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We study the conductance of metallic carbon nanotubes with vacancies and pentagon-heptagon pair defects
within the Landauer formalism. Using a tight-binding model and a Green’s function technique to calculate the
scattering matrix, we examine the one-dimensional to two-dimensional crossover in these systems and show
the existence of metallic tube junctions in which the conductance is suppressed for symmetry reasons.
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I. INTRODUCTION

Since their discovery in 1991 by Iijima,1 carbon nano-
tubes have attracted much attention. One of the most fasci-
nating aspects of these systems is that their electronic prop-
erties are directly and sensitively related to their geometry.
Carbon nanotubes can be metallic or semiconducting, de-
pending on how the graphite sheet is rolled up to form the
tube. The geometrical structure is uniquely determined by
the circumference vector,c5na11ma2 , wherea1 anda2 are
graphite sheet lattice translation vectors.2 The ordered pair
(n,m) defines the radius and chirality of each tube.3 Tubes
indexed by (n,0) or (n,n) are nonchiral, while others have
hexagonal carbon rings, which are arranged in a helical fash-
ion. All (n,n) so-called armchair nanotubes are metals, and
(n,m) tubes with the radii.3.5 Å are semimetallic if
n2m is a nonzero multiple of three.2,4 The rest are semicon-
ductors, with band gaps that scale roughly as the reciprocal
of the tube radius.

The introduction of topological defects can change the
chirality of nanotubes. The smallest possible defect in a hex-
agonal rolled lattice that changes its chirality without drasti-
cally altering the local curvature is a pentagon-heptagon
pair.5–7 In fact, it is possible to join two perfect nanotubes
(n,m) and (n6d,m7d) by forming d pentagon-heptagon
pairs in the interface between them.8 The resulting carbon
nanotube heterojunction, (n,m)/(n6d,m7d), can have a
different electronic structure on each side of the interface.7

The heterostructures formed by joining nanotubes of differ-
ent chirality may show unique quasi-one-dimensional trans-
port properties.

There are theoretical and experimental studies on the
quantum transport properties of carbon nanotubes in the lit-
erature. On the experimental side, the conductance of nano-
tube bundles has been measured,9 and a measurement of the
conductance of an isolated multiwalled carbon nanotube has
been recently reported.10 From the theoretical viewpoint,
there are studies on the effect of magnetic fields and voltage
bias in the ballistic conductance of perfect nanotubes,11 using
the Landauer approach,12 but there have been no studies of
changes in the conductance produced by vacancies or adja-
cent pentagon-heptagon pairs.13We address this issue by cal-
culating the conductance of metallic carbon nanotubes with
such defects using the Landauer formula12 in a tight-binding

scheme. Within the Landauer formalism, the ballistic con-
ductance of perfect systems is proportional to the number of
conducting channels at the Fermi energy, that is, the number
of bands at this energy.14 The conductance of an imperfect
system is lowered, due to reflection of the electron waves off
the defects. We first study the simplest possible defect, a
single vacancy, and calculate the conductance as a function
of tube radius. The increase of conductance with radius il-
lustrates the crossover from one-dimensional to two-
dimensional behavior. We then calculate the conductance
through nanotube heterojunctions, (n1 ,m1)/(n2 ,m2), where
both (n1 ,m1) and (n2 ,m2) tubes are metallic. We show that
certain configurations of the pentagon-heptagon pair defects
completely stop the flow of electrons, while others permit the
transmission of the current through the interface. Such sys-
tems may be used as nanoscale electrical switches.

The paper is organized as follows: in Sec. II, we introduce
the model and method employed. Results are presented in
Sec. III. Section IV contains a discussion of our findings. We
conclude in Sec. V.

II. MODEL AND METHOD

We are interested in studying infinitely long carbon nano-
tubes with localized defects. First, we consider the problem
of a vacancy in an otherwise perfect tube. We also study
nanotubes with pentagon-heptagon pairs, which can be
viewed as the result of matching two perfect semi-infinite
tubes with different chiralities. This kind of problem is most
conveniently treated with the Green’s function matching
~GFM! method.15 A nanotube with pentagon-heptagon pairs
is depicted schematically in Fig. 1. The perfect tubes are
mediaA and B. The last unit cell of mediumA, labeled
21, together with the first of mediumB, labeled 1, consti-

FIG. 1. Schematic view of a matchedAuB system.
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tute the interface domain. We describe the carbon nanotubes
by a tight-binding model with onep-electron per atom. Our
tight-binding Hamiltonian is of the form

H52Vppp(̂
i j &

ai
†aj1 c.c., ~1!

where the sum ini , j is restricted to nearest-neighbor atoms,
andVppp52.66 eV, as in Ref. 7. On-site energies are set to
zero. All the hopping parameters are equal, independent of
the bond length, curvature, or any rearrangement due to the
presence of defects. Therefore, our results show the changes
induced solely by the alterations in the topology of the hex-
agonal rolled lattice. A vacancy is simulated by setting the
hoppings to zero around the vacant site and its on-site energy
equal to a large value, so the impurity peak does not appear
in the energy range for which the density of states~DOS! of
the tube is nonzero. We now describe the salient features of
the GFM, and show how it is applied to calculate the con-
ductance.

A. The Green’s function matching method

In the GFM method, the single-particle Green’s function
of the tube with pentagon-heptagon pairs,G, is calculated
from the bulk Green’s functions and Hamiltonians of the
perfect, defect-free systems,GA , GB , HA , andHB , respec-
tively, and the coupling interaction between mediaA and
B. This method can be used with different one-electron
Hamiltonian models.15 Within the tight-binding model we
employ, the Hamiltonians and the Green’s functions are ma-
trices, the dimensions of which are (NcNe)3(NcNe), where
Nc is the number of unit cells andNe is the number ofp
electrons/cell. Since we are studying infinite systems, in
principle, these matrices are infinite. An element ofG would
be denoted bŷi ,auGu j ,a8&, wherei , j are cell indices and
a, a8 denote orbitals. In what follows, we letHMi , j denote
the block of the Hamiltonian matrix of the perfect system
M (M5A,B), which contains matrix elements ofHM be-
tween localizedp-electron orbitals in celli and orbitals in
cell j . Thus, HMi , j is itself a matrix of dimension
NMe3NMe ~similarly for GMi , j ). Using the GFM, we will
only have to deal with block matrices, the dimensions of
which are at most (NAe1NBe)3(NAe1NBe), NAe andNBe
being the number of orbitals per cell in materialsA andB,
respectively.

The coupling between mediaA and B is given by the
block matricesHI21,1 andHI 1,21 . HI21,1 contains matrix
elements between orbitals in cells21 and 1. Obviously
HI 1,215HI21,1

† . The dimension ofHI21,1 is NAe3NBe , so,
in general, it is a rectangular matrix.

From G, we can evaluate the local density of states
Nn(E) at any energyE andnth cell of the system,

Nn~E!52
1

p
Im tr Gn,n~E!, ~2!

where the trace is over theNe orbitals in celln.
The total Green’s function,G, is calculated in the follow-

ing way: Suppose that in our matched system,AuB, we have
an incident amplitude from sideA, and we want to know the
amplitude produced by the scattering at the interface. That is,

given an excitation in celln of mediumA propagating to-
ward the interface, we are interested in knowing the ampli-
tude produced in celln8 of mediumB ~transmission! or me-
dium A ~reflection!.

In the first case, i.e., for transmission amplitudes, we have
that

Gn,n85GBn,1GB21GGA21GA21,n8, ~3!

where calligraphic letters indicate interface objects, e.g.,G is
the Green’s function of the system projected onto the inter-
face domain. For reflected amplitudes, we have

Gn,n85GMn,n81GMn,21GM21~G2GM !GM21GM21,n8, ~4!

where we have written the Green’s function separating the
incident and reflected part; the second term in Eq.~4! ac-
counts for reflection at the interface. This will be useful for
deriving an expression for the scattering matrix within the
Green’s function scheme.

For computational purposes, it is convenient to introduce
the transfer matrices of mediumM , TM , SM , T̄M , S̄M ,

15 as

GMn11,m5TMGMn,m ,~n>m!, ~5!

GMn21,m5T̄MGMn,m ,~n<m!, ~6!

GMn,m115GMn,mSM ,~m>n!, ~7!

GMn,m215GMn,mS̄M ,~m<n!. ~8!

We compute the transfer matrices using the algorithm of Lo´-
pez Sanchoet al.16 From Eqs.~5!–~8!, it is easily seen that

S̄M5GM21TMGM , ~9!

SM5GM21T̄MGM , ~10!

so that we only need to calculate two of the four transfer
matrices defined above. Nevertheless, we maintain all four to
yield more compact expressions. Using the former defini-
tions, it can be shown that15

G[S GBB GBA
GAB GAA

D
5SE2HB 1,12HB 1,2TB HI 1,21

HI21,1 E2HA21,212HA21,22TA
D 21

.

~11!

The full Green’s function matrix,G, can then be constructed
from Eqs.~3! and ~4!.

B. Scattering matrix and conductance

In the Landauer formalism, the conductance of a system is
related to its scattering properties,12 which are described us-
ing the Green’s function scheme presented in the previous
subsection. The multichannel generalization of the Landauer
conductance formula is14

G5
2e2

h
Tr ~ t†t !5

2e2

h (
ba

utbau2, ~12!

wheret is the transmission matrix from either the left or the
right, as defined by Fisher and Lee. Let us choose the trans-
mission from left to right, i.e., from mediumA to B. Sup-
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pose that at the energyE there areMA channels in medium
A andMB channels in mediumB. Then t is a rectangular
MB3MA matrix. The squared modulus of a component of
t, utbau2, is the transmission coefficient from channela in
mediumA to channelb in mediumB. If we have an incident
eigenstate from mediumA, wa , the corresponding transmit-
ted amplitude in sideB, casc, can be written as a linear
combination of the eigenstates of mediumB, wb , provided
that we are far from the interface. So
utbau25vb /vau^wbucasc&u2, wherevb , va are the group ve-
locities of the corresponding eigenstates.

The scattered wave,casc, is calculated from the scatter-
ing matrix,S(E), which is defined by

S CB,out

CA,out
D 5S~E!S CB, in

CA, in
D , ~13!

whereC in , Cout denote the ingoing and outgoing wave func-
tion amplitudes, respectively. The transmitted amplitude is
obtained by settingC in equal to an incident eigenstate. Using
the relation between the wave function amplitudes and the
Green’s function,15 we can write the scattering matrix in
terms ofG: For example, the reflected amplitude in medium
B is

Cn5wBn1GBn,1GB21~GBB2GB!GB21GB 1,n8GBn8,n8
21 wBn8,

~14!

wherewB is an incident eigenstate in mediumB. Similarly,
for the amplitude transmitted from sideA to B,

Cn5GBn,1GB21GBAGA21GA21,n8GAn8,n8
21 wAn8, ~15!

and so on. Using~5!–~8!, we can write the scattering matrix
S(E) as

S~E![SSBB SBA

SAB SAA
D

5S TBn8 0

0 T̄A
n D S GBB2GB GBA

GAB GAA2GAD S SBn8 0

0 S̄A
n D

3SGBn8,n8
21 0

0 GAn,n
21 D . ~16!

If we taken, n8 far from the interface, we can choose the
incident amplitudes as eigenstates of the unperturbed Hamil-
tonianHA , and decompose the scattered wave functions in
terms of the eigenstates of the unperturbed Hamiltonian
HB . Thus, in terms of the scattering matrix, Eq.~12! reads

G~E!5
2e2

h (
ab

S vb

va
D z^wbuSBA~E!uwa& z2, ~17!

where the indicesa,b run over all eigenstates with energy
E of mediaA andB, respectively.

III. RESULTS

A. Carbon nanotubes with vacancies

In this section, we study the conductance of several
(n,n) carbon nanotubes in which an atom has been removed
to produce a vacancy. In Fig. 2, we plot the conductance of

the (4,4) nanotube with one vacancy~full line! and the per-
fect (4,4) tube~dashed line! as a function of the energy. For
most energies, and particularly at the Fermi energy of the
undoped system (E50), the value of the conductance is
reduced by almost one unit, 2e2/h, when the impurity is
present. This amounts to the removal of one conducting
channel, and for the undoped case, a reduction of 50% with
respect to the conductance of the perfect (4,4) nanotube.
This is to be expected, for the presence of a vacancy in a
monatomic chain completely suppresses the conductance by
removing the only existing channel. Since a nanotube is a
quasi-one-dimensional system, the conductance is not totally
suppressed; the extent to which it is depleted reflects the
dimensionality of the system.

Figure 3 shows the difference between the conductance
~for EF50) of a perfect (n,n) tube and that of the same tube
with a vacancy as a function ofn. The circumference of an
(n,n) tube is given byC53nl, wherel is the carbon-carbon
nearest-neighbor distance, so this is equivalent to plotting the
change in conductance versus nanotube radius. All perfect
(n,n) tubes have two bands atEF , giving rise to a conduc-
tance of 4e2/h. When the impurity is introduced, the con-
ductance decreases, this decrease being greater for the
smaller tubes. Note that for the~4,4! tube the conductance is
reduced by one channel, and this difference diminishes
smoothly when the radius increases. An increase in radius
corresponds to a change from quasi-one-dimensional to two-
dimensional behavior. In a perfect two-dimensional graphite
sheet the change in conductance, due to the presence of a
single vacancy, is negligible.

B. Pentagon-heptagon matched tubes: Nanotube
heterojunctions

We now come to the main focus of this work, the con-
ductance of matched metallic carbon tubes with pentagon-
heptagon pair defects. First, we study the~12,0!/~6,6! tube.

FIG. 2. Conductance of a~4,4! nanotube with a vacancy~full
line! and a perfect~4,4! nanotube~dashed line! as a function of the
Fermi energy.
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There is a unique way to match these two tubes by joining
their perfect unit cells, which produces a ring of six
pentagon-heptagon pairs around the circumference. In Fig. 4
~top!, we show the conductance of the matched tube together
with the conductances of the~12,0! and~6,6! perfect tubes as
a function of energy. We see that, whereas the perfect tubes
are metallic and have a nonzero conductance at the Fermi
energy of the undoped tube (EF50), there is a gap in the
conductance for the matched system. The conductance of the
matched tube is always smaller than the conductance of the
perfect tubes that form it, as expected: any defect degrades
the conductance, and in a matched systemAuB mediumB
can be considered as a perturbation to mediumA and vice
versa. This effect is similar to what Todorov and Briggs17

noted studying the conductance of wires with width fluctua-
tions. In Fig. 4~center! and 4~bottom!, we present the local
density of states~LDOS! of the unit cells, which contain the
pentagon-heptagon pairs~full lines!.18 In our notation, these
are cells withn521 @for the ~12,0! tube, Fig. 4, center# and
n51 @for the~6,6! tube, Fig. 4, bottom#. For comparison, we
also plot the LDOS of the perfect tubes@dotted line in Fig. 4
~center! and dashed line in Fig. 4~bottom!, respectively#.
The LDOS is nonzero in the defect region for the energy
interval in which the conductance is zero, as it is for the
perfect tubes. Therefore, the conductance is not suppressed,
due to the appearance of a gap in the LDOS in the defect
region. This points to a symmetry origin of the suppression
of the conductance in this system. We discuss this at length
in the following section. One may wonder whether the pres-
ence of a full ring of pentagon-heptagon pairs around the
circumference of the tube could be related to this effect.

To clarify this point, we have studied a tube for which the
matching is achieved by a mixture of hexagons and
pentagon-heptagon pairs, the~9,0!/~6,3! tube. In this case,
three pentagon-heptagon pairs are needed, so the matching
region contains three hexagons as well. There are several
inequivalent ways of joining the perfect unit cells: all the
hexagons adjacent to each other, only two of the hexagons
adjacent, and all the hexagons separated. Here, we study two

of these possible matching orientations:~1! symmetric: all
the hexagons separated by defects, and~2! asymmetric: two
hexagons adjacent to each other. The first is so named be-
cause the sequence ofn-fold atom rings around the circum-
ference~6-7-5-6-7-5-6-7-5! has threefold rotational symme-
try about the cylindrical axis of the tube. The asymmetric
case has no rotational symmetry~sequence ofn-fold rings is
6-7-5-6-6-7-5-7-5!.

In Fig. 5, we present the results for the (9,0)/(6,3) sym-
metric tube. Figure 5~top! shows the conductance along with
the conductance of its perfect components, i.e., the (9,0)
~dashed line! and the (6,3)~dotted line!. Again, we find that
there is a gap in the conductance around the Fermi energy of
the undoped system, so that the appearance of a conductance
gap is not exclusive to tubes with a full circumference of
pentagon-heptagon pairs. As before, the conductance of the
matched tube is lower at every energy than that of its perfect
constituents. In Fig. 5~center! and 5~bottom!, we show the
LDOS of the matched unit cells that form the interface~full
lines! along with the LDOS of the corresponding perfect
(9,0) and (6,3) tubes~dashed and dotted lines, respectively!.
Again the LDOS is nonzero in the energy interval in which
the conductance is zero.

The results for the asymmetric (9,0)/(6,3) tube are shown
in Fig. 6. For this tube, we find that there is not a total
suppression of the conductance at any energy at which the
LDOS is nonzero~Fig. 6, top, full line!: the matched system

FIG. 3. The difference in the conductance of an (n,n) nanotube
with and without a vacancy as a function ofn.

FIG. 4. Results for the~12,0!/~6,6! matched tube. Top: conduc-
tances of the matched system~solid line!, perfect ~12,0! tube
~dashed line!, and perfect~6,6! tube ~dotted line!. Center: atom-
averaged LDOS of the interface unit cell of the~12,0! tube ~full
line! and the perfect~12,0! tube ~dotted line!, plotted for compari-
son. Bottom: atom-averaged LDOS of the interface unit cell of the
~6,6! tube~full line! and the perfect~6,6! tube~dashed line!, plotted
for comparison.
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behaves as a metal. Nevertheless, since the interface between
the tubes acts as a defect, the conductance is reduced by
approximately one channel relative to that of the perfect
tubes. As in the previous cases, we plot the conductances of
the ~9,0! and ~6,3! perfect tubes for comparison. The LDOS
at the interface~Fig. 6, center and bottom, full lines! is prac-
tically equal to the one found for the symmetric case~see
Fig. 5!. The rest of the features are very similar to the sym-
metric case. The metallic nature of the asymmetric
(9,0)/(6,3) tube provides further evidence that the presence
of a conductance gap is related to the symmetry of the de-
fects at the interface. In what follows, we explain this effect
and derive general rules that predict the occurrence of con-
ductance gaps in (n1 ,m1)/(n2 ,m2) systems.

IV. DISCUSSION

We first explain the conductance gap in the (12,0)/(6,6)
tube. A discussion of the (9,0)/(6,3) system and the general
rules for all the (n1 ,m1)/(n2 ,m2) tubes follow. If curvature-
induced hybridization is neglected,4 carbon nanotubes can be
thought of as graphite sheets with periodic boundary condi-
tions applied in the circumferential direction. This results in
a quantization of allowedk vectors of the graphite sheet,
which forms the tube.2 Figure 7 shows the lines of allowed
k vectors overlayed on the graphite sheet first Brillouin zone
~BZ! for the perfect (6,6) and (12,0) tubes. Both tubes have

sixfold rotational symmetry about their cylindrical axes.
Thus, electronic states of the tubes may be classified accord-
ing to discrete angular momentaL.19 States that arise from
different lines of allowedk vectors have different rotational
symmetries. The lines that intersectk50 give rise to rota-
tionally invariant (L50! tube states. Other lines give rise to
states of higherL.

The states with energies nearEF ~for the undoped case!
are those withk vectors close to the vertices of the hexago-

FIG. 5. Results for the~9,0!/~6,3! symmetric matched tube. Top:
conductances of the matched system~solid line!, perfect~6,3! tube
~dotted line!, and perfect~9,0! tube ~dashed line!. Center: atom-
averaged LDOS of the interface unit cell of the~9,0! tube~full line!
and the perfect~9,0! tube ~dashed line!, plotted for comparison.
Bottom: atom-averaged LDOS of the interface unit cell of the~6,3!
tube ~full line! and the perfect~6,3! tube ~dotted line!, plotted for
comparison.

FIG. 6. Results for the~9,0!/~6,3! asymmetric matched tube.
Top: conductances of the matched system~solid line!, perfect~6,3!
tube ~dotted line!, and perfect~9,0! tube ~dashed line!. Center:
atom-averaged LDOS of the interface unit cell of the~9,0! tube~full
line! and the perfect~9,0! tube ~dashed line!, plotted for compari-
son. Bottom: atom-averaged LDOS of the interface unit cell of the
~6,3! tube~full line! and the perfect~6,3! tube~dotted line!, plotted
for comparison.

FIG. 7. Lines of allowedk vectors of the~6,6! and~12,0! carbon
nanotubes overlayed on the graphite sheet Brillouin zone. Dashed
lines enclose Brillouin zones of the (1,1) and (1,0) units. Solid dots
indicatek50, and open dots mark points where the lines touch the
graphite sheet Fermi surface.
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nal BZ.2 This is because the Fermi surface of the undoped
graphite sheet is located at these points. Thus, the states at
EF for the (6,6) tube originate from the center line, and are
L50 states, invariant under rotations by 2p/6 about the tube
axis. The Fermi level states of the (12,0) tube come from the
fourth line away from the center, and areL52 states~de-
fined with respect to sixfold rotational symmetry!. So we see
that the Fermi level states of the two perfect tubes have
different rotational symmetries.

When the two tubes are matched to form the junction,
(12,0)/(6,6), six pentagon-heptagon pairs are introduced at
the interface. The interface itself has sixfold rotational sym-
metry. Therefore, the matched tube is invariant under rota-
tions by 2p/6. Now consider the conduction process. Scat-
tering due to rigid defects is elastic as long as the defects
have no internal excitations. Thus, an electron which begins
in the (12,0) tube must scatter to a state with the same en-
ergy in the (6,6) tube. But since the states atEF of the two
half tubes have differentL, the electron wave istotally
reflected, and the conductance equals zero. Stated another
way, the perfectly symmetric interface cannot impart any
extra angular momentum to the electron, so the conditions of
energy and angular momentum conservation cannot be satis-
fied simultaneously.20 If the system is doped with either elec-
trons or holes, such thatEF is pushed away from 0 to ener-
gies at which states of equalL coexist on both halves of the
junction, the conductance is nonzero. The conductance gap
marks the energy window in which states of the two sides
have noL values in common.

It should be pointed out that theL50 states of the (6,6)
side of the junction do extend into the (12,0) side, but they
decay away from the interface, as is typical of interface
states. Likewise, theL52 states of the (12,0) side extend
into the (6,0) side, but are damped. Since evanescent waves
carry no current, the resulting conductance is zero. This is
similar to the total reflection in wave optics: even when the
reflectance equals unity, some nonzero amplitude penetrates.
However, far from the reflecting surface~on the opposite
side from the source!, no light flux is measured.

The above arguments may also be applied to the
(9,0)/(6,3) system. Consider the symmetric matching case.
The interface~6-7-5-6-7-5-6-7-5! has threefold rotational
symmetry about the tube axis, as do the individual (9,0) and
(6,3) tubes. From the graphite sheet band-folding analysis, it
can be shown that the states atEF for the (6,3) tube have
L51 ~defined with respect to threefold rotational symmetry!.
The Fermi level states of the (9,0) tube haveL50. Again,
states on opposite sides of the interface have different rota-
tional symmetries. The symmetric interface does not impart
extra angular momentum to the conducting electrons, so
there is a conductance gap nearEF50.

Now consider the asymmetric matching case. The inter-
face~6-7-5-6-6-7-5-7-5! hasno rotational symmetry whatso-
ever, and in particular, it lacks threefold symmetry. There-
fore, transitions between theL51 states of the (6,3) side,
and theL50 states of the (9,0) side are permitted; the in-
terface can impart angular momentum to the electron. This
results in a conductance which is nonzero over the whole
energy range where the DOS is nonzero.

A general rule can now be abstracted: Carbon nanotube
heterojunctions may have conductance gaps if the defects

that form the interface are arranged symmetrically. They will
not have conductance gaps if the interface does not preserve
the rotational symmetry of the two constituent tubes. Of
course, it is possible to match two tubes with different rota-
tional symmetries.21 In this case, no symmetric matching is
possible, and conductance gaps will never appear. It is also
possible for symmetrically matched tubes to avoid having a
conductance gap. This will happen when the states of the two
sides have someL values in common at every energy.

We can easily derive the necessary condition on
n1 ,m1 ,n2 , andm2 , such that the (n1 ,m1)/(n2 ,m2) matched
tube is a candidate for a conductance gap: An (n,m) tube has
J-fold rotational symmetry ifn andm are both divisible by
J. Thus, ifn1 , m1 , n2 , andm2 all have a common divisor,
it will be possible to form the (n1 ,m1)/(n2 ,m2) junction
with a rotationally symmetric interface. A conductance gap
may result. Otherwise the conductance will, in general, be
nonzero in the energy range for which the DOS is nonzero.
Note that even if the two constituent tubes share a common
rotational symmetry, it is usually possible to choose an
asymmetric matching@see the asymmetric (9,0)/(6,3)
above#. A conductance gap can then be avoided@it cannot be
avoided in the (12,0)/(6,6) system with ideal unit cell
matching#. It should be mentioned that the above argument
holds for all types of defects at the interface. Only the sym-
metry of the interface is relevant.

One point of interest is the variation in geometrical struc-
ture of carbon nanotube heterojunctions with different
matching configurations. Nanotubes with pentagon-heptagon
pair defects may exhibit localized kinks and bends. Bend
angles of up to 15° have been predicted,5,7 and tubes with
these signatures have been seen experimentally.5 A nanotube
heterojunction with a bend is the result of an asymmetric
matching at the interface; rotational invariance is destroyed.
If two tubes are matched symmetrically, the junction will
have no bend, for the axis of rotational symmetry is pre-
served. Thus, there is a relationship between the geometry of
nanotube heterojunctions and the appearance of conductance
gaps. Bent junctions will, in general, have a nonzero conduc-
tance if the constituent tubes are metallic. Straight junctions
may have conductance gaps. So we have the somewhat
counterintuitive result that bent junctions conduct better than
straight junctions on average.

The presence of conductance gaps in some carbon nano-
tube heterojunctions opens up new possibilities for their po-
tential applications. Since conductance gaps arise from a ro-
tational symmetry, any perturbation that destroys this
symmetry will allow the tube to conduct. Three sources of
symmetry breaking are thermally excited phonons, externally
applied electromagnetic~EM! radiation, and mechanical de-
formation. If a nanotube heterojunction with a conductance
gap is at very low temperature, only acoustic phonon modes
with q;0 will be excited. From the above band-folding
analysis, these modes will be symmetric (L50), and will not
change the rotational symmetry of the interface. If the junc-
tion is at slightly higher temperature, asymmetric phonon
modes (L.0) will be excited, which break the rotational
symmetry, and destroy the conductance gap. The conduc-
tance should then show a sharp increase as temperature is
increased. Therefore, heterojunctions with conductance gaps
may be used as nanoscale thermistors, which operate in the
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10–100 K range. Heterojunctions kept at low temperature
may lose their conductance gaps when bathed with appropri-
ately polarized EM radiation. Circularly polarized photons
with E fields rotating about the tube axis can impart angular
momentum to the conduction electrons. This allows the elec-
trons to cross the interface and conduct current. Thus, these
systems could also be used as nanoscale photoconductive
switches that operate over a wide range of frequencies~un-
like typical photoconductive materials, it is the exchange of
angular momentum rather than energy that excites the elec-
trons into conducting states!. Finally, mechanical stress can
be used to destroy the rotational symmetry of a junction. If a
nanotube heterojunction is anchored at both ends, a nanos-
cale piezoelectric particle positioned alongside the interface
may deform the tube wall enough to allow the flow of cur-
rent. In this way, heterojunctions could be used as nanoscale
voltage-activated electrical switches.

V. CONCLUSION

We have studied the conductance of metallic carbon
nanotubes with defects using the Landauer approach and a
tight-binding Green’s function technique. We find that a
single vacancy produces a dramatic decrease in the conduc-
tance of small-radius tubes, while tubes with large radii are

less affected. This is indicative of the crossover from one-
dimensional to two-dimensional behavior. We have shown
that carbon nanotube heterojunctions formed from two me-
tallic tubes conduct if the defects at the interface are arranged
asymmetrically. If the defects preserve the rotational symme-
tries of the two tubes, conductance gaps appear. Conse-
quently, bent junctions conduct better than straight junctions
on average. Owing to their novel properties, carbon nanotube
heterojunctions with conductance gaps may be used as
nanoscale thermistors, as well as optically activated and
voltage-activated electrical switches.
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