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Nonmonotonic decay of nonequilibrium polariton condensate in direct-gap semiconductors
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Time evolution of a nonequilibrium polariton condensate has been studied in the framework of a micro-
scopic approach. It has been shown that due to polariton-polariton scattering a significant condensate depletion
takes place in a comparatively short time interval. The condensate decay occurs in the form of multiple echo
signals. Distribution-function dynamics of noncondensate polaritons have been investigated. It has been shown
that at the initial stage of evolution the distribution function has the form of a bell. Then oscillations arise in
the contour of the distribution function, which further transform into small chaotic ripples. The appearance of
a short-wavelength wing of the distribution function has been demonstrated. We have pointed out the enhance-
ment and then partial extinction of the sharp extra peak arising within the time interval characterized by small
values of polariton condensate density and its relatively slow chafg§e$63-18206)00127-0

[. INTRODUCTION significant importance in the situation where coherent polari-
tons are excited in a certain spectral region where energy and
In a great number of works concerning spatial and timemomentum conservation laws allow real processes of two-
evolution of laser radiation in resonant media the classicatjuantum excitation of polaritons from the condensate. These
description is used when the photon and material fields arprocesses lead to instability of the completely condensed
considered as interacting macroscopically occupied coherestate of the polariton system. Existence of this spectral re-
modes(condensatgs When a quasiparticle quits a conden- gion situated around the isolated exciton resonance is due to
sate mode, that is usually taken into account by introductiofhe peculiarities of the polariton dispersion law.
of phenomenological damping constants. In this case it is In Refs. 6 and 7 the energy spectrum of noncondensate
assumed thatl) the condensate decay is exponential &)d  polaritons, arising as a result of decay of coherent polariton
the condensate lifetime is considerably longer than the dUV"%Nave, is studied. According to Refs. 6 and 7 in some regions
tion of the cohe_rent nor)linear process being investigated. ¢ | space the energy spectrum does not exist.
_From our point of view it is more consistent to USe & |t should be mentioned that investigations performed in
microscopic approacfsee, e.g., Refs. 1}3where the dy- pats 6 and 7 are based on the model formally analogous to

hamics of interacting condensate modes and quantum ﬂl.‘"fhat used by Bogoliubov in Ref. 8 to study the equilibrium

tuations appearing in a system as a result of real scattering, .~ weakly nonideal Bose gas. In the nonequilibrium

processes of quasiparticles are described on equal footing. . . :

other words, one should take into acco(htthe interaction snuayon considered in Refs.. 6 _and 7, when decay of thg

between condensatef) excitation of noncondensate par- polariton condensate and excitation of noncondensate polari-
tons take place, this model is adequate to the real situation

ticles, and(3) the backward influence of nhoncondensate par o=
ticles on the condensates. only at the initial stage of the condensate decay when the
The microscopic approach is used in this work to describdUmber of polaritons in the condensate is still much greater

the time evolution of the system of initially coherent high- than the total number of noncondensate polaritons. But this
density excitons and photons. stage is essentiallyonstationaryand the occurrence of con-

It is knowrf that coherent electromagnetic radiation reso-densate instability provides evidence for that. The study of
nant to the isolated exciton energy level excites in the crystehe energy spectrum implies the determination of tteady
the coherent polariton wave with the wave vedtgr=0 — statesof the systen?. That is why the results of Refs. 6 and
the nonequilibrium polariton condensate. Different scattering/, concerning the energy spectrum of the system, based on
processes accompanying its propagation lead to the loss tfe above-mentioned model, in our opinion cannot be re-
initial coherence of the polariton wave, complete or partialgarded as well grounded. This remark refers to the relatively

depletion of condensate, excitation of polaritons characterrecent work¥ ! as well.
ized by some statistics with wave vecto# k,, and other Because of essential nonstationarity of the processes in
phenomena. the system methods of nonequilibrium mechanics should be

At sufficiently high excitation energies the processes ofused to describe it adequately. Derivation of the equations
polariton scattering due to exciton-exciton collisions prevail.that describe kinetics of the polariton condensate decay and
This scattering mechanism is of considerable interest due texcitation of quantum fluctuations has some specific features
the recent experimental investigatidmsd many interesting owing to degeneracy in the system. As the energy and result-
physical results obtained in theoretical study of dynamic andng wave vector of two non-condensate polaritons can be
kinetic processes in the system of interacting polaritons. equal to the energy and wave vector of two condensate po-

According to Refs. 6 and 7 exciton-exciton scattering is oflaritons, respectively, there is degeneracy of two-particle

0163-1829/96/5@1)/25239)/$10.00 54 2523 © 1996 The American Physical Society



2524 IGOR V. BELOUSSOV AND VLADIMIR V. FROLOV 54
states. Moreover, the presence of the condensate in the sys-The right-hand sides of kinetic equations obtained in
tem also leads to degeneracy due to its macroscopiRefs. 19 and 22 include terms linear in the constant of
amplitude’? exciton-exciton interaction>0 and the ones-v2 Terms
The correct description of the system with degeneracy~, correspond to the self-consistent-field approximation,
requires the introduction of abnormal distribution functibns which neglects the higher-order correlation functions. In this
approximation the processes of two-particle excitations of
Yy =(Dy ) polaritons from the condensate, backward processes, and
0 0 transformation of a created pair of noncondensate polaritons
into another pair with the same value of total momentum are
taken into account. It describes the fastest processes in the
system and is sufficient for study of the eafthefore-kineti¢
Fr=(PxP 2k, k) stage of the system’s evolution.
Terms ~v? take into account scattering processes in
together with the norméalusuaj ones which only one polariton belongs to the condensate. There-
fore, they differ from zero only if noncondensate polaritons
N :<¢l¢k>_ exist in the system. Terms v? in comparison with terms
~v describe slower changes of the system characteristics and

Hered)l (d,) are Bose operators of creatiéannihilation are significant only at the kjnetic stage of evg!ut[on.
of a polariton on the lower branch with the wave vedtor . OUr study of time evolution of the nonequilibrium polar-
The appearance of abnormal averages indicates a breaking'H?n system is based on the self-consistent-field approxima-

the selection rules connected with the gauge invariance d{on- This approximation has shown a good performance in
the systemt*~251n this problem the breaking of gauge sym- the theoretical study of states of the electron-hole subsystem

metry arises as a result of the noninvariant initial condition!" Sémiconductors that appear just after the transmission of

2,27
due fo the assumption that there is a condensate in the systdftf front of the ultrashort laser puls®?*"The part of evo-
at the initial moment=t,. lution equations obtained in our work for the stationary case

An earlier attempt to obtain kinetic equations for polari- &€ in many respects similar to the equations given in Refs.
tons excited in semiconductors by the external classic fiel@®: 2, and 27. Nevertheless, that slight distinctions are im-
was made in Refs. 16 and 17. However, in Refs. 16 and 1 ortant and lead to significant physical consequencies.

degeneracy of two-particle states was not taken into account 1 N€ Stationary equations obtained in Refs. 26, 2, and 27
and the abnormal distribution functiof, were not intro- possess nontrivial solutions describing states of the electron-

duced. So one should expect the equations obtained in Rei!g(?le subsystem. The decay of these states occurs only dl.Je. to
16 and 17 to possess unphysical singularity. incoherent relaxation processes. In Refs. 26, 2 and 27 it is
Kinetic equations describing evolution of partially coher- 2SSUmed that these processes do not have time to happen
ent polaritons that take into account the degeneracy wer@U"ng the period of pulse action. This assumption justifies
obtained in Refs. 18 and 19 using the nonequilibriumt e use of the self-consistent field approximation. The at-
Green's-function techniqui®:2* presented by the authors in tempt to find the steady-state solution of similar equations in
terms of functionals. They coincide with the equations ob-f[he fra_r_n_ework o_f the physwal problem of thls_paper leads to
tained in Ref. 22 using the method of nonequilibrium statis-mStab'“t'eS' Their physical nature has been discussed above.
tical operator’® and do not possess unphysical singularities.AS ”Ot.ed’ the appearance of the |nstab|I|ty points leads to
According to Refs. 19 and 22 the kinetics of partially esse.nt|al nonstationarity of thg processes in the system and
coherent polaritons is described in the Born approximatiof€duires the return to the startifigonstationary equations.

by the closed set of nonlinear integrodifferential equations Moreover, the excitation °f_th’~? great numb_er of noncon-
for the coherent part of polariton fieNr, and the normal ~ densaté modes can lead to significant depletion of the con-
0 densate. So to take into account this phenomenon it is nec-

essary, along with equations similar to equations in Refs. 26,
Ne=Ny— 5k,k0|‘1’k0|2 2, and 27 to consider an additional equation for the conden-
sate wave functionl’ko. Note that in Refs. 26, 2, and 27

and abnormal backward influence of the electron-hole subsystem on the
laser radiation field was not taken into account.

Note also Refs. 28—32 where the self-consistent-field ap-
proximation allowed us to take into account the biexciton

o . complex structure.
distribution functions. In the absence of quantum fluctua-

tions, described by the functiomg andf, , the equations for
them become identities, and the equation gy, (« is the
number of polariton brangtcoincides with that obtained in
Ref. 24 for the system of interacting coherent excitons and
photons. In another particular case, whaén =0 and We start from the Hamiltonian

f,=0, the equations obtained in Refs. 19 and 22 are reduced

to the usual kinetic equation for the distribution function L

N, (see, e.g., Refs. 23 and 25 H=Hy+H i, (0]

and

fu=Fy— 5k,ko‘I’E0

Il. SYSTEM HAMILTONIAN
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|
In (1)—(3) the following notations are used. The operators . 1
®ra (@1,) of exciton(whena=1) or photon(when a=2) Hin= 2y, > y > , Vka—kg Oy ey kg i
IREEEE, 4 A1, as=1,

annihilation(creation in the state with wave vectde obey

Bose-type commutation relations: Sy oy -
X (Piyky) agas Pigky) agary Pryay P, Prgay Py (0)

- At - - _rat ot
[‘Pklal! (szaz] - 5k1 ,k25a1 ,ay [ QDklal! (szaz] - [ kalal ’ (szaz] Where
=0.

_ _ _ . 1+ 73
The Pauli matrices;, 7,, andr; are taken in the standard Pryk, = Piok, = Yk, 2 k,
representatio’ The frequencies, andwy, are given by the
expressionswy = c|k|eg V2, wi = o +#k?/2m, wherec is
the vacuum velocity of lightiw® is the exciton formation
energy in the band vy , andm is its effective mass. The
background dielectric functioag includes the contributions
from all excitations in a crystal except the excitons of the
isolated bandi wj, . In the vicinity of the exciton resonance
w .~ w. Weak frequency dependenceef can be neglected.
The Hamiltonian(1) describes the system of interacting
dipole-active excitons and photons with transverse polariza- | the Heisenberg picture operatobg(t) are governed
tion in an infinite crystal Y—<, V is the quantization vol-  py the equation of motion
ume in the vicinity of an isolated exciton resonance
w=wj . In other words, we assume that the relations q
| w— | <hwy , AE are imposed on the photon frequency i% a‘bka(t) =[D(1),H] (6)
fhiwy, the energy of the excitohw, , and the minimum
energy gapA & between the exciton baritwy, and any other
one. Beside that we suppose that the constants of excito
photon (p,=7_,) and exciton-exciton ,=v_,) interac-
tions are small enough: Q7 /h<wy, 0<(w/h)N<wj
(nis an average density of_excnons in the systefthese The presence of the condensate in the system implies that
assumptions allow us to retain (8) only resonant terms and the coherent part of the polariton field
treat the exciton-exciton interaction as a small perturbation.
The quadratic part2) of Hamiltonian(1) can be reduced
to the diagonal form Wia(1) = (Prat ()

Hamiltonian (1) is invariant with respect to the gauge
transformatiorR= exp(yN) wherey is an arbitrary real pa-
rameter, N=3, % ,_ 1,2<I>la<bka is the operator of the total
number of polaritons in the system.

Ill. SELF-CONSISTENT FIELD APPROXIMATION

and average value of a dynamic quantdyis given by
I2A>t= TrpA(t). Here p is the density matrix, which de-
scribes the polariton distribution at the initial moment of
timet=tg.

is nonzero. We write down the coherent part explicitly

I:I(:J: ; :21 5 tha(’I\)la(’I\)ka (4) .
’ Dy (1) =W o (1) + Xalt)- (8)
by transition to the polariton Bose operatabg, and ®;

using the unitary transformation According to definition(7), we have(xy,);=0._

Using (8) we present the HamiltoniahI:Hkorﬁ int 1IN
the form H=H,(t) + H,(t), where the operatoH(t) in-

A E (U & U :1—i71|-k cludes only linear and quadratic terms with respect to
Phay e R L A N L2 Xka(t) @andy; (). The operatoH ,(t) includes products of

three and four operatorig,(t) and ., (t).
Ly is a function determined by the equation Further we shall treaH,(t) in the self-consistent field
nkLE+h(wk—wt)Lk— n«=0. In the polariton representa- approximation. For this purpose we make the formal
tion we have substitutiorR’
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i’llal(t)ilzaz(t)ik3a3(t)i/k4a4(t)_)X/llal(t)Xlzaz(t)<xk3asxk4a4>t+ X/ksa?’(t)X/k4a4(t)<Xllale2a2>t
+ illal(t)5(k3a3(t)<Xl2a2Xk4a4>t+ iklal(t)5(k4a4(t)<Xl2a2Xk3a3>’[

vt v t vt v t
F Xy, (D) Xigarg (DX ko Xk gt Xy, (D) Xy (D Xk e Xkt

vt v N vt N T N T
szaz(t)Xk3a3(t)Xk4a4(t)*)szaz(t)<Xk3a3Xk4a4>t+ Xk3a3(t)<Xk2a2Xk4a4>t+ Xk4a4(t)<Xk2a2Xk3a3>t .

As a result,I:|2(t) (and I:|) has the same operator structurelzhgt). Performing transformation from the operatogs,(t)
back to the operator®, ,(t) we obtain

> Ok, +ky kgt kg | [V —ky(Piykg) ayag( Pok,) agay
1.
T Vi, kg Pryky) g g Proks) arparg] ®k1a1(t)¢k3a (t)<CDk2a2CDk4a4>t+ o al(t)q)kzaz HPrya,Prya, )t

—20; , (DWE , (OW o (DW . (D)

+ H.c.], (9

whereEy(t) is ac-number function.

With the help of Hamiltoniari9) and equations of motiof6) we obtain the set of equations, which describes time evolution
of the system of partially coherent polaritons:

d 1
i r =7y | Wiy, (D= VKZE > 25k1+k2,k3+k4[Vkl—k4(73k1k3)a1a3(7)k2k4)a2a4

k3.,ky ap,az,as=1,
1
+ Vg k(P agary Py agasl| 5 Koy (D) Whgay (D Wi a (D +1(Kg, @z 1K3, ast) Wi 4, (1)

1
+E‘I”k‘zaz(t)f(k3,a3;k4,a4|t)

(10

d
Iﬁa-ﬁ-ﬁ(ﬂklal_ﬂkzaz) n(kl,al;kzyazh): _ =

Vi P ke ag a1 Ok, kg kg kel Vg ks Phyky) agery (Phgky) ager

+ Vkl—k4(7)k5kl)a5al(7)k4k3)a4a3][ n*(ka,az1Ks, as[t)[n* (K3, a3;Kq, a4lt)

1
+\Pk3a3(t)q]:4a4(t)] + Ef(kz,az 1K, as|t)[F* (ks,a5;Ky, ay)t)

+WE L (OWE (O]} —{Iden (K;ay) o (keap) I} (11)

1

d
i g7 1 ( Qo+ Qe f(ky,agiky, aolt)= Wk§(4 a3,a§4:=1,2 Oy ke kg kgl Vi — kg Phyks) g g Piok) gy

+ Vi, kg (Pigky) gy Pigks) agarg )L T (Ka, 31K aa|) + Wy o (D W0 ()]

1
+ vk32 > i O, +kg kgt kel iy — ke Phyky) ayay( Pigks) agag

kg K5 az,a4,a5=
+ Vklk4(7)k1k5)a1a5(7)k3k4)a3,a4][ f(kz,az;Ks, as|t)[N(Ks, a3;Ky, aglt)
1
Vs (D W ia, (D] + 5% (Kp, ap 1 Kg, a3l )[ f(Ks a5 kg, aglt)

F W (DT 0 (D]} + Iden (Kyag) o (Koa) 1. (12
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Here sides only the resonant terms corresponding to lower polar-
. iton branch. Taking into accourntl5 and omitting fast-
N(ky, 1Ky, ant) =n*(Kp,ap;ky, aq|t) oscillating terms in(10)—(12) we obtain
=(Df o, Phya)t— W o, (D W (1),

d ~
13 g ViO=Th g+ F (D10

f(ky,aq;ka, anlt)=f(ky,ap;ky, aq|t)
= <q)k1a1q)k2a2>t_\I}klal(t)q}kzaz(t)-

Equations(10)—(12) can be reduced to a simpler form in (16)
the physical situation when an external classical source is

Wi ()

+ Vpol(k01k0)+ +~Fk0(t)}\y’k‘o(t)1

switched on and the system is prepared so thatag only o d . ‘I’Eo(t)
one macroscopically occupied coherent médek, on the i 47 k(D) =i (0] vpo(K, ko) —5—+ Fi(t) | = fi(t)
lower polariton branch is excited:
Ny, \I’EOZ('[)
Wia(to) *VV 84,16k ks X| v poi(k ko) ——+ Fe (D) ], 17
n(ky,ay;ky,a0lte) =f(ky,a1:kp, aplte)=0.  (14) )
d - v (DF
From (10)—(12) we can find the variation of the functions iﬁafk(t)z hQy+ Vpol(k-kO)T + F(t)
¥, .(1) and(13) at the time moment=t,+dt:
2
AWy, 8,  dn(Ky,aq:Ky,a)=0, _ ¥ (D]
k k’ko 1 1 2 2 + fLszo_k+ Vp0|(2k0_k,k0)OT
df(ky,aq;Ka,00) % 8 1k, 2k,
Therefo_re, the coherent polariton wave of macro'_scopic am- +’]"-"2k0k(t)ka(t)+[1+ nk(t)+n2k0,k(t)]
plitude is a source of quantum fluctuations, described by the
function f(k,, a1 ;2ko—Kky,a,|t). Substituting w2 (1)
ko
Vo) =k PregalD),  N(Kq,1iKp,a5]t) =0, X| vpoilk:Ko)—— +fk<t>} (18
f(ky,a1;Ka,aalt) = 8¢ 1k, , 2, f (K, @13 2ko =Ky, aslt) Here
into the right-hand sides dfl0)—(12) we obtain 1
. 0-12 F= 33 vpal ko) ()= Faig (1),
AWy, Sk ks '
dn(kq,aq;Ky, aslt)oc Jdf(ky,aq:Ko, a0t ~ 1w ~
(ki,aq;ky,aplt) ky kAT (K1 g 5Kz aplt) fk(t)zvkg Vp0|(k,k1)nkl(t)=f§(t),
1
% Bk, +ky 2Ky-
and
This means that after the quantum fluctuations, described by
abnormal distribution function f(k,,aq;2ko—Ky,as|t), ik
fluctuations that are characterized by norifueua) distribu- Vpol(K,Kq) = ! ,
tion functionn(ky,a;;ky,a,|t) are excited. JA+LH(a+ Lgkofk)(1+ Lﬁl)(1+ LSkofkl)
Substituting (19
Vo) =8 i Pigalt),  N(Ky,a1;Ky, @olt) " Vot ek,
14 y P N
= S, N1, a1k, aglt), PRV (T LD (A LE)
f(Ky.aq Ky, at)=5 f(Kq,aq:2Ko— Ky, ao|t are the polariton-polariton interaction constants. According
(kg 17Kz, @2lt) = 8, 11, 2k, f (Ke, @1, 2Ko =Ky ()15) to (14), the following initial conditions should be imposed on
the solution to(16)—(18):
into the right-hand sides qfL0)—(12) we can easily see that
the left-hand sides of these equations have the same struc- N (tg) =f(tg) =0, \Ifko(to)qéo. (20

ture. Therefore, solution to th€l0)—(12) under the initial

conditions(14) has the form(15). This result is nothing but a Further we shall assuntg=0. _

consequence of the momentum conservation law in the el- In the equilibrium problemsF, and F, are called the
ementary acts of polariton scattering. Further simplificationorder parameters and are determined from integral
of (10)—(12) can be achieved by retaining in their right-hand equationg??’ In the nonequilibrium problem being studied
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1
nk(t)znzko—k(t)zE[V1+4|fk(t)|2_1]- (21)

Expressiong21) enable to exclude Eq17) from the set of
equations(16)—(18). Note that representation of typ@1l)
were obtained in Refs. 26 and 2.

It is easy to see that the transformation

the order parameters depend on time. Therefore, their calcu-
lation involves solution of the set of nonlinear integrodiffer-
ential equation$16)—(18).

Equationg(16)—(18) are invariant with respect to time in-
version and do not change under the transformatien-t,
\PKOQ‘P:O, fk—>fr(c .

Besides additive integrals of motion displaying the con- ‘Ifﬁo(t)
servation laws of the average values of the number of par- fr ()= W, (0] gk(t)
ticles, energy and momentum of a closed system, Ko

Egs. (16)—(18) possess additional 2integrals of motion gpjits out of the set the equation for the phase of the conden-
Ni(t) —Nak,—k(t) = const  and [f()[*—n()[1+n()]  sate wave function. As a result, the set of evolution equations

= const. Using the initial condition&0) we obtain takes the form
|
d 2
giVo(D) =5 IMGy (DNG(D), (22

. d ~ ~ ~ - ~
171 57 9k(0) =1 Al Qi Qi k= 20k + [ A1) + Farey - (1) = 2Fk (D ]+ [7poi(K,Ko) + vpoi ZKo =K, ko)

¥, (0)]? ; ¥, (0)]?
~ 2vp0i(Ko ko) I —No(t) = 2 ReGi (1) { 9i(1) + Y1+ 4[g(1)[?] poi(k ko) ———No() +G(D) |,

(23

where

1
G)= 52 ¥pol(K; k1) Gi (1= Gary- (D),

1

and
No(O) =], ()[*/] ¥, (0)[?
is the relative density of polaritons in the condensate.

IV. NUMERICAL RESULTS

The set of equation@2), (23) still remains rather complicated even for numerical methods. That is why for simplicity we
neglect the dispersion of the exciton-exciton interaction constai the vicinity of exciton-photon resonance the function
Ly~1 and, consequentlyo=~ 2o~ /2.

The initial conditiong20) are the same for all values of the wave vedtoi herefore, as follows from Eq&22), (23), when
there is no dispersion of the polariton-polariton interaction constagts,depends onk via the functions
Qk+ szo_k_ ZQKO:

=9yt Qo —k— 20, 1)

Using the identical transformation
1 1
vzk: Q(Qk+92k0—k_29ko,t):v§k: fng(Qk+szo—k_ZQko,t)5(Qk+92ko—k_29ko_x)

1
=f dXQ(X,t)v; S(Q+ Qo —k— 20, —X),
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and moving to the dimensionless variables

T:}\t,Wk:)\_l(Qk'f‘ szo_k_ZQko),

v [P (02

A= 57 v , (24)

we obtain the set of equations

d
FEVO(T)=2 IMG(T)NG(T), (25

d
iﬁg(W,T) =[w+Ny(T)—2 ReG(T)]g(w,T)

1
+ \/1+4|g(W,T)|2{§NO(T) + G(T)},

(26)

where

G(T)=f dwp(w)g(w,T),

_ 1 2
p(W)= W 4 (W —w). 27

Further the parameters of polaritons formed by mixing Ofgated a bit below the exciton band bottom

photons and 1A excitons in CdS single crystal are use
for numerical estimation:eg=9.3, Aw'=2.55 eV, y/k
=1.1x10% "1, m, =0.89m, (my is the free electron majs
andm, =2.85m,.3 The model of isotropic parabolic exciton
band with effective massi=(m?m,)3. The effective Bohr
radius of the 1A exciton in CdS i@.,=28 A3* The exciton
ionization energy i$.,= 27 meV> The value of the exciton-

exciton interaction constant is evaluated by the for-

(Ref. 36 and makes

mula  v=vo=(267/3)l o a3,
4.3x10 % erg cnt.
At the initial stage of evolution of the system when a
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FIG. 1. Dependence of a relative polariton density in the con-
densate on dimensionless tirfie

While moving away from the above-mentioned region the
distribution function decreases with oscillations.

The numerical solution of the equation $26), (26) was
made in two stages. First, the explicit form of the function
p(w) for different values of condensate density
|\Ifko(0)|2/V and its wave vectok, magnitude was found.

Further, the function obtained was used to integrate the evo-
lution equationg25), (26). The result of the integration for
|ko|=3.6x10° cm™ ! are shown in Figs. 1-3. This choice of
|ko| corresponds to the exciton-photon resonance region lo-

The decay of the nonequilibrium polariton condensate is
shown in Fig. 1. Before the moment of dimensionless time
T=~7 the condensate depletion proceeds rather slowly. Then
a drastic fall takes place. As a result, by the moniestl5
only 10% of the initial polariton number remain in the con-
densate. The further condensate decay is accompanied by
oscillations. This leads to the partial restoration of the con-
densatdup to 30% afT~20). The oscillations do not occur
if in Eq. (26) the functionG(T), describing the integral in-
fluence of all pairs of noncondensate polaritons with the
same total momentum on each individual pair, is neglected.

considerable portion of polaritons is still in the condensaterhys, the occurrence of oscillations is due to correlation of
and the number of noncondensate polaritons is rather smafhe states of individual pairs of noncondensate polaritons. By

we can omit the terms containin@(T) in Egs. (25), (26).
The solution to the obtained set of equations has the form

No(T)= const=1

(the influence of a small portion of noncondensate polaritons

on the condensate is not taken into accpuand

n(w,T)
! ink| = +2 f 2 0
F— —_—— — < =
wiw 2)sm 5 w(w+2) or w
—1 il =+ +2 f -2 0
Wiw 2)5| 5 w(w+2) or w<—2w>0.

(28)

Thus, at the initial stage of evolution the excitation of
noncondensate polaritons takes place in the
—2=<w=<0 where the distribution functiom(w) has the
form of a symmetrical bell with a maximum at=—1.

the momeni =50 the oscillations disappear and further con-

n(w,T)
140000 , : : :
120000
100000
80000
60000
40000
20000

0 . | 1
-2 -1.5 -1 -0.5 0.5 1

range

FIG. 2. The distribution function of noncondensate polaritons at
T=10,15,20.
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local minimum at another moment of time. Later on, the

nin. 1) ! frequency oscillations become denser, smaller, and transform
into chaotic ripples on the smooth contour of the distribution
0 function.
From the momenfT~30 a short-wave wing begins to
10 arise in the distribution function curve. By the moment of
time T=100 the function localizes in the interval
A 20 —2<w<1. Very important is the enhancement and then the
/J /\/\/\\/\/\‘ partial extinction of the sharp extra peak localized within the
: 0 region —0.22<w< —0.08 with a maximum atv=—0.15.
The time interval where the extra peak arises and exists is
f/\\ characterized by small values of condensate density and its

0 relatively slow changdsee Figs. 1 and)3The extra peak
does not change its position with time and reaches its maxi-
! 50 mum atT~80.
//A\M Under the change of the initial condensate density
60

|\I’k0(0)|2/V only the scale of shown dependences changes

/’/\ due to the corresponding transformation of dimensionless ar-
10 guments24). This result follows from the very weak depen-
/JN\\ dence of the solution of Eq§25), (26) on the initial conden-
150000 80 sate density via the functiop(w) involved in the definition
100000 _//,M% of the G(T) function. According to Figs. 2 and &(w,T)
90 differs from zero only at-2<w<1. The numerical results
50000 / V\[\MN show that in that regiop(w) does not practically depend on
0 | its argument due to peculiarities of low polariton dispersion
in the vicinity of exciton-photon resonance. This enables us
0 | to replace the functiop(w) by p(0) in the definition(27).
As a result we obtailG(T)~p(0)fdwg(w,T). But accord-
FIG. 3. The distribution function of noncondensate polaritons ating to (27) and (24) p(0) does not depend on the initial
different moments of dimensionless tirfe The function scale is condensate density and is determined 0n|y by the value of
shown by the marks in the left vertical axis. wave vectork, under the given crystal parameters. The
— 6
densate evolution has the form of slow monotonous decay\ialue ”gg)ws;?x 107" corresponds to the valugko|
These results cannot be obtained by the introduction of phe- 3.6x10° cm™ .
nomenological constants in the dynamic equations.
Figure 2 depicts the distribution function of honconden-
sate polaritons at time moments in the interval where the V. CONCLUSIONS
polariton condensate undergoes the most rapid and signifi-
cant changes. The curve corresponding to the moment cH
time T=10 as well as the curve described by the function
(28) has the form of a bell with the maximumat=—1. By
the momentT =15 the distribution function without chang-
ing its symmetrical form increases significantly its value an i . i
its maximum shifts to greater energies of noncondensate p&-olg cm? the timet, equals to 120-1.2 ps. The short time
laritons. An increase of the number of noncondensate polarf the polariton condensate decay makes problematic the
tons by more than an order of magnitude corresponds to th@ossmlllty of observing such coher_ent nonlinear phenomena
presence of the local minimum ofNj(T) function at as, e.g., the phenomenon of self-induced transparency and

T~15. WhenT=20 the distortion of the distribution func- Cr€ation of sghtons n exqto_n spectral range’® .

tion takes place and the area under the curve diminishes. Nc_)te the |rre_verS|bIe—|n.-t|me character of the described

This is in accordance with the local maximum of the solution of the t!me-revers!ble equatiofis. :

No(T) at T=20. Thus, the distribution function is “breath- We would like to _pomt out2 also that in Ref. 42

ing” in conformity with the variation of condensate density. the steady-state solut|or|1\lfk0(t)| = const, ny(t)>a(Ex
Further evolution of the distribution function is shown in +Eak,—k—2Ex ), fx(t)<o(Ex+Ea -x—2Ey) to Egs.

Fig. 3. At the moment of timél =30 its contour gets the (16)—(18) has been obtainedE(, is the renormalized energy

oscillating character. The oscillations arise not only in theof the polariton. Substitution of this solution in the expres-

dependence of the distribution function on parametdsut  sions for the total average energy and total average number

in its dependence on dimensionless timaunfortunately we  of particles shows that this solution cannot be obtained under

could not demonstrate this in the pictur&his means that if, the initial conditions(20). But the state of the polariton sys-

e.g., the distribution function at the mom@rt40 possesses tem corresponding to this solution can be arranged by means

a local maximum atv=—1 it can possess at this point a of steady laser action on a semiconduétor.

Therefore, the significant condensate depletion takes
lace already at the before-kinetic stage of the system evo-
lution. Within a short timet, ~15\ " the condensate den-
sity diminishes 10 times compared to the initial density. For
(CdS single crystals and initial condensate density®10
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