\p BOHPOTRIGI D (2a+ 1)
(41
o G(py) 2(s° 2%
RGE uocosh ( 5 5), (39 w3\ TPt QU5 T
and the Boussinesq limia(-0, g—0, andk—1) of thel- where the functiong andG are defined by
p mode becomes 1 (ro p\ ¥ dp
F(PO)Z—J (1——) U(p)—,
a p
(6)= — uloosh 2 22¢ (36)
Pi 2g Mo 2 . 1
- L G ==[F +poF’ . 42
Substituting these profiles into the general expres$iin (o) 2[ (Po)* PoF(po)] 42

: — 2 5 2 H
for the total energy, we fmd*jp—16a_ buof5g=>0. This Finally, substituting the trial function&9) into Eq. (38), we
proves that a polaron and a lattice soliton do couple, Creat'ngbtam

a new coupled lattice-polaron statelt follows from Eqgs.

(35) and (36) that the amplitude of the chain deformation in e=—alau’. (43)
the case of the lattice-polaron state exceeds that of a pure
lattice soliton, as can also be seen from the funct&s) for In the particular case of the cubic anharmonic2$), the
a general form of the anharmonici®yp). general equation&tl) become

Finally, one can observe that in the linsit>1 the profile
(33) is transformed into th@ soliton solution given by Egs. 9(2—-a) 3
(29) and (30). Therefore, we can conclude thatst 1 the (u*=7*)u= (a+ 1)2(20(-!- 1) Ko
subsonidS self-trapping modeifurcates or splits into the (44)
two supersonic soliton modgs and |-p described by Egs. L 9(a+3) 3
(26), (29), (30) and Egs{(27), (33), (34), respectively. [Fa(atl)rp?=n’lu= A a+1)%(2a+1) Ho-

It can easily be verified that, in all the particular cases treated
above analytically, Eq$44) admit exact solutions, as should
In this section we develop a variational approach whichbe expected. In particular, both the Davyddv—0 and
can be applied to the case ofjaneralintermolecular poten- y—0) and Boussinesga— 0, g—0, andk— 1) limits can
tial U(p). To this end, we notice that the stationary equa-be drawn from these equations. They also contairnptlaed
tions (14) can be represented as the variational equationkp solutions given by Eqg29) and(30) at «k=3. In a gen-
S(L+ef p2dx)/ 6¢p=0 and 5L/ Sp=0 with the Lagrangian eral case, wher#1 or 2, Eqs.(44) can be solved numeri-
function cally.

V. VARIATIONAL APPROACH
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Note that the soliton amplitude, and the bound energy . 9 o
are calculated according to Eqd0) and (43), respectively.  £=L{¢; ,Pn}:; ~a(Pn+17 dn) "t S (Pht dhit)pn

VI. NUMERICAL INVESTIGATION 1o, b 2
OF THE SOLITON SOLUTIONS + 58Pt 5 (pnra=pn)" = Ulpnl,

. . . (48
In this section we develop a numerical approach for seek-
ing wide soliton profiles of the envelopk, and the displace- and the Lagrange multiplier is calculated according to Eq.
ment fieldp,,. It will allow us to find all the soliton modes (8):
treated analytically in the previous sections and some more

specific solutions. Then, taking the soliton solutiongnésal e=— i ﬁd’ —2a— EE 2ad, b
conditions for numerical simulations of the equations of mo- 2Q4F ddn " Q% it

tion (1), we can gain some insight into their stability. In other

words, thefinal profiles of both the lattice fieldgb, and +9(¢2+¢2 )p } (49)
pn(7) obtained by standard simulations at sufficiently large 207N e

times 7 allow us to decide whether or not the numerically . _

obtained initial soliton is atablesolution of Eqs(1). A soliton solution of Eqs(8) and (46) follows from the
The main idea of the numerical scheme is to accomplistfonditional extremum of the Lagrangi&48):

in an appropriate way discretizationof time derivatives in

the difference-differentiakequations of motion transforming gﬁextr;E ¢§:Q, (50)

them intodifferenceequations. Then soliton solutions can be n

obtained under minimization of the corresponding Lagrangeor the chain oN molecules we have chosen cyclic bound-

ian or some other finite-dimensional function. Fog the presen(tﬂy conditions; i.e., we pui—1=N if n=1, andn+1=1 if

case, we negd to discretize the derlvamif@n/dr on the 1 ZN. The number of lattice cell has been chosen in such

right-hand s.|de of Eq.§9). For_ TW solutions, which are a way that the cyclic boundary conditions do not affect the

weakly varying from site to sitesuch a procedure can be soliton profile. It is sufficient to tak®&l to be 10 times larger

. . . 2 _ 2 n .
carried out by requiring that“p,=s“p”. The next step is to than the soliton width.

replace the continuum derivatiy€ by an appropriatepatial For all subsonic velocities, the function£ is obviously
differencederivative. The dispersion of the acoustic longitu- bounded from below, and therefore the self-trapping mode

dinal waves in the continuum limit requires expansions in the.,, he found as a conditional minimum of the minimization
relative displacements of the chain molecules up to th%roblem

fourth order. We approximately substitute E§) by
1 —cﬁmin:; »2=Q (51)
s? Pn+1=2pnt Pn—1— l_z(Pn+2_4Pn+l

by applying the steepest-descent method. In particular, the
self-trapping soliton solution can be obtained by the descent,

+6pn—4pn-1tpn-2) starting from the vectof ¢2,p%N_,, where ¢3,=Q%?
#°=0 if n#N/2, andp,=0 for all n=1, ... N. The grid
n Pn g
=U"(ppr1)—2U"(pn)+U " (pp_1) spacing for the first step of the descent is taken to be
g ho=1. Let{¢X,pkIN_, be a vector anth, be a grid spacing
_ E(d’ﬁvz— ¢§+1_ ¢§+ ¢§71)_ (45) pbtamed at théth step. Then, we define the next step by the
iteration
k+1__ k k+1_ k
The difference equatiofd5) can be “integrated” twice n  =Cidnt oLy ), pn =pntChil, (52
and, as a result, we get where the constants;, andc, are defined by
&2 g ) 12
— 2
S?pn= T5(Pn+17 200 Pn-1)+ 5 (bt )~ U (p) €1=|Q / 2 (#h+eohily,) } :
=0. (46) —-1/2

C2: (53)

; (L5 +L2)

Both Egs.(8) and(46) can be represented in the Lagrangian

form Hereﬁd)n and Cpn are the partial derivatives with respect to

¢, and p,, respectively. The iteration is accepted if
ar L{pK pk < £{ X ,pK}. In this casehy,;=hy. Other-
L+eD ¢>§> =0, —=0, (47)  Wise, we puth,=h,/2 and repeat the iteration process. The
n dpn descent process is completed when the grid spalsjnige-
comes less than some which characterizes the required

where the Lagrangian is defined by accuracy of minimization.

J
I
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It should be noticed that in principle the lattice dispersion
term (with b>0) in (48) is not needed to obtain the subsonic
solutions. This mode can be obtained even=f0. However,
for s>1, there are neither minimum nor maximum points at
the Lagrangian surfacé8). The extremum points, which
correspond to supersonic soliton solutions, are only of the 0047
saddle type, and therefore it is impossible to find any super-
sonic solution by minimization of the functiof8). The
most convenient way is to seek the vecfas,}h_, as a W=t T T T
conditional minimum of the problem n

(a)
0.08-

PZ/Q

2= |a(dne1— )= 5 (6+ B )y

n

0.4-F (b

. _ ) |
—ming, 402 $5=Q, (54) 02
n
:F 00—t Tt
while the relative displacements, should be found as un- ool 40 80 120 w

conditional minima of the problem
,0_4__

1 .
]-"2=§; Lh —min, . (55)
The special analytical solutions for tlpeand|-p soliton (e)

modes, found in the previous sections, have been chosen as 0.06 1
starting points for the descent. The self-consistency process
is considered to be completed if the discrete functional

o 003

1
F= EEn‘, (5 +L2] (56)

|
000 Tttt P T T T T T

reaches its minimum. The functidi56) may be considered 0 40 80 120 160 N 200

as a “deformation” of the Lagrangian surfa¢48), carried

out in such a way that all the saddle points are transformed FIG. 1. Profiles of the Davydov-Scott self-trapping mode at the

into minimum points at the deformed surface. Those minimasound velocity $=1) for the initial time ¢=0) and the final time

which correspond to bell-shaped profiles are chosen as ap=1000.05. They completely overlap when plotted at the same

propriate soliton solutions of our problem. Other minima de-positions.

scribing, e.g., bell-shaped configurations accompanied by

any ripples, etc., are excluded from further consideration. final profiles are plotted and they coincide perfectly. The
The system of Egs(l) has been integrated by the stan- velocity of the soliton iss=1.004.

dard fourth-order Runge-Kutta method with constant grid In Fig. 3, the profiles of thé-p soliton at the initial time

spacingh. The accuracy of the integration can be checked by 7=0) and the final time £=956.05) after the passage over

the conserved integrals of motion given by E(®.and(3). 1000 chain sites are shown. Initially the soliton velocity is

The grid spacindi=0.025, which provides the conservation s=1.05 and its final value is=1.046. The difference be-

of the integrals of motion during total time of integration tween the final and initial velocities is due to decreasing the

with an accuracy to five leading digits, has been used. Typiaccuracy of the minimization scheme for narrow soliton pro-

cal results of numerical simulations of the equations of mofiles.

tion (1) are as follows. The pairing of two lattice solitons by a quasiparticle at the
In Fig. 1, profiles of the DS self-trapping mode at the velocity s=1.004 is demonstrated in Fig. 4. Both the initial

sound velocity §=1) are shown. The profiles are plotted at (7=0) and the final ¢=996.82) profiles are presented. Dur-

the initial time (r=0) and the final timer=1000.05 after ing this time the soliton has passed 1000 chain sites. The

movement over 1000 chain sites. The initial profiles havdnitial profiles have been obtained by the numerical minimi-

been found by the numerical minimization scheme. As carzation scheme while the final profiles have been found as a

clearly be seen from this figure, there is perfect coincidenceesult of the numerical simulations of the equations of mo-

of the initial and final profiles. tion (1). The initial and final profiles coincide perfectly. The
Profiles of thel-p soliton at the initial time ¢=0) and  equilibrium distance between the lattice solitons is not so

the final time ¢=996.05) are depicted in Fig. 2. Note that at large; the wave functiom,, is still one-humped and a weak

the final time we have a passage over 1000 chain sites. THwo-humpness of the deformation field appears at this value

initial profile has been found by the minimization schemeof velocity s.

while the final profile has been obtained by the numerical The pairing of two lattice solitons by a quasiparticle at the

simulations of the equations of motiq). The initial and velocity s=1.05 is more clearly shown in Fig. 5. The initial
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_FIG' 2. The profiles of_thel-p soliton at the initial time FIG. 3. Same as Fig. 2, but now initially the soliton velocity is
(r=0) and the final time £=996,05). After backshift in space, ¢_1 g5 and its final value is=1.046. The solid line is for=0

they coincide perfectly. The velocity of the solitonsis-1.004. while the dashed line is for the backshifted profilerat956.05.

profiles(curves 1, 2, Bhave been found by the minimization merically seeking stationary soliton profiles in discrete sys-
techniques while the final profilgsurves 4, 5, Bhave been tems. This method could also be applied to studies of the
obtained as a result of numerical simulations of E@s.The  equations of motior{1), and some problems concerning the
final coupled state has passed 1000 chain cells, the initiahteraction of a quasiparticle with a nonlinear lattice seem to
time is 7=0, and the final time is=945.05. The final ve- be of future interest. First, the bifurcation of the self-trapping
locity has the values=1.046. The difference between the mode could be proved in a more straightforward way and the
final and initial velocities is due to decreasing accuracy ofcompleteset of supersonic soliton modes could be derived,
the minimization scheme when the soliton profiles becomes.g., a 3-p mode, etc. New bifurcation points in the super-
narrow. Only initially this discrepancy happens; afterwardssonic region might exist. Second, the minimization scheme
the soliton has a permanent profile and the constant velocityllows us to treat onlgontinuumsolutions while the spectral
s=1.046. The equilibrium distance between the lattice solimethod is a useful tool for seeking stationary intrinsically
tons has been increased, so that both the wave function anfiscretesolutions®

the relative displacement field have two humps.

Thus, from the numerical simulations carried out in this VII. SUMMARY AND OUTLOOK
paper we can draw two important conclusions. First, they '
confirm our analytical predictions on the existencetwi In this paper, we have investigated the dynamics of a

supersonic transport mechanismsi) supersonic self- finite and conserved number of noninteracting quasiparticles
trapping and (ii) capture of the self-trapping solitons by the (quanta of an intramolecular excitation or excess elecirons
lattice solitons Second, and more important in view of ad- coupled to longitudinal phonons of a 1D anharmonic lattice
ditional new results, they demonstrate ti@bility of the  (molecular chainp The interatomicintermoleculay potential
predicted coherent structures. Therefore, stable supersori@s been considered to be of a general form \wéhdening
mechanisms for transport by solitons exist. anharmonicity satisfying all the physical requirements. As a
To conclude the numerical part of this paper, one shouldesult, in such a chain we have discovered the bifurcation of
mention thespectral method developed recentfyfor nu-  the DS self-trappingpolaron mode at the sound velocity
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FIG. 4. The pairing of two lattice solitons by a quasiparticle at  FIG. 5. Same as Fig. 4, but at the velocity 1.05. The initial
the velocity s=1.004. Both the initial ¢=0) and final profiles (solid lines have been found by the minimization tech-
(7=996.82) profiles are presented. The initial and final profilesniques while the finalbackshifted profiles (dashed lines have
coincide perfectly, even after a passage of 1000 chain cells. been obtained as a result of numerical simulations of the equations

of motion (1) at 7=945.05. The final velocity is=1.046.

into three supersonic, dynamically stable modds) the
pure self-trapping pmode which exists with both subsonic exactly, both thep andl-p soliton modes have been treated
and supersonic velocitiej) the capture and transfeof the  analytically and, although there are some difficulties with
self-trapping state byne acoustic(lattice) soliton, i.e., an different constraints, it was possible to come to important
|-p mode; andii ) the pairing of two lattice solitons at some conclusions concerning the physical mechanisms of the su-
fixed distancevia their interaction with a quasiparticle, i.e., a personic transport of quantum quasipartidliegramolecular
21-p mode. Thd-p as well as the Rp modes only exist in  excitations or extra electronsSo far, the pairing of two
two-componensupersonicsoliton forms. In other words, the lattice solitons has been discovered only numerically. There-
self-trapping mode exists with both subsonic and supersonitore, the numerical studies in this paper are important for two
velocities. When it overcomes the sound velocity, then, ateasons(i) They prove the dynamical stability of theand
least, one or two lattice solitons can attach the polaron, crd-p soliton solutiongobtained analyticallywhich have bell-
ating together with it @Zoupledstate. The total energy of this shaped profiles for both the wave function and the deforma-
coupled two-component soliton state increases. However, thigon field. (i) In addition, we expect that pairing of more
energy is less than the sum of the energies of (the-  than two lattice solitons may also occur and the present
componentpolaron state and of th@ne-componentattice =~ method could be applied and adapted to such studies.
soliton when they are moving with the same velocity but The essential point of this paper is that we have thor-
displaced at sufficiently large distance, considered as nonirsughly taken into accoumtispersion effects due to the lattice
teracting objects. In the particular case of a cubic anharmodiscretenessPrevious studies of the 1D acoustic polaron
nicity with a fixed value of the soliton velocity, this result problem in anharmonic lattices could only treat self-trapping
has been proved analytically. states with subsonic velocities=G=<1. When the disper-

While studying the existence sfipersonicsoliton modes sion term withb>0 is involved in the dynamical process of
and their dynamical stability, we have developed a numericasoliton stabilization, then a hardening lattice anharmonicity
method which may be also useful in other studies. Morgwith, e.g., a cubic coefficieny>0) will play a crucial role,
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resulting in the appearance of supersonic states. In this cadateraction between them appears, and, as a result, the soli-
due to the dispersion and the nonlinearity, the supersonic tons start tascillate when passing through each othSuch
“continuation” of the DS self-trapping mode takes place. an oscillatin? motion has been observed numerically in a
On the other hand, the well-known lattiGacoustig solitons ~ recent papér which appeared just when this work was al-
can appear and couple to the self-trapping m@debe “at-  ready completed. This motipn descri_bes tiodlision process
tached” to i. The four parameters—two dispersioas(in of the Davydov and Boussinesq solitons when their centers
the quantum subsysterandb (in the lattice subsystepand '€ initially dlsplaced' at some finite distance. However, '|f' the
two nonlinearitiesy (coupling of both the subsysteinand cenfters of these sollto_ns are placed at the same position, a
y (anharmonicity in the lattice subsystemare involved in ~ Stationary bell-shapedin both the componentg and p),

the process of stabilized soliton motion. The interplay pafWO-component profile, describing the coupled state, ex-
rameterk=ay/bg appears in the theory. It can be consid- IStS: The lattefstationary state has been treated in this paper

ered as the ratio of the “reduced” nonlinearity in the lattice €xactly. In the case of a cubic anharmonicigg), the I-p
subsystem ¢/b) to the reduced nonlinearity in the quantum C0UPIiNg has been shown to occurxf1. _
subsystemg/a). The valuex=1 is critical; in this paper it W0 aspects are also important to emphasigeThe ex-
was defined as the Boussinesq limit. In the regionl, the istence of supersonic sollto_ns means that the so!|ton|c trans-
coupling of the self-trapping soliton with the lattice soliton POt mechanism in, e.g., biophysical systems will be much
happens, while fork<1 a quasiparticle only with higher- more effective than thought befor@.) Since the lattice soli-
energy levelswhen the soliton envelope, has, e.g., one tons participate_in thenixedtransfer mechanism, the super-
node can be coupled. However, the latter states have beefPNiC transport is e>_(pected to merma_llymore stable _than
shown numerically to be dynamically unstable. the pure self_—trapplng. The dynam|c_s of_ nonstationary
Finally, it should be emphasized that the present paper igirongly localized states in anharmonic ch&ird and the

devoted only to those two-component soliton solutions of thdhermal stabilit °~*?of supersonic nonlinear excitations are
equations of motioril) which have a stationary profilene- ~ Other topics of future interest.

phase or one-speed soliton solutipr®ne of these compo-
nents represents a moving wave function of a quasiparticle.
The latter is described by the envelopg( ) of a permanent The work was performed under the auspices of the
profile with the carrier frequency given by the eigenvalueSonderforschungsbereich 191 of the Deutsche Forschungsge-
e. The motion of this envelope soliton is accompanied by thameinschaft and also supported by the European Union
lattice deformation fielgp,(7), which also has a permanent through project “Coherent Nonlinear Dynamics of Complex
profile. If the time evolutior(in the framework of a numeri- Physical and Biological Systems,” Contract No. SC1*-
cal schemgof such profiles is stationary, we call them dy- CT91-0705. One of uéA.V.Z.) is indebted to the hospitality
namically stable soliton solutions. In this paper, the physicabf the Institut fur Theoretische Physik | where the main part
mechanism for each soliton mode is discussed. However, iof this work has been carried out. Stimulating discussions
the case when the Davydov and Boussingatiice) solitons  with P.L. Christiansen, D.W. McLaughlin, P. Rosenau, and
are initially displaced at some finite distance, some attractivé\.C. Scott are gratefully acknowledged.
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