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k-p method for strained wurtzite semiconductors

S. L. Chuang and C. S. Chang
Department of Electrical and Computer Engineering, University of lllinois at Urbana-Champaign,
1406 West Green Street, Urbana, lllinois 61801
(Received 24 January 1996

We derive the effective-mass Hamiltonian for wurtzite semiconductors, including the strain effects. This
Hamiltonian provides a theoretical groundwork for calculating the electronic band structures and optical
constants of bulk and quantum-well wurtzite semiconductors. We apply Kane’s model to derive the band-edge
energies and the optical momentum-matrix elements for strained wurtzite semiconductors. We then use the
k-p perturbation method to derive the effective-mass Hamiltonian, which is then checked with that derived
using an invariant method based on the Pikus-Bir model. We obtain the band strsicipaeameters in the
group theoretical model explicitly in terms of the momentum-matrix elements. We also find the proper defi-
nitions of the important physical quantities used in both models and present analytical expressions for the
valence-band dispersions, the effective masses, and the interband optical-transition momentum-matrix ele-
ments near the band edges, taking into account the strain eff8663-182606)00428-4

[. INTRODUCTION tracted by fitting the band-edge dispersion curves with those

calculated by the more accurate self-consistent full-potential

Wide band-gap semiconductors including GaN, AIN, InN, linearized-augmented plane-wave method within the local-
and their ternary compounds have recently received considlensity-functional approximatiotf.Yet, these theoretical pa-
erable attentioh-® The worldwide competition for fabricat- r@meters, especially, andD;s, appear to be too big when

- ) : ; . they are compared with the experimental data in Ref. 23. On
Ibnrig Etlﬁe greg\ IaS(rer ﬂoﬂfitfot]?m:g trlﬁ Zucceszdof htlﬁhrthe other hand, the band structures of zinc-blende semicon-
gniness  blue-gree gnt-e g diodes a ONe4uctors near the band edge are usually derived using the

applications of these materials for electronic devices gener p method or the Luttinger-Kohn mod# 26 The param-

_ate an intensivg r_esearch effort on the growth and charactegiers in the Luttinger-Kohn model are clearly defined in
ization of the nitride based semiconductors. terms of physical quantities, such as momentum-matrix ele-
Since these group-lll nitrides crystallize in the wurtzite ments and eigenenergies. In this paper, we present a deriva-
structure when grown in the most common substrates, sudiion of the Hamiltonian matrix for wurtzite structures based
as a sapphir€0001) substrate, fundamental studies of the on thek-p method and show the explicit definitions of the
wurtzite band structure play an important role in understandband-structure parameters and interband optical momentum-
ing the electronic and optical properties of GaN based optomatrix elements. Many of the analytical expressions includ-
electronic materials and devices. Although GaN wurtziteing strain effects are derived. Since current GaN heterojunc-
structures were investigated in the 1968s, most tion structures have a significant amount of strain, these
theoretical 2* and experimental studi&s??of these wurtz-  results will be valuable to researchers in this field. Our pre-
ite materials increased dramatically in the 1990s after th@entation also clarifies some inconsistencies in the earlier pa-
demonstration of the light-emitting diodes using the GaN/Pers, due to ambiguities in the choices of the basis functions
AlLGa,_ N semiconductors? and the change of definitions in the operators used in the
Full band-structure calculations have been reported folnvariant method in different Papers. .
binary 14 and ternar}f2! semiconductors with wurtzite _ " S€C. Il. we present Kane's modefor wurtzite band

structures. For electronic and optical properties, the ban@tructures and define the band-edge parameters, such as the

structure near the direct band edges can be used to und f’:ﬁﬁl{::gg; ﬂgmgnfgr?nr-%/a?r?f Jlf;i]zgltg-?g:)gﬁgrﬁr%aand

stand experimental observiafcions such as the IOhOtOIumim??'polarizations, where the axis is chosen to be the axis
cence spectrum and mobility measurements. The Hamiligngy) of the wurtzite structure. The wurtzite structure, Fig.
tonian near the band edge of a wurtzite semiconductor hag consists of two interpenetrating hexagonal closely packed
been derived using an invariant methdtiand many of the  gpjattices, offset along theaxis (z axis) by 5/8 of the cell
band-structure parameters were treated empirically with littlgejghtc. The sixfold rotation symmetry is used in deriving
indication of the origin of these parameters. First-principlesome of the fundamental physical parameters. In Sec. IlI, we
calculations may be applied to calculate the band-structurgerive the Hamiltonian matrix based on the Luttinger-Kohn
parameters, the splitting energies;$), and the deformation model and find the explicit definitions of the band-structure
potentials. Unfortunately, many parameteiguch as the parameters. These band-structure parameters are then related
crystal-field splitting energy, the spin-orbit split-off energies, to those parameters, ,A,, ... Ag, used in the Hamiltonian
the band-edge effective-mass parameters, and especially theatrix derived with the invariant method, presented in Sec.
deformation potentiajsare not readily availabl&?! from  |V. Using the property that these band-structure parameters
the full band-structure calculations for wurtzite structures.are real, we are able to identify the proper choice of the
The band-structure parameters have only recently been ephase factor in the corresponding set of basis functions and
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operators in the Hamiltonian. In Sec. V, we found that the
six-by-six Hamiltonian can be block diagonalized to two
three-by-three matrices following a unitary transformation of A
the basis functions. In Sec. VI, we show analytical expres-
sions for the effective masses near and away from the zone
center and the interband optical-transition matrix elements,
taking into account the strain effects. Numerical examples c
for GaN and AIN are shown in Sec. VIl and the conclusions
are given in Sec. VIIl. We hope that our analysis not only
shows a consistent and clear derivation of the Hamiltonian
for wurtzite crystals, but also stimulates more fundamental
studies and measurements of the band-edge electronic pa- ]
rameters and optical-transition oscillator strengths.

Il. KANE'S MODEL FOR WURTZITE SEMICONDUCTORS - q —

In this section, we use Kane’s motfeto find the band-  FIG. 1. A wurtzite crystal consists of two interpenetrating hex-
edge energies and define important physical parameters iagonal closely packed sublattices, displaced by 5/8 otth801)
cluding the optical momentum-matrix elements. axis. The dashed lines show the boundary of a unit cell.

A. The Hamiltonian matrix elements Here, V(r) is the periodic potentialHg, accounts for the

spin-orbit interaction, and; ,i =X,y,z are the Pauli spin ma-
trices, which are defined in Appendix A.
In the set of basis functions near the zone center,

The Schrdinger equation for the periodic paut,(r) of
the Bloch function and the enerds, (k) near the band edge
can be written &4

72K (X+iY) (X=iY)
Hunk(r): H0+2_mo+m_ok'p+Hso unk(r) |iST>, U1=’— \/E >, U,= \/E T>,
=En(K)unk(r), (1)
where Us=|Z1); @
2
Ho=p—+V(r), 2 ||Sl> U= (X—=1iY) Ue— —(X+IY)l
2m0 ' 4 \/E ’ 5 \/E '
h
HSOZWOCZVVXP'(T:HSXUX+HsyO-y+HSZO-z- 3 u6:|Zi>_
|
The Hamiltonian matrix can be written in the following form:
e k+P2 k_P2 -
E - —_— k,P 0 0 0 0
‘ V2 V2 o
k_P
-2 E,+A+A, 0 0 0 0 0 0
V2
kP
1“/52 0 E,+A—A, 0O 0 0 0 V2A,
7252 kP, 0 0 E, 0 0 24, 0
Hoxs= Ty * k_P ki P ’
0 0 0 0 E, QEZ -*-\E% kP
kP
0 0 0 0 352 E,+A+A, 0 0
k_P,
0 0 0 VA, — 0 E,+A—A, O
2
0 0 24, 0 kP, 0 0 Ep wm

®)
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where thex-y plane has been used. For exampleyj mapping to
a 60° rotation around the axis (= ¢ axis) leaves the Hamil-

ke =kexiky (®)  tonian invariant, and the wave functiops) and|Y) trans-
and we have used the following definitions for the energiesform to
(SIHo|S)=E., V3

1 3
X =51X)+51Y),
2 2
(X[HolX)=(Y[Ho|Y)=E, + Ay,

A

(Z|Ho|Z)=E,, ) |Y’>=—73|x>+%|v>. 9)

XIHAYY=—iA,,
(XIHedY) 2 Therefore,

<Y|st|z>:<z|Hsy|X>:_iAS: 3 1
and two Kane's parameter8; andP,, which are related to (Y[Ho|Y)=(Y'[Ho|Y")= Z(X|Ho|X)+ 7 (Y[Ho| Y)

the interband momentum-matrix elements, (10)
|2\ Mo, and we find (Y|Ho|Y)=(X|Ho|X). We also obtain
i 9z hob (X|HolY)=0, and (S|Hq/X)=0. The properties
(Slalax|X)y=(S|alay|Y)y and(Y|HgZ)=(Z|H,|X) can be
is h o ) —lis hoo v mOP ® derived in a similar manner.
i ox|”) iayl | A%
Note that in the original Kane’s model for cubic crystals, the B. Band-edge energies and basis functions
wave vectork is assumed to be along tkedirection, which At the zone center, we obtain the doubly degenerate band-

is possible due to the cubic symmetry. For wurtzite crystalsedge energies with their corresponding basis functions from
we have to keep all three components of kheector. In the the eigenvalues and eigenvectors of the Hamiltonian in Eq.
derivations of the matrix elements, the sixfold symmetry on(5) at k,=k,=k,=0.

Ee, isT), liS]),
E1:EU+A1+A2, u]_; U4,
A—A A—A,\?
E,—E,+ 12 2+\/ 12 2| +2A2, auyt+bus, bus+aus, (11

A—A Ai—A,\2
E;=E,+ 12 2—\/< 12 2 +2A2 bu,—aus, —auztbus,
|
where bands from top to bottom can be labeled as heavy-{idté),
light-hole (LH), and crystal-field split-off holdCH) bands,
B E, be \/§A3 12 respectively. We can relate these energies to the crystal-field
a= \/m - m (12) split energy A, and the spin-orbit split-off energy ., by
and the reference energy has been sé at0 in (12), for 1
convenience. The band-edge energies can also be described Ar=Aq, A2:A3:§Aso- (13

by considering the following simplified case. If without the

spin-orbit interaction effects, A,=A;=0, we have The energy splitingE€,—E, and E;—E; are measured
E;=E,=A;, andE3=0 (for a positiveA;), as shown in from the differences between the interband optical-transition
Fig. 2@). When we include a nonvanishini,=A; to take  energies,

into account the spin-orbit interaction, Figb2 shows the

energy splittings. For GaN\; is positive, the top valence- 1
band energy isE;, and the band-gap energy is El—Ez=§
E.—Ei1=E4. Therefore, the conduction-band edge energy is
Ec=Eg+A;+A,, measured from the reference energy 1 5
E, =0 of GaN. The band-edge energies are summarized in _ 2

Fiug. 2(b). The three bands areglabeledgaccording to their zone =i E3_§ Aot Asoh \/(A”JFASO) Bl §A°’A5°>’
center wave functions. In general, &f;>A,>0, the three (19

8
Acr"’Aso_ \/(Acr+Aso)2_ §AcrAso> )
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EC =Eg+A1 +A2
Eg

E
g E(l) = A +A, .FIG_ .2.. The b'and-edge energies With(_)ut
spin-orbit interaction 4,=A;=0) and(b) with
EV=EJ=A A-b, [A-AY. . . o X
1 2 1 Eg = '2 24+ '2 ’j +24] spin-orbit interaction A,=A;#0) for GaN

wurtzite semiconductor. The corresponding band-
EO =) — E0 _A-A Ax—Az) 124l edge energies are also listed.
3 37 o, 2

(a) Without spin-orbit (b) \_Nith spi.n—orbit
interaction interaction

(Ay=A,=0) (A, =As #0)

which then determine the values af, and A 4,. Since the ﬁZ(k)2(+ ki) ﬁZkg

solutions are symmetric with respect to these two param- E(k)=E.+ : .
. AR 2m 2m

eters, extra procedures such as measuring the polarization e e

selection rules in the optical transitions from the conductionThen, we obtain the Kane's parameters,

band to the three valence bands or the theoretical approach to

calculate the full valence-band structures are needed to de- _, 72 (mg (EgtA1+A))(Ey+ 2A2)—2A§

termine these parameters. Note that in the above two equa- Pl_z_mo (Eq+2A,) ,

tions, Eqs(13) and(14), the cubic approximatiofEqg. (36)] 9

Pas been used. A reported theqrehcal vl 72.9 meV - 52 (mo ) Egl (Eg+A;+AL)(Eg+ 2A2)—2A§]

or A, of GaN seems to be too big compared with the avail- P5=—| — —,

able experimental data ranging from the commonly used ~ 2Mo | Me (EgtA;+As)(Egt+Az)—A3

valu¢’ of 22 meV to the recently reported vafteof 10 (18)

meV. which are related directly to the optical momentum-matrix

On the other hand, for AINA; is negative, the top va- elements in Eq(8).

lence band isE,, and the conduction-band energy is

E.=Eg4+E, measured from the reference enekgyof AIN. Ill. THE k -p METHOD

The valence bands from tOp to bottom are CH, LH, and HH, FOR STRAINED WURTZITE SEMICONDUCTORS

respectively.

(17)

When a few bands are close to each other in energy lev-
C. Optical momentum-matrix elements els, the perturbation theory for degenerate bands has to be

) o _used. An improved method is the so-calledaidin’s pertur-
The determinant of the 88 matrix gives the energy dis- pation method®2® which provides the Hamiltonian to the

persion relation second order in th&- p contributions.
O=de(Hgxg—Elgxs)
={—(Ec—E')(E,+A;+A,—E')
X[(E,+A;—A,—E')(E,~E')—2A]]

A. General formulation

We write the total Hamiltonian 3%

Huy(r)=E(k)ug(r),
+[(E,+A,—E')(E,—E")— AZIP5(K; +kJ)

2k2
+(E,+ A+ A,—E')(E,+A;—A,—E')P3KZ)2, H:HO+2_mO+Hso+H,v (19
(19 where
where E' =E— (42k?/2my). If we focus on the eigenvalue
near the conduction-band edge with a srkallalue, we find H —ik I
from Eq. (15) the conduction-band dispersion relation, my
712k2 (Eg+A1+A,)(Eg+Ay)—AS %
E(K)=E.+ + e
(=Bt 5 Eql(Egt A+ A,)(Egt 2A,)— 247 =p+ 7.2 o<V (20)
X P5(KZ+k3) It is noted that the last term ifl is usually neglected for
simplicity.®?® The band-edge wave function can be written
+ (Eg + ZAZ) P2k2 (16) as
(EgtA;+A))(Eg+24,)—2A5 % N .
Whic_h can also b_e written in terms of the transverse and uk(r)zz aj,(k)uj,o(r)+2 a,(Ku,(r) (21
longitudinal effective masses. i’ Y
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and we choose the six valence-band wave functions, Using Lowdin’s method?® the six-by-six Hamiltonian
{u1,Uy, ... Ug} in Eq. (4), as the bases for the states of matrix for the valence bands can be written as the sum of a

interest(called class\), and all other states of no interest are band-edge contribution andkadependent contribution.
called classB.

-1 _ Hexe,jj (K)=Hgxgjj (k=0)+Djj (23
|U1>:T|(X+IY)T>,
2 and thek-dependent matrix is
lug)= |(X—|Y )T
— ap
2 Djj:= 3 Djfkaks.
lug)=121), ’
1 2 B a B + B
|ug)=—=|(X=1Y) 1), (22 ap_ | o PirPy T PIPy
V2 D= 2mg| i 2 my(Eo—E, | @Y
lus) = T|(X+IY)l>, where the indicesj,j'=1,2,..., 6A, yeB, and
2 a,B=X,y,z. The band-edge Hamiltonian matrix has been
lug)=1Z1). obtained from Kane’s model,
[E,+A;+A, 0 0 0 0 0 ]
0 E,+A;—A, O 0 0 V24,
0 0 E, 0 V2A,4 0
Hoxe(k=0)= 0 0 0  E,+A +A, 0 0 @9
0 0 V2A,4 0 E,+A;—A, O
|0 V245 0 0 0 E, |

B. The D matrix in the |X), |Y), and|Z) bases

First, we use a method similar to that of the Luttinger-Kohn paperdefine a few fundamental band-structure parameters,

L1, Ly, My, My, M3, Ny, andN,. The 3x3 matrix with componentsD;; ,i,j=X,Y,Z, can be written in the following
form:

L1kG+M kG +M k2 N1kyky Nokyk, IX)
Da3= N1kyky Mkt Lakj+ Mok Nokgkz — |1Y), (26)
NokyK, N2k, K, M(KZ+kS)+L,KZ | 1Z)
|
where we have defined the band-structure parameters, which 52 B 2pY.pYy
are similar to the Luttinger-Kohn parameteys, y,, and Ml:ﬁ( +> ﬁ
v3 for zinc-blende structures, 0 7 Mo(Eo—E,)
h? o 2Py, Py )
2 B X X — 1+ My ’
Ll:ﬁ_( L 2Pl 2m0( 2 mo(Eg—E,)
2m0 b% mo(EO_E,},)
2 B
Pv,P 2 B z 7
=om | 12 e h 2p%,Pix
2m0( mo(Eo—E ))’ M,= <1+ rr
’ ’ > 9ime| 1 2 g(Ep—E.)

hZ

B 2 B z Az
pZ'yp‘yZ _ 2Py,Pyy )
2mo( 2 (B )) (”2 £,/ @)

L
2 7 Mo(Eo—
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2 B
pZyp'yZ
M =
3 2mo( Ey: mMo(Eo— ))
B
pZypyZ )
1+ ,
( E}’ mO(EO 'y)
h2§ prp Y pX'yp'yY
mg Y (EO y) ’
hz% P, 0%z PPz hzg Y, P22+ %, pY;
2 miS (Eo—E,)  my5 (Eo—E,)

where py.=(X|p’|y), etc., andp¥=(#/i)(d/dy) is they
component of the momentum operator.

C. The six-by-six Hamiltonian matrix
in the bases{uq,u,, ..., ug}

Using the results in Sec. Il B, thBg.g matrix in the
basequ,,us,, ...
elementsDyx, Dxy, Dxz, €etc. in EqQ.(26),

-Dll D§1 _D§3
D,y Dy Dy 0
D _ _D23 53 DZZ
oxe Dy Dz Dy |’
0 D;l Dll _D’ZkB
D33 —Dy; Dyz

) (29

S. L. CHUANG AND C. S. CHANG

,Ug} can be easily derived using the matrix

54

Ll_Mlle' (30)

The full Hamiltonian,H=Hg.(k=0)+Dgxg, Can be
written as

[ F —-K* —-H* 0 0 0 1luy)
-K G H 0 0 A |]uy)
-H H* A 0 A 0 ||ug)
H=l o o 0 F —K H |luy
0 0 A —K* G —H*||ug)
| 0 0 H*  —H X |lug)
(3D
where
F=A;+A,+\+0,
G=A;—A,+\+6,
ﬁz 2 2 2
)\:2—%[A1KZ+A2(k +k2)1,
hz
9=2—%[A3k§+A4<k§+k§>],
(32)

ﬁZ
K= Z—moAs(kX-i-iky)z,
2

2mg

A=\2A,.

We obtain the relations between the band-structure param-
eters derived using the- p method and the more commonly
usedA,; parameters in the Pikus-Bir model,

H= Ag(kytiky)k,,

where the whole matrix can be expressed by using only four

distinctive matrix elements,

2 (k2 K2) + M K2,

D27=M;(K+Kj) +LoKZ,

1 .
Day=— 5[(L1=M1)(k;— k) + 2iN1kyky]
1 i 2
== 5Na(ketiky)?, (29
1 .
Dos=—=Na(ky+iky)k,,

V2

and it can be showfsee Appendix Bfrom symmetry con-
sideration that

h? h?
2_moA1:L2’ 2_mOA2:M3’ 2_mOA3:M2_L2’
, , (33)
R? o LitMy # Ny A% Ny
2m, * 2 ¥ o2mgtt 2 2mg 2

Note that there is a minus sign in front of all theterms in
Eqg. (31) and we do not have a factor bfn the definition of
theH terms compared with those used in Refs. 7 and 14. We
believe that our results are consistent with the fact that both
As and Ag are real constants and that they agree with our
results to be derived in Sec. 1V, using the invariant method,
which is the method used by Pikus and Bir. Fortunately, due
to cancellations, these sign changes anditfector do not
affect the band-structure dispersion relation, which was
used**Sto fit the more exact band structures to extract these
band-edge parameters. They may affect the relative phases of
the band-edge wave functions, though.

The strain effects can be easily included by the same sym-
metry consideration and a straightforward addition of corre-
sponding terms:

kakﬁ_> 6aﬁ’
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with the deformation potential®,,D,, ... ,Dg, at the cor-  stants. The general strain-stress relatiblooke’s Law for
responding positions ok, A,, ... Ag. the hexagonal crystal can be found in Ref. 29.

F=A+A,+ N+,
IV. THE INVARIANT METHOD

G=A;—A,+\+86, FOR THE EFFECTIVE-MASS HAMILTONIAN
52 Using the Hamiltonian for a strained wurtzite structure
\= 2_%[A1k§+A2(k§+ ki)]-}-)\f, based on the symmetry consideration, we write
— 2
)\e: Dlezz+ D2(6xx+ eyy)v H —A1J2+A2JZO'Z+ A(JJF(T, +J,0'+)

2

h
2
* omg LAt AT+ (Ag+ A (k)

h 2 2 2
0= e AT ALIGHDT+ e,

(34) —As(J2 K2 +32K2) — 2Agk ([ I Tk_ +[IJ_Tk)]
0c=Dgezrt Dalext 6)’)/)’ +(Dy+ D3~]§) €2, (D2t D4‘J§)(Exx+ eyy)
h? —Ds(J2e_+JI%€,)—2Dg([Id: )€, +[II- :
K= —A5(kx+iky)2+D5E+, 5(J5€ €,) 6([I+ 1€ +[Id J€4)
2m0 (38)
h : where
H= 2_rnOA6kZ(kx+ |ky) + D6€Z+ ,
A=12A o= (3,
3 i_ﬁ( X_I y)a
where
€.=€,F2i€— €y, 1
+ XX Xy yy Ut:z(o_xiia_y), (39)
€+ = €5 T €. (35
It should be pointed out that under the cubic 2[3,3.1=3,3.+J3.3,,
approximatiort'!* the following relations hold for the pa- - T
rametersA;s and A;s: and we have specified the basg$,;, Y40, andY_4}, with

the operator matriced,, J,, J,, and the Pauli spin matrices
36 explicitly defined in Appendix A. It should be noted that
because of the changes in the basis functions involvin
D1=D,=~Ds=2D4, Dj+4Ds=2Ds. changes of signs and phase factors in early and recent papegrs,
Therefore, only five band-structure parameters, such,as confusion occurred in deriving the Hamiltonian matrix.
A,, As, A;, andA,, and three deformation potentials are Since the previous derivations for the wurtzite Hamiltonian
necessary for the calculation of the valence-band structurew/ere based on the invariant method, the sign and the phase
The cubic approximation idea is based on the similarity befactor in front of theAs andAg (or theH andK termg were
tween the wurtzite structure and the cubic crystal. The abovarbitrarily chosen as long as the Hamiltonian stays Hermit-

relations are derivédf we map thec (0001) axis to thez’ ian. A consistent approach is to derive the Hamiltonian using
axis along the (111) direction and set the andy’ axes thek-p method, as shown in Sec. Ill. o
along the[112] and[110Q] directions, respectively, in the In writing the Hamiltonian, we have kept in mind that the

coordinate system. It has also been fdicthat a seventh band-structure parameted;,i=1,2,3...,6, are allreal
coefficientA, for the lineark terms vanishes; therefore, we numbers, following our definitions using the p method.
discard it at the beginning and keep only the quadratic term§he Hamiltonian(38) can also be simplified to the following
of k, in addition to the band-edge energy terms. form:

For a strained-layer wurtzite crystal pseudomorphically
grown along thegl000)) (z axis) direction, the strain tensor H=(A,+ 0)J§+A2chrz+)\

€ has only the following nonvanishing diagonal elements: 5 )
+AJ o +J o0 )—(K*JL+KJI9)

ag—a

Go €y =4 —(H*2[J,J,]+H2[JJ_]), (40
2Cys where\, 6, K, andH are the same as those defined in Eq.

€22= — Cas €xx s (37) (34).

In the following bases{Yi1il, Yiol, Y1i-1T, Y1il,
whereay anda are the lattice constants of the substrate andv g/, Y;,_1/}, the full six-by-six Hamiltonian matrix can be
the layer material, an€C,5 and C55 are the stiffness con- written as
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F—-H* —-K* 0 0 0 1 [Yul)(=|up)
-H A H* A 0 0 | [Yiol)(=|ugs))
-K H G 0 A 0 [|Y1_1T)(=]up))
H= N N . (41
0 A 0 G —H* —K*|[Yul)(=|us))
0 0 A -H A H* | [Yi0l )(=|ue))
L0 0 0 K H F [IYil)(=|u))
|
This result, when written in the same order of the basesvhere ky+iky=kexp(i ¢) has been used.
{uy,u,, ... ug}, gives an identical result as that in E§1),  First, it is easy to see that we can remove the
which was derived from the second-ordeip method taking dependence in the matrix elements by introducing
the symmetry of wurtzite crystals into consideration. the bases, {exp(—i3¢/2)|Y111), expip/2)|Yi_1T),

It should be pointed out that some sign changes in thexp(—i¢$/2)|Yol), exp3¢/2)|Y,_1]), exp(—i¢/
choice of bases are possible, such that the original definition8)|Y,4] ), exp( ¢#/2)|Y10l)}. By pairing the base$u,,u,},
of theK andH terms of Pikus and Bir can still be used. For {u,,us}, and {us,ug}, we form the bases$l), |2), |3),
example, usind —uy,U,,iug,uy, —Us,iUg}, we find a sign  |4), |5), and |6) by using the basis transformatiofi,)
change in front oK and an extra factor af in bothH and ~ =XTj;u;, where theT matrix is defined as
A. In this set of bases, the complete Hamiltonian matrix
differs from the original form in Ref. 8, only by an extira - -

*
factor in front of A. We believe that our formulation gives ar 0 0 @ 0 0
consistent results based on both the Luttinger-Kohn model 0o B 0 0 B* 0
and the invariant method. 0o 0 p* 0 0o B s
T=| . ,
V. BLOCK-DIAGONALIZATION @ 0 0 -« 0 0
AND THE VALENCE-BAND DISPERSIONS 0O B 0 0 —,8* 0
The full six-by-six Hamiltonian matrix can be block di- L0 0 -p* © 0 B
agonalized following a similar proceddfe® to that of the h
zinc-blende structure. We note that the off-diagonal termd/€re
such aK andH contain the¢ dependence and write 1 1
2 . .
_ a= ——gi(37/4+3412) = gi(mlat l2). (44)
K=Kie,  Ki=gro-Ack?: 2 =%
2
H=H.e'¢ H.= Ackik (42) The Hamiltonian matrix is then block diagonalized,
T 2my e H'=UHUT=T*HT!,
[ F K, —iH, 0 0 0 ]
K, G A-iH, O 0 0
iH, A+iH, A 0 0 0
H'= : : 45
0 0 0 F K, iH, 49
0 0 0 K, G  A+iH,
0 0 0  —iHg A—iH, X |
where the superscript T means taking both transpsgeer- VI. ANALYTICAL EXPRESSIONS
script t) and complex conjugaté¢*). The transformation FOR THE EFFECTIVE MASSES
matrix® for the components of the wave functions is AND OPTICAL MOMENTUM-MATRIX ELEMENTS
U=T*. By writing the upper-left Hamiltonian @4" and the The effective masses along the transverse and longitudi-

lower-right Hamiltonian asHY, we find the relation nal directions can be derived as follows:
HY=(HY*=(HY)". (i) Near the zone centerk( approaches zejpwe keep
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TABLE I. Normalized inverse effective masses of the heavy-lidld), light-hole (LH), and crystal-field
split hole (CH) bands along the axis (= z axis) and transverset) to thec axis.

Valence energy mgy /m? my /mt

Near the band edg&k0)

E; (HH band —(A1+A3) —(A,+Ay)
E, (LH band B0\, E3-\e
- ——— +
ArlEe)t P e
Es (CH band E3-\. E3-A\.
m+E%E2% %+E%Eg&
Far away from the band edgék (s large
E,; (HH band —(A1+A) —(Axt+A,—Ag)
E, (LH band — (A, +Az) —(Ay+ AL+ AS)
E; (CH band -A; —A;

only terms of up to the second orderkrand find(for a finite ~ the strain effects in Tables | and Il are simple and useful,
A;,i=1,2,3) where E?, EJ, and ES, are the band-edge energids,,
E,, E; in Eq. (46), evaluated ak=0,

E,=F,
! EO=A,+A,+ 6 +\,,
G+X\ G—\\? A—A,+ 0 ’Jz&—A+0 2
= 2 o A17 AT 0, 17 AT 0, 2
E=——+\/| 5| +A% (46) E9=—1 Tty | 5 2ns,
(47

G+ [[G—\\2
E3: 2 - ( 2 +A2. Eg:Al_A2+6€+)\ . \/(Al_A2+ 06 2

2 2

+2A3.

The band-edge effective masses along the longitudinal We also redefine Eq12) to include the strain effects,
(z=c axig) and the transverse (or y) directions can then be

obtained and are tabulated in Table I. Using the band-edge Eg—)\E
wave functions(11), we also obtain the momentum-matrix a= JEI— N2+ 282"
elements in Table Il for the optical transition from the con- 2 e 3
duction band edge to the three valence-subband e@ges
HH, C-LH, and C-CH transitions labeled &, E,, and b V24,4 49
E;, respectively, when the optical polarization is parallel or V(ES—N)2+2A%
perpendicular to the ¢ axis. Our analytical results including
and it is straightforward to show that
TABLE Il. Strain-dependent interband momentum-matrix ele- 0 0
ments|(S|é- p|v;)|? for & polarizations along the axis (=z) and 2 E>—N 2 Ez— A
perpendicular to the axis. The band-edge wave functionsare a= EO EO‘ EO EO‘
listed in Eq.(11). Here, the energy parameters for the interband
transition elements are related to Kane’s parame®ysandP, in ~ which are used in Tables | and II.
Eq (18), by Ep,=(2mg/42) P2 and Epx=(2mg/42) P3. Note that The conduction-band edge has a hydrostatic energy shift,
a’+b%=1; a andb are defined in Eq(48). Pce,
Valence energy dl c axis el c axis E.= E3+A1+ A+ Eg+ P,
m,
E4 (HH bang 0 TOpr Pce=ac€,, Aot €xxt 6yy)- (49)
E, (LH band bz(”_b = a2 rT_bEpX) For a GaN layer sandwiched between two thick
2 4 Al ,Ga; N layers, the strain is compressive in nature, since

E3(CH band oMo bz(n—bE ) the lattice constara of the GaN layer before deformation is

&7 e 4 larger than the lattice constamat, of Al,Ga; N layers.

Therefore,e,, is negative, and the band-edge shifts will be

Sum r;" = n;" Epx positive for the conduction band and negative for the top

valence bands. The net band-gap shift is determined by
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Ec—E1=Eg+Pec— (040, (50) 3.53

and it can be compared with the lowest band-edge transition [
energy(A line) of the photoluminescence spectrum, with an 3521
exciton correction energy of about 28 meV. Similarly, i
E.—EJ andE.— EJ with the same exciton correction can be
used to compare with the transition energies of Bhand
C lines in the photoluminescence spectrum.

(i) Away from the zone center, ds approaches a big
number, we can ignord, and A;; the rest of the Hamil-
tonian has analytical solutions:

351}

Energy (eV)

E =F'—K,,

1

T (kbar)

1
Es==[F +K{+ A= (F'+K—\)2+8H?], , =
2 FIG. 3. Interband energies calculated for the transitions between
, . . the conduction bané&, and the HH, LH, and CH bands, or called
where F'=A;+\+6. Using the above expressions, the o g andc lines. The symbols are experimental data from GaN

valence-band effective masses away from the zone centgpmples at temperatures below 10 K collected in Ref. 23. The solid
can be obtained analytically and are tabulated in Table ljnes are calculated using the parameters in Table 1l in expressions
Note that in the special case &L =A3=0, these analytical in Eq. (47) for E?, EY, andES, andE, in Eq. (49) with an exciton
effective masses are the exact solutions of the three-by-thregergy €,,~0.028 eV} correction[E4(10 K)—Eq,~3.471 e\,
HamiltoniansHY andH". The above analysis also explains The dashed lines are calculated using the same equations with pa-
the difference between the expressions for the effectiveéameters taken from Ref. 23.
masses used in Refs. 8 and 14. ) 1 ) _
exx=—[C11+C1o—2(C14/C33) ] °T andT is the magnitude
of the equivalent in-plane compressive stress in kbar. It is
noted that the fit is not unique, since the roots A and

For a special case, if we ignore the anisotropic property oA, are symmetric, as can be seen from Edd). It is usu-
the wurtzite crystals, we can assume tlmt=a,=a.. ally believed that A,=A=3A,; and A,=22 meV,
Since the experimental data only provide the total band-gags,—11 meV, have been used. These values affect the mag-
shift as a function of an externally applied pressure, only thenitudes ofE?, Eg, Eg, and the polarization selection rules
total value for the interband deformation potente,is re-  for optical transitions between the conduction band and the
ported. Theoretically, the hydrostatic deformation potentiald. H (Eg) and CH CEg) valence bands. We have varied the
a=dE4/d(InV)=a,—a, (interband, a, (conduction band  parameters using,=16 meV,A,=A;=4 meV and found
a, (valence bang and the shear deformation potentibl,  that our fit with the data in Fig. 3 is within 2 meV. Our
have been used for zinc-blende structures. Possible rules fparameters will not reverse the polarization selection rule
the partition ratio,|a./a] and |a,/al|, are used based on compared with previous repditwhile theA; parameters of
different theories. Note that the common convention that Ref. 23 will have different polarization selection rules for the
anda. are negative and, is positive is used. For wurtzite B andC lines of the photoluminescence spectrum from those
structure, the parametef®, andD,, play similar role&®as  in Ref. 27. More experimental data on the polarization selec-
the hydrostatic deformation potential, ; while D3 andD,  tion rules, especially near th& andC lines of the interband
play similar roles as the shear deformation potentialof  transitions, are required to resolve this issue. We then
cubic crystals. Various values @f for GaN, such @?%?  changed the deformation potentiaks;=0.5a=—4.08 eV,
—7.8, —9.2, and—11.8 eV have been reported. A set of D;=0.7 eV,D,=2.1 eV,D3=1.4 eV, andD,=—0.7 eV,
parameters, using=—8.16 eV,a.,=0, D;=D,=8.16 eV, and obtain the solid lines in Fig. 3. These parameters satisfy
D3;=D4,=-3.71 eV, A;=10 meV, A,=6.2 meV, and the cubic approximationD,—D,=—-D;=2D,. There are
A;=5.5 meV have been usgdo fit experimental data col- few reports on the experimental valuesagfandD;s, since
lected from a few samples for temperatures lower than 10 Kthese parameters cannot be independently measured so far.
Note that these parameters were obtained by a linearizatiofihe above values are of the same magnitudes as the hydro-
of the valence-band-edge energies with respect to strain. Watatic and shear deformation potentials of the other IlI-V
have used the same parameters to calculate the transiti@mc-blende crystals.
energiegwith exciton correctionsfor the A-line, B-line, and In Figs. 4a) and(b), we plot the band-edge energy shifts
C-line interband transitions in the photoluminescence specfor the conduction band and the three valence bands as a
trum using the exact expressionid,7) and (49), instead of function of the in-plane compressive strain up to a strain
the linearization formulas. The results are shown as thealue of a magnitude 0.0(br one percent Note that we use
dashed lines in Fig. 3, while the data points collected inthe conventiore,, to be negative for a biaxial compression
Ref. 23 are shown as symbols. We have usedase. One percent of compressive strain is the amount of the

VII. NUMERICAL EXAMPLES
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FIG. 5. Valence-band dispersions for an unstrained% com-

FIG. 4. Strain effects ofa) the conduction- an¢b) the valence-  pressively strained GaN wurtzite crystal. The vertical axis is the
band energy shifts are illustrated based on our model and the pavalence-band energy and the horizontal axes are the transkugerse
tition rules for the hydrostatic deformation potentials. Note that theand longitudinak,=c(0001) axes.
band-gap energf.— E; increases linearly with the in-plane com-
pressive strain. wurtzite structure. For a zinc-blende layer grown along the

(001) direction with a compressive strain, the deformation
in-plane strain in a GaN quantum well sandwiched betweemotentials lift the HH band up and reduce its in-plane effec-
two Al,Ga;_4N layers with an aluminum mole fraction tive mass. However, for a wurtzite layer grown along the
x=0.4. axis, the compressive strain shifts both the HH and LH bands

In Fig. 5, we show the band-edge valence-band structurgy almost the same amount and the in-plane effective masses
of a —1% compressively strained GaN wurtzite crystal. Theremain almost the same as those in the unstrained case. The
valence-band energy is plotted as a two-dimensional functiopolarization selection rules for the conduction band to the
of ky (=k, or ky) andk,. The effective-mass parameters, |ight-hole band are also changed. For the zinc-blende struc-
A;s, and the energy splitting parameters,s, have been ture, the dominant C-LH transitions are TM polarization
calculated by fitting the more accurate electronic band structalong the growth axjs However, for the wurtzite structure,
tures calculated using first principl&§Here, we use the TE polarization is favored for the C-LH transitions.
same effective-mass parameters as in Ref. 14 and the defor- |n Fig. 6, the band-edge hole effective masses of a biaxial
mation potentials from our fit in Fig. 3. All parameters are compressively strained GaN along the longitudirg)l &nd
listed in Table IIl. It should be noted that more theOFetiCaltransverseto directions listed in Table | are calculated as a
and experimental work is needed to determine all these pgunction of the magnitude of the in-plane compressive strain.

rameters consistently. The parameters listed in Table Il cagor example, in the absence of strain, the band-edge effec-
only serve as a guide for our theoretical modeling. Our chotive masses are

sen set of parameters have been used to fit the data in Fig. 3

very well. The bulk valence-band structure for an unstrained mi{Me=1.10, mp,/my=0.27,

GaN wurtzite crystal has been shown in Figa)lof Ref. 17

with the same set of parameters. A comparison between Fig. mf/me=0.60, mij;/my=0.30,

5 and the unstrained valence-band structure shows that the

strain effects shift the HH and LH band edges by an almost mz/me=0.17, m/my=0.77.

equal amount, and shift the CH band away from the zone

center. From Figs. 5 and 6, we can see that the HH and LH bands

The difference in symmetry between the wurtzite andnear the band edges have very similar effective masses in the
zinc-blende structures causes some fundamental differenc&gsdirection. However, in thé, direction, HH has a heavier
in their electronic and optical properties. The degeneracy beeffective mass than that of the light holeoth masses are
tween the heavy-hole and light-hole bands at the zone centéeavy. On the other hand, far away from the zone center, the
(' point) for the zinc-blende structure is broken for the HH band has a heavier effective mass than that of the LH
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TABLE lll. Physical parameters for GaN and AIN.

Parameter GaN AIN
Lattice constafit® (A)
a 3.1892 3.112
C 5.1850 4,982
Energy paramete?s’
Eg4 (eV) at 300 K 3.44 6.28
A=A, (meV) 16 (this work) -58.5
10¢
22¢
Ago (MeV) 12 (this work)
11°¢
A,=Af3 (MeV) 4 (this work) 6.80
6.2¢
3.7¢
Az (meV) 4 (this work) 6.80
5.59
3.7¢
Conduction-band effective masdes
mZ/mg 0.20 0.33
mi/mg 0.18 0.25
Valence band effective-mass parameters
A, -6.56 -3.95
A, -0.91 -0.27
Aj 5.65 3.68
Ay -2.83 -1.84
Ag -3.13 -1.95
Ag -4.86 -2.91
Deformation potentialgeV)
a (interband -8.16°
a.=0.5a -4.08 (this work)
D, 0.7 (this work)
D, 2.1 (this work
Dj 1.4 (this work)
D, -0.7 (this worKk
Elastic stiffness constarit& (10 dyn/cn?)
Cis 15.8 12.0
Cas 26.7 39.5

8Reference 31.
bReference 32.
‘Reference 33.
dReference 23.
®Reference 27.
fReference 14.

band along thek; direction, and they have similar effective ization. The analytical expressions are tabulated in Table II.
masses in thé, direction. SinceA, and A; are small, the We also calculate the energy parameters for the interband
band structures appear to be dominated by the features deptical-transition oscillator strengths and obtdip,=15.7
termined by the effective masses away from the zone centegV, andE,,= 13.9 eV. Notice the sum rules for each polar-
This suggests that for a GaN quantum-well structure, thézation in Table II. All the matrix elements are normalized to
heavy_ho|e and ||ght_h0|e subband energies will be Ver)lhe tOtal value for the TE polarization. The sum of a” three
close and the density of states for the heavy-hole subbandgansitions, C-HH, C-LH, and C-CH, for the TE polarization
will be much larger than that for the light-hole subbands. IS Unity, and the sum of all three matrix elements for the TM
The normalized matrix elements for the optical transitiongP0larization isk,/E,=0.89.
from the conduction band to the HH, LH, and CH bands are
plotted as a function of the in-plane strain, as shown in Fig.
7 for the optical polarizationd) parallel to thec (z) axis In conclusion, we have derived the effective Hamiltonian
(TM polarization and perpendicular to the axis (TE polar-  for the wurtzite crystals using both the p method and the

VIIl. CONCLUSIONS
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g 04 _omf ™Mb Teh ] APPENDIX A: MATRICES AND BASIS FUNCTIONS
o FEEeees “55‘}*“'“""'“ ] Pauli spin matrices and bases:
ol v ] 0 1 0 —i 0
0 0.002 0.004 0.006 0.008 0.01 = , =|. , = , (Al
e x| 1o YTl o) o —1f WY

. . in the base$?) and||). We also use
FIG. 6. The effective massesi{/my andm'/mg) near the band

edges calculated using the analytical expressions in Table | as a
function of the in-plane compressive strain are plotted for the HH, o, =— (g, +1i a'y) =
LH, and CH bands. 2

0 1
0 0

0 0

1 0]
(A2)

1 .
, o'_=§(0'x—|0'y)=

invariant method. We show the explicit definitions of the  Angular momentum matrices and bases:
fundamental band-structure parameters, the interband
momentum-matrix elements, and the energy parameters. A 0 1 0

unitary transformation is also found to block diagonalize the J=—|1 0 1 J=—I|i 0 =i
six-by-six matrix into two three-by-three matrices and it sim- V2 Y2 ,

plifies the derivations for the valence-band dispersions and 010 0 i 0
effective masses. Analytical expressions for the effective
masses near and far away from the band edges and the band- 100

edge wave functions are derived within the framework of the J,=[{0 0 O0]. (A3)
k-p method. Analytical expressions and numerical results 00 —1

for the effective masses and optical interband transition ma-

trix elements taking into account the strain effects have alsd he basis functions are in the following order:

been presented. This Hamiltonian will be very useful for the 1 L
calculation of both electronic and optical properties of T . _ B .
strained bulk and quantum-well structures, using GaN/ Y“_E|X+'Y>’ Y10=2), Yl*l_ﬁp(_IY)'
Al,Ga; N or In,Ga; (N/Al,Ga; N materials, which (A4)
have a great potential for applications to blue-green laser

diodes and electronic devices. We also use
0 1 o0
! i 0 O
J+:E(Jx+|\]y): 1 )
LO 0 Ol
1
_ 0 o
0.8 ©000 ¢ 1
o I =—(3—id)=[1 0 0. (A5)
0.6 \/E

i e Tv G APPENDIX B: DERIVATION OF THE RELATION

—e—TE (LH) —6 -TM (LH) Li—M=N;
——TE (CH) —o-TM (CH)

0.2

Normalized matrix elements

We write in the following forms:

A

0 =2 8 5 2 o ca o . .
0 0.002 0.00|4 (l).006 0.00: 0.01 Ly—M,={(X|p*Gp*|X)—(X|pYGp’|X), (B1)
eXX

= XGpY Y& nX
FIG. 7. Normalized interband transition matrix elements as a Ny (X|p Gp |Y)+<X|p Gp |Y>' (B2)

fur_lction of strgin are plotted for qptical polarizat?on along the | here the operatcé; is defined as

axis (TM polarization) and perpendicular to the axis (TE polar-

ization). The optical transitions from the conduction band to the B ﬁ2| |

HH, LH, and CH bands follow a simple sum rule, as listed in Table A 2 V(¥ (B3)
2 .
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The relation betweeh;—M, andN; can be derived using

the sixfold symmetry rotation of the crystal and its corre-

sponding character tabfeFor a 60° rotation symmetry, we
use

G'=G,
1 V3 V3 1
XIZEX‘F TY’ Y/:—7X+ EY, (B4)
1 V3 '
X — _pX4+ —pY Y — _—  _pX4 —pY

S. L. CHUANG AND C. S. CHANG

Li—My=(X'|p¥'G"p¥ X"y —(X'|p¥'G'p'|X").

(B5)
We obtain
4 6 .
Ll_M1=T6(L1_M1)+ 1—6(N1+N1)- (B6)
Therefore,
Ll_M].:Nl' (B?)

sinceN; is real. The relatior(B7) is important, since it re-
lates the Hamiltoniari31) derived using thék-p method to
that derived in the invariant method.
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