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Time evolution of a nonequilibrium polariton condensate has been studied in the framework of a micro-
scopic approach. It has been shown that due to polariton-polariton scattering a significant condensate depletion
takes place in a comparatively short time interval. The condensate decay occurs in the form of multiple echo
signals. Distribution-function dynamics of noncondensate polaritons have been investigated. It has been shown
that at the initial stage of evolution the distribution function has the form of a bell. Then oscillations arise in
the contour of the distribution function, which further transform into small chaotic ripples. The appearance of
a short-wavelength wing of the distribution function has been demonstrated. We have pointed out the enhance-
ment and then partial extinction of the sharp extra peak arising within the time interval characterized by small
values of polariton condensate density and its relatively slow changes.@S0163-1829~96!00127-0#

I. INTRODUCTION

In a great number of works concerning spatial and time
evolution of laser radiation in resonant media the classical
description is used when the photon and material fields are
considered as interacting macroscopically occupied coherent
modes~condensates!. When a quasiparticle quits a conden-
sate mode, that is usually taken into account by introduction
of phenomenological damping constants. In this case it is
assumed that~1! the condensate decay is exponential and~2!
the condensate lifetime is considerably longer than the dura-
tion of the coherent nonlinear process being investigated.

From our point of view it is more consistent to use a
microscopic approach~see, e.g., Refs. 1–3!, where the dy-
namics of interacting condensate modes and quantum fluc-
tuations appearing in a system as a result of real scattering
processes of quasiparticles are described on equal footing. In
other words, one should take into account~1! the interaction
between condensates,~2! excitation of noncondensate par-
ticles, and~3! the backward influence of noncondensate par-
ticles on the condensates.

The microscopic approach is used in this work to describe
the time evolution of the system of initially coherent high-
density excitons and photons.

It is known4 that coherent electromagnetic radiation reso-
nant to the isolated exciton energy level excites in the crystal
the coherent polariton wave with the wave vectork0Þ0 —
the nonequilibrium polariton condensate. Different scattering
processes accompanying its propagation lead to the loss of
initial coherence of the polariton wave, complete or partial
depletion of condensate, excitation of polaritons character-
ized by some statistics with wave vectorkÞk0 , and other
phenomena.

At sufficiently high excitation energies the processes of
polariton scattering due to exciton-exciton collisions prevail.
This scattering mechanism is of considerable interest due to
the recent experimental investigations5 and many interesting
physical results obtained in theoretical study of dynamic and
kinetic processes in the system of interacting polaritons.

According to Refs. 6 and 7 exciton-exciton scattering is of

significant importance in the situation where coherent polari-
tons are excited in a certain spectral region where energy and
momentum conservation laws allow real processes of two-
quantum excitation of polaritons from the condensate. These
processes lead to instability of the completely condensed
state of the polariton system. Existence of this spectral re-
gion situated around the isolated exciton resonance is due to
the peculiarities of the polariton dispersion law.

In Refs. 6 and 7 the energy spectrum of noncondensate
polaritons, arising as a result of decay of coherent polariton
wave, is studied. According to Refs. 6 and 7 in some regions
of k space the energy spectrum does not exist.

It should be mentioned that investigations performed in
Refs. 6 and 7 are based on the model formally analogous to
that used by Bogoliubov in Ref. 8 to study the equilibrium
system of weakly nonideal Bose gas. In the nonequilibrium
situation considered in Refs. 6 and 7, when decay of the
polariton condensate and excitation of noncondensate polari-
tons take place, this model is adequate to the real situation
only at the initial stage of the condensate decay when the
number of polaritons in the condensate is still much greater
than the total number of noncondensate polaritons. But this
stage is essentiallynonstationaryand the occurrence of con-
densate instability provides evidence for that. The study of
the energy spectrum implies the determination of thesteady
statesof the system.9 That is why the results of Refs. 6 and
7, concerning the energy spectrum of the system, based on
the above-mentioned model, in our opinion cannot be re-
garded as well grounded. This remark refers to the relatively
recent works10,11 as well.

Because of essential nonstationarity of the processes in
the system methods of nonequilibrium mechanics should be
used to describe it adequately. Derivation of the equations
that describe kinetics of the polariton condensate decay and
excitation of quantum fluctuations has some specific features
owing to degeneracy in the system. As the energy and result-
ing wave vector of two non-condensate polaritons can be
equal to the energy and wave vector of two condensate po-
laritons, respectively, there is degeneracy of two-particle
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states. Moreover, the presence of the condensate in the sys-
tem also leads to degeneracy due to its macroscopic
amplitude.12

The correct description of the system with degeneracy
requires the introduction of abnormal distribution functions13

Ck0
5^Fk0&

and

Fk5^FkF2k02k&

together with the normal~usual! ones

N k 5^Fk
†Fk&.

HereFk
† (Fk) are Bose operators of creation~annihilation!

of a polariton on the lower branch with the wave vectork.
The appearance of abnormal averages indicates a breaking of
the selection rules connected with the gauge invariance of
the system.13–15 In this problem the breaking of gauge sym-
metry arises as a result of the noninvariant initial condition
due to the assumption that there is a condensate in the system
at the initial momentt5t0 .

An earlier attempt to obtain kinetic equations for polari-
tons excited in semiconductors by the external classic field
was made in Refs. 16 and 17. However, in Refs. 16 and 17
degeneracy of two-particle states was not taken into account
and the abnormal distribution functionsFk were not intro-
duced. So one should expect the equations obtained in Refs.
16 and 17 to possess unphysical singularity.

Kinetic equations describing evolution of partially coher-
ent polaritons that take into account the degeneracy were
obtained in Refs. 18 and 19 using the nonequilibrium
Green’s-function technique,20,21 presented by the authors in
terms of functionals. They coincide with the equations ob-
tained in Ref. 22 using the method of nonequilibrium statis-
tical operator,23 and do not possess unphysical singularities.

According to Refs. 19 and 22 the kinetics of partially
coherent polaritons is described in the Born approximation
by the closed set of nonlinear integrodifferential equations
for the coherent part of polariton fieldCk0

and the normal

nk5Nk2dk,k0uCk0
u2

and abnormal

f k5Fk2dk,k0Ck0
2

distribution functions. In the absence of quantum fluctua-
tions, described by the functionsnk and f k , the equations for
them become identities, and the equation forCka (a is the
number of polariton branch! coincides with that obtained in
Ref. 24 for the system of interacting coherent excitons and
photons. In another particular case, whenCk0

50 and

f k50, the equations obtained in Refs. 19 and 22 are reduced
to the usual kinetic equation for the distribution function
Nk ~see, e.g., Refs. 23 and 25!.

The right-hand sides of kinetic equations obtained in
Refs. 19 and 22 include terms linear in the constant of
exciton-exciton interactionn.0 and the ones;n 2. Terms
;n correspond to the self-consistent-field approximation,
which neglects the higher-order correlation functions. In this
approximation the processes of two-particle excitations of
polaritons from the condensate, backward processes, and
transformation of a created pair of noncondensate polaritons
into another pair with the same value of total momentum are
taken into account. It describes the fastest processes in the
system and is sufficient for study of the early~before-kinetic!
stage of the system’s evolution.

Terms ;n 2 take into account scattering processes in
which only one polariton belongs to the condensate. There-
fore, they differ from zero only if noncondensate polaritons
exist in the system. Terms;n 2 in comparison with terms
;n describe slower changes of the system characteristics and
are significant only at the kinetic stage of evolution.

Our study of time evolution of the nonequilibrium polar-
iton system is based on the self-consistent-field approxima-
tion. This approximation has shown a good performance in
the theoretical study of states of the electron-hole subsystem
in semiconductors that appear just after the transmission of
the front of the ultrashort laser pulse.26,2,27The part of evo-
lution equations obtained in our work for the stationary case
are in many respects similar to the equations given in Refs.
26, 2, and 27. Nevertheless, that slight distinctions are im-
portant and lead to significant physical consequencies.

The stationary equations obtained in Refs. 26, 2, and 27
possess nontrivial solutions describing states of the electron-
hole subsystem. The decay of these states occurs only due to
incoherent relaxation processes. In Refs. 26, 2 and 27 it is
assumed that these processes do not have time to happen
during the period of pulse action. This assumption justifies
the use of the self-consistent field approximation. The at-
tempt to find the steady-state solution of similar equations in
the framework of the physical problem of this paper leads to
instabilities. Their physical nature has been discussed above.
As noted, the appearance of the instability points leads to
essential nonstationarity of the processes in the system and
requires the return to the starting~nonstationary! equations.

Moreover, the excitation of the great number of noncon-
densate modes can lead to significant depletion of the con-
densate. So to take into account this phenomenon it is nec-
essary, along with equations similar to equations in Refs. 26,
2, and 27 to consider an additional equation for the conden-
sate wave functionCk0

. Note that in Refs. 26, 2, and 27
backward influence of the electron-hole subsystem on the
laser radiation field was not taken into account.

Note also Refs. 28–32 where the self-consistent-field ap-
proximation allowed us to take into account the biexciton
complex structure.

II. SYSTEM HAMILTONIAN

We start from the Hamiltonian

Ĥ5Ĥ01Ĥ int , ~1!
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Ĥ05(
k

(
a1 ,a251,2

~hk!a1a2
ŵka1
† ŵka2

, hk5\vk
'S 11t3

2 D1\vkS 12t3
2 D1hkt2 , ~2!

Ĥ int5
1

2V (
k1 , . . . ,k4

(
a1 , . . . ,a451,2

nk12k4
dk11k2 ,k31k4S 11t3

2 D
a1 ,a3

S 11t3
2 D

a2 ,a4

ŵk1a1
† ŵk2a2

† ŵk3a3
ŵk4a4

. ~3!

In ~1!–~3! the following notations are used. The operators
ŵka (ŵka

† ) of exciton ~whena51) or photon~whena52)
annihilation~creation! in the state with wave vectork obey
Bose-type commutation relations:

@ŵk1a1
,ŵk2a2

† #5dk1 ,k2da1 ,a2
,@ŵk1a1

,ŵk2a2
#5@ŵk1a1

† ,ŵk2a2
† #

50.

The Pauli matricest1 , t2 , andt3 are taken in the standard
representation.20 The frequenciesvk andvk

' are given by the
expressionsvk5cukueB

21/2,vk
'5v'1\k2/2m, where c is

the vacuum velocity of light,\v' is the exciton formation
energy in the band\vk

' , andm is its effective mass. The
background dielectric functioneB includes the contributions
from all excitations in a crystal except the excitons of the
isolated band\vk

' . In the vicinity of the exciton resonance
vk'vk

' weak frequency dependence ofeB can be neglected.
The Hamiltonian~1! describes the system of interacting

dipole-active excitons and photons with transverse polariza-
tion in an infinite crystal (V→`, V is the quantization vol-
ume! in the vicinity of an isolated exciton resonance
vk'vk

' . In other words, we assume that the relations
\uvk2vk

'u!\vk
' , DE are imposed on the photon frequency

\vk , the energy of the exciton\vk
' , and the minimum

energy gapDE between the exciton band\vk
' and any other

one. Beside that we suppose that the constants of exciton-
photon (hk5h2k… and exciton-exciton (nk5n2k… interac-
tions are small enough: 0,hk /\!vk

' , 0,(nk /\)n̄!vk
'

(n̄ is an average density of excitons in the system!. These
assumptions allow us to retain in~2! only resonant terms and
treat the exciton-exciton interaction as a small perturbation.

The quadratic part~2! of Hamiltonian~1! can be reduced
to the diagonal form

Ĥ05(
k

(
a5 1,2

\VkaF̂ka
† F̂ka ~4!

by transition to the polariton Bose operatorsF̂ka and F̂ka
†

using the unitary transformation

ŵka1
5 (

a251,2
~Uk!a1a2

F̂ka2
, Uk5

12 i t1Lk

A11Lk
2
.

Lk is a function determined by the equation
hkLk

21\(vk2vk
')Lk2hk50. In the polariton representa-

tion we have

Ĥ int5
1

2V (
k1 , . . . ,k4

(
a1 , . . . ,a451,2

nk12k4
dk11k2 ,k31k4

3~Pk1k3!a1a3
~Pk2k4!a2a4

F̂k1a1
† F̂k2a2

† F̂k3a3
F̂k4a4

, ~5!

where

Pk1k25Pk2k1
† 5Uk1

† S 11t3
2 DUk2

.

Hamiltonian ~1! is invariant with respect to the gauge
transformationR̂5exp(igN̂) whereg is an arbitrary real pa-
rameter,N̂5(k(a5 1,2F̂ka

† F̂ka is the operator of the total
number of polaritons in the system.

III. SELF-CONSISTENT FIELD APPROXIMATION

In the Heisenberg picture operatorsF̌ka(t) are governed
by the equation of motion

i\
d

dt
F̌ka~ t !5@F̌ka~ t !,Ȟ# ~6!

and average value of a dynamic quantityA is given by
^A& t5 TrřǍ(t). Here ř is the density matrix, which de-
scribes the polariton distribution at the initial moment of
time t5t0 .

The presence of the condensate in the system implies that
the coherent part of the polariton field

Cka~ t !5^Fka& t ~7!

is nonzero. We write down the coherent part explicitly

F̌ka~ t !5Cka~ t !1x̌ka~ t !. ~8!

According to definition~7!, we havê xka& t50.
Using ~8! we present the HamiltonianȞ5Ȟ01Ȟ int in

the form Ȟ5Ȟ1(t)1Ȟ2(t), where the operatorȞ1(t) in-
cludes only linear and quadratic terms with respect to
x̌ka(t) and x̌ka

† (t). The operatorȞ2(t) includes products of
three and four operatorsx̌ka(t) and x̌ka

† (t).
Further we shall treatȞ2(t) in the self-consistent field

approximation. For this purpose we make the formal
substitution27
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x̌k1a1
† ~ t !x̌k2a2

† ~ t !x̌k3a3
~ t !x̌k4a4

~ t !→x̌k1a1
† ~ t !x̌k2a2

† ~ t !^xk3a3
xk4a4

& t1x̌k3a3
~ t !x̌k4a4

~ t !^xk1a1
† xk2a2

† & t

1x̌k1a1
† ~ t !x̌k3a3

~ t !^xk2a2
† xk4a4

& t1x̌k1a1
† ~ t !x̌k4a4

~ t !^xk2a2
† xk3a3

& t

1x̌k2a2
† ~ t !x̌k3a3

~ t !^xk1a1
† xk4a4

& t1x̌k2a2
† ~ t !x̌k4a4

~ t !^xk1a1
† xk3a3

& t ,

x̌k2a2
† ~ t !x̌k3a3

~ t !x̌k4a4
~ t !→x̌k2a2

† ~ t !^xk3a3
xk4a4

& t1x̌k3a3
~ t !^xk2a2

† xk4a4
& t1x̌k4a4

~ t !^xk2a2
† xk3a3

& t .

As a result,Ȟ2(t) ~and Ȟ) has the same operator structure asȞ1(t). Performing transformation from the operatorsx̌ka(t)
back to the operatorsF̌ka(t) we obtain

Ȟ5E0~ t !1(
k

(
a51,2

\VkaF̌ka
† ~ t !F̌ka~ t !1

1

2V (
k1 , . . . ,k4

(
a1 , . . . ,a451,2

dk11k2 ,k31k4H @nk12k4
~Pk1k3!a1a3

~Pk2k4!a2a4

1nk12k3
~Pk1k4!a1a4

~Pk2k3!a2a3
#F F̌k1a1

† ~ t !F̌k3a3
~ t !^Fk2a2

† Fk4a4
& t1

1

2
F̌k1a1
† ~ t !F̌k2a2

† ~ t !^Fk3a3
Fk4a4

& t

22F̌k1a1
1 ~ t !Ck2a2

* ~ t !Ck3a3
~ t !Ck4a4

~ t !G1 H.c.J , ~9!

whereE0(t) is a c-number function.
With the help of Hamiltonian~9! and equations of motion~6! we obtain the set of equations, which describes time evolution

of the system of partially coherent polaritons:

F i\ d

dt
2\Vk1a1GCk1a1

~ t !5
1

V (
k2 ,k3 ,k4

(
a2 ,a3 ,a451,2

dk11k2 ,k31k4
@nk12k4

~Pk1k3!a1a3
~Pk2k4!a2a4

1nk12k3
~Pk1k4!a1a4

~Pk2k3!a2a3
#F12Ck2a2

* ~ t !Ck3a3
~ t !Ck4a4

~ t !1n~k2 ,a2 ;k3 ,a3ut !Ck4a4
~ t !

1
1

2
Ck2a2
* ~ t ! f ~k3 ,a3 ;k4 ,a4ut !G ; ~10!

F i\ d

dt
1\~Vk1a1

2Vk2a2
!Gn~k1 ,a1 ;k2 ,a2ut !52

1

V (
k3 ,k4 ,k5

(
a3 ,a4 ,a551,2

dk11k3 ,k41k5
@nk12k5

~Pk4k1!a4a1
~Pk5k3!a5a3

1nk12k4
~Pk5k1!a5a1

~Pk4k3!a4a3
#H n* ~k2 ,a2 ;k5 ,a5ut !@n* ~k3 ,a3 ;k4 ,a4ut !

1Ck3a3
~ t !Ck4a4

* ~ t !#1
1

2
f ~k2 ,a2 ;k3 ,a3ut !@ f * ~k5 ,a5 ;k4 ,a4ut !

1Ck5a5
* ~ t !Ck4a4

* ~ t !#J 2$Idem@~k1a1!↔~k2a2!#%* ; ~11!

F i\ d

dt
2\~Vk1a1

1Vk2a2
!G f ~k1 ,a1 ;k2 ,a2ut !5

1

2V (
k3 ,k4

(
a3 ,a451,2

dk11k2 ,k31k4
@nk12k4

~Pk1k3!a1a3
~Pk2k4!a2a4

1nk12k3
~Pk1k4!a1a4

~Pk2k3!a2a3
#@ f ~k3 ,a3 ;k4 ,a4ut !1Ck3a3

~ t !Ck4a4
~ t !#

1
1

V (
k3 ,k4 ,k5

(
a3 ,a4 ,a551,2

dk11k3 ,k41k5
@nk12k5

~Pk1k4!a1a4
~Pk3k5!a3a5

1nk12k4
~Pk1k5!a1a5

~Pk3k4!a3 ,a4
#H f ~k2 ,a2 ;k5 ,a5ut !@n~k3 ,a3 ;k4 ,a4ut !

1Ck3a3
* ~ t !Ck4a4

~ t !#1
1

2
n* ~k2 ,a2 ;k3 ,a3ut !@ f ~k5 ,a5 ;k4 ,a4ut !

1Ck5a5
~ t !Ck4a4

~ t !#J 1Idem@~k1a1!↔~k2a2!#. ~12!
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Here

n~k1 ,a1 ;k2 ,a2ut !5n* ~k2 ,a2 ;k1 ,a1ut !

5^Fk1a1
† Fk2a2

& t2Ck1a1
* ~ t !Ck2a2

~ t !,

~13!

f ~k1 ,a1 ;k2 ,a2ut !5 f ~k2 ,a2 ;k1 ,a1ut !

5^Fk1a1
Fk2a2

& t2Ck1a1
~ t !Ck2a2

~ t !.

Equations~10!–~12! can be reduced to a simpler form in
the physical situation when an external classical source is
switched on and the system is prepared so that att5t0 only
one macroscopically occupied coherent modek5k0 on the
lower polariton branch is excited:

Cka~ t0!}AVda,1dk,k0,

n~k1 ,a1 ;k2 ,a2ut0!5 f ~k1 ,a1 ;k2 ,a2ut0!50. ~14!

From ~10!–~12! we can find the variation of the functions
Cka(t) and ~13! at the time momentt5t01dt:

dCka}dk,k0, dn~k1 ,a1 ;k2 ,a2!50,

d f~k1 ,a1 ;k2 ,a2!}dk11k2 ,2k0
.

Therefore, the coherent polariton wave of macroscopic am-
plitude is a source of quantum fluctuations, described by the
function f (k1 ,a1 ;2k02k1 ,a2ut). Substituting

Cka~ t !5dk,k0Ck0a~ t !, n~k1 ,a1 ;k2 ,a2ut !50,

f ~k1 ,a1 ;k2 ,a2ut !5dk11k2 ,2k0
f ~k1 ,a1 ;2k02k1 ,a2ut !

into the right-hand sides of~10!–~12! we obtain

dCka}dk,k0,

dn~k1 ,a1 ;k2 ,a2ut !}dk1 ,k2,d f~k1 ,a1 ;k2 ,a2ut !

}dk11k2 ,2k0
.

This means that after the quantum fluctuations, described by
abnormal distribution function f (k1 ,a1 ;2k02k1 ,a2ut),
fluctuations that are characterized by normal~usual! distribu-
tion functionn(k1 ,a1 ;k1 ,a2ut) are excited.

Substituting

Cka~ t !5dk,k0Ck0a~ t !, n~k1 ,a1 ;k2 ,a2ut !

5dk1 ,k2n~k1 ,a1 ;k1 ,a2ut !,

f ~k1 ,a1 ;k2 ,a2ut !5dk11k2 ,2k0
f ~k1 ,a1 ;2k02k1 ,a2ut !

~15!

into the right-hand sides of~10!–~12! we can easily see that
the left-hand sides of these equations have the same struc-
ture. Therefore, solution to the~10!–~12! under the initial
conditions~14! has the form~15!. This result is nothing but a
consequence of the momentum conservation law in the el-
ementary acts of polariton scattering. Further simplification
of ~10!–~12! can be achieved by retaining in their right-hand

sides only the resonant terms corresponding to lower polar-
iton branch. Taking into account~15! and omitting fast-
oscillating terms in~10!–~12! we obtain

i\
d

dt
Ck0

~ t !5@\Vk0
1F̃k0~ t !#Ck0

~ t !

1Fnpol~k0 ,k0!
Ck0

2 ~ t !

V
1Fk0~ t !GCk0

* ~ t !,

~16!

i\
d

dt
nk~ t !5 f k* ~ t !Fnpol~k,k0!

Ck0
2 ~ t !

V
1Fk~ t !G2 f k~ t !

3Fn pol~k,k0!
Ck0
* 2~ t !

V
1Fk* ~ t !G , ~17!

i\
d

dt
f k~ t !5H F\Vk1 ñpol~k,k0!

uCk0
~ t !u2

V
1F̃k~ t !G

1F\V2k02k1 ñpol~2k02k,k0!
uCk0

~ t !u2

V

1F̃2k02k~ t !G J f k~ t !1@11nk~ t !1n2k02k~ t !#

3Fnpol~k,k0!
Ck0

2 ~ t !

V
1Fk~ t !G . ~18!

Here

Fk~ t !5
1

V(
k1

npol~k,k1! f k1~ t !5F2k02k~ t !,

F̃k~ t !5
1

V(
k1

ñpol~k,k1!nk1~ t !5F̃k* ~ t !,

and

npol~k,k1!5
nk2k1

A~11Lk
2!~11L2k02k

2 !~11Lk1
2 !~11L2k02k1

2 !
,

~19!

ñ pol~k,k1!5
n01nk2k1

~11Lk
2!~11Lk1

2 !

are the polariton-polariton interaction constants. According
to ~14!, the following initial conditions should be imposed on
the solution to~16!–~18!:

nk~ t0!5 f k~ t0!50, Ck0
~ t0!Þ0. ~20!

Further we shall assumet050.
In the equilibrium problemsFk and F̃k are called the

order parameters and are determined from integral
equations.12,27 In the nonequilibrium problem being studied
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the order parameters depend on time. Therefore, their calcu-
lation involves solution of the set of nonlinear integrodiffer-
ential equations~16!–~18!.

Equations~16!–~18! are invariant with respect to time in-
version and do not change under the transformationt→2t,
Ck0
→Ck0

* , f k→ f k* .
Besides additive integrals of motion displaying the con-

servation laws of the average values of the number of par-
ticles, energy and momentum of a closed system,
Eqs. ~16!–~18! possess additional integrals of motion
nk(t)2n2k02k(t)5 const and u f k(t)u22nk(t)@11nk(t)#
5 const. Using the initial conditions~20! we obtain

nk~ t !5n2k02k~ t !5
1

2
@A114u f k~ t !u221#. ~21!

Expressions~21! enable to exclude Eq.~17! from the set of
equations~16!–~18!. Note that representation of type~21!
were obtained in Refs. 26 and 2.

It is easy to see that the transformation

f k~ t !5
Ck0

2 ~ t !

uCk0
~ t !u2

gk~ t !

splits out of the set the equation for the phase of the conden-
sate wave function. As a result, the set of evolution equations
takes the form

d

dt
N0~ t !5

2

\
ImGk0~ t !N0~ t !, ~22!

i\
d

dt
gk~ t !5H \~Vk1V2k02k22Vk0

!1@F̃k~ t !1F̃2k02k~ t !22F̃k0~ t !#1@ ñpol~k,k0!1 ñpol~2k02k,k0!

22npol~k0 ,k0!#
uCk0

~0!u2

V
N0~ t !22 ReGk0~ t !J gk~ t !1A114ugk~ t !u2Fnpol~k,k0!

uCk0
~0!u2

V
N0~ t !1Gk~ t !G ,

~23!

where

Gk~ t !5
1

V(
k1

npol~k,k1!gk1~ t !5G2k02k~ t !,

and

N0~ t !5uCk0
~ t !u2/uCk0

~0!u2

is the relative density of polaritons in the condensate.

IV. NUMERICAL RESULTS

The set of equations~22!, ~23! still remains rather complicated even for numerical methods. That is why for simplicity we
neglect the dispersion of the exciton-exciton interaction constantn. In the vicinity of exciton-photon resonance the function
Lk'1 and, consequently,ñpol'2npol'n/2.

The initial conditions~20! are the same for all values of the wave vectork. Therefore, as follows from Eqs.~22!, ~23!, when
there is no dispersion of the polariton-polariton interaction constants,g depends on k via the functions
Vk1V2k02k22Vk0

:

gk[g~Vk1V2k02k22Vk0
,t !.

Using the identical transformation

1

V(
k
g~Vk1V2k02k22Vk0

,t !5
1

V(
k
E dxg~Vk1V2k02k22Vk0

,t !d~Vk1V2k02k22Vk0
2x!

5E dxg~x,t !
1

V(
k

d~Vk1V2k02k22Vk0
2x!,
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and moving to the dimensionless variables

T5lt,wk5l21~Vk1V2k02k22Vk0
!,

l5
n

2\

uCk0
~0!u2

V
, ~24!

we obtain the set of equations

d

dT
N0~T!52 ImG~T!N0~T!, ~25!

i
]

]T
g~w,T!5@w1N0~T!22 ReG~T!#g~w,T!

1A114ug~w,T!u2F12N0~T!1G~T!G ,
~26!

where

G~T!5E dwr~w!g~w,T!,

r~w!5
1

2uCk0
~0!u2(k d~wk2w!. ~27!

Further the parameters of polaritons formed by mixing of
photons and 1A excitons in CdS single crystal are used
for numerical estimation:eB59.3, \v'52.55 eV, h/\
51.131014c21, m'50.89m0 (m0 is the free electron mass!,
andm'52.85m0 .

33 The model of isotropic parabolic exciton
band with effective massm5(m'

2mi)1/3. The effective Bohr
radius of the 1A exciton in CdS isaex528 Å.34 The exciton
ionization energy isI ex527 meV.35 The value of the exciton-
exciton interaction constant is evaluated by the for-
mula n[n05(26p/3)I exaex

3 ~Ref. 36! and makes
4.3310233 erg cm3.

At the initial stage of evolution of the system when a
considerable portion of polaritons is still in the condensate
and the number of noncondensate polaritons is rather small
we can omit the terms containingG(T) in Eqs. ~25!, ~26!.
The solution to the obtained set of equations has the form

N0~T!5 const51

~the influence of a small portion of noncondensate polaritons
on the condensate is not taken into account!, and

n~w,T!

5H 2
1

w~w12!
sinh2FT2A2w~w12!G for 22<w<0

1

w~w12!
sin2FT2Aw~w12!G for w,22,w.0 .

~28!

Thus, at the initial stage of evolution the excitation of
noncondensate polaritons takes place in the range
22<w<0 where the distribution functionn(w) has the
form of a symmetrical bell with a maximum atw521.

While moving away from the above-mentioned region the
distribution function decreases with oscillations.

The numerical solution of the equation set~25!, ~26! was
made in two stages. First, the explicit form of the function
r(w) for different values of condensate density
uCk0

(0)u2/V and its wave vectork0 magnitude was found.
Further, the function obtained was used to integrate the evo-
lution equations~25!, ~26!. The result of the integration for
uk0u53.63105 cm21 are shown in Figs. 1–3. This choice of
uk0u corresponds to the exciton-photon resonance region lo-
cated a bit below the exciton band bottom.

The decay of the nonequilibrium polariton condensate is
shown in Fig. 1. Before the moment of dimensionless time
T'7 the condensate depletion proceeds rather slowly. Then
a drastic fall takes place. As a result, by the momentT'15
only 10% of the initial polariton number remain in the con-
densate. The further condensate decay is accompanied by
oscillations. This leads to the partial restoration of the con-
densate~up to 30% atT'20). The oscillations do not occur
if in Eq. ~26! the functionG(T), describing the integral in-
fluence of all pairs of noncondensate polaritons with the
same total momentum on each individual pair, is neglected.
Thus, the occurrence of oscillations is due to correlation of
the states of individual pairs of noncondensate polaritons. By
the momentT'50 the oscillations disappear and further con-

FIG. 1. Dependence of a relative polariton density in the con-
densate on dimensionless timeT.

FIG. 2. The distribution function of noncondensate polaritons at
T510,15,20.

54 2529NONMONOTONIC DECAY OF NONEQUILIBRIUM POLARITON . . .



densate evolution has the form of slow monotonous decay.
These results cannot be obtained by the introduction of phe-
nomenological constants in the dynamic equations.

Figure 2 depicts the distribution function of nonconden-
sate polaritons at time moments in the interval where the
polariton condensate undergoes the most rapid and signifi-
cant changes. The curve corresponding to the moment of
time T510 as well as the curve described by the function
~28! has the form of a bell with the maximum atw521. By
the momentT515 the distribution function without chang-
ing its symmetrical form increases significantly its value and
its maximum shifts to greater energies of noncondensate po-
laritons. An increase of the number of noncondensate polari-
tons by more than an order of magnitude corresponds to the
presence of the local minimum ofN0(T) function at
T'15. WhenT520 the distortion of the distribution func-
tion takes place and the area under the curve diminishes.
This is in accordance with the local maximum of the
N0(T) at T'20. Thus, the distribution function is ‘‘breath-
ing’’ in conformity with the variation of condensate density.

Further evolution of the distribution function is shown in
Fig. 3. At the moment of timeT530 its contour gets the
oscillating character. The oscillations arise not only in the
dependence of the distribution function on parameterw but
in its dependence on dimensionless timeT ~unfortunately we
could not demonstrate this in the picture!. This means that if,
e.g., the distribution function at the momentT'40 possesses
a local maximum atw521 it can possess at this point a

local minimum at another moment of time. Later on, the
frequency oscillations become denser, smaller, and transform
into chaotic ripples on the smooth contour of the distribution
function.

From the momentT'30 a short-wave wing begins to
arise in the distribution function curve. By the moment of
time T5100 the function localizes in the interval
22,w,1. Very important is the enhancement and then the
partial extinction of the sharp extra peak localized within the
region20.22,w,20.08 with a maximum atw520.15.
The time interval where the extra peak arises and exists is
characterized by small values of condensate density and its
relatively slow change~see Figs. 1 and 3!. The extra peak
does not change its position with time and reaches its maxi-
mum atT'80.

Under the change of the initial condensate density
uCk0

(0)u2/V only the scale of shown dependences changes

due to the corresponding transformation of dimensionless ar-
guments~24!. This result follows from the very weak depen-
dence of the solution of Eqs.~25!, ~26! on the initial conden-
sate density via the functionr(w) involved in the definition
of theG(T) function. According to Figs. 2 and 3,g(w,T)
differs from zero only at22,w,1. The numerical results
show that in that regionr(w) does not practically depend on
its argument due to peculiarities of low polariton dispersion
in the vicinity of exciton-photon resonance. This enables us
to replace the functionr(w) by r(0) in the definition~27!.
As a result we obtainG(T)'r(0)*dwg(w,T). But accord-
ing to ~27! and ~24! r(0) does not depend on the initial
condensate density and is determined only by the value of
wave vectork0 under the given crystal parameters. The
value r(0);6.831026 corresponds to the valueuk0u
53.63105 cm21.

V. CONCLUSIONS

Therefore, the significant condensate depletion takes
place already at the before-kinetic stage of the system evo-
lution. Within a short timet*;15l21 the condensate den-
sity diminishes 10 times compared to the initial density. For
CdS single crystals and initial condensate density 1016–
1018 cm23 the timet* equals to 120–1.2 ps. The short time
of the polariton condensate decay makes problematic the
possibility of observing such coherent nonlinear phenomena
as, e.g., the phenomenon of self-induced transparency and
creation of solitons in exciton spectral range.37–40

Note the irreversible-in-time character of the described
solution of the time-reversible equations.41

We would like to point out also that in Ref. 42
the steady-state solutionuCk0

(t)u25 const, nk(t)}d(Ek

1E2k02k22Ek0
), f k(t)}d(Ek1E2k02k22Ek0

) to Eqs.

~16!–~18! has been obtained (Ek is the renormalized energy
of the polariton!. Substitution of this solution in the expres-
sions for the total average energy and total average number
of particles shows that this solution cannot be obtained under
the initial conditions~20!. But the state of the polariton sys-
tem corresponding to this solution can be arranged by means
of steady laser action on a semiconductor.43

FIG. 3. The distribution function of noncondensate polaritons at
different moments of dimensionless timeT. The function scale is
shown by the marks in the left vertical axis.
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