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Quantum conductance of carbon nanotubes with defects

Leonor Chicd® Lorin X. Benedict, Steven G. Louie, and Marvin L. Cohen
Department of Physics, University of California at Berkeley, Berkeley, California 94720 and Materials Sciences Division,
Lawrence Berkeley Laboratory, Berkeley, California 94720
(Received 11 March 1996

We study the conductance of metallic carbon nanotubes with vacancies and pentagon-heptagon pair defects
within the Landauer formalism. Using a tight-binding model and a Green'’s function technique to calculate the
scattering matrix, we examine the one-dimensional to two-dimensional crossover in these systems and show
the existence of metallic tube junctions in which the conductance is suppressed for symmetry reasons.
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I. INTRODUCTION scheme. Within the Landauer formalism, the ballistic con-
ductance of perfect systems is proportional to the number of
Since their discovery in 1991 by lijimtacarbon nano- conducting channels at the Fermi energy, that is, the number
tubes have attracted much attention. One of the most fascpf bands at this energdy. The conductance of an imperfect
nating aspects of these systems is that their electronic progystem is lowered, due to reflection of the electron waves off
erties are directly and sensitively related to their geometrythe defects. We first study the simplest possible defect, a
Carbon nanotubes can be metallic or semiconducting, desingle vacancy, and calculate the conductance as a function
pending on how the graphite sheet is rolled up to form thePf tube radius. The increase of condugtance_ with radius il-
tube. The geometrical structure is uniquely determined byustrates the crossover from one-dimensional to two-
the circumference vectoc=na, + ma,, wherea, anda, are dimensional behavior. We th'en calculate the conductance
graphite sheet lattice translation vectérhe ordered pair through nanotube heterojunctionsy, (m,)/(n;,my), where

(n.m) defines the radius and chiralty of each wisbubes 2T B e ) 08 BE OO e
indexed by €,0) or (n,n) are nonchiral, while others have 9 P 9 ptagon p

h | carbon ri hich din a helical f completely stop the flow of electrons, while others permit the
nexagonal carbon rings, which are arranged in a helical 1asty o nsmjission of the current through the interface. Such sys-
ion. All (n,n) so-called armchair nanotubes are metals, an

; . A . oo ems may be used as nanoscale electrical switches.
(n,m) tubes with the radii>3.5 A are semimetallic if The paper is organized as follows: in Sec. II, we introduce

. - 4 .
n—mis a nonzero multiple of three’ The rest are SeMICON-  the model and method employed. Results are presented in
ductors, with band gaps that scale roughly as the reciproc@jg: |||, Section IV contains a discussion of our findings. We

of the tube radius. _ conclude in Sec. V.
The introduction of topological defects can change the

chirality of nanotubes. The smallest possible defect in a hex-

agonal rolled lattice that changes its chirality without drasti- Il. MODEL AND METHOD
cally altering the local curvature is a pentagon-heptagon
pair®~’ In fact, it is possible to join two perfect nanotubes
(n,m) and (h=d,m¥d) by forming d pentagon-heptagon
pairs in the interface between thénThe resulting carbon

We are interested in studying infinitely long carbon nano-
tubes with localized defects. First, we consider the problem
of a vacancy in an otherwise perfect tube. We also study
. . - nanotubes with pentagon-heptagon pairs, which can be
nanotube heterojunctionn(m)/(n=d,m=d), can have a ie\ed as the result of matching two perfect semi-infinite

different electronic structure on ‘?"’FCT‘ side of the 'nterf?‘ce'tubes with different chiralities. This kind of problem is most
The heterostructures formed by joining nanotubes of differ-

- ) . . . conveniently treated with the Green’'s function matching
ent ch|ral|ty.may show unique quasi-one-dimensional trans(GFM) method! A nanotube with pentagon-heptagon pairs
port properties.

: . _ is depicted schematically in Fig. 1. The perfect tubes are
There are theoretical and experimental studies on thﬁwediaA and B. The last unit cell of mediumA. labeled
guantum transport properties of carbon nanotubes in the lit-_ 1, together With the first of mediurB. labeled ’1 consti-
erature. On the experimental side, the conductance of nano- ' ' '

tube bundles has been measuteshd a measurement of the

conductance of an isolated multiwalled carbon nanotube has A B
been recently reportéd. From the theoretical viewpoint, ! :

there are studies on the effect of magnetic fields and voltage | !

bias in the ballistic conductance of perfect nanotuesing O -4 | OO | O (O
the Landauer approacf but there have been no studies of 201 1012

changes in the conductance produced by vacancies or adja- 'Interface'

cent pentagon-heptagon paifdVe address this issue by cal- Domain

culating the conductance of metallic carbon nanotubes with

such defects using the Landauer fornfélia a tight-binding FIG. 1. Schematic view of a matchédB system.
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tute the interface domain. We describe the carbon nanotubggven an excitation in celh of mediumA propagating to-
by a tight-binding model with oner-electron per atom. Our ward the interface, we are interested in knowing the ampli-

tight-binding Hamiltonian is of the form tude produced in celh’ of mediumB (transmissiopor me-
dium A (reflection.
H= —Vppr aiTa,- + c.c., (1) In the first case, i.e., for transmission amplitudes, we have
Iy that
where the sum im, j is restricted to nearest-neighbor atoms, Gnn=Ggn10s 166 1GA_ 1n’s 3

andVpp,=2.66 eV, as in Ref. 7. On-site energies are set (q here calligraphic letters indicate interface objects, &g
zero. All the hopping parameters are equal, independent q G ’g f P " f1h ¢ act dJ : ,th % ter-
the bond length, curvature, or any rearrangement due to t € Loreen's function of the system projected onto the inter
presence of defects. Therefore, our results show the chang ace domain. For refiected amplitudes, we have

induced solely by the alterations in the topology of the hex- G, ,=Gynn'+Gwn - 16w (6= Gm)Gn Gu_1nr» (D)
agonal rolled lattice. A vacancy is simulated by setting the
hoppings to zero around the vacant site and its on-site ener

equal to a large value, so the impurity peak does not appe ; . R
q 9 purtty p PP counts for reflection at the interface. This will be useful for

in the energy range for which the density of sta@e®$9) of . : , o
the tube is nonzero. We now describe the salient features &erlvmg an expression for the scattering matrix within the
Green’s function scheme.

the GFM, and show how it is applied to calculate the con- . L . .
ductance. For computational purposes, it is convenient to introduce

the transfer matrices of mediumM, Ty, Sy, Ty, Su.°as

ere we have written the Green’s function separating the
cident and reflected part; the second term in Ej.ac-

A. The Green’s function matching method Gmn+1m=TmGmn,m,(N=m), 5)
In the GFM method, the smgle-partlc!e G_reen s function Gun1m=TwGmnm.(N<m), (6)
of the tube with pentagon-heptagon pai@, is calculated
from the bulk Green’s functions and Hamiltonians of the Gmnm+1=GmnmSwm ,(M=n), (7)
perfect, defect-free systemS,, Gg, Hs, andHg, respec- —
tively, and the coupling interaction between mediaand Gmnm-1=GmnmSu ,(M=<n). ®)

B. This method can be used with different one-electronwe compute the transfer matrices using the algorithmef Lo

Hamiltonian models® Within the tight-binding model we pez Sanchet al'® From Eqgs.(5)—(8), it is easily seen that
employ, the Hamiltonians and the Green'’s functions are ma-

. . . . <o _p-1
trices, the dimensions of which ardl{N.) X (N;N¢), where SM=9m TmIm, ©)
N, is the number of unit cells anl, is the number ofr S :g’lT_g (10)
electrons/cell. Since we are studying infinite systems, in M7 M TMIM
principle, these matrices are infinite. An elemenCoivould  so that we only need to calculate two of the four transfer
be denoted byi,«|G|j,a’), wherei, j are cell indices and matrices defined above. Nevertheless, we maintain all four to
@, a' denote orbitals. In what follows, we Iéty; ; denote yield more compact expressions. Using the former defini-
the block of the Hamiltonian matrix of the perfect system tions, it can be shown th&t
M (M=A,B), which contains matrix elements &f, be-
tween localizedr-electron orbitals in cell and orbitals in E(gBB gBA)
cell j. Thus, Hy;; is itself a matrix of dimension Gas  9an

E—Hg11—Hg12l8 Hig-1 -t

NmeX Ny (similarly for Gy ;). Using the GFM, we will
only have to deal with block matrices, the dimensions of :(
which are at mostNae+ Nge) X (Naet Nge), Nae andNge Hi—11 E-Ha-1-1—Ha-1-2Ta
being the number of orbitals per cell in materidlsand B, (11)
respectively.
The coupling between media and B is given by the The full Green’s function matrixG, can then be constructed

block matricesH, ,; andH,; ;. H,_; contains matrix ~from Egs.(3) and(4).
elements between orbitals in cellsl and 1. Obviously

Hip-1= HI‘[M_ The dimension o, _; 1 iS NaeX Nge, SO, B. Scattering matrix and conductance
in general, it is a rectangular matrix. In the Landauer formalism, the conductance of a system is
From G, we can evaluate the local density of statesrelated to its scattering properti&swhich are described us-
Nn(E) at any energyE andnth cell of the system, ing the Green’s function scheme presented in the previous
1 subsection. The multichannel generalization of the Landauer
N, (E)=—=Imtr G, ,(E), (2)  conductance formula $
i | e? 2e?
_ ) — 2
where the trace is over the, orbitals in celln. I'= o = T% Itgal®, (12

The total Green'’s functiorG, is calculated in the follow-
ing way: Suppose that in our matched systé&jB, we have wheret is the transmission matrix from either the left or the
an incident amplitude from sid&, and we want to know the right, as defined by Fisher and Lee. Let us choose the trans-
amplitude produced by the scattering at the interface. That ignission from left to right, i.e., from medium to B. Sup-
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pose that at the enerdy there areM , channels in medium
A and Mg channels in mediunB. Thent is a rectangular
MgX M, matrix. The squared modulus of a component of

LI LA UL LI L L L BN B BRI |

. - o ; 7
t, |t,3a|2, is the transmission coefficient from chanrelin
mediumA to channel8 in mediumB. If we have an incident 6
eigenstate from medium, ¢, the corresponding transmit-
ted amplitude in sideB, ¥,., can be written as a linear 5

combination of the eigenstates of mediln ¢4, provided E
that we are far from the interfface. So =4
[tgal?=v /v (@4l ¥asd|?, Wherev s, v, are the group ve- 8

L L L L L R
s b by e b e b b by

locities of the corresponding eigenstates. 3
The scattered wave),., is calculated from the scatter-
ing matrix, S(E), which is defined by 2
‘PB ou'j q’B in
=SBy, s (13 1E v
( \PA,ou \I,A,in
IIII|IIII|IIII|IIIIIIIIIIIIIIIIIIIIIIII

whereV;,, ¥, denote the ingoing and outgoing wave func- 0 8 -6 -4 -2 0 2 4 6 8
tion amplitudes, respectively. The transmitted amplitude is Energy(eV)

obtained by settin@’;, equal to an incident eigenstate. Using
the relation between the wave function amplitudes and the g, 2. Conductance of &,4) nanotube with a vacancffull
Green’s function? we can write the scattering matrix in line) and a perfect4,4) nanotubedashed lingas a function of the
terms ofG: For example, the reflected amplitude in mediumfFermi energy.
B is
— — _1 . . _
W= @gn+ Gan10s *(Gss—Gs)Gs G 10 G o @B the (4,4) nanotube with one vacan(f;_all line) and the per
(14) fect (4,4) tube(dashed lingas a function of the energy. For
. o ] ] ) o most energies, and particularly at the Fermi energy of the

for the amplitude transmitted from sideto B, reduced by almost one unite2h, when the impurity is
_ -1 -1 -1 resent. This amounts to the removal of one conductin
¥n=Cen10a GeaG Ca-1nCay o eans (19 Ehannel, and for the undoped case, a reduction of 50% wit%
and so on. Using5)—(8), we can write the scattering matrix respect to the conductance of the perfect (4,4) nanotube.
S(E) as This is to be expected, for the presence of a vacancy in a
monatomic chain completely suppresses the conductance by
S(E)E<SBB SBA) removing the only existing channel. Since a nanotube is a
Sag San guasione-dimensional system, the conductance is not totally

, , suppressed; the extent to which it is depleted reflects the
N ( g O ) ( Uge—Us  Usa g O dimensionality of the system.
o T G Gan—G 0o S Figure 3 shows the difference between the conductance
A AB AREA A (for E;=0) of a perfect @1,n) tube and that of the same tube

Ggl, .0 with a vacancy as a function of. The circumference of an
o 1 - (16 (n,n) tube is given byC=3nl, wherel is the carbon-carbon
0 Gann nearest-neighbor distance, so this is equivalent to plotting the

change in conductance versus nanotube radius. All perfect
i(_n,n) tubes have two bands Bt-, giving rise to a conduc-
jance of 4%/h. When the impurity is introduced, the con-
rqiuctance decreases, this decrease being greater for the
smaller tubes. Note that for thd,4) tube the conductance is
reduced by one channel, and this difference diminishes
2e? Ug ) smoothly when the radius increases. An increase in radius
I'(E)= TQEB v Kol Sea(E)l@a)l, 17 corresponds to a change from quasi-one-dimensional to two-
“ dimensional behavior. In a perfect two-dimensional graphite
where the indicesy, 8 run over all eigenstates with energy sheet the change in conductance, due to the presence of a
E of mediaA andB, respectively. single vacancy, is negligible.

If we taken, n’ far from the interface, we can choose the
incident amplitudes as eigenstates of the unperturbed Ham
tonianH,, and decompose the scattered wave functions i
terms of the eigenstates of the unperturbed Hamiltonia
Hg. Thus, in terms of the scattering matrix, E42) reads

Il RESULTS B. Pentagon-heptagon matched tubes: Nanotube

A. Carbon nanotubes with vacancies heterojunctions

In this section, we study the conductance of several We now come to the main focus of this work, the con-
(n,n) carbon nanotubes in which an atom has been removeductance of matched metallic carbon tubes with pentagon-
to produce a vacancy. In Fig. 2, we plot the conductance ofieptagon pair defects. First, we study 112,0/(6,6) tube.
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FIG. 3. The difference in the conductance of amn) nanotube § 0.1 ‘ 3
with and without a vacancy as a function rof 0.05 | 3
There is a unique way to match these two tubes by joining O T T T Ty T s T T
their perfect unit cells, which produces a ring of six Energy (eV)

pentagon-heptagon pairs around the circumference. In Fig. 4
(top), we show the conductance of the matched tube together FIG. 4. Results for th¢12,0/(6,6) matched tube. Top: conduc-
with the conductances of tH&2,0 and(6,6) perfect tubes as tances of the matched syste(molid line), perfect (12,0 tube
a function of energy. We see that, whereas the perfect tubdgashed ling and perfect(6,6) tube (dotted ling. Center: atom-
are metallic and have a nonzero conductance at the Ferrfivéraged LDOS of the interface unit cell of the2,0 tube (full
energy of the undoped tub&{=0), there is a gap in the line) and the perfecf12,0 tube (dotted ling, _plotted for compari-
conductance for the matched system. The conductance of t n. Bottom: qtom-averaged LDOS of the |nterface.un|t cell of the
matched tube is always smaller than the conductance of trfg’s) t“be“F’" line) and the perfect6,6) tube (dashed ling; plotted
perfect tubes that form it, as expected: any defect degradegr comparison.
the conductance, and in a matched sys#j mediumB
can be considered as a perturbation to mediurand vice  of these possible matching orientatio) symmetric: all
versa. This effect is similar to what Todorov and Britfgs the hexagons separated by defects, @dasymmetric: two
noted studying the conductance of wires with width fluctua-hexagons adjacent to each other. The first is so named be-
tions. In Fig. 4(centey and 4(bottom), we present the local cause the sequence wifold atom rings around the circum-
density of state¢ DOS) of the unit cells, which contain the ference(6-7-5-6-7-5-6-7-% has threefold rotational symme-
pentagon-heptagon paitkill lines).’® In our notation, these try about the cylindrical axis of the tube. The asymmetric
are cells withn=—1 [for the (12,0 tube, Fig. 4, centg¢rand  case has no rotational symmetgequence ofi-fold rings is
n=1 [for the (6,6) tube, Fig. 4, bottorh For comparison, we 6-7-5-6-6-7-5-7-5
also plot the LDOS of the perfect tubpdotted line in Fig. 4 In Fig. 5, we present the results for the (9(®,3) sym-
(centey and dashed line in Fig. 4bottom), respectively.  metric tube. Figure %top) shows the conductance along with
The LDOS is nonzero in the defect region for the energythe conductance of its perfect components, i.e., the (9,0)
interval in which the conductance is zero, as it is for the(dashed lingand the (6,3)dotted ling. Again, we find that
perfect tubes. Therefore, the conductance is not suppressdtiere is a gap in the conductance around the Fermi energy of
due to the appearance of a gap in the LDOS in the defedhe undoped system, so that the appearance of a conductance
region. This points to a symmetry origin of the suppressiorgap is not exclusive to tubes with a full circumference of
of the conductance in this system. We discuss this at lengthentagon-heptagon pairs. As before, the conductance of the
in the following section. One may wonder whether the presimatched tube is lower at every energy than that of its perfect
ence of a full ring of pentagon-heptagon pairs around theonstituents. In Fig. %centej and 5(bottom), we show the
circumference of the tube could be related to this effect. LDOS of the matched unit cells that form the interfabdl

To clarify this point, we have studied a tube for which thelines) along with the LDOS of the corresponding perfect
matching is achieved by a mixture of hexagons and9,0) and (6,3) tubeglashed and dotted lines, respectiyely
pentagon-heptagon pairs, tl@,0)/(6,3) tube. In this case, Again the LDOS is nonzero in the energy interval in which
three pentagon-heptagon pairs are needed, so the matchitige conductance is zero.
region contains three hexagons as well. There are several The results for the asymmetric (9/06,3) tube are shown
inequivalent ways of joining the perfect unit cells: all the in Fig. 6. For this tube, we find that there is not a total
hexagons adjacent to each other, only two of the hexagorsuppression of the conductance at any energy at which the
adjacent, and all the hexagons separated. Here, we study ti®OS is nonzerdFig. 6, top, full ling: the matched system
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(9.0)/(6,3) symmetric matching (8,0)/(6,3) asymmetric matching
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FIG. 5. Results for th€9,0)/(6,3 symmetric matched tube. Top: FIG. 6. Results for thg9,0/(6,3) asymmetric matched tube.
conductances of the matched systéslid line), perfect(6,3 tube ~ Top: conductances of the matched systewiid line), perfect(6,3)
(dotted lin®, and perfect(9,0) tube (dashed ling Center: atom- tube (dotted ling, and perfect(9,0) tube (dashed ling Center:
averaged LDOS of the interface unit cell of t80) tube(full line) ~ atom-averaged LDOS of the interface unit cell of tB¢h) tube (full
and the perfec(9,0) tube (dashed ling plotted for comparison. line) and the perfec(9,0) tube (dashed ling plotted for compari-
Bottom: atom-averaged LDOS of the interface unit cell of (B8 son. Bottom: atom-averaged LDOS of the interface unit cell of the
tube (full line) and the perfect6,3 tube (dotted ling, plotted for (6,3 tube(full line) and the perfect6,3) tube (dotted ling, plotted
comparison. for comparison.

behaves as a metal. Nevertheless, since the interface betwedijfold rotational symmetry about their cylindrical axes.
the tubes acts as a defect, the conductance is reduced B’pus, electronic states of the tubes may be classified accord-
approximately one channel relative to that of the perfecind to discrete angular momenta™® States that arise from
tubes. As in the previous cases, we plot the conductances 8ffferent lines of allowed vectors have different rotational
the (9,0) and (6,3 perfect tubes for comparison. The LDOS symmetries. The lines that intersdct 0O give rise to rota-

at the interfacdFig. 6, center and bottom, full lingss prac- tionally invariant (=0) tube states. Other lines give rise to
tically equal to the one found for the symmetric cdsee States of highet.

Fig. 5). The rest of the features are very similar to the sym-  The states with energies neg (for the undoped cage
metric case. The metallic nature of the asymmetricare those wittk vectors close to the vertices of the hexago-
(9,0)/(6,3) tube provides further evidence that the presence

of a conductance gap is related to the symmetry of the de- e
fects at the interface. In what follows, we explain this effect P
and derive general rules that predict the occurrence of con- 441t
ductance gaps inng,m;)/(n,,m,) systems.

IV. DISCUSSION

We first explain the conductance gap in the (14,6,6)
tube. A discussion of the (9,06,3) system and the general
rules for all the ,,m;)/(n,,m,) tubes follow. If curvature-
induced hybridization is neglectéctarbon nanotubes can be (6,6) (12,0)
thought of as graphite sheets with periodic boundary condi-
tions applied in the circumferential direction. This results in £ 7. Lines of allowed vectors of the6,6) and(12,0 carbon

a quantization of allowed vectors of the graphite sheet, nanotubes overlayed on the graphite sheet Brillouin zone. Dashed
which forms the tubé.Figure 7 shows the lines of allowed |ines enclose Brillouin zones of the (1,1) and (1,0) units. Solid dots
k vectors overlayed on the graphite sheet first Brillouin zonendicatek=0, and open dots mark points where the lines touch the
(BZ) for the perfect (6,6) and (12,0) tubes. Both tubes haveyraphite sheet Fermi surface.
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nal BZ2 This is because the Fermi surface of the undopedhat form the interface are arranged symmetrically. They will
graphite sheet is located at these points. Thus, the states dt have conductance gaps if the interface does not preserve
E for the (6,6) tube originate from the center line, and arethe rotational symmetry of the two constituent tubes. Of
L =0 states, invariant under rotations by-/5 about the tube course, it is possible to match two tubes with different rota-
axis. The Fermi level states of the (12,0) tube come from theéional symmetrie$? In this case, no symmetric matching is
fourth line away from the center, and are=2 states(de-  possible, and conductance gaps will never appear. It is also
fined with respect to sixfold rotational symmeltrpo we see possible for symmetrically matched tubes to avoid having a
that the Fermi level states of the two perfect tubes haveonductance gap. This will happen when the states of the two
different rotational symmetries sides have somk values in common at every energy.
When the two tubes are matched to form the junction, \We can easily derive the necessary condition on
(12,0/(6,6), six pentagon-heptagon pairs are introduced a,,m;,n,, andm,, such that ther{;,m;)/(n,,m,) matched
the interface. The interface itself has sixfold rotational sym-tube is a candidate for a conductance gap: Am) tube has
metry. Therefore, the matched tube is invariant under rotaj-fold rotational symmetry ihh andm are both divisible by
tions by 27/6. Now consider the conduction process. Scat-j, Thus, ifn,, m;, n,, andm, all have a common divisor,
tering due to rigid defects is elastic as long as the defectg will be possible to form the rf;,m;)/(n,,m,) junction
have no internal excitations. Thus, an electron which beging,ith a rotationally symmetric interface. A conductance gap
in the (12,0) tube must scatter to a state with the same efnay result. Otherwise the conductance will, in general, be
ergy in the (6,6) tube. But since the stated=atof the two  nonzero in the energy range for which the DOS is nonzero.
half tubes have different, the electron wave igotally  Note that even if the two constituent tubes share a common
reflected and the conductance equals zero. Stated anotheptational symmetry, it is usually possible to choose an
way, the perfectly symmetric interface cannot impart anyasymmetric matching[see the asymmetric (9/6,3)
extra angular momentum to the electron, so the conditions a§bovd. A conductance gap can then be avoifiédannot be
energy and angular momentum conservation cannot be satigvoided in the (12)J(6,6) system with ideal unit cell
fied simultaneousl§? If the system is doped with either elec- matching. It should be mentioned that the above argument
trons or holes, such th&p is pushed away from 0 to ener- holds for all types of defects at the interface. Only the sym-
gies at which states of equilcoexist on both halves of the metry of the interface is relevant.
junction, the conductance is nonzero. The conductance gap One point of interest is the variation in geometrical struc-
marks the energy window in which states of the two sidesure of carbon nanotube heterojunctions with different
have noL values in common. matching configurations. Nanotubes with pentagon-heptagon
It should be pointed out that tHe=0 states of the (6,6) pair defects may exhibit localized kinks and bends. Bend
side of the junction do extend into the (12,0) side, but theyangles of up to 15° have been predictédand tubes with
decay away from the interface, as is typical of interfacethese signatures have been seen experimentaliganotube
states. Likewise, thé&e=2 states of the (12,0) side extend heterojunction with a bend is the result of an asymmetric
into the (6,0) side, but are damped. Since evanescent wavesatching at the interface; rotational invariance is destroyed.
carry no current, the resulting conductance is zero. This i$f two tubes are matched symmetrically, the junction will
similar to the total reflection in wave optics: even when thehave no bend, for the axis of rotational symmetry is pre-
reflectance equals unity, some nonzero amplitude penetrateserved. Thus, there is a relationship between the geometry of
However, far from the reflecting surfaden the opposite nanotube heterojunctions and the appearance of conductance
side from the sourgeno light flux is measured. gaps. Bent junctions will, in general, have a nonzero conduc-
The above arguments may also be applied to theance if the constituent tubes are metallic. Straight junctions
(9,0)/(6,3) system. Consider the symmetric matching casenay have conductance gaps. So we have the somewhat
The interface(6-7-5-6-7-5-6-7-% has threefold rotational counterintuitive result that bent junctions conduct better than
symmetry about the tube axis, as do the individual (9,0) andtraight junctions on average.
(6,3) tubes. From the graphite sheet band-folding analysis, it The presence of conductance gaps in some carbon nano-
can be shown that the stateskt for the (6,3) tube have tube heterojunctions opens up new possibilities for their po-
L=1 (defined with respect to threefold rotational symmgtry tential applications. Since conductance gaps arise from a ro-
The Fermi level states of the (9,0) tube hdve 0. Again, tational symmetry, any perturbation that destroys this
states on opposite sides of the interface have different rotasymmetry will allow the tube to conduct. Three sources of
tional symmetries. The symmetric interface does not imparsymmetry breaking are thermally excited phonons, externally
extra angular momentum to the conducting electrons, sapplied electromagneti®EM) radiation, and mechanical de-
there is a conductance gap néa=0. formation. If a nanotube heterojunction with a conductance
Now consider the asymmetric matching case. The intergap is at very low temperature, only acoustic phonon modes
face(6-7-5-6-6-7-5-7-% hasno rotational symmetry whatso- with q~0 will be excited. From the above band-folding
ever, and in particular, it lacks threefold symmetry. There-analysis, these modes will be symmetiic<0), and will not
fore, transitions between tHe=1 states of the (6,3) side, change the rotational symmetry of the interface. If the junc-
and theL=0 states of the (9,0) side are permitted; the in-tion is at slightly higher temperature, asymmetric phonon
terface can impart angular momentum to the electron. Thisnodes {>0) will be excited, which break the rotational
results in a conductance which is nonzero over the wholsymmetry, and destroy the conductance gap. The conduc-
energy range where the DOS is nonzero. tance should then show a sharp increase as temperature is
A general rule can now be abstracted: Carbon nanotubimcreased. Therefore, heterojunctions with conductance gaps
heterojunctions may have conductance gaps if the defectsay be used as nanoscale thermistors, which operate in the
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10-100 K range. Heterojunctions kept at low temperaturdess affected. This is indicative of the crossover from one-

may lose their conductance gaps when bathed with approprédimensional to two-dimensional behavior. We have shown

ately polarized EM radiation. Circularly polarized photonsthat carbon nanotube heterojunctions formed from two me-

with E fields rotating about the tube axis can impart angulatallic tubes conduct if the defects at the interface are arranged
momentum to the conduction electrons. This allows the elecasymmetrically. If the defects preserve the rotational symme-

trons to cross the interface and conduct current. Thus, thesdges of the two tubes, conductance gaps appear. Conse-
systems could also be used as nanoscale photoconductigeently, bent junctions conduct better than straight junctions

switches that operate over a wide range of frequengias on average. Owing to their novel properties, carbon nanotube
like typical photoconductive materials, it is the exchange ofheterojunctions with conductance gaps may be used as
angular momentum rather than energy that excites the elecranoscale thermistors, as well as optically activated and
trons into conducting statesFinally, mechanical stress can voltage-activated electrical switches.

be used to destroy the rotational symmetry of a junction. If a
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