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The macroscopic dielectric function in the random-phase approximation without local-field effect has been
implemented using the local-density approximation with an all-electron, full-potential linear muffin-tin orbital
basis set. This method is used to investigate the optical properties of the semiconductors Si, Ge, and GaAs
under hydrostatic pressure. The pressure dependence of the effective dielectric function is compared with the
experimental data of GonSyassen, and CardofiBhys. Rev. B41, 10 104(1990], and excellent agreement
is found when the so-called “scissors-operator” shift is used to account for the correct band lgafi fa
effect of the 3 semicore states in the interband transitions hardly changes the static dielectric fungction
however, their contribution to the intensity of absorption for higher photon energies is substantial. The spin-
orbit coupling has a significant effect an, of Ge and GaAs, but not of Si. THe; peak in the dynamical
dielectric function is strongly underestimated for Si, but only slightly for Ge and GaAs, suggesting that
excitonic effects might be important only for [§0163-182606)04828-X]

I. INTRODUCTION structures. Calculations ignoring excitonic effects, but in-
cluding the local-field effect, underestimated bdih and
The experimental determination of the optical propertiesE, peaks:®> However, the most recent calculation of Engel
of bulk semiconductors can now be obtained with highand Farid!*® which uses a continued fraction expansion of the
precision; > yet our theoretical understanding is far from polarizability and a representation of the inverse dielectric
complete. The static dielectric constant, which can be obfunction in terms of plasmonlike excitations, overestimated
tained from a functional derivative of the electron densitythe E, peak, and produced a sharp peak at 2.8 eV not ob-
with respect to the total Kohn-Sham potential evaluated agerved by experiment.
the ground state, hence a ground-state property, is over- One way to make theoretical progress in this field is to
estimated by the local-density approximatiofLDA)  determine the correct contribution of the one-electron theory
calculation?=® The inclusion of the gradient correction to the to the optical properties of semiconductors. This allows us to
pseudopotential LDA reduces slightly the discrepancy in thejefine precisely the size of the many-body corrections to the
case of silicorl. The underestimation of thE; peak and the one-electron theory. However, a common belief these days is
overestimation of thd, peak of the imaginary part of the that the eigenvalues and vectors of the Kohn-Sh#8)
dielectric function.e,(w), by one-electron band theory have equation$* have no direct physical meaning and hence
generated theoretical work for almost two decades to accoushould not be used to calculate optical spectra of materials.
for these discrepancies. It was clear from the beginning thadnly ground-state properties derived from the total energy as
including excitonic effects, which have been detecteda function of the electron density have, in principle, a direct
experimentally’ could remove some of the disagreementphysical meaning.
with experimenf~'2 However, the model calculations used  While LDA was indeed intended to calculate ground-state
to correcte,(w) have produced only a qualitative under- properties it could also be viewed as a simplified quasipar-
standing of the problem. In particular, the latest model byticle (QP) theory where the self-energy is local and static
Hanke, Mattausch, and Strinati based on the time-dependefit (r,r’,t)~V,(r)8(r—r’) 8(t), hereV,(r) is the local ex-
screened Hartree-Fock approximation and including both thehange and correlation potential as parametrized, for ex-
local-field and the excitonic effects described correctly theample, by Von Barth and Hedifl. The KS eigenvalues are
E; peak but underestimated significantly tBe peak of Si.  then QP energies and could be compared to experimental
The reason for the underestimationtf was attributed to a  data. This argument is supported by calculations using the
bad representation of the band structure of Si by their Slatels W approximation of Hedit® These calculations showed
Koster parametrizatio. del Castello-Mussot and Shafn  that the valence QP energies of semiconductors are in good
based their latest calculation onkap model around thé agreement with LDA and the conduction QP energies differ
point (whereE; originate$ and a multiple plane-wave model by approximately a rigid energy shiff:*® In the literature
around theX points (where E, originate$ and solved the this shift is often called a “scissors-operator” shi09.°
Bethe-Salpeter equation containing the excitonic effect. First-principles local-density approximation calculations
Their model is an improvement over the noninteracting apstarted more than two decades ago, but the major problem of
proximation: thekE; peak becomes stronger and tigpeak  LDA, beside the well understood energy-band-gap
weaker. This model is very promising, but, being based on @roblem!® is the numerical difficulty in determining self-
k-p approximation to the band structure, it provided only aconsistent electronic-structure and optical matrix elements
qualitative correction to the intensities of tl® and E,  using a complete basis set. The ealyinitio calculation of
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the optical properties of semiconductors by Wang and Kleincalculate the electronic structure and the optical properties of
using a self-consistent linear combination of Gaussian orbitSi, Ge, and GaAs under hydrostatic pressure. The
als, produced static dielectric functions in good agreemenkohn-Sham* equations are solved for a general potential
with experiment? But this agreement is fortuitous becausewithout any shape approximati@d.in this subsection we
the band gaps produced by this method are much larger thajescribe the Bloch wave function inside the so-called
the LDA band gaps. The recent calculations of 18 semiconmuffin-tin spheres and the interstitial region. A correct deter-
ductors by Huang and Ching using an orthogonalized lineamination of the crystal wave function is necessary for the
combination of atomic orbitals method produced LDA static5ccrate determination of the optical matrix elements.
dielectric fqnctions that are, in.general, smaller than experi-  aq for the cellular methods, the space is divided into non-
ment despite the fact that their band gaps are much largey e anning muffin-tin spheres surrounding atomic  sites
than the all-electron or pseudopotential LDA band g&ps. V\{here the Schitinger or the Dirac equation for each prin-
S

Those underestimated static dielectric constants are mo [ole quantum number and momentum channél is solved
likely due to the incompleteness of the basis set used in the pieq N .
or a fixed energyE, . In these muffin-tin spheres the trial

calculations. A . . ) .
Most of the theoretical studies of the optical properties Of\/\{ave functlop is Imeanzeld in terms of the s-olgmon of Schro

semiconductors in the literature use several approximationdinger equationg., and its energy derivatives,, for the

within the LDA, ranging from the use of spherical potenfials energyE, -, and for an atom of type and momentum chan-

to the use of pseudopotenti@limstead of all electron LDA nel/ 2224

potentials. In this paper we report precise calculations of the It can be shown that the Bloch wave function of site

optical properties of bulk semiconductors Si, Ge, and GaAgalculated at site”’ in the unit cell of the crystal aR=0 is

under hydrostatic pressure using an all-electron LDA lineagiven by

muffin-tin orbital (LMTO) basis sef? in which no shape

approximation is made for either the potential or the charge

k _ ’ ()7t
density?® The semicore 8 of Ga and Ge are included in a Xz/m(D)]-= 2 G (F= 7B sm(K0K)
fully hybridizing valence basis set and the rest of the core sm
- i . ’ 2)r7’
states are allowed to relax self-consistently. The effect of +¢T,/,m,(r_T,)B(/,)mr/m(K,k), 1)

spin-orbit coupling is also investigated. A systematic check
of the f-sum rule is performed for all the calculations. We where B(/lf)nqut/m("vk) and B(/z,)”’ (x.k) are renormalized

hope that this accurate LDA calculation will provide an ex- /'m/m
cellent starting point for the determination of the local-field Stucture constants obtained from the crystal structure con-

’

and the excito?sic effects in the optical spectra ofstantsB’) , .(«,k) to ensure that the Bloch wave function
semiconductors: o . . is continuous and differentiable at the boundary of each
We have found that the static dielectric functien , muffin-tin sphere.

which is a ground-state property, is overestimated by LDA | the interstitial region, the muffin-tin orbitals are spheri-
over all pressure range and that excellent agreement with they| wave solution$, to the Helmholtz equation with non-
experimental results of GarSyassen, and Cardonfor €. erq kinetic energy; these bases are Hankel functions for
of GaAs and Ge under hydrostatic pressure is achieved onlyeqqiive kinetic energies or Neumann functions for positive
when the so-called scissors-operator shift is used to accoupfatic energies<® such that each partial wave inside the

for the correct band gap &t The inclusion of the 8 semi- g . ) o
core states of Ge and GaAs in the interband transition harg;uffm tin sphere is allowed to have different kinetic energy

almost no significant effects ie.,: however, the @ inter- k“ in the interstitial region. In this region the Bloch wave
band transitions contribute significantly to the magnitude O{unctlon is given by
e,(w) above 25 eV for Ge and above 12 eV for GaAs. The
Fs)zlrr(]:-gr::m coupling increases the LDA values by about few X'i/m(f)=; e RH (k,|r—7—RDI’Y, m(r =7=R).

The rest of the paper is organized as follows. In Sec. Il we 2
describe the method of the calculation of electronic structur - o ; S ;
and the macroscopic dielectric function based on our a"(_al'he |nterst|t|al-reg|c_)n Bloch fgnchon 'S expre;sed in plane
electron full-potential LMTO basis set. In Sec. lll we presentW"’wes over the reciprocal lattice using a Fourier transform
the electronic properties of Si, Ge, and GaAs and compare
them to existing theoretical results. The calculated dielectric X';/m(r):z f(k+G)elkrerr, 3)
functions and a discussion about including the semicore ' G
states and the spin-orbit coupling will be presented in Sec. o . .
IV. In the same section we also compare our static dielectriiﬁmere.K _.{T'/’m'E/ "]f} 'hW'th the fpara_met(_aE/hbemgf:che .
function under hydrostatic pressure with the experimental"®arization energy of the wave function in the muffin-tin
results of Gon Syassen, and Cardohalhe conclusion is SPhere for the” momentum channetn the azumutal quan-
given in Sec. V. tum number, ana the variational parameter whose square is

the kinetic energy in the interstitial region. The Fourier co-
efficientsfy are obtained from a pseudowave function that is
Il. METHOD OF CALCULATION equal to the crystal wave function in the interstitial region
and represented by a smooth function inside the muffin-tin
spheres. The exact shape of these pseudofunctions inside the
The full-potential linear muffin-tin orbital method in its muffin-tin spheres is not important. The only requirement is
scalar-relativistic and full-relativistic fori$is used here to that they are continuous and differentiable at the sphere

A. All-electron full-potential wave function
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TABLE I. Basis sets used for the calculation of the excited TABLE Il. Eigenvalues of Si at high symmetries pointE,(
states of Si, Ge, and GaAs. Each orbital has different kinetic energ¥, andL) as compared to the results produced by means of a linear
«? in its the interstitial region. For example, the 8rbital of Siis  combination of Gaussian orbitalRef. 28 and by the pseudopoten-
used three times and each of the 8ave functions has a different tial (PP method (Ref. 27. The zero of energy is chosen at the

kinetic energy in the interstitial region. I',s5, point.
Semiconductor Basis set High-symmetry Gaussian Present
Si 3% (35,3p), 2% (3d) point orbitals PP calculation
3 (4s,4p), 2% (4d,4f) Iy, -11.91 -11.91 —-11.96
Ge 2x(3d), T s, 0.0 0.0 0
3% (4s,4p), 2X (4d), s 2.57 2.55 2.56
2% (5s,5p), Toer 3.24 3.28 3.20
GaAs 2xX(Gadd)
3% (Gads,4p), 2% (Gadd) X1, -7.77 ~7.76 -7.82
3% (Gass,5p), X4y -2.78 —-2.86 -2.83
3X (As4s,4p), 2X (As4d), X1c 0.65 0.66 0.62
3 (As5s,5p) Xac 10.03 10.03
. Ly, —9.58 —9.56 —9.63
boundary and have zero slope at the origin of each spherg.l _6.94 —6.96 ~6.99
The plane-wave expansion is multiplied by a three-L ”, 117 120 119
. . . . . 3 . . .
dimensional step function so that the wave function is kepL 147 150 1.44
only in the interstitial region. The knowledge of the Bloch *° 3'32 3'33 3'31
wave function in the whole unit cell allows us to calculate L3C 7'77 ' 7 '66
the Hamiltonian and overlap matrix elements in order to~2¢ ' '
solve the effective one-electron ScHiger equation. _
Three different kinetic energies were used for each subséfdirect band gap 0.52 0.50

of sandp derived bases in the basis set; two kinetic energies
were used for bases derived from orbital parametersl. ) ) _ _
The basis sets used in calculating total energies and stru€how the orbitals used to describe the electronic states of Si,
tural properties were, for Si,(3s3p) and 23d); for Ge, Ge and GaAs. This Iarge_ number of orbngls is necessary to
2(3d), 3(4s4p), and 24d); and for GaAs, BGa 3), calculate accura}tely the eigenvalues and elgenvectors_ upto5
3(Ga 44p), 2(Ga 4), 3(As 4s4p), and ZAs 4d); the premul- Ry above the highest valence states. These electronic states
tiplicities in this notation refer to the number kinetic energiesWill be needed to determine the dynamical dielectric function
used in this basis subset. The basis functions for each mat@nd the converged static dielectric function through the use
rial comprised a single, fully hybridizing basis set. Note the0f Kramers-Kronig relations.
presence of bothdand 4l derived bases on Ga and Ge. A The completeness of basis set, with different variational
useful feature of the method used in these calculations is thes values for each partial wave in the interstitial region to-
ability to incorporate basis functions derived from the samegether with the Fourier representation, allows the method to
orbital atomic quantum numbers but different principal freat open structures such as the zinc-blende structure studied
atomic quantum numbers in a single fully hybridizing basishere W'éhOUt having to resort to the so-called empty
set. This feature entails the use of multiple sets of radiaPheres’ The high-energy states are also determined more
functions to represent bases with different principle atomicaccurately due to the use of mamyvalues. As a test we
quantum numbers. This capability was particularly useful inshow in Table Il the eigenvalues of Si at high symmetry
calculating the high-lying energy bands that were used td0ints of the Brillouin zone compared with some recent re-
obtain the dielectric functions to high energy; the basis set§ults from first-principle calculations based @ initio
employed for this purpose are given in Table |. Seven tdoSeudopotential and Gaussian orbital mettfddS. The
eight kinetic energies were used in the basis sets. Accuragreement of our calculation with the previous calculations
resolution of the bands to high energy was necessary to cofs excellent.
verge the calculation of the real part of the dielectric func-
tion, which was obtained from the imaginary part through
the Kramers-Kronig relation. An interesting consequence of
the relaxation of the Gad3states as valence states is a sig- Here we give a concise review of the determination of the
nificant decrease in the calculated band gap. dielectric function of a semiconductor crystal due to the ap-
For the core charge density, the Dirac equation is solveglication of an electric field. We also determine the approxi-
self-consistently, e.g., no frozen core approximation is usednations used to obtain numerical results for Si, Ge, and
The exchange and correlation potential is treated within thé5aAs under hydrostatic pressure with or without scissors-
Von Barth—Hedin parametrizatidi.To account for the rela- operator shift.
tivistic effects in the dielectric function, the full-self- A perturbative electromagnetic field of frequensyand a
consistent relativistic band structure is produced by includingvave vectorq+ G on a crystal produces a response of fre-
the spin-orbit coupling to the Hamiltonian. In Table | we quencye and a wave vectog+ G’ (G andG’ being recip-

B. Dielectric function
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Ink) expressed in terms of the full-potential LMTO crystal

q+G' is produced by the umklapp processes as a result afave function described by Eqél) and (3). The k-space

the applied fieldEy(q+ G, w)

Eo(q+G,0)=2, €cc(q,0)E(Q+G ,0), (4
<

whereE(q+ G, w) is the total field that produces the nondi-

agonal elements in the microscopic dielectric function

€cc/(0,). In the random-phase approximation the micro-
scopic dielectric function is given

8me?

fee(0.0)= 36 Ggralgre]

x >

k,n,n

x(n’,k+q|e' 9" k)

fn’,k+q_ fn,k
’ En/,k+q_ Enyk—ﬁw+i5

X (n,k|e " a+C)"n’ k+q).

)

Here n and n’ are the band indicesf, is the zero-
temperature Fermi distribution, ard is the cell volume.
The energie&, « and the the crystal wave functi¢n,k) are
produced for each band indexand for each wave vector
k in the Brillouin zone.

The macroscopic dielectric function in the infinite-
wavelength limit is given by the inversion of the microscopic
dielectric function

1

)= Ma o T o0

=edw)—limgo > €6(0,0)Tg e (d0)
G,G'#0

Xe€g o0, ), (6)

where T;G, is the inverse matrix off g g containing the
elementseg g with G and G’ #0. The first term of this
equation is the interband contribution to the macroscopic di

integration is performed using the tetrahedron methadth
480 irreduciblek points in the whole Brillouin zone. The
irreduciblek points are obtained from a shiftédspace grid
from the high-symmetry planes atidpoint by a half step in
each of thek,, k,, andk, directions. This scheme produces
highly accurate integration in the Brillouin zone by avoiding
high-symmetry points.

To calculate these matrix elements we first defined a ten-
sor operator of order one out of the momentum operator
Vo=V,=dldz and V.,=F1/\2(dldx+idldy). The
muffin-tin part of the momentum matrix elements is calcu-
lated using the commutat@ﬁz,xﬂ]ZZVﬂ so that

L drep., (1Y o1 (F=1)V . A1)Y y(F=7)

_ i 1u Sr 2
——§G/m,/',m' . redre,
2d A7+0)=7"(7"+1)

-

r dr ¢T/(r)7 (8)

g
whereG%’/,’m, are the usual Gaunt coefficients aBdis
the radius of the muffin-tin sphere of atom In the intersti-
tial region the plane-wave representation of the wave func-
tion [see Eq.3)] makes the calculation straightforward, but
special care has to be taken for the removal of the extra
contribution in the muffin-tin spheres. However, we find it
much easier and faster to transform the interstitial matrix
elements as an integral over the surface of the muffin-tin
spheres using the commutation relation of the momentum
operator and the Hamiltonian in the interstitial region. The
calculation of the interstitial momentum matrix elements is
then similar to the calculation of the interstitial overlap ma-
trix elements’® The k=0 case has been already derived by
Chen using the Korringa-Kohn-Rostoker Green’s-function
method®? We have tested that both the plane-wave summa-
tion and the surface integration provide the same results.

r

electric function and the second term represents the local- Equation(7) cannot be used directly to determine the op-

field correction toe. The most recerab-initio pseudopoten-

tical properties of semiconductors, when B&/ approxima-

tials calculation found that the local-field effect reduces thetion or the scissors operator is used to determine the

static dielectric function by at most 58Previous calcula-

electronic structure. The velocity operator should be ob-

tions with the same method have also found a decrease tdined from the effective momentum operapsf, which is

€. by about the same percentdtfé.We are looking at the
effect of the local field using our all-electron basis set; it

calculated using the self-energy operafd(r,p) of the
systeni®

should be of interest to compare all-electron results with

these obtained using the pseudopotential method.
For insulators the dipole approximation of the imaginary
part of the first term of Eq(7) is given by?

>

2
3w T

e2

e(w)=

[ ki ko Ko,

X(l_fn’,k)‘s(ek,n/,n_ﬁw)- (7

Herev is the velocity operatofin the LDA v=p/m (p
being the momentum operajprand ey , ,»=E, «—E k.
The matrix elementénk|p|n’k) are calculated for each pro-
jectionp;j=*#/(i) d;, j=x ory, orz, with the wave function

v=p®fm=p/m+ a3 (r,p)/dp. 9

GW calculations show that the quasiparticle wave function is
almost equals to the LDA wave functidh® Based on this
assumption, Del Sole and Girlanda show that the effective
momentum operatgp®™ can be written in terms of the mo-
mentum operatop as”

QP

<n,’k|peﬁ|n1k>:<n,'k|p|n!k>ek'n/,n/ek,n’,n! (10)
where e, =EY, —ES} is the difference between the

quasiparticle energES,F"k of the unoccupied state’,k) and
the occupied statén,k). By substituting Eq.(10) into Eq.
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8 : . wheren, is the number of valence bands, is checked in all
1‘} the calculations and it is satisfied to within a few percent.
i It is easily seen that the dielectric functief” calculated
6 r ; i‘\ 1 using the scissors-operator shift does not satisfy the sum rule
P (wp is the free-electron plasmon frequehcy
T |
gat | :
= ! * T 2
! f weéw)dw= 5 wp (13
2| : ° 2
LDA wnficfi . QP .
becausei) e; " satisfies this rule andi) €5 is obtained by
0 a simple shift ofe5™ by the scissors-operatax towards
0 40

higher energies. Using the expression of the quasiparticle
dielectric function in the scissors-operator shift approxima-
tion we show thai3" satisfies the integral sum rule

Energy (eV)

FIG. 1. Calculated energy-loss function of GaAs within the
LDA (full curve) and within the scissors approximatidqdashed
curve. It is clearly seen that the maximum of the LDA curve is
much closer to the free valence electron plasma frequency of 15.5
ev.

fmwezp(w)dw——(wp)z (14
0

where

(7), it can be easily showh that in the case of the scissors L 2e2A
operator, where all the empty states are shifted rigidly by a (wp)*= 372m2 2
constant energy, the imaginary part of the dielectric func-

tion is a simple energy shift of the LDA dielectric function

towards the high energies by an amoudt, i.e.,
QP((.L)) LDA

€5 =€, (w—A/%). The real part of the dielectric _
function is then obtained from the shifteg using Kramers- 47 / o OGans expt, (shiftedt)
Kronig relations. The expression ef” is given by s

g — Ge
> | Ge expt. (shifted}
S
O,
(]

2e?

[(n,klpIn"k)I?
(ek,n’,n+A)eE,nr’n

11

0 5 10 15 20
e is very similar toeP* except that one of the interband @ P (GPa)
gap e, . is substituted by the QP interband gap
€n nTA.
To test for the accuracy of the calculation within the LDA
the f-sum rule,

1.0

O—Ge

|(n k|p|n k>|2 ~ GaAs expt. (shifted)
E E fok(1—="Fp k)e— 1, (12 )

3mnu k,n’,n £05 -
TABLE lll. Calculated equilibrium volumeVY), electronic pres-

sure, and bulk modulus of Si, Ge, and GaAs. The bulk moduli are

calculated both at the experimental ) and theoretical ) unit 00 ‘ , ‘ ‘

cell volumes. The experimental results are shown in parentheses. ’ 0 5 10 15 20

(b) P (GPa)

Vo VIV P(Vo)  B(V)  B(Vy)
Semiconductor (A ) (GPa (GP3 (GPa FIG. 2. Calculateda) direct band gaE, and (b) minimum
. band gapE 44, of Si, Ge, and GaAs as a function of hydrostatic
Si 39.98 0990 -0.70 95.8 91.2 pressure compared to the experimental results ofi,GByassen,
(98.8)  and CardondRef. 1) for Ge(dashed linpand GaAgthick line). (a)

Ge 4527 0983 -0.80 710 67.1 shows that the direct band gaps increase almost linearly with pres-
(74.4) sure.(b) shows that for GaAs there is a crossover of the band gap

GaAs 4512 0984 -—-1.2 74.2 69.3 from direct to indirect at around 8 GPa and a crossover for Ge at
(74.7) almost 3 GPa. The indirect band gap of Si decreases linearly with

pressure.
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TABLE IV. First- and second-order coefficients describing the dependence of the direct bandIgap at
(Eo) under hydrostatic pressufgq(P) =Ey+aP+bP?] for Si, Ge, and GaAs. The experimental results are
from Gori, Syassen, and CardortRef. 1).

Eo a (meV/GPa b (meV/GP&)
Semiconductor Theor. Expt. Theor. Expt. Theor. Expt.
Si 3.273 100.8 0.05
Ge —0.084 0.795 125.4 121 0.2 0.2
GaAs 0.41 1.43 99.1 108 -0.1 -0.1

) scissors-operator shift remains a good approximation for the

X f dkl(n.k|pIn",k)[?/€} v nFru(1= o k). description of the low-lying excited states of semiconductors
and their optical properties.

We recover the usual sum rule whanis equal to zero. The

nonsimultaneous satisfaction of both thesum rule and the

integral sum rule given by Eq13) within the scissors ap- Ill. ELECTRONIC STRUCTURE OF Si, Ge, AND GaAs

proximation shows the limitation of this approximation.

While the scissors-operator approximation describes nicely The electronic structure of Si, Ge, and GaAs are obtained

the low-lying excited states, which is seen in the good deterby solving the LDA equations by means of a full-potential

mination of the static dielectric function and the low-energyLMTO basis set as described above. Table | shows the or-

structures, i.e.E; andE,, in the imaginary part of the di-

electric function, it seems to fail for the description of the g, of Ge

higher excited states. This is not surprising because the

higher excited states that are free-electron-like are most %0

probably well described by LDA and need no scissors-

operator shift. This is supported by the fact that the energy- 40 | — e Expt

loss function —Ime~! within the LDA has it maximum — LDA+S0S

roughly at the free-electron plasmon frequency, whereas
within the scissors approximation its maximum is shifted to
higher energies as given by E¢l4). Figure 1 show the
energy-loss function of GaAs calculated within LD@ull
curve and within the scissors approximati¢ashed curve

It is clearly seen that the maximum of the LDA curve has a
maximum that is closer to the free valence electron plasma
frequency of 15.5 eV. It is of general interest to see whether
the calculated dielectric function within ti@W approxima-

g,(w)

20
tion satisfies the integral sum rule. For our purpose the () Energy (eV)
g, of Si e, of GaAs
70 ‘ ‘ : 40
60 +
o— Expt. 30 «— Expt.
50 ¢ —— LDA+S0S 1 — LDA+S0S
40 ~
8 g 20
<'30 | ¢
20 ¢ 1 10 |
10 |
0 : 0 ‘ ‘
0 5 10 15 20 0 5 10 15 20
Energy (eV) (b) Energy (eV)

FIG. 3. Calculated imaginary part of the dielectric function of Si  FIG. 4. Imaginary part of the dielectric function of Ge at 10 kbar
at the experimental equilibrium volume, shifted hy=0.6 eV to-  shifts by 0.4 eV and GaAs at the experimental equilibrium volume
wards higher photon energies, compared with the experimental reshifted by 1.1 eV, compared with the experimental results of Ref. 3.
sults of Ref. 3. The experimentBl, structure at 4 eV is underesti- In both Ge and GaA%,(w), the experimentaE; is only slightly
mated, whereas the malf, structure at 4.5 eV is overestimated. underestimated and, is overestimated.
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0.2 T T g T T T €, of Ge
— Ge3d 40
----- Without 3d
30 ¢ —— Expt.
/ --—-- LDA
7 20 /N —— LDA +S0S

e——o Asymtotic limit

g (o)
S

0.0 : ; Y
20 25 30 35 40
(a) Energy (eV) 1oy
-20 : ‘ '
0.4 ; . . T T 0 5 10 15 20
(a) Energy (eV)
—— with 3d
----- Without 3d €, of GaAs
30

—— Asymtotic limit
—--—-- LDA

—— Expt.

—~—— LDA + S80S

g,(w)

(b) Energy (eV)

FIG. 5. Contribution of the 8 interband transitions to the
imaginary part of the dynamical dielectric function(@j Ge (at 10
kban and (b) GaAs at the experimental equilibrium volume. The
full line and the dashed line are with and withoutl hterband -20 \ \ s
transitions, respectively. Due to narrow nature of tites@micore 0 5 10 15 20
states of Ge, the intensity @f, above 25 eV is very similar to the ~ ©) Energy (eV)
emptyp-density of states of Ge, whereas for GaAs, tkdes@micore ] ) ]
states of Ga are relatively delocalized, which makes the intensity of FIG. 6. Real part of the dielectric function of Gat 10 kbay

e, above 12 eV much different from the Ga empiydensity of and GaAs, at the experimental equilibrium volume, compared with
states. the experimental results of Ref. 3. The analytic asymptotic limit,

shown by the empty circles, matches nicely the calculated spectra
above 10 eV.

bitals used to describe the valence and conduction bands
during the self-consistency. The large number of orbitals
used is found necessary to obtain converged excited states tipe to the slope of the total energy versus the unit cell vol-
to 5 Ry above the top of the valence states. However, theme, deviates at the most by 10% in the case of Ge and when
total energy is insensitive to these high-energy orbitals, butalculated at the experimental unit cell volume, but only by
the presence of thed3core states of Ge and GaAs are 5% when calculated at the theoretical equilibrium volume.
important®® Our calculation of the bulk modulus is in excellent agree-
Table Il compares our band structure of Si for some high-ment with other calculation.
symmetry points with some recent results from first- Figure 2 shows the LDA underestimatéa) direct band
principles calculations based on pseudopotential and Gausand(b) minimal gaps of Si, Ge, and GaAs compared with the
ian orbitals method&’?®We found good agreement between Ge, and GaAs experimental results of GoByassen, and
our results and these calculations. This reflects the high acardond. For GaAs a crossover from direct band gap to
curacy of our unoccupied states, which are used to determiriadirect band gap takes place betwderand X at approxi-
the dynamical dielectric function. mately 8 GPa. For Ge this crossover occurs albihgat a
Table Il shows the calculated equilibrium structural pa-lower pressure of 3 GPa. The direct band gap increases lin-
rameters, i.e., the electronic pressure and the bulk modulus egrly with pressure and is in good agreement with the experi-
the experimental unit cell volumé, and calculated cell vol- mental results for both GaAs and Ge. There is no experimen-
umeV. The calculated equilibrium volum¥é is at the most tal data for Si under hydrostatic pressure. Table IV present
2% smaller than the experimental value, which correspondthe first- and second-order coefficients describing the depen-
to a less than 0.5% deviation from the experimental latticedence of the direct band gaplatunder hydrostatic pressure,
parameter. However, the bulk modulus, which is very sensiEq(P)=Ey+aP+bP? compared to the experimental results
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FIG. 7. LDA scalar-relativistic calculated static dielectric func-  F1G- 8. LDA plus the scissors-operator shi8OS calculated
tion of Si, Ge, and GaAs as a function of hydrostatic pressure comstatic dielectric function of Si, Ge, and GaAs as a function of hy-
pared to the experimental results of GoByassen, and Cardona drostatic pressure compared to the experimental results of, Gon
(Ref. 1) and the pseudopotential calculation of Levine and Aflan. Syassen, and CardoriRef. 1).

of Gori, Syassen, and Cardohapart from the underesti- the LDA by about 34% for Si, 50% for Ge, and 60% for
mation of the band gap, the first and second coefficients oaAs. This overestimation of tHe, peak by the LDA is due
the pressure dependence of the band gap are in good agreg-a strong van Hove singularity near the points of the
ment with the experimental results. This suggest that th@rillouin zone where parallel bands occur over a large
scissors-operator shift is a good approximation for the deplateaw’*® This overestimation can be reduced substantially
scription of the band gap under hydrostatic pressure. by including the lifetime broadening of the quasiparticles
through a self-energy calculation.
The effect of interband electronic transitions due to the
IV. OPTICAL PROPERTIES OF Si, Ge, AND GaAs 3d semicore states, without scissors-operator shift, is pre-
) _ _ sented in Fig. @) and §b) for Ge and GaAs, respectively.
A. Frequency dependence of the complex dielectric function For Ge the onset of transitions begins at a photon energy of
of Si, Ge, and GaAs about 25 eV and the intensity is very similar to fhelensity
Figure 3 and 4 present the imaginary part of the macroof states of the empty states of Ge. This is because the 3
scopic dielectric function of Si, Ge, and GaAs obtained at thestates of Ge are very narrow and the dipole selection rules
experimental ground-state lattice parameters except for G@llow transitions only to the emptp states of Ge; thd
where we have compressed the lattice parameter by abogtates in this energy range are absent. For GaAs, the onset of
1%. The compression is done because within the LDA and dransitions begins at 12 eV and the intenséy spectrum
the experimental lattice parameter Ge is a semimetal. Thabove 12 eV is very different from the emptystates of Ga.
LDA e, is shifted towards higher energy by the scissors-This is because of the relatively large dispersion of tle 3
operator shift in order that the optical band gap agrees witlsemicore states of Ga. It should be of interest to confirm
experiment. The comparison to experimental results of Aspexperimentally these theoretical predictions.
nes and Studrishows that all the features in the experimen-  The real parte;(w) of the dielectric function of Si, Ge,
tal spectra are reproduced by the calculation. It is interestingnd GaAs calculated by the Kramers-Kronig transform of the
to notice that the calculated LDA&,(w) of Si exhibits the imaginary parte,(w) is presented in Fig. 6 together with the
largest underestimation of tH®, peak(about 50% in inten- experimental results of Aspnes and Studathe same fig-
sity), whereas in Ge and GaAs the underestimation of theire we have also presented the scissors-operator shift
E, peak is only about 12%. THe, peak is overestimated by elQP(w) and the high-frequency asymptotic limit

TABLE V. Calculated pressure, band gap, static dielectric function with and without scissors-operator
shift (SO9, and thef-sum rule of Si as a function of volum®&ef. 28.

VolV P (GP3 f sum Gap(eV) €, (LDA) €, (SO9 €., (Expt)
1.000 -0.75 0.988 0.50 13.75 12.08 12.0
1.025 1.8 0.989 0.46 13.65 12.00
1.050 4.8 0.987 0.42 13.61 11.96
1.100 9.8 0.991 0.34 12.57 11.98

8Reference 38.
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TABLE VI. Calculated pressure, band gap, static dielectric function with and SOS and the f-sum rule of
Ge as a function of volume. The experimental data are fromi,@yassen, and CardoriRef. 1)

Vo/V P(GP3a f sum Gap(eV) €, (LDA) €, (SO9 €., (Expt)

1.025 1.0 1.053 0.04 19.24 15.32 15.59
1.050 2.9 1.041 0.21 18.14 14.71 15.01
1.075 5.0 1.042 0.29 17.44 14.33 14.49
1.100 7.2 1.043 0.37 16.70 13.90 14.07
1.150 12.3 1.045 0.48 15.81 13.46 13.63

TABLE VII. Calculated pressure, band gap, static dielectric function with and without SOS, and the
f-sum rule of GaAs as a function of volume. The experimental data are fromy Ggassen, and Cardona
(Ref. 1).

VolV P (GPa f sum Gap(eV) €, (LDA) €, (SO9 €., (Expt)

1.000 -1.2 1.041 0.29 14.44 11.0 11.05
1.025 0.68 1.042 0.48 13.93 10.72 10.88
1.050 2.8 1.043 0.66 13.45 10.53 10.69
1.075 4.7 1.044 0.85 13.09 10.41 10.53
1.100 6.8 1.044 1.02 12.75 10.25 10.34
1.150 11.8 1.046 1.08 12.20 10.03 9.90

TABLE VIII. First- and second-order coefficients describing the dependence of the static dielectric
function on hydrostatic pressufe..(P)=€2+aP+bP?] for Si, Ge, and GaAs. The experimental data are
from Gori, Syassen, and CardorRef. 1).

e a(1/GPa b (1/GP&) din(e)/dP (10 %P3
Semiconductor Theor.  Expt. Theor. Expt. Theor. Expt. Theor. Expt.
Si 12.05 —0.032 0.0025 —2.65
11.162 —0.027 0.0013 -2.6,-2.43
Ge 15.58 1594 -0.32 —0.36 0.012 0.014 —20.21 —22.60
16.04 —0.46 0.018 —31-28.66
GaAs 10.83 1092 -0.11 —0.09 0.004 —10.43 —8.06

#Pseudopotential calculation of Ref. 6; slightly larger numbers are quotetirfte,,)/dP in their Table VI.

TABLE IX. Calculated static dielectric function of Si, Ge, and GaAs at the equilibrium lattice parameter
[except for Ge, where it is calculated at a slightly smaller lattice paranig¥#érsmalley than the experi-
mental one because Ge is a metal in LDA Y6V, = 1.]. The calculations are done using scalar relativistic
(SR LMTO without 3d states, with the 8 states(SR+3d), with the spin-orbit coupling at the variational

level (SR+S0), and with the SO coupling and thel 3tates includedSR+SO+3d).

Si Ge GaAs
LDA LDA +SO0S LDA LDA+SOS LDA LDA+SOS
SR 13.75 12.08 18.14 14.71 14.44 11.0
SR+3d 18.16 14.73 14.47 11.03
SR+SO 13.69 12.0 18.52 14.23 14.90 10.52
SR+SO0O+3d 18.54 14.25 14.93 10.55
Expt. 12.011.4° 14.98° 10.92

aReference 38.
bReference 39.
‘Reference 1.
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e1(w)=1— w3/ w?, wherewp is the free-electron plasmon effective number of electrons contributing to the optical tran-
frequency. We notice that the analytic asymptotic limitsitions are beyond the scope of this paper and will be ad-
matches nicely the calculated LDA& , which is an indica- dressed elsewhere.

tion of the quality of the calculation. For th&” we need to The first- and second-order coefficients describing the
use a different plasmon frequency, as described in(E4), pressure dependence of the static dielectric functiprare

due to the poor description of the higher excited states by tthese!’“ed in Table VIII. The results are compareq to the
scissors approximation. experimental results of Ref. 1 and the pseudopotential calcu-

In conclusion. we believe that the excitonic effects mayIatlon of Ref. 6. The overall agreement with experiment and

be important for the dielectric function of Si but less for the pseudopotential calculation is excellent.

. . . In Table IX we present our calculation for the static di-
thosg of_Ge a_nd Gahs. A Q.P calculaﬂpn of the dleIecmcelectric function of Si, Ge, and GaAs including the spin-orbit
function including the dynamical screening of the Coulomb

. . oo o 146 coupling effect at the variational level and the effect of the 3
interaction, like in the5 W approximation of Hedintwould g gtates in the interband transitions. The calculated potential

certainly improve the intensity of at least & peak by jncjydes always the@states and only the dielectric function
introducing a lifetime broadening of the quasiparticles. s calculated with or without thedinterband transitions. We
have obtained that the inclusion of the tterband transi-
. tions increases slightly the static dielectric function, whereas
B. Hydrostatic pressure dependence the spin-orbit coupling increases it by 2.1% and 3.2% for Ge
of the static dielectric function of Si, Ge, and GaAs and GaAs, respectively. The, of Si is insensitive to the

Figure 7 and 8 presents the hydrostatic pressure depeﬁpin-orbit coupling. The calculated Scissors-operator shift
dence of the static dielectric functian, of Si, Ge, and GaAs €~ including the spin-orbit coupling effect decreases by
calculated within the LDA without and with the SOS, re- about 3.3% and 4.1% for Ge and GaAs, respectively. This is
spectively. Our data are compared to the experimental resulfi€cause the band gaps of Ge and GaAs are further reduced in
of GG, Syassen, and Cardohand to the pseudopotential tht_a presence of spln_—orblt coupling, V\{hlch results in a larger
calculations of Si and Ge of Levine and All&rOur calcu-  SCissors-operator shift for the determinationegf.
lation and the pseudopotential theory of Ref. 6 suggest that
the LDA overestimates the static dielectric function of Si, V. CONCLUSION
Ge, and GaAs over the whole range of hydrostatic pressure . ) .
and that the use of a unique value of the scissors-operator The.mac.roscoplc dielectric _funct|on in the random-.phase—
shift for the correction of the band gap Btproduces good approximation without Iocal-fleld effeclt ha_s begn imple-
agreement with the experimental resditfhe static dielec- mented using the local-density approximation with an all-

; : : ! electron, full-potential linear muffin-tin orbital basis set. The
tric function decreases almost linearly with the pressure du?n : . X .
. . . ethod is used to calculate the optical properties of the semi-
to the increase of the direct band gap. However, foe Sis

I ith th his i conductors Si, Ge, and GaAs under hydrostatic pressure. We
almost constant with the pressure and this is because the, e found that the LDA overestimates the static dielectric

increase of the direct band gap is almost compensated byfgnction over the pressure range from 0 to 12 GPa and that a
decrease of the indirect band gegee Fig. 2 single value of the so-called scissors-operator shift, which
Tables V, VI, and VII present the calculated pressureaccounts for the correct band gagiatproduces good agree-

band gaps, static dielectric function, afibum rule for Si, ment with the experimental data of GprByassen, and
Ge, and GaAs, with a comparison to the experimental resultsardona: This leads us to conclude that because LDA un-
of Ref. 1. The agreement with the experimental results islerestimates the band gap, it is incapable of producing the
excellent when the scissors-operator shift is used. Theorrect static dielectric function even though is a ground-
f-sum rule deviates at most by 5.2% from unity in the casestate property.

of Ge, which reflects the high precision of the calculation of  Since(i) the KS density functionaDF) without the local-

the optical matrix elements. The fact that theum rule is  density approximation should, in principle, produce the cor-
not quite exhausted for Ge and Gafdeviation of about rect e, and (ii) the LDA calculation with the scissors-
5%) as compared to Sdeviation of about 1%is not due to  operator shift also produces the correct, we are tempted

a possible incompleteness of our basiS%eut rather to our to conclude that the KS-DF theory should produce the cor-
use of the all-electron electronic structure. When the valenceect band gap for semiconductors. This conclusion is not
states are very well isolated from the core states, like in theonfirmed by a non-self-consiste@W calculation, which
case of Si where the core states lie about 80 eV below theuggests that the true KS-DF theory also underestimates the
valence bands, the sum rule should be exhausted. Howevdrand gap?®

for Ge and GaAs, where the semicord 3tates are very Our analysis of the dielectric function, the sum rules, and
close to the valence states and greatly affect the optical proghe energy-loss function shows that while the scissors-
erties, thef-sum rule could deviate markedly from unity, i.e., operator shift is a good approximation for the low-lying ex-
the average effective number of electrons per atom contribeited states, it appears as bad approximation for the high-
uting to the optical transitions is much larger than four elec-energy excited states. This is because the high-energy states
trons per atori! In pseudopotential theory, since the coreare free-electron-like, hence well described within the LDA.
states are absent, th&sum rule is exhausted for all Our calculation of the dynamical dielectric function
semiconductor8.The details of the contribution of thed3 shows that théE; peak intensity is underestimated for Si by
semicore states to the oscillator strength and the study of thabout 50% and for Ge and GaAs by only 12%. These results
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