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The macroscopic dielectric function in the random-phase approximation without local-field effect has been
implemented using the local-density approximation with an all-electron, full-potential linear muffin-tin orbital
basis set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs
under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared with the
experimental data of Gonĩ, Syassen, and Cardona@Phys. Rev. B41, 10 104~1990!#, and excellent agreement
is found when the so-called ‘‘scissors-operator’’ shift is used to account for the correct band gap atG. The
effect of the 3d semicore states in the interband transitions hardly changes the static dielectric functione` ;
however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-
orbit coupling has a significant effect one` of Ge and GaAs, but not of Si. TheE1 peak in the dynamical
dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that
excitonic effects might be important only for Si.@S0163-1829~96!04828-X#

I. INTRODUCTION

The experimental determination of the optical properties
of bulk semiconductors can now be obtained with high
precision,1–3 yet our theoretical understanding is far from
complete. The static dielectric constant, which can be ob-
tained from a functional derivative of the electron density
with respect to the total Kohn-Sham potential evaluated at
the ground state, hence a ground-state property, is over-
estimated by the local-density approximation~LDA !
calculation.4–6 The inclusion of the gradient correction to the
pseudopotential LDA reduces slightly the discrepancy in the
case of silicon.7 The underestimation of theE1 peak and the
overestimation of theE2 peak of the imaginary part of the
dielectric function,e2(v), by one-electron band theory have
generated theoretical work for almost two decades to account
for these discrepancies. It was clear from the beginning that
including excitonic effects, which have been detected
experimentally,8 could remove some of the disagreement
with experiment.9–12 However, the model calculations used
to correct e2(v) have produced only a qualitative under-
standing of the problem. In particular, the latest model by
Hanke, Mattausch, and Strinati based on the time-dependent
screened Hartree-Fock approximation and including both the
local-field and the excitonic effects described correctly the
E1 peak but underestimated significantly theE2 peak of Si.
The reason for the underestimation ofE2 was attributed to a
bad representation of the band structure of Si by their Slater-
Koster parametrization.11 del Castello-Mussot and Sham12

based their latest calculation on ak–p model around theL
point ~whereE1 originates! and a multiple plane-wave model
around theX points ~whereE2 originates! and solved the
Bethe-Salpeter equation containing the excitonic effect.
Their model is an improvement over the noninteracting ap-
proximation: theE1 peak becomes stronger and theE2 peak
weaker. This model is very promising, but, being based on a
k–p approximation to the band structure, it provided only a
qualitative correction to the intensities of theE1 and E2

structures. Calculations ignoring excitonic effects, but in-
cluding the local-field effect, underestimated bothE1 and
E2 peaks.

13 However, the most recent calculation of Engel
and Farid,40 which uses a continued fraction expansion of the
polarizability and a representation of the inverse dielectric
function in terms of plasmonlike excitations, overestimated
the E2 peak, and produced a sharp peak at 2.8 eV not ob-
served by experiment.

One way to make theoretical progress in this field is to
determine the correct contribution of the one-electron theory
to the optical properties of semiconductors. This allows us to
define precisely the size of the many-body corrections to the
one-electron theory. However, a common belief these days is
that the eigenvalues and vectors of the Kohn-Sham~KS!
equations14 have no direct physical meaning and hence
should not be used to calculate optical spectra of materials.
Only ground-state properties derived from the total energy as
a function of the electron density have, in principle, a direct
physical meaning.

While LDA was indeed intended to calculate ground-state
properties it could also be viewed as a simplified quasipar-
ticle ~QP! theory where the self-energy is local and static
@S(r ,r 8,t)'Vxc(r )d(r2r 8)d(t), hereVxc(r ) is the local ex-
change and correlation potential as parametrized, for ex-
ample, by Von Barth and Hedin15#. The KS eigenvalues are
then QP energies and could be compared to experimental
data. This argument is supported by calculations using the
GW approximation of Hedin.16 These calculations showed
that the valence QP energies of semiconductors are in good
agreement with LDA and the conduction QP energies differ
by approximately a rigid energy shift.17,18 In the literature
this shift is often called a ‘‘scissors-operator’’ shift~SOS!.6

First-principles local-density approximation calculations
started more than two decades ago, but the major problem of
LDA, beside the well understood energy-band-gap
problem,19 is the numerical difficulty in determining self-
consistent electronic-structure and optical matrix elements
using a complete basis set. The earlyab initio calculation of
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the optical properties of semiconductors by Wang and Klein,
using a self-consistent linear combination of Gaussian orbit-
als, produced static dielectric functions in good agreement
with experiment.20 But this agreement is fortuitous because
the band gaps produced by this method are much larger than
the LDA band gaps. The recent calculations of 18 semicon-
ductors by Huang and Ching using an orthogonalized linear
combination of atomic orbitals method produced LDA static
dielectric functions that are, in general, smaller than experi-
ment despite the fact that their band gaps are much larger
than the all-electron or pseudopotential LDA band gaps.21

Those underestimated static dielectric constants are most
likely due to the incompleteness of the basis set used in their
calculations.

Most of the theoretical studies of the optical properties of
semiconductors in the literature use several approximations
within the LDA, ranging from the use of spherical potentials5

to the use of pseudopotentials6 instead of all electron LDA
potentials. In this paper we report precise calculations of the
optical properties of bulk semiconductors Si, Ge, and GaAs
under hydrostatic pressure using an all-electron LDA linear
muffin-tin orbital ~LMTO! basis set,22 in which no shape
approximation is made for either the potential or the charge
density.23 The semicore 3d of Ga and Ge are included in a
fully hybridizing valence basis set and the rest of the core
states are allowed to relax self-consistently. The effect of
spin-orbit coupling is also investigated. A systematic check
of the f -sum rule is performed for all the calculations. We
hope that this accurate LDA calculation will provide an ex-
cellent starting point for the determination of the local-field
and the excitonic effects in the optical spectra of
semiconductors.9–13

We have found that the static dielectric functione` ,
which is a ground-state property, is overestimated by LDA
over all pressure range and that excellent agreement with the
experimental results of Gonĩ, Syassen, and Cardona1 for e`
of GaAs and Ge under hydrostatic pressure is achieved only
when the so-called scissors-operator shift is used to account
for the correct band gap atG. The inclusion of the 3d semi-
core states of Ge and GaAs in the interband transition has
almost no significant effects ine` ; however, the 3d inter-
band transitions contribute significantly to the magnitude of
e2(v) above 25 eV for Ge and above 12 eV for GaAs. The
spin-orbit coupling increases the LDA values by about few
percent.

The rest of the paper is organized as follows. In Sec. II we
describe the method of the calculation of electronic structure
and the macroscopic dielectric function based on our all-
electron full-potential LMTO basis set. In Sec. III we present
the electronic properties of Si, Ge, and GaAs and compare
them to existing theoretical results. The calculated dielectric
functions and a discussion about including the semicore
states and the spin-orbit coupling will be presented in Sec.
IV. In the same section we also compare our static dielectric
function under hydrostatic pressure with the experimental
results of Goñi, Syassen, and Cardona.1 The conclusion is
given in Sec. V.

II. METHOD OF CALCULATION

A. All-electron full-potential wave function

The full-potential linear muffin-tin orbital method in its
scalar-relativistic and full-relativistic forms23 is used here to

calculate the electronic structure and the optical properties of
Si, Ge, and GaAs under hydrostatic pressure. The
Kohn-Sham14 equations are solved for a general potential
without any shape approximation.23 In this subsection we
describe the Bloch wave function inside the so-called
muffin-tin spheres and the interstitial region. A correct deter-
mination of the crystal wave function is necessary for the
accurate determination of the optical matrix elements.

As for the cellular methods, the space is divided into non-
overlapping muffin-tin spheres surrounding atomic sites
where the Schro¨dinger or the Dirac equation for each prin-
ciple quantum numbern and momentum channell is solved
for a fixed energyEnl . In these muffin-tin spheres the trial
wave function is linearized in terms of the solution of Schro¨-
dinger equationftl and its energy derivativeḟtl for the
energyEnl , and for an atom of typet and momentum chan-
nel l .22,24

It can be shown that the Bloch wave function of sitet
calculated at sitet8 in the unit cell of the crystal atR50 is
given by:23

xtl m
k ~r !ut85 (

l 8m8
ft8l 8m8~r2t8!Bl 8m8,l m

~1!tt8 ~k,k!

1ḟt8l 8m8~r2t8!Bl 8m8,l m
~2!tt8 ~k,k!, ~1!

whereBl 8m8,l m
(1)tt8 (k,k) andBl 8m8,l m

(2)tt8 (k,k) are renormalized
structure constants obtained from the crystal structure con-

stantsBl 8m8,l m
tt8 (k,k) to ensure that the Bloch wave function

is continuous and differentiable at the boundary of each
muffin-tin sphere.

In the interstitial region, the muffin-tin orbitals are spheri-
cal wave solutionsH l to the Helmholtz equation with non-
zero kinetic energy; these bases are Hankel functions for
negative kinetic energies or Neumann functions for positive
kinetic energiesk2 such that each partial wave inside the
muffin-tin sphere is allowed to have different kinetic energy
k2 in the interstitial region. In this region the Bloch wave
function is given by

xtl m
k ~r !5(

R
eik•RH l ~k,ur2t2Ru!i l Yl m~r2t2̂R!.

~2!

The interstitial-region Bloch function is expressed in plane
waves over the reciprocal lattice using a Fourier transform

xtl m
k ~r !5(

G
f K~k1G!ei ~k1G!•r, ~3!

whereK5$t,l ,m,El ,k%, with the parameterEl being the
linearization energy of the wave function in the muffin-tin
sphere for thel momentum channel,m the azumutal quan-
tum number, andk the variational parameter whose square is
the kinetic energy in the interstitial region. The Fourier co-
efficientsf K are obtained from a pseudowave function that is
equal to the crystal wave function in the interstitial region
and represented by a smooth function inside the muffin-tin
spheres. The exact shape of these pseudofunctions inside the
muffin-tin spheres is not important. The only requirement is
that they are continuous and differentiable at the sphere

54 2481CALCULATED OPTICAL PROPERTIES OF Si, Ge, . . .



boundary and have zero slope at the origin of each sphere.
The plane-wave expansion is multiplied by a three-
dimensional step function so that the wave function is kept
only in the interstitial region. The knowledge of the Bloch
wave function in the whole unit cell allows us to calculate
the Hamiltonian and overlap matrix elements in order to
solve the effective one-electron Schro¨dinger equation.

Three different kinetic energies were used for each subset
of sandp derived bases in the basis set; two kinetic energies
were used for bases derived from orbital parametersl .1.
The basis sets used in calculating total energies and struc-
tural properties were, for Si, 3~3s3p! and 2~3d!; for Ge,
2~3d!, 3~4s4p!, and 2~4d!; and for GaAs, 2~Ga 3d!,
3~Ga 4s4p!, 2~Ga 4d!, 3~As 4s4p!, and 2~As 4d!; the premul-
tiplicities in this notation refer to the number kinetic energies
used in this basis subset. The basis functions for each mate-
rial comprised a single, fully hybridizing basis set. Note the
presence of both 3d and 4d derived bases on Ga and Ge. A
useful feature of the method used in these calculations is the
ability to incorporate basis functions derived from the same
orbital atomic quantum numbers but different principal
atomic quantum numbers in a single fully hybridizing basis
set. This feature entails the use of multiple sets of radial
functions to represent bases with different principle atomic
quantum numbers. This capability was particularly useful in
calculating the high-lying energy bands that were used to
obtain the dielectric functions to high energy; the basis sets
employed for this purpose are given in Table I. Seven to
eight kinetic energies were used in the basis sets. Accurate
resolution of the bands to high energy was necessary to con-
verge the calculation of the real part of the dielectric func-
tion, which was obtained from the imaginary part through
the Kramers-Kronig relation. An interesting consequence of
the relaxation of the Ga 3d states as valence states is a sig-
nificant decrease in the calculated band gap.25

For the core charge density, the Dirac equation is solved
self-consistently, e.g., no frozen core approximation is used.
The exchange and correlation potential is treated within the
Von Barth–Hedin parametrization.15 To account for the rela-
tivistic effects in the dielectric function, the full-self-
consistent relativistic band structure is produced by including
the spin-orbit coupling to the Hamiltonian. In Table I we

show the orbitals used to describe the electronic states of Si,
Ge, and GaAs. This large number of orbitals is necessary to
calculate accurately the eigenvalues and eigenvectors up to 5
Ry above the highest valence states. These electronic states
will be needed to determine the dynamical dielectric function
and the converged static dielectric function through the use
of Kramers-Kronig relations.

The completeness of basis set, with different variational
k values for each partial wave in the interstitial region to-
gether with the Fourier representation, allows the method to
treat open structures such as the zinc-blende structure studied
here without having to resort to the so-called empty
spheres.26 The high-energy states are also determined more
accurately due to the use of manyk values. As a test we
show in Table II the eigenvalues of Si at high symmetry
points of the Brillouin zone compared with some recent re-
sults from first-principle calculations based onab initio
pseudopotential and Gaussian orbital methods.27,28 The
agreement of our calculation with the previous calculations
is excellent.

B. Dielectric function

Here we give a concise review of the determination of the
dielectric function of a semiconductor crystal due to the ap-
plication of an electric field. We also determine the approxi-
mations used to obtain numerical results for Si, Ge, and
GaAs under hydrostatic pressure with or without scissors-
operator shift.

A perturbative electromagnetic field of frequencyv and a
wave vectorq1G on a crystal produces a response of fre-
quencyv and a wave vectorq1G8 (G andG8 being recip-

TABLE I. Basis sets used for the calculation of the excited
states of Si, Ge, and GaAs. Each orbital has different kinetic energy
k2 in its the interstitial region. For example, the 3s orbital of Si is
used three times and each of the 3s wave functions has a different
kinetic energy in the interstitial region.

Semiconductor Basis set

Si 33(3s,3p), 23(3d)
33(4s,4p), 23(4d,4f )

Ge 23(3d),
33(4s,4p), 23(4d),

23(5s,5p),
GaAs 23(Ga3d)

33(Ga4s,4p), 23(Ga4d)
33(Ga5s,5p),

33(As4s,4p), 23(As4d),
33(As5s,5p)

TABLE II. Eigenvalues of Si at high symmetries points (G,
X, andL) as compared to the results produced by means of a linear
combination of Gaussian orbitals~Ref. 28! and by the pseudopoten-
tial ~PP! method ~Ref. 27!. The zero of energy is chosen at the
G25v8 point.

High-symmetry Gaussian Present
point orbitals PP calculation

G1v 211.91 211.91 211.96
G25v8 0.0 0.0 0
G15c 2.57 2.55 2.56
G2c8 3.24 3.28 3.20

X1v 27.77 27.76 27.82
X4v 22.78 22.86 22.83
X1c 0.65 0.66 0.62
X4c 10.03 10.03

L2v8 29.58 29.56 29.63
L1v 26.94 26.96 26.99
L3v8 21.17 21.20 21.19
L1c 1.47 1.50 1.44
L3c 3.32 3.33 3.31
L2c8 7.77 7.66

Indirect band gap 0.52 0.50
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rocal lattice vectors!. The microscopic field of wave vector
q1G8 is produced by the umklapp processes as a result of
the applied fieldE0(q1G,v)

E0~q1G,v!5(
G8

eG,G8~q,v!E~q1G8,v!, ~4!

whereE(q1G,v) is the total field that produces the nondi-
agonal elements in the microscopic dielectric function
eG,G8(q,v). In the random-phase approximation the micro-
scopic dielectric function is given by29

eG,G8~q,v!5dG,G82
8pe2

Vuq1Guuq1G8u

3 (
k,n,n8

f n8,k1q2 f n,k
En8,k1q2En,k2\v1 id

3^n8,k1quei ~q1G!•run,k&

3^n,kue2 i ~q1G8!•run8,k1q&. ~5!

Here n and n8 are the band indices,f n,k is the zero-
temperature Fermi distribution, andV is the cell volume.
The energiesEn,k and the the crystal wave functionun,k& are
produced for each band indexn and for each wave vector
k in the Brillouin zone.

The macroscopic dielectric function in the infinite-
wavelength limit is given by the inversion of the microscopic
dielectric function

e~v!5 limq→0

1

@eG,G8
21

~q,v!#0,0

5e0,0~v!2 limq→0 (
G,G8Þ0

e0,G„q,v)TG,G8
21

~q,v!

3eG8,0~q,v!, ~6!

whereTG,G8
21 is the inverse matrix ofTG,G8 containing the

elementseG,G8 with G and G8Þ0. The first term of this
equation is the interband contribution to the macroscopic di-
electric function and the second term represents the local-
field correction toe. The most recentab-initio pseudopoten-
tials calculation found that the local-field effect reduces the
static dielectric function by at most 5%.6 Previous calcula-
tions with the same method have also found a decrease of
e` by about the same percentage.4,17 We are looking at the
effect of the local field using our all-electron basis set; it
should be of interest to compare all-electron results with
these obtained using the pseudopotential method.

For insulators the dipole approximation of the imaginary
part of the first term of Eq.~7! is given by30

e2~v!5
e2

3v2p(
n,n8

E dkz^n,kuvun8,k& z2f n,k

3~12 f n8,k!d~ek,n8,n2\v!. ~7!

Here v is the velocity operator@in the LDA v5p/m (p
being the momentum operator!# and ek,n,n85En8,k2En,k .
The matrix elementŝnkupun8k& are calculated for each pro-
jectionpj5\/( i ) ] j , j5x or y, or z, with the wave function

unk& expressed in terms of the full-potential LMTO crystal
wave function described by Eqs.~1! and ~3!. The k-space
integration is performed using the tetrahedron method31 with
480 irreduciblek points in the whole Brillouin zone. The
irreduciblek points are obtained from a shiftedk-space grid
from the high-symmetry planes andG point by a half step in
each of thekx , ky , andkz directions. This scheme produces
highly accurate integration in the Brillouin zone by avoiding
high-symmetry points.

To calculate these matrix elements we first defined a ten-
sor operator of order one out of the momentum operator
¹05¹z5]/]z and ¹61571/A2 (]/]x6 i ]/]y). The
muffin-tin part of the momentum matrix elements is calcu-
lated using the commutator@¹2,xm#52¹m so that

E
St

drftl 8~r !Yl 8m8~r2 t̂ !¹mftl ~r !Yl m~r2 t̂ !

52
i

2
Gl m,l 8,m8
1m E

0

St
r 2drftl 8

3S 2r d

dr
r1

l ~ l 11!2l 8~ l 811!

r Dftl ~r !, ~8!

whereGl m,l 8,m8
1m are the usual Gaunt coefficients andSt is

the radius of the muffin-tin sphere of atomt. In the intersti-
tial region the plane-wave representation of the wave func-
tion @see Eq.~3!# makes the calculation straightforward, but
special care has to be taken for the removal of the extra
contribution in the muffin-tin spheres. However, we find it
much easier and faster to transform the interstitial matrix
elements as an integral over the surface of the muffin-tin
spheres using the commutation relation of the momentum
operator and the Hamiltonian in the interstitial region. The
calculation of the interstitial momentum matrix elements is
then similar to the calculation of the interstitial overlap ma-
trix elements.23 The k50 case has been already derived by
Chen using the Korringa-Kohn-Rostoker Green’s-function
method.32 We have tested that both the plane-wave summa-
tion and the surface integration provide the same results.

Equation~7! cannot be used directly to determine the op-
tical properties of semiconductors, when theGW approxima-
tion or the scissors operator is used to determine the
electronic structure. The velocity operator should be ob-
tained from the effective momentum operatorpeff, which is
calculated using the self-energy operatorS(r,p) of the
system33

v5peff/m5p/m1]S~r,p !/]p. ~9!

GW calculations show that the quasiparticle wave function is
almost equals to the LDA wave function.17,18 Based on this
assumption, Del Sole and Girlanda show that the effective
momentum operatorpeff can be written in terms of the mo-
mentum operatorp as33

^n8,kupeffun,k&5^n8,kupun,k&ek,n8,n
QP /ek,n8,n , ~10!

where ek,n8,n
QP

5En8,k
QP

2En,k
QP is the difference between the

quasiparticle energyEn8,k
QP of the unoccupied stateun8,k‹ and

the occupied stateun,k‹. By substituting Eq.~10! into Eq.
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~7!, it can be easily shown33 that in the case of the scissors
operator, where all the empty states are shifted rigidly by a
constant energyD, the imaginary part of the dielectric func-
tion is a simple energy shift of the LDA dielectric function
towards the high energies by an amountD, i.e.,
e2
QP(v)5e2

LDA(v2D/\). The real part of the dielectric
function is then obtained from the shiftede2 using Kramers-
Kronig relations. The expression ofe`

QP is given by

e`
QP511

2e2

3v2p2(
n,n8

E dk f n,k~12 f n8,k!

3
z^n,kupun8,k& z2

~ek,n8,n1D!ek,n8,n
2 . ~11!

e`
QP is very similar toe`

LDA except that one of the interband
gap ek,n8,n is substituted by the QP interband gap
ek,n8,n1D.

To test for the accuracy of the calculation within the LDA
the f-sum rule,

2

3mnv
(
k

(
n,n8

f n,k~12 f n8,k!
z^n,kupun8,k& z2

ek,n8,n
51, ~12!

wherenv is the number of valence bands, is checked in all
the calculations and it is satisfied to within a few percent.

It is easily seen that the dielectric functione2
QP calculated

using the scissors-operator shift does not satisfy the sum rule
(vP is the free-electron plasmon frequency!

E
0

`

ve2~v!dv5
p

2
vP
2 ~13!

because~i! e2
LDA satisfies this rule and~ii ! e2

QP is obtained by
a simple shift ofe2

LDA by the scissors-operatorD towards
higher energies. Using the expression of the quasiparticle
dielectric function in the scissors-operator shift approxima-
tion we show thate2

QP satisfies the integral sum rule

E
0

`

ve2
QP~v!dv5

p

2
~vP8 !2, ~14!

where

~vP8 !25vP
21

2e2D

3p2m2 (
n,n8

TABLE III. Calculated equilibrium volume (V), electronic pres-
sure, and bulk modulus of Si, Ge, and GaAs. The bulk moduli are
calculated both at the experimental (V0) and theoretical (V) unit
cell volumes. The experimental results are shown in parentheses.

V0 V/V0 P(V0) B(V) B(V0)
Semiconductor ~Å 3) ~GPa! ~GPa! ~GPa!

Si 39.98 0.990 20.70 95.8 91.2
(98.8)

Ge 45.27 0.988 20.80 71.0 67.1
(74.4)

GaAs 45.12 0.984 21.2 74.2 69.3
(74.7)

FIG. 1. Calculated energy-loss function of GaAs within the
LDA ~full curve! and within the scissors approximation~dashed
curve!. It is clearly seen that the maximum of the LDA curve is
much closer to the free valence electron plasma frequency of 15.5
eV.

FIG. 2. Calculated~a! direct band gapE0 and ~b! minimum
band gapE gap of Si, Ge, and GaAs as a function of hydrostatic
pressure compared to the experimental results of Gonĩ, Syassen,
and Cardona~Ref. 1! for Ge~dashed line! and GaAs~thick line!. ~a!
shows that the direct band gaps increase almost linearly with pres-
sure.~b! shows that for GaAs there is a crossover of the band gap
from direct to indirect at around 8 GPa and a crossover for Ge at
almost 3 GPa. The indirect band gap of Si decreases linearly with
pressure.
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3E dkz^n,kupun8,k& z2/ek,n8,n
2 f n,k~12 f n8,k!.

We recover the usual sum rule whenD is equal to zero. The
nonsimultaneous satisfaction of both thef sum rule and the
integral sum rule given by Eq.~13! within the scissors ap-
proximation shows the limitation of this approximation.
While the scissors-operator approximation describes nicely
the low-lying excited states, which is seen in the good deter-
mination of the static dielectric function and the low-energy
structures, i.e.,E1 andE2 , in the imaginary part of the di-
electric function, it seems to fail for the description of the
higher excited states. This is not surprising because the
higher excited states that are free-electron-like are most
probably well described by LDA and need no scissors-
operator shift. This is supported by the fact that the energy-
loss function2Ime21 within the LDA has it maximum
roughly at the free-electron plasmon frequency, whereas
within the scissors approximation its maximum is shifted to
higher energies as given by Eq.~14!. Figure 1 show the
energy-loss function of GaAs calculated within LDA~full
curve! and within the scissors approximation~dashed curve!.
It is clearly seen that the maximum of the LDA curve has a
maximum that is closer to the free valence electron plasma
frequency of 15.5 eV. It is of general interest to see whether
the calculated dielectric function within theGW approxima-
tion satisfies the integral sum rule. For our purpose the

scissors-operator shift remains a good approximation for the
description of the low-lying excited states of semiconductors
and their optical properties.

III. ELECTRONIC STRUCTURE OF Si, Ge, AND GaAs

The electronic structure of Si, Ge, and GaAs are obtained
by solving the LDA equations by means of a full-potential
LMTO basis set as described above. Table I shows the or-

TABLE IV. First- and second-order coefficients describing the dependence of the direct band gap atG
(E0) under hydrostatic pressure@E0(P)5E01aP1bP2# for Si, Ge, and GaAs. The experimental results are
from Goñi, Syassen, and Cardona~Ref. 1!.

E0 a ~meV/GPa! b ~meV/GPa2)
Semiconductor Theor. Expt. Theor. Expt. Theor. Expt.

Si 3.273 100.8 0.05
Ge 20.084 0.795 125.4 121 0.2 0.2
GaAs 0.41 1.43 99.1 108 20.1 20.1

FIG. 3. Calculated imaginary part of the dielectric function of Si
at the experimental equilibrium volume, shifted byD50.6 eV to-
wards higher photon energies, compared with the experimental re-
sults of Ref. 3. The experimentalE1 structure at 4 eV is underesti-
mated, whereas the mainE2 structure at 4.5 eV is overestimated.

FIG. 4. Imaginary part of the dielectric function of Ge at 10 kbar
shifts by 0.4 eV and GaAs at the experimental equilibrium volume
shifted by 1.1 eV, compared with the experimental results of Ref. 3.
In both Ge and GaAse2(v), the experimentalE1 is only slightly
underestimated andE2 is overestimated.
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bitals used to describe the valence and conduction bands
during the self-consistency. The large number of orbitals
used is found necessary to obtain converged excited states up
to 5 Ry above the top of the valence states. However, the
total energy is insensitive to these high-energy orbitals, but
the presence of the 3d core states of Ge and GaAs are
important.25

Table II compares our band structure of Si for some high-
symmetry points with some recent results from first-
principles calculations based on pseudopotential and Gauss-
ian orbitals methods.27,28We found good agreement between
our results and these calculations. This reflects the high ac-
curacy of our unoccupied states, which are used to determine
the dynamical dielectric function.

Table III shows the calculated equilibrium structural pa-
rameters, i.e., the electronic pressure and the bulk modulus at
the experimental unit cell volumeV0 and calculated cell vol-
umeV. The calculated equilibrium volumeV is at the most
2% smaller than the experimental value, which corresponds
to a less than 0.5% deviation from the experimental lattice
parameter. However, the bulk modulus, which is very sensi-

tive to the slope of the total energy versus the unit cell vol-
ume, deviates at the most by 10% in the case of Ge and when
calculated at the experimental unit cell volume, but only by
5% when calculated at the theoretical equilibrium volume.
Our calculation of the bulk modulus is in excellent agree-
ment with other calculations.34

Figure 2 shows the LDA underestimated~a! direct band
and~b! minimal gaps of Si, Ge, and GaAs compared with the
Ge, and GaAs experimental results of Gonĩ, Syassen, and
Cardona.1 For GaAs a crossover from direct band gap to
indirect band gap takes place betweenG andX at approxi-
mately 8 GPa. For Ge this crossover occurs alongGL at a
lower pressure of 3 GPa. The direct band gap increases lin-
early with pressure and is in good agreement with the experi-
mental results for both GaAs and Ge. There is no experimen-
tal data for Si under hydrostatic pressure. Table IV present
the first- and second-order coefficients describing the depen-
dence of the direct band gap atG under hydrostatic pressure,
E0(P)5E01aP1bP2 compared to the experimental results

FIG. 5. Contribution of the 3d interband transitions to the
imaginary part of the dynamical dielectric function of~a! Ge ~at 10
kbar! and ~b! GaAs at the experimental equilibrium volume. The
full line and the dashed line are with and without 3d interband
transitions, respectively. Due to narrow nature of the 3d semicore
states of Ge, the intensity ofe2 above 25 eV is very similar to the
emptyp-density of states of Ge, whereas for GaAs, the 3d semicore
states of Ga are relatively delocalized, which makes the intensity of
e2 above 12 eV much different from the Ga emptyp density of
states.

FIG. 6. Real part of the dielectric function of Ge~at 10 kbar!
and GaAs, at the experimental equilibrium volume, compared with
the experimental results of Ref. 3. The analytic asymptotic limit,
shown by the empty circles, matches nicely the calculated spectra
above 10 eV.
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of Goñi, Syassen, and Cardona.1 Apart from the underesti-
mation of the band gap, the first and second coefficients of
the pressure dependence of the band gap are in good agree-
ment with the experimental results. This suggest that the
scissors-operator shift is a good approximation for the de-
scription of the band gap under hydrostatic pressure.

IV. OPTICAL PROPERTIES OF Si, Ge, AND GaAs

A. Frequency dependence of the complex dielectric function
of Si, Ge, and GaAs

Figure 3 and 4 present the imaginary part of the macro-
scopic dielectric function of Si, Ge, and GaAs obtained at the
experimental ground-state lattice parameters except for Ge,
where we have compressed the lattice parameter by about
1%. The compression is done because within the LDA and at
the experimental lattice parameter Ge is a semimetal. The
LDA e2 is shifted towards higher energy by the scissors-
operator shift in order that the optical band gap agrees with
experiment. The comparison to experimental results of Asp-
nes and Studna3 shows that all the features in the experimen-
tal spectra are reproduced by the calculation. It is interesting
to notice that the calculated LDAe2(v) of Si exhibits the
largest underestimation of theE1 peak~about 50% in inten-
sity!, whereas in Ge and GaAs the underestimation of the
E1 peak is only about 12%. TheE2 peak is overestimated by

the LDA by about 34% for Si, 50% for Ge, and 60% for
GaAs. This overestimation of theE2 peak by the LDA is due
to a strong van Hove singularity near theX points of the
Brillouin zone where parallel bands occur over a large
plateau.5,35 This overestimation can be reduced substantially
by including the lifetime broadening of the quasiparticles
through a self-energy calculation.

The effect of interband electronic transitions due to the
3d semicore states, without scissors-operator shift, is pre-
sented in Fig. 5~a! and 5~b! for Ge and GaAs, respectively.
For Ge the onset of transitions begins at a photon energy of
about 25 eV and the intensity is very similar to thep density
of states of the empty states of Ge. This is because the 3d
states of Ge are very narrow and the dipole selection rules
allow transitions only to the emptyp states of Ge; thef
states in this energy range are absent. For GaAs, the onset of
transitions begins at 12 eV and the intensitye2 spectrum
above 12 eV is very different from the emptyp states of Ga.
This is because of the relatively large dispersion of the 3d
semicore states of Ga. It should be of interest to confirm
experimentally these theoretical predictions.

The real parte1(v) of the dielectric function of Si, Ge,
and GaAs calculated by the Kramers-Kronig transform of the
imaginary parte2(v) is presented in Fig. 6 together with the
experimental results of Aspnes and Studna.3 In the same fig-
ure we have also presented the scissors-operator shift
e1
QP(v) and the high-frequency asymptotic limit

TABLE V. Calculated pressure, band gap, static dielectric function with and without scissors-operator
shift ~SOS!, and thef -sum rule of Si as a function of volume~Ref. 28!.

V0 /V P ~GPa! f sum Gap~eV! e` ~LDA ! e` ~SOS! e` ~Expt.!

1.000 -0.75 0.988 0.50 13.75 12.08 12.0a

1.025 1.8 0.989 0.46 13.65 12.00
1.050 4.8 0.987 0.42 13.61 11.96
1.100 9.8 0.991 0.34 12.57 11.98

aReference 38.

FIG. 7. LDA scalar-relativistic calculated static dielectric func-
tion of Si, Ge, and GaAs as a function of hydrostatic pressure com-
pared to the experimental results of Gonĩ, Syassen, and Cardona
~Ref. 1! and the pseudopotential calculation of Levine and Allan.6

FIG. 8. LDA plus the scissors-operator shift~SOS! calculated
static dielectric function of Si, Ge, and GaAs as a function of hy-
drostatic pressure compared to the experimental results of Gonĩ,
Syassen, and Cardona~Ref. 1!.
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TABLE VI. Calculated pressure, band gap, static dielectric function with and SOS and the f-sum rule of
Ge as a function of volume. The experimental data are from Gonĩ, Syassen, and Cardona~Ref. 1.!

V0 /V P~GPa! f sum Gap~eV! e` ~LDA ! e` ~SOS! e` ~Expt.!

1.025 1.0 1.053 0.04 19.24 15.32 15.59
1.050 2.9 1.041 0.21 18.14 14.71 15.01
1.075 5.0 1.042 0.29 17.44 14.33 14.49
1.100 7.2 1.043 0.37 16.70 13.90 14.07
1.150 12.3 1.045 0.48 15.81 13.46 13.63

TABLE VII. Calculated pressure, band gap, static dielectric function with and without SOS, and the
f-sum rule of GaAs as a function of volume. The experimental data are from Gonĩ, Syassen, and Cardona
~Ref. 1!.

V0 /V P ~GPa! f sum Gap~eV! e` ~LDA ! e` ~SOS! e` ~Expt.!

1.000 21.2 1.041 0.29 14.44 11.0 11.05
1.025 0.68 1.042 0.48 13.93 10.72 10.88
1.050 2.8 1.043 0.66 13.45 10.53 10.69
1.075 4.7 1.044 0.85 13.09 10.41 10.53
1.100 6.8 1.044 1.02 12.75 10.25 10.34
1.150 11.8 1.046 1.08 12.20 10.03 9.90

TABLE VIII. First- and second-order coefficients describing the dependence of the static dielectric
function on hydrostatic pressure@e`(P)5e`

01aP1bP2# for Si, Ge, and GaAs. The experimental data are
from Goñi, Syassen, and Cardona~Ref. 1!.

e`
0 a~1/GPa! b ~1/GPa2) dln(e`)/dP (10212/Pa!

Semiconductor Theor. Expt. Theor. Expt. Theor. Expt. Theor. Expt.

Si 12.05 20.032 0.0025 22.65
11.16 a 20.027a 0.0013a 22.6,22.43a

Ge 15.58 15.94 20.32 20.36 0.012 0.014 220.21 222.60
16.04a 20.46a 0.018a 231228.66a

GaAs 10.83 10.92 20.11 20.09 0.004 210.43 28.06

aPseudopotential calculation of Ref. 6; slightly larger numbers are quoted fordln(e`)/dP in their Table VI.

TABLE IX. Calculated static dielectric function of Si, Ge, and GaAs at the equilibrium lattice parameter
@except for Ge, where it is calculated at a slightly smaller lattice parameter~1% smaller! than the experi-
mental one because Ge is a metal in LDA forV/V0 5 1.#. The calculations are done using scalar relativistic
~SR! LMTO without 3d states, with the 3d states~SR13d), with the spin-orbit coupling at the variational
level ~SR1SO!, and with the SO coupling and the 3d states included~SR1SO13d).

Si Ge GaAs
LDA LDA 1SOS LDA LDA1SOS LDA LDA1SOS

SR 13.75 12.08 18.14 14.71 14.44 11.0
SR13d 18.16 14.73 14.47 11.03
SR1SO 13.69 12.0 18.52 14.23 14.90 10.52
SR1SO13d 18.54 14.25 14.93 10.55
Expt. 12.0a 11.4b 14.98c 10.9a

aReference 38.
bReference 39.
cReference 1.
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e1(v)512vP
2 /v2, wherevP is the free-electron plasmon

frequency. We notice that the analytic asymptotic limit
matches nicely the calculated LDAe1 , which is an indica-
tion of the quality of the calculation. For thee1

QP we need to
use a different plasmon frequency, as described in Eq.~14!,
due to the poor description of the higher excited states by the
scissors approximation.

In conclusion, we believe that the excitonic effects may
be important for the dielectric function of Si but less for
those of Ge and GaAs. A QP calculation of the dielectric
function including the dynamical screening of the Coulomb
interaction, like in theGW approximation of Hedin,16 would
certainly improve the intensity of at least theE2 peak by
introducing a lifetime broadening of the quasiparticles.

B. Hydrostatic pressure dependence
of the static dielectric function of Si, Ge, and GaAs

Figure 7 and 8 presents the hydrostatic pressure depen-
dence of the static dielectric functione` of Si, Ge, and GaAs
calculated within the LDA without and with the SOS, re-
spectively. Our data are compared to the experimental results
of Goñi, Syassen, and Cardona1 and to the pseudopotential
calculations of Si and Ge of Levine and Allan.6 Our calcu-
lation and the pseudopotential theory of Ref. 6 suggest that
the LDA overestimates the static dielectric function of Si,
Ge, and GaAs over the whole range of hydrostatic pressure
and that the use of a unique value of the scissors-operator
shift for the correction of the band gap atG produces good
agreement with the experimental results.1 The static dielec-
tric function decreases almost linearly with the pressure due
to the increase of the direct band gap. However, for Sie` is
almost constant with the pressure and this is because the
increase of the direct band gap is almost compensated by a
decrease of the indirect band gap~see Fig. 2!.

Tables V, VI, and VII present the calculated pressure
band gaps, static dielectric function, andf -sum rule for Si,
Ge, and GaAs, with a comparison to the experimental results
of Ref. 1. The agreement with the experimental results is
excellent when the scissors-operator shift is used. The
f -sum rule deviates at most by 5.2% from unity in the case
of Ge, which reflects the high precision of the calculation of
the optical matrix elements. The fact that thef -sum rule is
not quite exhausted for Ge and GaAs~deviation of about
5%! as compared to Si~deviation of about 1%! is not due to
a possible incompleteness of our basis set36 but rather to our
use of the all-electron electronic structure. When the valence
states are very well isolated from the core states, like in the
case of Si where the core states lie about 80 eV below the
valence bands, the sum rule should be exhausted. However,
for Ge and GaAs, where the semicore 3d states are very
close to the valence states and greatly affect the optical prop-
erties, thef -sum rule could deviate markedly from unity, i.e.,
the average effective number of electrons per atom contrib-
uting to the optical transitions is much larger than four elec-
trons per atom.37 In pseudopotential theory, since the core
states are absent, thef -sum rule is exhausted for all
semiconductors.6 The details of the contribution of the 3d
semicore states to the oscillator strength and the study of the

effective number of electrons contributing to the optical tran-
sitions are beyond the scope of this paper and will be ad-
dressed elsewhere.

The first- and second-order coefficients describing the
pressure dependence of the static dielectric functione` are
presented in Table VIII. The results are compared to the
experimental results of Ref. 1 and the pseudopotential calcu-
lation of Ref. 6. The overall agreement with experiment and
the pseudopotential calculation is excellent.

In Table IX we present our calculation for the static di-
electric function of Si, Ge, and GaAs including the spin-orbit
coupling effect at the variational level and the effect of the 3
d states in the interband transitions. The calculated potential
includes always the 3d states and only the dielectric function
is calculated with or without the 3d interband transitions. We
have obtained that the inclusion of the 3d interband transi-
tions increases slightly the static dielectric function, whereas
the spin-orbit coupling increases it by 2.1% and 3.2% for Ge
and GaAs, respectively. Thee` of Si is insensitive to the
spin-orbit coupling. The calculated scissors-operator shift
e` including the spin-orbit coupling effect decreases by
about 3.3% and 4.1% for Ge and GaAs, respectively. This is
because the band gaps of Ge and GaAs are further reduced in
the presence of spin-orbit coupling, which results in a larger
scissors-operator shift for the determination ofe`

QP.

V. CONCLUSION

The macroscopic dielectric function in the random-phase-
approximation without local-field effect has been imple-
mented using the local-density approximation with an all-
electron, full-potential linear muffin-tin orbital basis set. The
method is used to calculate the optical properties of the semi-
conductors Si, Ge, and GaAs under hydrostatic pressure. We
have found that the LDA overestimates the static dielectric
function over the pressure range from 0 to 12 GPa and that a
single value of the so-called scissors-operator shift, which
accounts for the correct band gap atG, produces good agree-
ment with the experimental data of Gonĩ, Syassen, and
Cardona.1 This leads us to conclude that because LDA un-
derestimates the band gap, it is incapable of producing the
correct static dielectric function even thoughe` is a ground-
state property.

Since~i! the KS density functional~DF! without the local-
density approximation should, in principle, produce the cor-
rect e` and ~ii ! the LDA calculation with the scissors-
operator shift also produces the correcte` , we are tempted
to conclude that the KS-DF theory should produce the cor-
rect band gap for semiconductors. This conclusion is not
confirmed by a non-self-consistentGW calculation, which
suggests that the true KS-DF theory also underestimates the
band gap.18

Our analysis of the dielectric function, the sum rules, and
the energy-loss function shows that while the scissors-
operator shift is a good approximation for the low-lying ex-
cited states, it appears as bad approximation for the high-
energy excited states. This is because the high-energy states
are free-electron-like, hence well described within the LDA.

Our calculation of the dynamical dielectric function
shows that theE1 peak intensity is underestimated for Si by
about 50% and for Ge and GaAs by only 12%. These results
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imply that the excitonic effects may be important for the
dielectric function of Si, but less for those for Ge and GaAs.

We have also shown that including the 3d semicore states
in the interband transitions hardly changes the static dielec-
tric function e` ; however, their contribution to the intensity
of the dynamical dielectric function for higher photon ener-
gies is substantial and could be checked experimentally. We-
have also found that the spin-orbit coupling has a significant
effect one` of Ge and GaAs, but not of Si.
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