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The one-dimensional Fermi gas with attractived interaction is treated in the quasiparticle random-phase
approximation at zero temperature. The collective modes are evaluated numerically in the high-density~weak-
coupling! and in the low-density~strong-coupling! case. Whereas in the weak-coupling limit the ordinary
~particle-hole! random-phase approximation is approached for low momenta, the collective mode in the strong-
coupling limit reproduces the Bogoliubov mode for the weakly interacting gas of particle-particle pairs
~bosons!. We find a smooth evolution of the collective modes from weak to strong coupling. Analytical
approximations for the dispersion relation in the long-wavelength limit are derived for both weak and strong
coupling.@S0163-1829~96!04728-5#

I. INTRODUCTION

The one-dimensional Fermi gas with an attractive point-
interaction among the fermions has often been used as a
model system for realistic Fermi systems for several reasons.

~i! The exact solution for its ground-state energy is known
from the Bethe ansatz,1 so one can test approximate solutions
for this system. This has been done for mean-field approxi-
mations @plane-wave Hartree-Fock~HF!, non-plane-wave
HF, and BCS# by Quick, Esebagg, and de Llano.2 They
found that the BCS solution can describe the crossover be-
tween weak coupling~a weakly interacting gas of fermions!
and strong coupling~a gas of bosonic two-particle pairs! in
the system. In particular, they found that the BCS solution
for the ground-state energy coincides with the exact solution
in both weak and strong coupling. Thus the system may
serve as a simple model to study the transition between
weak- and strong-coupling superconductivity in a one-
dimensional ~1D! Fermi system. This transition between
weak and strong coupling has been discussed by Leggett3

and by Nozie`res and Schmitt-Rink4 in three dimensions.
~ii ! The simple form of the interaction allows one to carry

out approximations beyond the mean-field level such as or-
dinary random-phase approximations~RPA’s! or generalized
RPA’s in a controlled fashion. Thus one is able to calculate
contributions to the ground-state energy of the system be-
yond the mean-field ground-state energy. The ordinary
~particle-hole! RPA for the one-dimensional electron gas was
discussed by Williams and Bloch5 and by Brenner and
Haug.6 The Singwi-Sjolander generalization of the ordinary
RPA has been applied to the 1D electron gas by Friesen and
Bergersen.7

~iii ! This model may serve as an initial approximation to
realistic systems such as quasi-one-dimensional metals. For a
review of these systems see Ref. 8.

Within this paper we will calculate the collective excita-
tions for the 1D attractive Fermi gas with ad interaction at

T50 by applying the quasiparticle RPA~also known as the
generalized RPA!. One of the aims of the present work is to
find out the limits of this perturbative approach. Further-
more, our investigation is motivated by the fact that the nor-
mal RPA in one dimension breaks down with increasing cou-
pling, indicating an instability of the HF ground state.
Moreover, even for very weak coupling the so-called Peierls
instability9 characteristic for 1D occurs, which leads to
imaginary eigenvalues in the vicinity of wave numbers
q52kF . In contrast, we will demonstrate that the quasipar-
ticle RPA gives real solutions for all couplings. In particular,
it yields the Bogoliubov sound mode for the weakly interact-
ing boson gas in the extreme strong coupling, where the
relevant degrees of freedom are two-particle bound states.
Thus it is of interest to follow the evolution of the collective
modes in one dimension between these two physically quite
distinct limits.

We will derive the quasiparticle RPA equations for the
two-quasiparticle propagators starting from the Bogoliubov
transformed Hamiltonian of the system and using the equa-
tions of motion for the two-quasiparticle Green’s functions.
The homogeneous two-particle equations yield the condition
for the collective excitations in the system, which can be
given in a closed form. It coincides with the result found by
Anderson,10 Rickayzen,11 and Bardasis and Schrieffer12 with
the equation of motion method.

This condition is evaluated numerically together with the
BCS gap and density over the whole range from weak to
strong coupling. A smooth transition is found for the behav-
ior of the collective modes between these two limits. We
demonstrate that the soft mode atq52kF ~Peierls instability!
characteristic for the ordinary RPA in one dimension is
avoided in the quasiparticle RPA, which yields real eigenval-
ues for allq over the whole density range. We derive ana-
lytical approximations in the long-wavelength limit for weak
and for strong coupling that are consistent with the numerical
results. In particular, we can show thereby that the strong-
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coupling limit of the quasiparticle RPA excitations yields the
Bogoliubov dispersion relation for the weakly interacting
Bose gas of two-particle pairs.

Related results for the attractive Hubbard model in two
and three dimensions were derived by Sofo, Balseiro, and
Castillo,13 Kostyrko and Micnas,14 Alexandrov and Rubin,15

and Belkhir and Randeria.16 For a review for the application
to the high-Tc superconductors see Ref. 17. The quasiparticle
RPA has also been applied to the problem of exciton con-
densation on highly excited semiconductors by Nozie`res and
Comte18 and Cote and Griffin.19

II. QUASIPARTICLE RPA EQUATIONS

Our starting point is the Hamiltonian for a one-
dimensional Fermi gas, which is given in a second quantiza-
tion as

H5(
k

ekak
†ak1

1
4 (
k1 ,k2 ,k3 ,k4

^k1k2uV̄uk3k4&ak1
† ak2

† ak4ak3,

~1!

where theki denote momentum and spin quantum number of
the particles and̂k1k2uV̄uk3k4& is the antisymmetrized ma-
trix element of the two-body interaction. Within this paper
we will transform the Hamiltonian~1! using the Bogoliubov
transformation for the creation and annihilation operators.
The transformed Hamiltonian has been derived by several
authors.20–22 It can be cast in the form

H5H01 (
k1 ,k2

Hk1 ,k2
11 ak1

† ak2
1 1

2 (
k1 ,k2

~Hk1k2
20 ak1

† ak2
† 1H.c.!

1 (
k1 ,k2 ,k3 ,k4

~Hk1k2k3k4
40 ak1

† ak2
† ak3

† ak4
† 1H.c.!

1 (
k1 ,k2 ,k3 ,k4

~Hk1k2k3k4
31 ak1

† ak2
† ak3

† ak4
1H.c.!

1 1
4 (
k1 ,k2 ,k3 ,k4

Hk1k2k3k4
22 ak1

† ak2
† ak4

ak3
. ~2!

In Eq. ~2! H0 is the BCS ground-state energy and the diag-
onal partH11 is given by

Hk1 ,k2
11 5@~ek12m!dk1 ,k21

1
2 ^k1k2uV̄uk1k2&vk2

2 #@uk1
2 2vk1

2 #

12^k12k1uV̄uk22k2&uk1vk1uk2vk2. ~3!

The off-diagonal partH20 is given by

Hk1 ,k2
20 52@~ek12m!dk1 ,k21

1
2 ^k1k2uV̄uk1k2&vk2

2 #uk1vk1

2^k12k1uV̄uk22k2&~uk1
2 2vk1

2 !uk2vk2. ~4!

If one demands the off-diagonal partH20 ~4! to vanish, this
yields the BCS, gap equation and the well-known relations
for uk andvk

uk
2512vk

25
1

2 F11
jk
Ek

G . ~5!

wherejk5ek1Vk
HF2m and the BCS quasiparticle energy is

given asEk5Ajk
21Dk

2. TheH31 term in the Hamiltonian is
given, e.g., in Ref. 22; however, it does not contribute to the
RPA equations.

The remaining terms in the Hamiltonian describe the re-
sidual interaction among the BCS quasiparticles. They are
given by21,22

Hk1k2k3k4
40 5

1

4!
@2^k1k2uV̄u2k32k4&~uk1uk2vk3vk4

1vk1vk2uk3uk4!1^k1k3uV̄u2k22k4&

3~uk1vk2uk3vk41vk1uk2vk3uk4!

1^k3k2uV̄u2k12k4&

3~uk1vk2vk3uk41vk1uk2uk3vk4!#, ~6!

Hk1k2k3k4
22 5@2^k1k2uV̄uk3k4&~uk1uk2uk3uk41vk1vk2vk3vk4!

2^k12k3uV̄uk42k2&~uk1vk2vk3uk4

1vk1uk2uk3vk4!1^k22k3uV̄uk42k1&

3~vk1uk2vk3uk41uk1vk2uk3vk4!#. ~7!

These terms are neglected in the usual BCS approximation.
However, in order to go beyond the BCS mean-field approxi-
mation it is necessary to include the residual interaction
among the quasiparticles.

Within this section the quasiparticles will be treated
within the generalized RPA approximation. We introduce
two-particle Green’s function with respect to the quasiparti-
cle basis as

SG11 G12

G21 G22D
k1k2k3k4

t2t8

5 i S ^T~ak1
ak2

! t~ak3
† ak4

† ! t8& ^T~ak1
ak2

! t~ak3
ak4

! t8&

^T~ak1
† ak2

† ! t~ak3
† ak4

† ! t8& ^T~ak1
† ak2

† ! t~ak3
ak4

! t8&
D ,
~8!

where (a) t5eiHta(0)e2 iHt . As shown in Ref. 23, one can
derive an approximation for the equation of motion for this
matrix Green’s functionG in the form
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i
d

dt
Gk1k2k3k4 ,t2t8

5d~ t2t8!dk1 ,k3dk2 ,k4S 1 0

0 21D
1S ~Ek1

1Ek2
!dk1 ,k3dk2 ,k4 0

0 2~Ek1
1Ek2

!dk1 ,k3dk2 ,k4
D

3Gk
38k48k3k4 ,t2t8

1S 1 0

0 21D (
k38 ,k48

S Ãk1k2k38k48
Bk1k2k38k48

2Bk1k2k38k48
2Ãk1k2k38k48

D
3S 1 0

0 21DGk
38k48k3k4 ,t2t8 . ~9!

Equation~9! has the form of a Dyson equation for the two-
particle propagator matrixG, where the static elements of
the mass operatorÃ and B are given by the double
commutators24

Ãk1k2k3k4
5Ak1k2k3k4

2~Ek1
1Ek2

!dk1 ,k3dk2 ,k4 ,

Ak1k2k3k4
5^@ak2

ak1
,@H,ak3

† ak4
† ##&, ~10!

and

Bk1k2k3k4
52^†ak2

ak1
,@H,ak4

ak3
#‡&. ~11!

In our case^ & means averaging with respect to the BCS
ground state. However, if instead of the BCS ground state an
approximation to the correlated ground state is used, this
corresponds to a generalized quasiparticle RPA~see Ref. 25
for details!. The double commutation with respect to the
Hamiltonian~2! can be carried out with the result:22

Ãk1k2k3k4
5Hk1k2k3k4

22 ~12!

and

B̃k1k2k3k4
54!Hk1k2k3k4

40 , ~13!

where the expressions forH40 and forH22 are given by Eqs.
~6! and ~7!.

For thed interaction under consideration it is possible to
solve the system of equations in thev representation alge-
braically. This will be demonstrated for the coupled equa-
tions for G11 andG21 ~G22 andG12 can be treated analo-
gously!. Introducing relative coordinates for the momenta
and omitting the spin indices, the corresponding equations
read

G11~kk8q,v!5G0
11~kq,v!dk,k8

1G0
11~kq,v!(

k9
Ãkk9qG11~k9k8q,v!

2G0
11~kq,v!(

k9
Bkk9qG

21~k9k8q,v!, ~14!

G21~kk8q,v!5G0
22~kq,v!(

k9
Bkk9qG

11~k9k8q,v!

2G0
22~kq,v!(

k9
Ãkk9qG

21~k9k8q,v!,

~15!

where G 0
11(kq,v)51/(v2Ek,q), G 0

22(kq,v)51/(v
1Ek,q), andEk,q5Ek1Ek1q . An analogous coupled system
is found forG22 andG12. Adding and subtracting Eqs.~14!
and~15!, taking into account that the matrix elements for our
model are constants in momentum space, i.e.,
^k1k2uV̄uk3k4&5vdk11k2 ,k31k4

(ds1 ,s3
ds2 ,s4

2ds1 ,s4
ds2 ,s3

),
and assuming that the collective pairs have zero total spin
~see also Ref. 21!, we arrive at the expressions

G11~kk8q,v!1G21~kk8q,v!

5G0
11~kq,v!dk,k81

1

v22Ek,q
2 @2Ek,qm~k,q!Zk8,q,v

1Ek,qn~k,q!Lk8,q,v1v l ~k,q!Gk8,q,v# ~16!

and

G11~kk8q,v!2G21~kk8q,v!

5G0
11~kq,v!dk,k81

1

v22Ek,q
2 @2vm~k,q!Zk8,q,v

1vn~k,q!Lk8,q,v1Ek,ql ~k,q!Gk8,q,v#. ~17!

The quantitiesZ, L, andG are given by the equations

Zk,q,v52
v
2 (

k9
m~k9,q!@G11~k9kq,v!1G21~k9kq,v!#,

~18!

Lk,q,v52v(
k9

n~k9,q!@G11~k9kq,v!1G21~k9kq,v!#,

~19!

Gk,q,v52v(
k9

l ~k9,q!@G11~k9kq,v!2G21~k9kq,v!#

~20!

and them(k,q), n(k,q), and l (k,q) are combinations ofuk
andvk , given by

m~k,q!5ukvk1q1vkuk1q , ~21!

n~k,q!5ukuk1q2vkvk1q , ~22!

l ~k,q!5ukuk1q1vkvk1q . ~23!
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Multiplying in Eq. ~16! subsequently withm with n and in
Eq. ~17! with l and summing overk, we arrive at the system
of equations for the quantitiesZ, L, andG,

S 11vI E,n,n~q,v! vIv,n,l~q,v! 2vI E,n,m~q,v!

vIv,n,l~q,v! 11vI E,l ,l~q,v! 2vIv,l ,m~q,v!

v/2I E,n,m~q,v! v/2Iv,l ,m~q,v! 11vI E,m,m~q,v!
D

3S L
G
Z
D

k,q,v

5S 2vn~k,q!G0
11

2v l ~k,q!G0
11

2v/2m~k,q!G0
11
D . ~24!

The quantitiesI a,b,c are in the notation of Ref. 16, given by

I a,b,c5(
k

a~k,q!b~k,q!c~k,q!

v22Ek,q
2 , ~25!

with a(k,q)5[Ek,q ,v] and b(k,q),c(k,q)
5[n(k,q),l (k,q),m(k,q)]. This is a linear inhomogeneous
system of equations for the quantitiesL, G, andZ, which can
be solved easily by matrix inversion. With the solution for
these quantities the elements of the Green’s function matrix
are given by~16! and ~17! and the corresponding equations
for G22 andG12. In the homogeneous case, i.e., if the right-
hand side of the equation vanishes, Eq.~24! is an eigenvalue
problem for the determination of the collective modes in the
quasiparticle RPA. The condition for a nontrivial solution is
the vanishing of the determinant

U11vI E,n,n~q,V!

vIV,n,l~q,V!

v/2I E,n,m~q,V!

vIV,n,l~q,V!

11vI E,l ,l~q,V!

v/2IV,l ,m~q,V!

2vI E,n,m~q,V!

2vIV,l ,m~q,V!

11vI E,m,m~q,V!
U

50, ~26!

whereV(q) denotes the eigenvalue for the collective excita-
tions. An analogous condition to~26! for the collective
modes in the Hubbard model has also been derived by
Belkhir and Randeria16 using the equation of motion method
of Bardasis and Schrieffer.12

The elements of the coefficient matrix in Eq.~24! can be
interpreted as generalizations of the well-known Lindhard
function26 of the ordinary RPA. In particular, the element
I E,m,m(q,v) is the generalization of the one-dimensional
Lindhard function5 of the ordinary particle-hole RPA, which
it approaches in the limitD→0. The elementsI E,n,n(q,v),
I E,l ,l(q,v), and Iv,n,l(q,v) constitute the corresponding
generalization of the particle-particle~hole-hole! RPA.22 All
the other elements of the matrix represent couplings between
the particle-hole and the particle-particle channel and conse-
quently vanish in the limitD→0. In short, we see that in the
nonsuperconducting limit we recover the well-known
particle-hole and particle-particle~hole-hole! branches
separately.22 As has already been noted in Ref. 16, in the
limit q→0 the element 11vI E,l ,l(q50,v50) yields the
BCS gap equation.

In the next subsection we will discuss the behavior of the
collective modes from the numerical solution of Eq.~26! as
well as analytically in certain limiting cases.

III. THE COLLECTIVE MODE SPECTRUM
IN THE GENERALIZED RPA

According to the preceding subsection, the collective
modes for a contact interaction are given by the solution of
Eq. ~26!. Before discussing the numerical solution for the
collective modes, we will derive analytical expressions for
smallq andV.

A. Weak-coupling case

The analysis of the weak-coupling case has already been
given by Belkhir and Randeria.16 We quote their result for
the weak-coupling collective mode in one dimension:

V~q!5F12v
1

p

m

kF
G1/2 kFm q, ~27!

where the density of states in one dimension for the para-
bolic dispersion was used. For the details of the expansion
we refer to Ref. 16. Thus the long-wavelength collective
modes in the weak-coupling case have a phononlike spec-
trum and are independent of the gap. If one compares Eq.
~27! with the small-q expansion of the collective modes in
the particle-hole RPA, one finds that both coincide. This
means that in weak coupling the behavior of the collective
modes for smallq is not changed from the normal particle-
hole RPA.

However, for largeq and in particular near the point
q52kF , the quasi-particle RPA differs from the particle-
hole RPA qualitatively. Due to the presence of a finite gap
the continuum does not reach zero atq52kF as it does in the
particle-hole RPA case. This means that the imaginary eigen-
values at this particular energy typical for the particle-hole
RPA do not necessarily show up in the generalized RPA. In
fact, as will be shown below by our numerical evaluation,
imaginary eigenvalues no longer appear at any coupling in
the quasiparticle RPA. However, in the high-density~weak-
coupling! limit the tendency of the system towards the for-

FIG. 1. BCS gap parameterD as a function of the effective
chemical potentialm* for a fixed coupling strengthv/~2p!50.3.
Both quantities are given in units of the two-particle binding energy
in the vacuumE0.
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mation of density waves remains, as indicated by a pro-
nounced minimum ofV(q) at q52kF ~see below!.

B. Strong-coupling case

In Ref. 16 the strong-coupling case is treated for the Hub-
bard model. Here we will derive expressions for the strong-
coupling case for the continuum model under consideration.
In the extreme strong-coupling limit the gap goes to zero
with the density.2 Thus we will start from an expansion of
the determinant for the collective modes~26! ~in the small-q
and -V limit ! with respect to a small gap. As a first step we
expand the gap equation in terms ofD2,

15
v
2p E

0

`

dk
1

ujkuS 11
D2

ujku2
D 1/2

'
v
2p E

0

`

dk
1

ujku
2v

D2

4p E
0

`

dk
1

ujku3

5
v
2p

J12
vD2

4p
J3 . ~28!

It is interesting to note that the integral in the first line of Eq.
~28! is convergent for a contact interaction without a cutoff
due to the one dimensionality of the system. An analogous
expansion of the BCS density equation yields

n5
1

p E
0

`

dk 12
1

ujkuS 11
D2

ujku2
D 1/2

'
1

2p
D2E

0

`

dk
1

ujku2
5

1

2p
D2J2 , ~29!

wherejk5k2/2m2m* andm* is the effective chemical po-
tential including the quasiparticle shift. The integralsJi are
given in the Appendix. With the help of these expansions,
the effective chemical potential can be expressed in terms of
the density and the coupling strength as

um* u1/25
&

8
m1/2v6A 2

64mv
22 3

8nv. ~30!

In the limit of zero density or zero gap, respectively, Eq.~30!
yields the condition

2um* u5
mv2

4
5E0 . ~31!

This means that in the extreme strong-coupling limit the
chemical potential, i.e., the energy to remove a particle from
the system, is just half the two-particle binding energy2E0
in the vacuum.2

As a next step we carry out an expansion of the elements
of the determinant~26! for small q and V. In the weak-
coupling case considered in Ref. 16, it is sufficient to con-
sider the elements 11I E,l ,l , 11I E,m,m , andIV,l ,m only. How-
ever, in order to treat the strong-coupling limit we carried out
the expansion for the other elements 11I E,n,n , I E,n,m , and
IV,n,l in Eq. ~26! as well. After this expansion the approxi-
mate expression for the determinant~26! reads

U 12
v
2
r

2
v
4
tV

2
v
4

Dt

2
v
4
tV

v
8

@~3z1w̄2y!q22xV2#

v
8

DxV

2vDt
v
2

DxV

12
v
2

D2x
U50.

~32!

The coefficientsr ,t,w̄,x,y,z as well as their expansion in
terms ofD2 are given in the Appendix.

Thus the long-wavelength dispersion relation in the
strong-coupling limit is given by

V~q!5cq, ~33!

where the sound velocityc depends on the gapD. Using the
expression~32! together with the expansions for the coeffi-
cients given in the Appendix, the sound velocity was evalu-
ated in the lowest nonvanishing order inD2. In the next step
we used the low-density expansion of the BCS density~29!
to substituteD2 by the densityn. Moreover, we expressed the
chemical potential in the integralsJi ~see the Appendix! by
the interactionv using Eq.~30! ~in the lowest order inn!.
Collecting the various terms inc, one ends up with the fol-
lowing simple expression for the collective modes in the
strong-coupling limit:

V~q!5F vn4mG1/2q. ~34!

Introducing the pair massmB52m and the pair density
nB5n/2, this expression reads

V~q!5FvnBmB
G1/2q. ~35!

The result Eq.~34! for the sound velocity can easily be
verified starting from the ground-state energy in the BCS
approximation~strong-coupling limit! as given in Eq.~9! of
Ref. 2. This can be done using thermodynamic relations, as
presented in detail in Ref. 29.

However, repeating the same derivation for the exact
ground-state energy,1 of which the strong-coupling limit was
derived in Refs. 2 and 27, one finds the following result for
the velocity of sound:

c5
p\n

4m
, ~36!

n being the total density. Equation~36! is the exact result for
the sound velocity, which is independent of the attraction
strength. This is at variance with the perturbative result~34!.
The reason for this difference can be traced back to the fact
that the BCS approximation for the ground-state energy in
the strong coupling has a different behavior compared to the
exact solution~see Ref. 2 for details!. Thus although the
BCS approximation approaches the exact expression for the
ground-state energy in the limit of strong coupling~n/v→0!
derivative quantities such as the sound velocity may differ
substantially from the exact solution in this limit. The inclu-
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sion of correlations beyond the quasiparticle RPA~general-
ized RPA! is necessary in order to improve the perturbative
treatment.

Equation ~35! is the well-known Bogoliubov dispersion
relation for the weakly interacting Bose gas28,29 in the limit
of smallq, which is linear inq, i.e., phononlike. Thus, start-
ing from interacting Fermions with an attractive interaction,
the quasiparticle RPA in the strong-coupling limit yields the
dispersion relation for a weakly interacting gas of bosons
~two-particle bound states!. This has already been shown for
the attractive Hubbard model by Belkhir and Randeria.16 The
fact that the magnitude of the repulsive interaction among
the bosons in Eq.~35! is given by the fermionic interaction
strengthv is consistent with the results of Haussmann.30 Re-
lating the bosonic scattering length in three dimensionsaB to
the interaction among the bosons in the usual way
aB5mBvB/\

24p ~Ref. 29! andaF5mFvF\2/4p, the condi-
tion aB52aF ~Ref. 30! yields vB5vF . This coincides with
our result in one dimension Eqs.~34! and~35!. In the oppo-
site limit of large q the strong-coupling dispersion ap-
proaches the valueV5q2/2mB for noninteracting pairs.

In order to investigate the behavior of the collective
modes between the two limiting cases of weak and strong
coupling and within the wholeq range one has to evaluate
Eq. ~26! numerically. We solve Eq.~26! for a fixed value of
v/~2p!50.3. With this value forv the BCS gap equation
@first line in Eq. ~28!# is solved to obtain the gapD for a
given effective chemical potentialm* ~or densityn, respec-
tively!.

In Fig. 1 we give the BCS gapD as a function of the
effective chemical potentialm* ~both quantities in units of
the two-particle binding energyE0!. We see that the gap
starts at zero form*520.5E0, corresponding to the density
n50 ~strong coupling limit!, consistent with Eq.~29!. The
gap has a maximum of atm*50.5E0 and then gradually de-
creases with increasing chemical potential~density! in the
weak-coupling limit. The fact that the gap will not reach zero
for any finite density is due to the purely attractive interac-
tion among the fermions.

Having solved the BCS theory, we are able to solve nu-
merically the condition for the dispersion relation of the col-
lective modes~26!. In order to demonstrate the behavior of
the collective modes if one goes from weak coupling to
strong coupling we keep the interactionv/~2p!50.3 fixed
and vary the effective chemical potential~or the density re-
spectively!.

In Fig. 2~a! we present the extreme weak-coupling regime
corresponding to large densities~m*511.28E0!. The gap in
this limit is very smallD50.052 93E0. The numerical solu-
tion for the dispersion relationV(q) is given as a solid line.
It starts atq50 and is linear inq for small q values~see
below!. We find that the full solution~solid line! is very
close to the continuum edge~dotted line! over the wholeq
range. The above-mentioned tendency towards the formation
of density waves is signaled by the pronounced minimum at
q52kF . However, due to the presence of the gap, the con-
tinuum edge does not reach zero in this case as it does in the
normal particle-hole RPA. This makes it possible for the
collective mode to have a real value atq52kF , which is in
contrast to the normal RPA, where it has an imaginary solu-

tion at this particularq value for arbitrarily weak coupling.
This is known as Peierls instability9 and is characteristic for
the one-dimensional system.

In Fig. 2~b! the effective chemical potential is
m*53.386E0 and the corresponding gapD50.4518E0. The
distance of the collective mode to the continuum edge has
increased due to the increased coupling. The behavior is still
characterized by a minimum atq52kF . However, due to the
larger gap~2D as the minimum of the continuum edge is
given by the dash-dotted line!, the way the finite gap pre-
vents the collective modes from becoming soft is more
clearly to be seen. This means the finite gap acts as to stabi-
lize the BCS ground state against the formation of density
waves, which always show up in the HF ground state in the
corresponding particle-hole RPA.

The form of the dispersion relation in the weak- and
intermediate-coupling regimes is similar to the excitation
spectrum of liquid4He. In particular, it starts linearly for
small q and it exhibits a pronounced rotorlike minimum at
higherq.

In Fig. 2~c! the effective chemical potential is
m*51.1286E0 and the corresponding gapD50.8038E0
~close to the maximum gap in Fig. 1!. One observes that the
behavior of the collective modes has changed compared to
the weak-coupling case. There is only a very weak minimum
at q52kF . The distance to the continuum edge has further
increased.

In Fig. 2~d! we have reached the extreme strong-coupling
limit ~m*520.4966E0, D50.072 18E0!. We see that no
longer is there a minimum in the dispersion relation for the
collective mode. Instead it is a monotonically increasing
function, which approaches the free particle limitv5q2/4m
for all except very smallq values. For very smallq values
we have a linear behavior inq, which will be discussed
below @Fig. 3~b!#.

In Figs. 3~a! and 3~b! we will demonstrate that the behav-
ior of the numerically found collective modes for smallq is
consistent with the corresponding expansions for weak- and
strong-coupling carried out above.

In Fig. 3~a! we consider the weak-coupling case
~m*53.386E0!. The behavior of the numerical solution~full
line! is compared to the weak-coupling expansion Eq.~27!
~dashed line!. Both coincide for smallq, indicating the con-
sistency of the numerical solution with the well-known
weak-coupling result, which was obtained by Anderson10 in
the 3D case.

In Fig. 3~b! the strong-coupling limit~m*520.4966E0! is
plotted for smallq. We see that indeed the full solution starts
linearly in q, consistent with the strong-coupling expansion
given in Eq. ~35!, which is plotted as a dashed line. This
confirms the interpretation of the collective excitations in the
strong-coupling limit as Bogoliubov sound modes of the
two-particle Bose gas that is formed in this limit. Also plot-
ted is the free-particle dispersionq2/2mB ~dash-dotted line!,
which is reached by the full solution for largeq.

IV. SUMMARY

The equations for the quasiparticle RPA were derived us-
ing Green’s function methods for the Hamiltonian in the rep-
resentation by Bogoliubov quasiparticles. A condition for the
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collective modes in one dimension was found for the case of
an attractived interaction. Analytical approximations were
derived in the long-wavelength limit for the weak- and the
strong-coupling limits. In particular, we could show that in
the weak-coupling limit we recover Anderson’s result,10

whereas in the strong-coupling limit the Bogoliubov disper-
sion relation28 for the interacting Bose gas of two-particle
pairs can be derived from the quasiparticle RPA. This is
consistent with the fact that the BCS theory is capable of
describing the extreme strong-coupling limit, i.e., the gas of
two-particle bound states, properly and reproduces the exact
result for the ground-state energy in this limit.2

In order to study the transition from weak to strong cou-
pling the condition for the collective modes was evaluated
numerically for the wholeq range. We found that the ten-
dency of the system to form density waves is reflected in a
pronounced minimum of the dispersion forV(q) at q52kF
in the extreme weak-coupling~high-density! case. However,
there are no imaginary eigenvalues atq52kF as character-
istic for the normal RPA~Ref. 5! over the whole coupling

range. The finite gap stabilizes the ground state with respect
to the Peierls instability. With decreasing density the mini-
mum atq52kF becomes less pronounced due to the increas-
ing gap. In the strong-coupling limit the dispersion relation
changes qualitatively. It is a monotonic function ofq that
reproduces theq2/2mB behavior for largeq. For smallq it
reproduces the phononlike Bogoliubov dispersion relation of
the weakly interacting Bose gas.

Summarizing, we could show that the treatment of the
residual interaction in the Hamiltonian~2! within the quasi-
particle or generalized RPA allows one to study the behavior
of the collective modes over the whole coupling range. In
particular, it yields the physically plausible result of the Bo-
goliubov mode for the weakly interacting Bose gas at very
low densities. Thus the quasiparticle RPA, in contrast to the
normal RPA, may serve as a reasonable starting point for a
calculation of the ground-state energy, including the scatter-
ing part of Eq.~16!. However, the comparison of our result
for the sound velocity in the strong-coupling limit derived
from the quasiparticle RPA with the value for the sound

FIG. 2. ~a! Collective modeV ~in units ofm* !, as a function of the wave numberq ~in units ofkF!, given as the solid line. The coupling
strength isv/~2p!50.3 and the effective chemical potential ism*511.28E0. The continuum edge is given as a dotted line. The dash-dotted
line indicates the value 2D as the minimal value for the continuum edge.~b! Same as in~a! but form*53.386E0. ~c! Same as in~a! but for
m*51.1286E0. ~d! Collective modeV as a function of the wave numberq for m*520.4966E0 ~solid line!. The collective modesV are
given in terms of the two-particle binding energy in the vacuumE0, defined in the text, and the wave numberq in terms ofa05AmE0. The
dashed line denotes the minimal value for the continuum edge, which form*,0 is given by 2Am* 21D2.
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velocity derived from the exact solution for the ground-state
energy is in qualitative disagreement. This demonstrates the
necessity to further improve the perturbative treatment in the
strong-coupling limit.

Finally, we would like to mention possible extensions of
the treatment given above. Bychkov, Gorkov, and
Dzyaloshinski31 suggested, in order to treat the Peierls insta-
bility and the Cooper singularity in a finite temperature ap-
proach on equal footing, the introduction, in addition to the
BCS gap, of a so-called dielectric gap that opens at the criti-
cal temperature for the Peierls transition.

In order to improve the treatment given above at interme-
diate couplings it is necessary to include ground-state corre-
lations beyond the quasiparticle RPA.25,32 Such an calcula-
tion beyond the standard RPA has recently been carried out
for the Heisenberg antiferromagnet.33 In particular, it has
been shown that for the seniority model22 a generalization of
the quasiparticle RPA yields genuine four-particle
correlations.25 Work in this direction is in progress.
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APPENDIX

In Eqs. ~28!, ~29!, and ~A2! integralsJi are introduced.
They will be evaluated for the strong-coupling lines, i.e., for
m*,0 throughout. Here we give the explicit expressions

Ji5E
0

`

dk
1

S k22m1Um* U D i ,
~A1!

Ji25E
0

`

dk
k2

S k22m1Um* U D i .
The integrals ~A1! are easily evaluated to yield
J15pm1/2/(2um* u)1/2, J25m1/2p/(2um* u)3/2, J353m1/2p/
27/2um* u5/2, and J325m3/2p/25/2um* u3/2. The explicit results
for J4, J5, and J52 are not needed for the strong-coupling
expansion~32! to the order ofD2.

As the next step we will give the results for the coeffi-
cients of the elements in the determinant~32! resulting from
an expansion for smallq andV. For 11I E,n,n , 11I E,m,m ,
and IV,l ,m we quote the weak-coupling results of Ref. 16. In
addition, the expansions for 11I E,n,n , IV,n,l , andI E,n,m nec-
essary for strong coupling are given. These coefficients are
then evaluated to orderD2:

r5
1

p E
0

`

dk
jk
2

~jk
21D2!3/2

'
1

p
J12

3D2

p
J3 ,

t5
1

p E
0

`

dk
jk

~jk
21D2!3/2

'
1

p
J22

3D2

2p
J4 ,

w̄5
1

pm E
0

`

dk
jk

~jk
21D2!3/2

'
1

pm
J22

3D2

2pm
J4 ,

~A2!

x5
1

p E
0

`

dk
1

~jk
21D2!3/2

'
1

p
J32

3D2

2p
J5 ,

y5
1

pm2 E
0

`

dk
k2

~jk
21D2!3/2

'
1

pm2 J322
3D2

2pm2 J52,

z5
D2

pm2 E
0

`

dk
k2

~jk
21D2!5/2

'
D2

pm2 J52.

FIG. 3. ~a! Collective modeV for small momentaq, in the
weak-coupling case~m*53.386E0!. The numerical solution~full
line! is compared to the weak-coupling expansion~27! ~dashed
line!. ~b! Collective modeV, for small momentaq, in the strong-
coupling case~m*520.4966E0!. The numerical solution~full line!
is compared to the strong-coupling expansion~35! ~dashed line!.
The free dispersionV5q2/4m is also given as a dash-dotted line.
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