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We derive the effective-mass Hamiltonian for wurtzite semiconductors, including the strain effects. This
Hamiltonian provides a theoretical groundwork for calculating the electronic band structures and optical
constants of bulk and quantum-well wurtzite semiconductors. We apply Kane’s model to derive the band-edge
energies and the optical momentum-matrix elements for strained wurtzite semiconductors. We then use the
k•p perturbation method to derive the effective-mass Hamiltonian, which is then checked with that derived
using an invariant method based on the Pikus-Bir model. We obtain the band structureAi parameters in the
group theoretical model explicitly in terms of the momentum-matrix elements. We also find the proper defi-
nitions of the important physical quantities used in both models and present analytical expressions for the
valence-band dispersions, the effective masses, and the interband optical-transition momentum-matrix ele-
ments near the band edges, taking into account the strain effects.@S0163-1829~96!00428-6#

I. INTRODUCTION

Wide band-gap semiconductors including GaN, AlN, InN,
and their ternary compounds have recently received consid-
erable attention.1–6 The worldwide competition for fabricat-
ing blue-green laser diodes following the success of high-
brightness blue-green light-emitting diodes and other
applications of these materials for electronic devices gener-
ate an intensive research effort on the growth and character-
ization of the nitride based semiconductors.

Since these group-III nitrides crystallize in the wurtzite
structure when grown in the most common substrates, such
as a sapphire~0001! substrate, fundamental studies of the
wurtzite band structure play an important role in understand-
ing the electronic and optical properties of GaN based opto-
electronic materials and devices. Although GaN wurtzite
structures were investigated in the 1960s,7,8 most
theoretical9–21 and experimental studies3–5,22of these wurtz-
ite materials increased dramatically in the 1990s after the
demonstration of the light-emitting diodes using the GaN/
Al xGa12xN semiconductors.1,2

Full band-structure calculations have been reported for
binary9–14 and ternary18–21 semiconductors with wurtzite
structures. For electronic and optical properties, the band
structure near the direct band edges can be used to under-
stand experimental observations such as the photolumines-
cence spectrum and mobility measurements. The Hamil-
tonian near the band edge of a wurtzite semiconductor has
been derived using an invariant method,7,8 and many of the
band-structure parameters were treated empirically with little
indication of the origin of these parameters. First-principle
calculations may be applied to calculate the band-structure
parameters, the splitting energies (D is), and the deformation
potentials. Unfortunately, many parameters~such as the
crystal-field splitting energy, the spin-orbit split-off energies,
the band-edge effective-mass parameters, and especially the
deformation potentials! are not readily available18–21 from
the full band-structure calculations for wurtzite structures.
The band-structure parameters have only recently been ex-

tracted by fitting the band-edge dispersion curves with those
calculated by the more accurate self-consistent full-potential
linearized-augmented plane-wave method within the local-
density-functional approximation.14 Yet, these theoretical pa-
rameters, especiallyD1 andDis, appear to be too big when
they are compared with the experimental data in Ref. 23. On
the other hand, the band structures of zinc-blende semicon-
ductors near the band edge are usually derived using the
k•p method or the Luttinger-Kohn model.24–26 The param-
eters in the Luttinger-Kohn model are clearly defined in
terms of physical quantities, such as momentum-matrix ele-
ments and eigenenergies. In this paper, we present a deriva-
tion of the Hamiltonian matrix for wurtzite structures based
on thek•p method and show the explicit definitions of the
band-structure parameters and interband optical momentum-
matrix elements. Many of the analytical expressions includ-
ing strain effects are derived. Since current GaN heterojunc-
tion structures have a significant amount of strain, these
results will be valuable to researchers in this field. Our pre-
sentation also clarifies some inconsistencies in the earlier pa-
pers, due to ambiguities in the choices of the basis functions
and the change of definitions in the operators used in the
invariant method in different papers.

In Sec. II, we present Kane’s model24 for wurtzite band
structures and define the band-edge parameters, such as the
crystal-field splitting energy and the spin-orbit energy, and
the interband momentum-matrix elements for thex(5y) and
z polarizations, where thez axis is chosen to be thec axis
~0001! of the wurtzite structure. The wurtzite structure, Fig.
1, consists of two interpenetrating hexagonal closely packed
sublattices, offset along thec axis (z axis! by 5/8 of the cell
heightc. The sixfold rotation symmetry is used in deriving
some of the fundamental physical parameters. In Sec. III, we
derive the Hamiltonian matrix based on the Luttinger-Kohn
model and find the explicit definitions of the band-structure
parameters. These band-structure parameters are then related
to those parametersA1 ,A2 , . . . ,A6 , used in the Hamiltonian
matrix derived with the invariant method, presented in Sec.
IV. Using the property that these band-structure parameters
are real, we are able to identify the proper choice of the
phase factor in the corresponding set of basis functions and
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operators in the Hamiltonian. In Sec. V, we found that the
six-by-six Hamiltonian can be block diagonalized to two
three-by-three matrices following a unitary transformation of
the basis functions. In Sec. VI, we show analytical expres-
sions for the effective masses near and away from the zone
center and the interband optical-transition matrix elements,
taking into account the strain effects. Numerical examples
for GaN and AlN are shown in Sec. VII and the conclusions
are given in Sec. VIII. We hope that our analysis not only
shows a consistent and clear derivation of the Hamiltonian
for wurtzite crystals, but also stimulates more fundamental
studies and measurements of the band-edge electronic pa-
rameters and optical-transition oscillator strengths.

II. KANE’S MODEL FOR WURTZITE SEMICONDUCTORS

In this section, we use Kane’s model24 to find the band-
edge energies and define important physical parameters in-
cluding the optical momentum-matrix elements.

A. The Hamiltonian matrix elements

The Schro¨dinger equation for the periodic partunk(r ) of
the Bloch function and the energyEn(k) near the band edge
can be written as24,26

Hunk~r !.SH01
\2k2

2m0
1

\

m0
k•p1HsoDunk~r !

5En~k!unk~r !, ~1!

where

H05
p2

2m0
1V~r !, ~2!

Hso5
\

4m0
2c2

¹V3p•s5Hsxsx1Hsysy1Hszsz . ~3!

Here, V(r ) is the periodic potential,Hso accounts for the
spin-orbit interaction, ands i ,i5x,y,z are the Pauli spin ma-
trices, which are defined in Appendix A.

In the set of basis functions near the zone center,

u iS↑&, u15U2
~X1 iY!

A2
↑L , u25U ~X2 iY!

A2
↑L ,

u35uZ↑&;
~4!

u iS↓&, u45U ~X2 iY!

A2
↓L , u55U2

~X1 iY!

A2
↓L ,

u65uZ↓&.

The Hamiltonian matrix can be written in the following form:

1

~5!

FIG. 1. A wurtzite crystal consists of two interpenetrating hex-
agonal closely packed sublattices, displaced by 5/8 of thec~0001!
axis. The dashed lines show the boundary of a unit cell.
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where

k65kx6 iky ~6!

and we have used the following definitions for the energies:

^SuH0uS&5Ec ,

^XuH0uX&5^YuH0uY&5Ev1D1 ,

^ZuH0uZ&5Ev , ~7!

^XuHszuY&52 iD2 ,

^YuHsxuZ&5^ZuHsyuX&52 iD3 ,

and two Kane’s parameters,P1 andP2 , which are related to
the interband momentum-matrix elements,

K iSU \

i

]

]zUZL 5
m0

\
P1 ,

K iSU \

i

]

]x UXL 5 K iSU \

i

]

]y UYL 5
m0

\
P2 . ~8!

Note that in the original Kane’s model for cubic crystals, the
wave vectork is assumed to be along thez direction, which
is possible due to the cubic symmetry. For wurtzite crystals,
we have to keep all three components of thek vector. In the
derivations of the matrix elements, the sixfold symmetry on

thex-y plane has been used. For example, (x,y) mapping to
a 60° rotation around thez axis (5c axis! leaves the Hamil-
tonian invariant, and the wave functionsuX& and uY& trans-
form to

uX8&5
1

2
uX&1

A3
2

uY&,

uY8&52
A3
2

uX&1
1

2
uY&. ~9!

Therefore,

^YuH0uY&5^Y8uH0uY8&5
3

4
^XuH0uX&1

1

4
^YuH0uY&

~10!

and we find ^YuH0uY&5^XuH0uX&. We also obtain
^XuH0uY&50, and ^SuH0uX&50. The properties
^Su]/]xuX&5^Su]/]yuY& and^YuHsxuZ&5^ZuHsyuX& can be
derived in a similar manner.

B. Band-edge energies and basis functions

At the zone center, we obtain the doubly degenerate band-
edge energies with their corresponding basis functions from
the eigenvalues and eigenvectors of the Hamiltonian in Eq.
~5! at kx5ky5kz50.

Ec , u iS↑&, u iS↓&,
E15Ev1D11D2 , u1 , u4 ,

E25Ev1
D12D2

2
1AS D12D2

2 D 212D3
2, au21bu6 , bu31au5 ,

E35Ev1
D12D2

2
2AS D12D2

2 D 212D3
2, bu22au6 , 2au31bu5 ,

~11!

where

a5
E2

AE2
212D3

2
, b5

A2D3

AE2
212D3

2
~12!

and the reference energy has been set atEv50 in ~12!, for
convenience. The band-edge energies can also be described
by considering the following simplified case. If without the
spin-orbit interaction effects, D25D350, we have
E15E25D1 , andE350 ~for a positiveD1), as shown in
Fig. 2~a!. When we include a nonvanishingD25D3 to take
into account the spin-orbit interaction, Fig. 2~b! shows the
energy splittings. For GaN,D1 is positive, the top valence-
band energy is E1 , and the band-gap energy is
Ec2E15Eg . Therefore, the conduction-band edge energy is
Ec5Eg1D11D2 , measured from the reference energy
Ev50 of GaN. The band-edge energies are summarized in
Fig. 2~b!. The three bands are labeled according to their zone
center wave functions. In general, ifD1.D2.0, the three

bands from top to bottom can be labeled as heavy-hole~HH!,
light-hole ~LH!, and crystal-field split-off hole~CH! bands,
respectively. We can relate these energies to the crystal-field
split energy,Dcr , and the spin-orbit split-off energy,D so, by

D15Dcr , D25D35
1

3
Dso. ~13!

The energy splittingsE12E2 and E12E3 are measured27

from the differences between the interband optical-transition
energies,

E12E25
1

2 S Dcr1Dso2A~Dcr1Dso!
22

8

3
DcrDsoD ,

E12E35
1

2 S Dcr1Dso1A~Dcr1Dso!
22

8

3
DcrDsoD ,

~14!
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which then determine the values ofDcr andD so. Since the
solutions are symmetric with respect to these two param-
eters, extra procedures such as measuring the polarization
selection rules in the optical transitions from the conduction
band to the three valence bands or the theoretical approach to
calculate the full valence-band structures are needed to de-
termine these parameters. Note that in the above two equa-
tions, Eqs.~13! and~14!, the cubic approximation@Eq. ~36!#
has been used. A reported theoretical value14 of 72.9 meV
for Dcr of GaN seems to be too big compared with the avail-
able experimental data ranging from the commonly used
value27 of 22 meV to the recently reported value23 of 10
meV.

On the other hand, for AlN,D1 is negative, the top va-
lence band isE2 , and the conduction-band energy is
Ec5Eg1E2 measured from the reference energyEv of AlN.
The valence bands from top to bottom are CH, LH, and HH,
respectively.

C. Optical momentum-matrix elements

The determinant of the 838 matrix gives the energy dis-
persion relation

05det~H8382EI838!

5$2~Ec2E8!~Ev1D11D22E8!

3@~Ev1D12D22E8!~Ev2E8!22D3
2#

1@~Ev1D12E8!~Ev2E8!2D3
2#P2

2~kx
21ky

2!

1~Ev1D11D22E8!~Ev1D12D22E8!P1
2kz

2%2,

~15!

whereE85E2(\2k2/2m0). If we focus on the eigenvalue
near the conduction-band edge with a smallk value, we find
from Eq. ~15! the conduction-band dispersion relation,

E~k!5Ec1
\2k2

2m0
1

~Eg1D11D2!~Eg1D2!2D3
2

Eg@~Eg1D11D2!~Eg12D2!22D3
2#

3P2
2~kx

21ky
2!

1
~Eg12D2!

~Eg1D11D2!~Eg12D2!22D3
2P1

2kz
2 , ~16!

which can also be written in terms of the transverse and
longitudinal effective masses.

E~k!5Ec1
\2~kx

21ky
2!

2me
t 1

\2kz
2

2me
z . ~17!

Then, we obtain the Kane’s parameters,

P1
25

\2

2m0
Sm0

me
z 21D ~Eg1D11D2!~Eg12D2!22D3

2

~Eg12D2!
,

P2
25

\2

2m0
Sm0

me
t 21D Eg@~Eg1D11D2!~Eg12D2!22D3

2#

~Eg1D11D2!~Eg1D2!2D3
2 ,

~18!

which are related directly to the optical momentum-matrix
elements in Eq.~8!.

III. THE k –p METHOD
FOR STRAINED WURTZITE SEMICONDUCTORS

When a few bands are close to each other in energy lev-
els, the perturbation theory for degenerate bands has to be
used. An improved method is the so-called Lo¨wdin’s pertur-
bation method,28,26 which provides the Hamiltonian to the
second order in thek•p contributions.

A. General formulation

We write the total Hamiltonian as26

Huk~r !5E~k!uk~r !,

H5H01
\2k2

2m0
1Hso1H8, ~19!

where

H85
\

m0
k•P,

P5p1
\

4m0c
2 s3¹V. ~20!

It is noted that the last term inP is usually neglected for
simplicity.8,26 The band-edge wave function can be written
as

uk~r !5(
j 8

A

aj 8~k!uj 80~r !1(
g

B

ag~k!ug0~r ! ~21!

FIG. 2. The band-edge energies~a! without
spin-orbit interaction (D25D350) and ~b! with
spin-orbit interaction (D25D3Þ0) for GaN
wurtzite semiconductor. The corresponding band-
edge energies are also listed.
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and we choose the six valence-band wave functions,
$u1 ,u2 , . . . ,u6% in Eq. ~4!, as the bases for the states of
interest~called classA), and all other states of no interest are
called classB.

uu1&5
21

A2
u~X1 iY!↑&,

uu2&5
1

A2
u~X2 iY!↑&,

uu3&5uZ↑&,

uu4&5
1

A2
u~X2 iY!↓&, ~22!

uu5&5
21

A2
u~X1 iY!↓&,

uu6&5uZ↓&.

Using Löwdin’s method,28 the six-by-six Hamiltonian
matrix for the valence bands can be written as the sum of a
band-edge contribution and ak-dependent contribution.

H636,j j 8~k!5H636,j j 8~k50!1Dj j 8 ~23!

and thek-dependent matrix is

Dj j 85(
a,b

Dj j 8
abkakb ,

Dj j 8
ab

5
\2

2m0
Fd j j 8dab1(

g

B pjg
a pg j 8

b
1pjg

b pg j 8
a

m0~E02Eg! G , ~24!

where the indices j , j 851,2, . . . , 6PA, gPB, and
a,b5x,y,z. The band-edge Hamiltonian matrix has been
obtained from Kane’s model,

H636~k50!53
Ev1D11D2 0 0 0 0 0

0 Ev1D12D2 0 0 0 A2D3

0 0 Ev 0 A2D3 0

0 0 0 Ev1D11D2 0 0

0 0 A2D3 0 Ev1D12D2 0

0 A2D3 0 0 0 Ev

4 . ~25!

B. The D matrix in the zX‹, zY‹, and zZ‹ bases

First, we use a method similar to that of the Luttinger-Kohn paper25 to define a few fundamental band-structure parameters,
L1 , L2 , M1 , M2 , M3 , N1 , andN2 . The 333 matrix with components,Di j ,i , j5X,Y,Z, can be written in the following
form:

D3335F L1kx21M1ky
21M2kz

2 N1kxky N2kxkz

N1kxky M1kx
21L1ky

21M2kz
2 N2kykz

N2kxkz N2kykz M3~kx
21ky

2!1L2kz
2
G uX&

uY&,

uZ&

~26!

where we have defined the band-structure parameters, which
are similar to the Luttinger-Kohn parametersg1 , g2 , and
g3 for zinc-blende structures,

L15
\2

2m0
S 11(

g

B 2pXg
x pgX

x

m0~E02Eg!D
5

\2

2m0
S 11(

g

B 2pYg
y pgY

y

m0~E02Eg!D ,
L25

\2

2m0
S 11(

g

B 2pZg
z pgZ

z

m0~E02Eg!D ,

M15
\2

2m0
S 11(

g

B 2pXg
y pgX

y

m0~E02Eg!D
5

\2

2m0
S 11(

g

B 2pYg
x pgY

x

m0~E02Eg!D ,

M25
\2

2m0
S 11(

g

B 2pXg
z pgX

z

m0~E02Eg!D
5

\2

2m0
S 11(

g

B 2pYg
z pgY

z

m0~E02Eg!D , ~27!
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M35
\2

2m0
S 11(

g

B 2pZg
x pgZ

x

m0~E02Eg!D
5

\2

2m0
S 11(

g

B 2pZg
y pgZ

y

m0~E02Eg!D ,
N15

\2

m0
2(

g

B pXg
x pgY

y 1pXg
y pgY

x

~E02Eg!
,

N25
\2

m0
2(

g

B pXg
x pgZ

z 1pXg
z pgZ

x

~E02Eg!
5

\2

m0
2(

g

B pYg
y pgZ

z 1pYg
z pgZ

y

~E02Eg!
,

where pXg
y 5^Xupyug&, etc., andpy5(\/ i )(]/]y) is the y

component of the momentum operator.

C. The six-by-six Hamiltonian matrix
in the basesˆu1 ,u2 , . . . ,u6‰

Using the results in Sec. III B, theD636 matrix in the
bases$u1 ,u2 , . . . ,u6% can be easily derived using the matrix
elements,DXX , DXY , DXZ , etc. in Eq.~26!,

D63653
D11 D21* 2D23*

D21 D11 D23 0

2D23 D23* DZZ

D11 D21 D23

0 D21* D11 2D23*

D23* 2D23 DZZ

4 ,

~28!

where the whole matrix can be expressed by using only four
distinctive matrix elements,

D115S L11M1

2 D ~kx
21ky

2!1M2kz
2 ,

DZZ5M3~kx
21ky

2!1L2kz
2 ,

D2152
1

2
@~L12M1!~kx

22ky
2!12iN1kxky#

52
1

2
N1~kx1 iky!

2, ~29!

D235
1

A2
N2~kx1 iky!kz ,

and it can be shown~see Appendix B! from symmetry con-
sideration that

L12M15N1 . ~30!

The full Hamiltonian,H5H636(k50)1D636 , can be
written as

H53
F 2K* 2H* 0 0 0

2K G H 0 0 D

2H H* l 0 D 0

0 0 0 F 2K H

0 0 D 2K* G 2H*

0 D 0 H* 2H l

4
uu1&
uu2&
uu3&
uu4&
uu5&
uu6&

,

~31!

where

F5D11D21l1u,

G5D12D21l1u,

l5
\2

2m0
@A1kz

21A2~kx
21ky

2!#,

u5
\2

2m0
@A3kz

21A4~kx
21ky

2!#,

~32!

K5
\2

2m0
A5~kx1 iky!

2,

H5
\2

2m0
A6~kx1 iky!kz ,

D5A2D3 .

We obtain the relations between the band-structure param-
eters derived using thek•p method and the more commonly
usedAi parameters in the Pikus-Bir model,

\2

2m0
A15L2 ,

\2

2m0
A25M3 ,

\2

2m0
A35M22L2 ,

~33!
\2

2m0
A45

L11M1

2
2M3 ,

\2

2m0
A55

N1

2
,

\2

2m0
A65

N2

A2
.

Note that there is a minus sign in front of all theK terms in
Eq. ~31! and we do not have a factor ofi in the definition of
theH terms compared with those used in Refs. 7 and 14. We
believe that our results are consistent with the fact that both
A5 andA6 are real constants and that they agree with our
results to be derived in Sec. IV, using the invariant method,
which is the method used by Pikus and Bir. Fortunately, due
to cancellations, these sign changes and thei factor do not
affect the band-structure dispersion relation, which was
used14,15 to fit the more exact band structures to extract these
band-edge parameters. They may affect the relative phases of
the band-edge wave functions, though.

The strain effects can be easily included by the same sym-
metry consideration and a straightforward addition of corre-
sponding terms:

kakb→eab ,
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with the deformation potentials,D1 ,D2 , . . . ,D6 , at the cor-
responding positions ofA1 ,A2 , . . . ,A6 .

F5D11D21l1u,

G5D12D21l1u,

l5
\2

2m0
@A1kz

21A2~kx
21ky

2!#1le ,

le5D1ezz1D2~exx1eyy!,

u5
\2

2m0
@A3kz

21A4~kx
21ky

2!#1ue ,

~34!

ue5D3ezz1D4~exx1eyy!,

K5
\2

2m0
A5~kx1 iky!

21D5e1 ,

H5
\2

2m0
A6kz~kx1 iky!1D6ez1 ,

D5A2D3 ,

where

e65exx62i exy2eyy ,

ez65ezx6 i eyz . ~35!

It should be pointed out that under the cubic
approximation,8,14 the following relations hold for the pa-
rametersAis andD is:

A12A252A352A4 , A314A55A2A6 , D25D3 ,
~36!

D12D252D352D4 , D314D55A2D6 .

Therefore, only five band-structure parameters, such asA1 ,
A2 , A5 , D1 , andD2 , and three deformation potentials are
necessary for the calculation of the valence-band structures.
The cubic approximation idea is based on the similarity be-
tween the wurtzite structure and the cubic crystal. The above
relations are derived8 if we map thec ~0001! axis to thez8
axis along the (111) direction and set thex8 and y8 axes
along the@112# and @110# directions, respectively, in the
coordinate system. It has also been found8,14 that a seventh
coefficientA7 for the lineark terms vanishes; therefore, we
discard it at the beginning and keep only the quadratic terms
of k, in addition to the band-edge energy terms.

For a strained-layer wurtzite crystal pseudomorphically
grown along the~0001! (z axis! direction, the strain tensor
e% has only the following nonvanishing diagonal elements:

exx5eyy5
a02a

a
,

ezz52
2C13

C33
exx , ~37!

wherea0 anda are the lattice constants of the substrate and
the layer material, andC13 and C33 are the stiffness con-

stants. The general strain-stress relation~Hooke’s Law! for
the hexagonal crystal can be found in Ref. 29.

IV. THE INVARIANT METHOD
FOR THE EFFECTIVE-MASS HAMILTONIAN

Using the Hamiltonian for a strained wurtzite structure
based on the symmetry consideration, we write

H5D1Jz
21D2Jzsz1D~J1s21J2s1!

1
\2

2m0
@~A11A3Jz

2!kz
21~A21A4Jz

2!~kx
21ky

2!

2A5~J1
2 k2

2 1J2
2 k1

2 !22A6kz~@JzJ1#k21@JzJ2#k1!#

1~D11D3Jz
2!ezz1~D21D4Jz

2!~exx1eyy!

2D5~J1
2 e21J2

2 e1!22D6~@JzJ1#ez21@JzJ2#ez1!,

~38!

where

J65
1

A2
~Jx6 iJy!,

s65
1

2
~sx6 isy!, ~39!

2@JzJ6#5JzJ61J6Jz ,

and we have specified the bases,$Y11, Y10, andY121%, with
the operator matrices,Jx , Jy , Jz , and the Pauli spin matrices
explicitly defined in Appendix A. It should be noted that
because of the changes in the basis functions involving
changes of signs and phase factors in early and recent papers,
confusion occurred in deriving the Hamiltonian matrix.
Since the previous derivations for the wurtzite Hamiltonian
were based on the invariant method, the sign and the phase
factor in front of theA5 andA6 ~or theH andK terms! were
arbitrarily chosen as long as the Hamiltonian stays Hermit-
ian. A consistent approach is to derive the Hamiltonian using
the k•p method, as shown in Sec. III.

In writing the Hamiltonian, we have kept in mind that the
band-structure parametersAi ,i51,2,3, . . . ,6, are all real
numbers, following our definitions using thek•p method.
The Hamiltonian~38! can also be simplified to the following
form:

H5~D11u!Jz
21D2Jzsz1l

1D~J1s21J2s1!2~K* J1
2 1KJ2

2 !

2~H* 2@JzJ1#1H2@JzJ2# !, ~40!

wherel, u, K, andH are the same as those defined in Eq.
~34!.

In the following bases,$Y11↑, Y10↑, Y121↑, Y11↓,
Y10↓, Y121↓%, the full six-by-six Hamiltonian matrix can be
written as
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H53
F 2H* 2K* 0 0 0

2H l H* D 0 0

2K H G 0 D 0

0 D 0 G 2H* 2K*

0 0 D 2H l H*

0 0 0 2K H F

4
uY11↑&~5uu1&)

uY10↑&~5uu3&)

uY121↑&~5uu2&)

uY11↓&~5uu5&)

uY10↓&~5uu6&)

uY121↓&~5uu4&)

. ~41!

This result, when written in the same order of the bases
$u1 ,u2 , . . . ,u6%, gives an identical result as that in Eq.~31!,
which was derived from the second-orderk•p method taking
the symmetry of wurtzite crystals into consideration.

It should be pointed out that some sign changes in the
choice of bases are possible, such that the original definitions
of theK andH terms of Pikus and Bir can still be used. For
example, using$2u1 ,u2 ,iu3 ,u4 ,2u5 ,iu6%, we find a sign
change in front ofK and an extra factor ofi in bothH and
D. In this set of bases, the complete Hamiltonian matrix
differs from the original form in Ref. 8, only by an extrai
factor in front ofD. We believe that our formulation gives
consistent results based on both the Luttinger-Kohn model
and the invariant method.

V. BLOCK-DIAGONALIZATION
AND THE VALENCE-BAND DISPERSIONS

The full six-by-six Hamiltonian matrix can be block di-
agonalized following a similar procedure26,30 to that of the
zinc-blende structure. We note that the off-diagonal terms
such asK andH contain thef dependence and write

K5Kte
2f, Kt5

\2

2m0
A5kt

2 ;

H5Hte
if, Ht5

\2

2m0
A6ktkz , ~42!

where kx1 iky5ktexp(if) has been used.
First, it is easy to see that we can remove thef
dependence in the matrix elements by introducing
the bases, $exp(2 i3f/2)uY11↑&, exp(if/2)uY121↑&,
exp(2 if/2)uY10↑&, exp(i3f/2)uY121↓&, exp(2 if/
2)uY11↓&, exp(if/2)uY10↓&%. By pairing the bases$u1 ,u4%,
$u2 ,u5%, and $u3 ,u6%, we form the basesu1&, u2&, u3&,
u4&, u5&, and u6& by using the basis transformation,u i &
5STi j uj , where theT matrix is defined as

T53
a* 0 0 a 0 0

0 b 0 0 b* 0

0 0 b* 0 0 b

a* 0 0 2a 0 0

0 b 0 0 2b* 0

0 0 2b* 0 0 b

4 , ~43!

where

a5
1

A2
ei ~3p/413f/2!, b5

1

A2
ei ~p/41f/2!. ~44!

The Hamiltonian matrix is then block diagonalized,
H85UHU†5T*HTt,

H853
F Kt 2 iH t 0 0 0

Kt G D2 iH t 0 0 0

iH t D1 iH t l 0 0 0

0 0 0 F Kt iH t

0 0 0 Kt G D1 iH t

0 0 0 2 iH t D2 iH t l

4 , ~45!

where the superscript † means taking both transpose~super-
script t) and complex conjugate(*). The transformation
matrix26 for the components of the wave functions is
U5T* . By writing the upper-left Hamiltonian asHU and the
lower-right Hamiltonian asHL, we find the relation
HU5(HL)*5(HL) t.

VI. ANALYTICAL EXPRESSIONS
FOR THE EFFECTIVE MASSES

AND OPTICAL MOMENTUM-MATRIX ELEMENTS

The effective masses along the transverse and longitudi-
nal directions can be derived as follows:

~i! Near the zone center (k approaches zero!, we keep
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only terms of up to the second order ink and find~for a finite
D i ,i51,2,3)

E15F,

E25
G1l

2
1ASG2l

2 D 21D2, ~46!

E35
G1l

2
2ASG2l

2 D 21D2.

The band-edge effective masses along the longitudinal
(z5c axis! and the transverse (x or y) directions can then be
obtained and are tabulated in Table I. Using the band-edge
wave functions~11!, we also obtain the momentum-matrix
elements in Table II for the optical transition from the con-
duction band edge to the three valence-subband edges~C-
HH, C-LH, and C-CH transitions labeled asE1 , E2 , and
E3 , respectively!, when the optical polarization is parallel or
perpendicular to the c axis. Our analytical results including

the strain effects in Tables I and II are simple and useful,
where E1

0 , E2
0 , and E3

0 , are the band-edge energies,E1 ,
E2 , E3 in Eq. ~46!, evaluated atk50,

E1
05D11D21ue1le ,

E2
05

D12D21ue

2
1le1AS D12D21ue

2 D 212D3
2,

~47!

E3
05

D12D21ue

2
1le2AS D12D21ue

2 D 212D3
2.

We also redefine Eq.~12! to include the strain effects,

a5
E2
02le

A~E2
02le!

212D3
2
,

b5
A2D3

A~E2
02le!

212D3
2
, ~48!

and it is straightforward to show that

a25
E2
02le

E2
02E3

0 , b25
E3
02le

E3
02E2

0 ,

which are used in Tables I and II.
The conduction-band edge has a hydrostatic energy shift,

Pce ,

Ec5Ev
01D11D21Eg1Pce ,

Pce5aczezz1act~exx1eyy!. ~49!

For a GaN layer sandwiched between two thick
Al xGa12xN layers, the strain is compressive in nature, since
the lattice constanta of the GaN layer before deformation is
larger than the lattice constanta0 of Al xGa12xN layers.
Therefore,exx is negative, and the band-edge shifts will be
positive for the conduction band and negative for the top
valence bands. The net band-gap shift is determined by

TABLE I. Normalized inverse effective masses of the heavy-hole~HH!, light-hole~LH!, and crystal-field
split hole ~CH! bands along thec axis ~5 z axis! and transverse (t) to thec axis.

Valence energy m0 /m
z m0 /m

t

Near the band edge (k→0)
E1 ~HH band! 2(A11A3) 2(A21A4)
E2 ~LH band!

2FA11SE202le

E2
02E3

0DA3G 2FA21SE202le

E2
02E3

0DA4G
E3 ~CH band!

2FA11SE302le

E3
02E2

0DA3G 2FA21SE302le

E3
02E2

0DA4G
Far away from the band edge (k is large!

E1 ~HH band! 2(A11A3) 2(A21A42A5)
E2 ~LH band! 2(A11A3) 2(A21A41A5)
E3 ~CH band! 2A1 2A2

TABLE II. Strain-dependent interband momentum-matrix ele-
mentsz^Suê•puv i& z2 for ê polarizations along thec axis ~5z) and
perpendicular to thec axis. The band-edge wave functionsv i are
listed in Eq. ~11!. Here, the energy parameters for the interband
transition elements are related to Kane’s parameters,P1 andP2 in
Eq. ~18!, by Epz5(2m0 /\

2)P1
2 andEpx5(2m0 /\

2)P2
2 . Note that

a21b251; a andb are defined in Eq.~48!.

Valence energy êi c axis ê' c axis

E1 ~HH band! 0 m0

4
Epx

E2 ~LH band!
b2Sm0

2
EpzD a2Sm0

4
EpxD

E3~CH band!
a2Sm0

2
EpzD b2Sm0

4
EpxD

Sum m0

2
Epz

m0

2
Epx
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Ec2E1
05Eg1Pce2~ue1le!, ~50!

and it can be compared with the lowest band-edge transition
energy~A line! of the photoluminescence spectrum, with an
exciton correction energy of about 28 meV. Similarly,
Ec2E2

0 andEc2E3
0 with the same exciton correction can be

used to compare with the transition energies of theB and
C lines in the photoluminescence spectrum.

~ii ! Away from the zone center, ask approaches a big
number, we can ignoreD2 andD3; the rest of the Hamil-
tonian has analytical solutions:

E15F82Kt ,

E25
1

2
@F81Kt1l1A~F81Kt2l!218Ht

2#, ~51!

E35
1

2
@F81Kt1l2A~F81Kt2l!218Ht

2#,

where F85D11l1u. Using the above expressions, the
valence-band effective masses away from the zone center
can be obtained analytically and are tabulated in Table I.
Note that in the special case ofD25D350, these analytical
effective masses are the exact solutions of the three-by-three
HamiltoniansHU andHL. The above analysis also explains
the difference between the expressions for the effective
masses used in Refs. 8 and 14.

VII. NUMERICAL EXAMPLES

For a special case, if we ignore the anisotropic property of
the wurtzite crystals, we can assume thatacz5act5ac .
Since the experimental data only provide the total band-gap
shift as a function of an externally applied pressure, only the
total value for the interband deformation potential,a, is re-
ported. Theoretically, the hydrostatic deformation potentials
a5]Eg /](lnV)5ac2av ~interband!, ac ~conduction band!,
av ~valence band!, and the shear deformation potential,b,
have been used for zinc-blende structures. Possible rules for
the partition ratio,uac /au and uav /au, are used based on
different theories. Note that the common convention thata
andac are negative andav is positive is used. For wurtzite
structure, the parameters,D1 andD2 , play similar roles

23 as
the hydrostatic deformation potential,av ; while D3 andD4
play similar roles as the shear deformation potential,b, of
cubic crystals. Various values ofa for GaN, such as13,22

27.8, 29.2, and211.8 eV have been reported. A set of
parameters, usinga528.16 eV,ac50, D15D258.16 eV,
D35D4523.71 eV, D1510 meV, D256.2 meV, and
D355.5 meV have been used23 to fit experimental data col-
lected from a few samples for temperatures lower than 10 K.
Note that these parameters were obtained by a linearization
of the valence-band-edge energies with respect to strain. We
have used the same parameters to calculate the transition
energies~with exciton corrections! for theA-line,B-line, and
C-line interband transitions in the photoluminescence spec-
trum using the exact expressions,~47! and ~49!, instead of
the linearization formulas. The results are shown as the
dashed lines in Fig. 3, while the data points collected in
Ref. 23 are shown as symbols. We have used

exx52@C111C1222(C13
2 /C33)#

21T andT is the magnitude
of the equivalent in-plane compressive stress in kbar. It is
noted that the fit is not unique, since the roots forDcr and
Dso are symmetric, as can be seen from Eqs.~14!. It is usu-
ally believed that Dcr>Dso53D2; and Dcr522 meV,
Dso511 meV, have been used. These values affect the mag-
nitudes ofE1

0 , E2
0 , E3

0 , and the polarization selection rules
for optical transitions between the conduction band and the
LH (E2

0) and CH (E3
0) valence bands. We have varied the

parameters usingD1516 meV,D25D354 meV and found
that our fit with the data in Fig. 3 is within 2 meV. Our
parameters will not reverse the polarization selection rule
compared with previous report,27 while theD i parameters of
Ref. 23 will have different polarization selection rules for the
B andC lines of the photoluminescence spectrum from those
in Ref. 27. More experimental data on the polarization selec-
tion rules, especially near theB andC lines of the interband
transitions, are required to resolve this issue. We then
changed the deformation potentials:ac50.5a524.08 eV,
D150.7 eV,D252.1 eV,D351.4 eV, andD4520.7 eV,
and obtain the solid lines in Fig. 3. These parameters satisfy
the cubic approximation,D12D252D352D4 . There are
few reports on the experimental values ofac andDis, since
these parameters cannot be independently measured so far.
The above values are of the same magnitudes as the hydro-
static and shear deformation potentials of the other III-V
zinc-blende crystals.

In Figs. 4~a! and~b!, we plot the band-edge energy shifts
for the conduction band and the three valence bands as a
function of the in-plane compressive strain up to a strain
value of a magnitude 0.01~or one percent!. Note that we use
the conventionexx to be negative for a biaxial compression
case. One percent of compressive strain is the amount of the

FIG. 3. Interband energies calculated for the transitions between
the conduction bandEc and the HH, LH, and CH bands, or called
A, B, andC lines. The symbols are experimental data from GaN
samples at temperatures below 10 K collected in Ref. 23. The solid
lines are calculated using the parameters in Table III in expressions
in Eq. ~47! for E1

0 , E2
0 , andE3

0 , andEc in Eq. ~49! with an exciton
energy (Eex'0.028 eV! correction @Eg~10 K!2Eex'3.471 eV#.
The dashed lines are calculated using the same equations with pa-
rameters taken from Ref. 23.
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in-plane strain in a GaN quantum well sandwiched between
two Al xGa12xN layers with an aluminum mole fraction
x.0.4.

In Fig. 5, we show the band-edge valence-band structure
of a 21% compressively strained GaN wurtzite crystal. The
valence-band energy is plotted as a two-dimensional function
of kt ~5kx or ky) and kz . The effective-mass parameters,
Ais, and the energy splitting parameters,D is, have been
calculated by fitting the more accurate electronic band struc-
tures calculated using first principles.14 Here, we use the
same effective-mass parameters as in Ref. 14 and the defor-
mation potentials from our fit in Fig. 3. All parameters are
listed in Table III. It should be noted that more theoretical
and experimental work is needed to determine all these pa-
rameters consistently. The parameters listed in Table III can
only serve as a guide for our theoretical modeling. Our cho-
sen set of parameters have been used to fit the data in Fig. 3
very well. The bulk valence-band structure for an unstrained
GaN wurtzite crystal has been shown in Fig. 1~a! of Ref. 17
with the same set of parameters. A comparison between Fig.
5 and the unstrained valence-band structure shows that the
strain effects shift the HH and LH band edges by an almost
equal amount, and shift the CH band away from the zone
center.

The difference in symmetry between the wurtzite and
zinc-blende structures causes some fundamental differences
in their electronic and optical properties. The degeneracy be-
tween the heavy-hole and light-hole bands at the zone center
(G point! for the zinc-blende structure is broken for the

wurtzite structure. For a zinc-blende layer grown along the
~001! direction with a compressive strain, the deformation
potentials lift the HH band up and reduce its in-plane effec-
tive mass. However, for a wurtzite layer grown along thec
axis, the compressive strain shifts both the HH and LH bands
by almost the same amount and the in-plane effective masses
remain almost the same as those in the unstrained case. The
polarization selection rules for the conduction band to the
light-hole band are also changed. For the zinc-blende struc-
ture, the dominant C-LH transitions are TM polarization
~along the growth axis!. However, for the wurtzite structure,
TE polarization is favored for the C-LH transitions.

In Fig. 6, the band-edge hole effective masses of a biaxial
compressively strained GaN along the longitudinal (z) and
transverse (t) directions listed in Table I are calculated as a
function of the magnitude of the in-plane compressive strain.
For example, in the absence of strain, the band-edge effec-
tive masses are

mhh
z /m051.10, mhh

t /m050.27,

mlh
z /m050.60, mlh

t /m050.30,

mch
z /m050.17, mch

t /m050.77.

From Figs. 5 and 6, we can see that the HH and LH bands
near the band edges have very similar effective masses in the
kt direction. However, in thekz direction, HH has a heavier
effective mass than that of the light hole~both masses are
heavy!. On the other hand, far away from the zone center, the
HH band has a heavier effective mass than that of the LH

FIG. 4. Strain effects on~a! the conduction- and~b! the valence-
band energy shifts are illustrated based on our model and the par-
tition rules for the hydrostatic deformation potentials. Note that the
band-gap energyEc2E1 increases linearly with the in-plane com-
pressive strain.

FIG. 5. Valence-band dispersions for an unstrained a21% com-
pressively strained GaN wurtzite crystal. The vertical axis is the
valence-band energy and the horizontal axes are the transversekx
and longitudinalkz5c~0001! axes.
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band along thekt direction, and they have similar effective
masses in thekz direction. SinceD2 andD3 are small, the
band structures appear to be dominated by the features de-
termined by the effective masses away from the zone center.
This suggests that for a GaN quantum-well structure, the
heavy-hole and light-hole subband energies will be very
close and the density of states for the heavy-hole subbands
will be much larger than that for the light-hole subbands.

The normalized matrix elements for the optical transitions
from the conduction band to the HH, LH, and CH bands are
plotted as a function of the in-plane strain, as shown in Fig.
7 for the optical polarization (ê) parallel to thec (z) axis
~TM polarization! and perpendicular to thec axis ~TE polar-

ization!. The analytical expressions are tabulated in Table II.
We also calculate the energy parameters for the interband
optical-transition oscillator strengths and obtainEpx515.7
eV, andEpz5 13.9 eV. Notice the sum rules for each polar-
ization in Table II. All the matrix elements are normalized to
the total value for the TE polarization. The sum of all three
transitions, C-HH, C-LH, and C-CH, for the TE polarization
is unity, and the sum of all three matrix elements for the TM
polarization isEpz/Epx50.89.

VIII. CONCLUSIONS

In conclusion, we have derived the effective Hamiltonian
for the wurtzite crystals using both thek•p method and the

TABLE III. Physical parameters for GaN and AlN.

Parameter GaN AlN

Lattice constanta–c ~Å!

a 3.1892 3.112
c 5.1850 4.982
Energy parametersa–f

Eg ~eV! at 300 K 3.44 6.28
D15Dcr ~meV! 16 ~this work! -58.5f

10d

22e

Dso ~meV! 12 ~this work!
11e

D25Dso/3 ~meV! 4 ~this work! 6.80f

6.2d

3.7e

D3 ~meV! 4 ~this work! 6.80f

5.5d

3.7e

Conduction-band effective massesf

me
z/m0 0.20 0.33

me
t /m0 0.18 0.25

Valence band effective-mass parametersf

A1 -6.56 -3.95
A2 -0.91 -0.27
A3 5.65 3.68
A4 -2.83 -1.84
A5 -3.13 -1.95
A6 -4.86 -2.91
Deformation potentials~eV!

a ~interband! -8.16e

ac50.5a -4.08 ~this work!
D1 0.7 ~this work!
D2 2.1 ~this work!
D3 1.4 ~this work!
D4 -0.7 ~this work!
Elastic stiffness constantsa,b (1011 dyn/cm2)
C13 15.8 12.0
C33 26.7 39.5

aReference 31.
bReference 32.
cReference 33.
dReference 23.
eReference 27.
fReference 14.
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invariant method. We show the explicit definitions of the
fundamental band-structure parameters, the interband
momentum-matrix elements, and the energy parameters. A
unitary transformation is also found to block diagonalize the
six-by-six matrix into two three-by-three matrices and it sim-
plifies the derivations for the valence-band dispersions and
effective masses. Analytical expressions for the effective
masses near and far away from the band edges and the band-
edge wave functions are derived within the framework of the
k•p method. Analytical expressions and numerical results
for the effective masses and optical interband transition ma-
trix elements taking into account the strain effects have also
been presented. This Hamiltonian will be very useful for the
calculation of both electronic and optical properties of
strained bulk and quantum-well structures, using GaN/
Al xGa12xN or InyGa12yN/Al xGa12xN materials, which
have a great potential for applications to blue-green laser
diodes and electronic devices.
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APPENDIX A: MATRICES AND BASIS FUNCTIONS

Pauli spin matrices and bases:

sx5F0 1

1 0G , sy5F0 2 i

i 0 G , sz5F1 0

0 21G , ~A1!

in the basesu↑& and u↓&. We also use

s15
1

2
~sx1 isy!5F0 1

0 0G , s25
1

2
~sx2 isy!5F0 0

1 0G .
~A2!

Angular momentum matrices and bases:

Jx5
1

A2 F 0 1 0

1 0 1

0 1 0
G , Jy5

1

A2 F 0 2 i 0

i 0 2 i

0 i 0
G ,

Jz5F 1 0 0

0 0 0

0 0 21
G . ~A3!

The basis functions are in the following order:

Y115
21

A2
uX1 iY&, Y105uZ&, Y1215

1

A2
uX2 iY&.

~A4!

We also use

J15
1

A2
~Jx1 iJy!5F 0 1 0

0 0 1

0 0 0
G ,

J25
1

A2
~Jx2 iJy!5F 0 0 0

1 0 0

0 1 0
G . ~A5!

APPENDIX B: DERIVATION OF THE RELATION
L 12M 15N1

We write in the following forms:

L12M15^XupxĜpxuX&2^XupyĜpyuX&, ~B1!

N15^XupxĜpyuY&1^XupyĜpxuY&, ~B2!

where the operatorĜ is defined as

Ĝ5(
g

B
\2ug&^gu

m0
2~E02Eg!

. ~B3!

FIG. 6. The effective masses (mz/m0 andm
t/m0) near the band

edges calculated using the analytical expressions in Table I as a
function of the in-plane compressive strain are plotted for the HH,
LH, and CH bands.

FIG. 7. Normalized interband transition matrix elements as a
function of strain are plotted for optical polarization along thec
axis ~TM polarization! and perpendicular to thec axis ~TE polar-
ization!. The optical transitions from the conduction band to the
HH, LH, and CH bands follow a simple sum rule, as listed in Table
II.
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The relation betweenL12M1 andN1 can be derived using
the sixfold symmetry rotation of the crystal and its corre-
sponding character table.8 For a 60° rotation symmetry, we
use

Ĝ85Ĝ,

X85
1

2
X1

A3
2
Y, Y852

A3
2
X1

1

2
Y, ~B4!

px85
1

2
px1

A3
2
py, py852

A3
2
px1

1

2
py,

in

L12M15^X8upx8Ĝ8px8uX8&2^X8upy8Ĝ8py8uX8&.
~B5!

We obtain

L12M15
4

16
~L12M1!1

6

16
~N11N1* !. ~B6!

Therefore,

L12M15N1 , ~B7!

sinceN1 is real. The relation~B7! is important, since it re-
lates the Hamiltonian~31! derived using thek•p method to
that derived in the invariant method.
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