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Transmission of double-impurity atomic switches
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The electron transmission properties of a molecular-electronic switch, represented by a monatomic chain
with two atomic impurities, is studied via the tight-binding model. A method, based on the Lippmann-
Schwinger equation, is used to obtain simple expressions for the transmission probability. Impurities, occupy-
ing neighboring sites in the chain, interact directly and act as a single diatomic impurity. For remote impurities,
there is no direct interaction in the tight-binding model, but interference among the multiply reflected Bloch
waves between the impurities leads to oscillations in the transmission probability over the energy band. We
find that, in either case, controlling the transmission by the impurity-site energies is feasible in the regime of
sufficiently weak impurity-chain couplinggS0163-182606)08926-4

[. INTRODUCTION impurity levels, which may end up outside the band, thus
losing the ability to control the switching. It will be shown

The presence of impurities and defects, in polymeric systhat, in fact, the interimpurity coupling is an another impurity
tems, can influence significantly the transmission propertieparameter, suitable for switch control. In the case of sepa-
Through control of one or more impurity parameters, eleclated impurities, even though there is no direct coupling be-
tron transmission along the polymer can be switched on/offtween them in TB model, multiple reflections of Bloch
A convenient description of such systems is provided by thavaves between the impurities lead to oscillations in trans-
tight-binding (TB) modet-? of periodic chains. Describing a Mission probability, possibly damaging the control mecha-
p0|ymeric System by aTB Ham“tonian W|th a Sing|e Orbita' nism Of the SWitCh. We Sha” eXamine hOW these interference
per site is certainly an over-simplified model for a molecular-effects are affected by the impurity-chain coupling and the
electronic switch. However, it permits analytical results forinterimpurity distance.
transmission coefficient, providing qualitative understanding
of modes of switch control in terms of various impurity pa- Il. BASIC FORMULATION
rameters, which may be related to a realistic polymeric chain
through a renormalization approathf particular interest is
the effect of the impurity-chain coupling strength on control-
ling the transmission by the impurity-site energies. It has +oo
been showh? that sharp switching is favored by weak cou- Ho= > [aln)(n|+a(n}{n+1|+|n+1)}n)], (1)
pling, in contrast to minimizing temperature effects, which is n=-o
favored by strong coupling.

Transmission through a single impurity in a metal-like
chain has been studied by Sautet and Joachising the
transfer-matrixTM) technique, which was subsequently ap-
plied to the single-impurity problem in a semiconducting liho(k)) =2 ca(k)[n), 2
chain with alternating bondsin the present article, the prob- :
lem of two atomic impuritiedn a metal-like chain is inves- where, without loss of generality, we consider Bloch waves
tigated by the Koster-SlatefKS) method, based on the traveling from left to right, so that2(k) =e'"%, with mo-
Lippmann-Schwinger(LS) equatior? While both the TM  mentum g,=ka (a being the chain perigdand energy
and KS methods are convenient for compact, molecular-typeg (k) = a« +23cos,. For the reduced energy X=cosd
impurities, the KS method provides an easier way than TM=(E—q)/23 inside the band € 1<X<1), the Green func-
for handling multiple impurities, the example being two tion for H,, with the outgoing-wave asymptotic form, can be
atomic impurities, at remote sites. The advantage of the K@xpressed 4s
method lies in using the asymptotic form of the Green func-
tion for the host chain to obtain the transmission coefficient, i elln—mle
while the TM technique would require multiple matrix prod- Go(n,m)=(n|Go[m)= 28 sing &)
ucts of high degree.

Working in the TB model, we have to consider separatelyRepresenting the impurities by a potentia] we seek the
two cases, namely, impurities occupying adjacent sites in thecattering eigenfunctions of the Hamiltonidth=Hq+V,
chain and impurities separated by at least one host atom. Mith energy inside the band, namely,
the former case, the impurities interact directly, thus acting
as a_diato_mic_mole_cule, immersed in the chain. !ncreasing |¢(k)>=2 ca(K)[N), (4)
the direct interimpurity coupling leads to the repulsion of the n

The infinite monatomic chain is described by the TB
Hamiltonian, whose projection-operator fornf is

where « (B) is the site(bond energy andn) denotes the
nth site orbital. The eigenfunctions &f, are
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FIG. 1. Dependence of transmission probability for adjacent im-
purities | 77|? on energyX and impurity-chain couplingY for FIG. 2. Dependence of transmission probability for separated
impurity-site energyZ=1/2. Interimpurity couplingsY,, are (a) impurities| 752 on energyX and impurity couplingy for impurity-
0.5, (b) 1, and(c) 2. site energyZ=1/2. Distances between impurities de d=2, (b)

d=6, and(c) d=13.
which are represented, far to the left, by an incoming wave
of unit amplitude plus a reflected wave and, far to the right, llIl. ADJACENT IMPURITIES

by a transmitted wave, whence, Assume that the two host atoms at sites 0 and 1 are re-

_ , placed by two impurities, which are coupled to each other by
e+ Re M o —o, Bn . Let their site energies be, anda,, and their couplings
T, no+. ®)  tothe neighboring chain atong, and3,, respectively. The

scattering potential for an electron propagating through the
In order to determine théwo-impurity transmission coeffi- chain with adjacent impurities can now be expressed as
cient 7, we use the Koster-Slater methbdased on the LS 1
equation for the coefficients,, viz., Va=2B[Zo|0)(0 +Z[1){1|+ 7 (Yo 1)

X (|=1)(0[+[0)(—1D+ 2 (Y2=1)(|1)(2|+[2)(1])

+ 3 (Ya=1)(JOX1[+[1){0]], ()

Ch=

cn=Cat+ 2 Go(n,)(IVIm)ey. (6)
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in which

are the reducednpurity-site energie¢j=0,1), and
Yi=Bj/B 9

are relative magnitudes of thénpurity-chain coupling

(J=0,1), and of thenterimpurity coupling(j =h).
On introducing the notatiob=e'? and

AJ:|ZJ/S|n0, BIII(YJ—l)/2S|n¢9, (10)

the expressions foBy andV, enable the LS equatiofb) to
be rewritten as

tBo—1 tAy+Bo+t?B,
By  Ag+tBy+tBy—1

M=l 1B,  tAy+t2By+B,
B, t?Ay+1t3By+1tBy,

The solution for coefficientP is straightforward, yielding

YoYhY,
TR= -, 14
2 CgCi—-CyCit? (4

where
R XYJ-Z+Yh . YiEYy o1
<] R R R B
(15

257

ch=t"+Bgt"e_+ (Aot + Bt U+ Bptinthe,
+ (AN U4 Bt =24 Bt ey + B4t e,
11
Taking n— +o, the transmission coefficient ifb), for ad-
jacent impurities, is given by
T2=14BoC_1+(Ag+tBy+t 1By)c
+(t7 YA+t 2B +By)c;+tIBc,. (12

Utilizing the LS equation(11), the four equations for the
coefficientsc_,, cq, ¢; andc,, required to determing;’
fully, may be generated. In matrix notation, we obtain
MPT=Q", where P=[c_;,¢q,C1,C,], Q=—[t 1,1t,t?]
and

t?A;+1t°B,+tB;,  t?B;
tA;+t?B;+B, tB,

A,+tB;+tB,—1 B, (13
tA;+B,+t?B, tB;—1

ag (Bg), respectively. Note that, for separated impurities,
there is no direct interimpurity coupling, a8 and B4 are

the impurity couplings to the nearest chain atoms. The scat-
tering potential for an electron propagating through the chain
with separated impurities may now be expressed as
Vs=V,y+Vy, where

Vi=2BLZ i)+ (Y= D (i =1+ — 1] +1i)
X(j+1|+]j+1)ih], j=0d (17)

in which the reducedmpurity-site energies Zand relative

In order to limit the impurity-parameter space, we restrictmagnitude of thémpurity-chain couplings Yare given by
ourselves to the case of two identical impurities, having theg) and (9), respectively, forj =0d.
same site energieZf=2,=2) and the same couplings to  ysing the same notation as {a0) with j=0d, the ex-

the chain atomsYo=Y;=Y). We are interested in the ef- pressions forG, and V enable the LS equatio(6) to be
fects of the interimpurity couplind'y, on the transmission, in  rewritten as

cases when the impurity level lies inside the band, say, when
Z=1/2, as in Ref. 1. In Fig. 1, thX¥ andY dependences of
the transmission probability72|? are displayed for energies
inside the band{ 1<X<1) and for a range of the impurity-
chain couplings (8&Y=<1.6), for several values ofvy
(0.5,1, and 2). It is noteworthy that, for weak impurity-chain
coupling (Y<1), two peaks occur in the transmission prob- Taking n— + o, the transmission coefficient i{5), for im-
ability at purities separated by distande is given by

Cr=t"+[Agt"+ Byt H+ I ]co+ BotM(c_ 1+ cy)
+[AGIN 94 Byt a4 gnmd= ey

+Bgt "y g +caiq). (18

To=1+[Ag+ (t+t HBglcg+[Ag+ (t+t 1)ByJt 9cy
(19

(16)

1 IRV
thi[zﬁ‘ Z1 =\ (Zo—Z1)+ Yql,

which are clearly seen in Fig. 1.

+Bo(C_1+C1) +Bgt ™ U(Cy—1+Cas1).

Utilizing the LS equation(18), the four equations for the
coefficientscy, ¢y, bg=c_;+¢q, andby=cy_1+Cq:1, re-
quired to determineZ; fully, can be generated. In matrix
notation, we obtainNR'=ST, where R=[cy,by,Cq,b4],
S=—[1t+t %1t+t"1], and

IV. SEPARATED IMPURITIES

Let us replace the two host atoms at sites 0 da2 by
two impurities, whose sitébond energies arey, (8,) and



258 MISKOVIC, ENGLISH, DAVISON, AND GOODMAN 54

Ap+2tBy—1 Bo [Ag+ (t+t 1)Bg]td Bgtd
N 2t[Ag+ (t+t71)Bg] 2tBo—1  (t+t H[Ag+(t+t HBJtY  (t+t71)Bgtd 20
B Ao+ (t+t HB, Bo (Ag+2tBy—1)t ¢ Byt ¢ ' 20

(t+t H[Ag+ (t+t HBe] (t+t 1By 2t[Ag+(t+t HBglt ¢ (2tBy—1)t ¢

The solution for coefficient® is straightforward, yielding

1
7?:(1—iCO)(l—iCd)JrCOCdtZd’ (22
where

c Zi+X(Yi-1) 0d -

e T

Interestingly enoughfzs bears a close resemblance to giegle-impuritytransmission coefficieht

)= 23
=15¢ (23

Thus, the interference between the two impurities manifests its@f iny the presence of the oscillatory tetdi=e'29, In
the limit of remote impuritiesgd— +, one can také?=0 on average, and obtain simpfy— 7;(0)7;(d), indicating that
there is no interaction between the impurities. In the general case of a finite distarzewe can use th&€hebyshev
polynomials By(X) andU,q4_1(X) to express the transmission amplitude as

1
{1+ CoCol T2a(X) — 11}*+{Co+ Cy— CoCq /1= X?Ug-1(X)}*

|T5)2= (24)

The impurity-parameter space is again limited to the caseity parameters, say andY. A study of the one-impurity
of two identical impurities, having the same site and bondproblem reveals thaf7;|? develops avell-defined peakt the
energies, so that,=2Z3=2Z andY,=Y4=Y. In optimizing  energyX=Z, when the impurity site-energy is inside the
the transmission(21) and (24) suggest thaf7;]|?=1 for all  pand (- 1<Z<1), for sufficiently weak impurity-chain cou-
distancedd, if one works in the regim&,=Cy=0, thatis, pling, Y<1 (see Fig. 7 of Ref. 1 which is a desirable fea-
Z+X(Y?~1)=0. A slight variation from this condition may ture of the one-impurity model of a molecular switch.
introduce an uncontrolled change in transmission, due to inFrom Figs. 1 and 2, it is also seen that, in the two-impurity
terference of multireflected Bloch waves between the impucase, controlling the switching by the impurity-site energies
rities. To demonstrate this, we sét=1/2, as in Ref. 1, and remains feasible in the regime of weak impurity-chain cou-
display in Fig. 2 theX andY dependences di7;|? for en-  pling.
ergies inside the band{1<X=<1) and for a range of the In designing molecular switches, we are also interested in
impurity couplings (6<Y=1.6), at distancesi=2,6, and the transmission at the Fermi lev¢f, which we choose at
13 between the impurities. Figure 2 shows t1Bl|2 has an  X=Xg=1/2, as in Ref. 1. In the case of adjacent impurities,
oscillatory behavior over the energy band for wide ranges of16) suggests that it is possible to control the switching by
d andY, due to the above-mentioned interference effect. changing the interimpurity couplinyy,, in addition to the
above-mentioned control via impurity-site energy. In Fig. 3,
we display the Z and Y, dependence of|77|? at
X=Xg=1/2, for two identical impurities, and for several

The switching property depends on the availability of values of impurity-chain coupliny (0.2, 0.5, and 0.8). Itis
well-defined on/off regions, where the transmission probabilclear from the figure that, fory<1, bothZ andY, may serve
ity changes between 0 and 1 in a narrow range of the imputo control the switch on/off operation.

V. DISCUSSION
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FIG. 3. Dependence of transmission probability for adjacent im- o -
purities | 722 on Z and Yy, for X=1/2 and (@ Y=0.2, (b) - FIG. 4. [gezpendence of transmission probability for separated
Y=0.5, and(c) Y=0.8. impurities | Z5|* on Z for X=1/2 and(a) Y=0.2, (b) Y=0.5, and

(c) Y=0.8. The distancesl=2+3n, d=3+3n, andd=4+3n

In case of separated impurities, the distancés not a (n _being a non-negative integeare repre;ented in each plot by
suitable control parameter, so instead we are interested #f!id, dashed, and dotted curves, respectively.
gsctjabllshdlng on/ O;f reg|onsf% Wh'CE_ are 2|nsr?n5|tlvre] tof the,;sed as a means of controlling the switch operation. Larger
d tepensjentr:nter elr(enpciez ects. | |gur2e dS ows t fat, O 8falues ofY create a wider dispersion in tfeon-off regions,
( 'Sﬂ?n‘;e , the pea ab—b_l{en;alns tff_e_ otrlnlnant”eatlure again because of interference. Consequently, we conclude
g} YewLa;Qk?r;;lsaSIé)Sgg:e()stg dlrle}gin?e: cs):‘Jog:é:ergti}o/nsmihg?nteltsi-that a weak impurity-chain coupling reduces interference ef-
impurity situation. To illustrate th& control of switching, Iﬁgti(?;dcﬁgables closer packing of multiple switches along
we consider the transmission ¥t Xg=1/2 for two identi- '
qal impurities. In this cas¢725|.2 becomes a triperiodic func- ACKNOWLEDGMENTS
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