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The one-dimensional Fermi gas with attractifenteraction is treated in the quasiparticle random-phase
approximation at zero temperature. The collective modes are evaluated numerically in the high¢dezadity
coupling and in the low-density(strong-coupling case. Whereas in the weak-coupling limit the ordinary
(particle-holg random-phase approximation is approached for low momenta, the collective mode in the strong-
coupling limit reproduces the Bogoliubov mode for the weakly interacting gas of particle-particle pairs
(bosong. We find a smooth evolution of the collective modes from weak to strong coupling. Analytical
approximations for the dispersion relation in the long-wavelength limit are derived for both weak and strong
coupling.[S0163-182806)04728-3

I. INTRODUCTION T=0 by applying the quasiparticle RP¢@lso known as the
generalized RPA One of the aims of the present work is to
The one-dimensional Fermi gas with an attractive pointfind out the limits of this perturbative approach. Further-
interaction among the fermions has often been used as raore, our investigation is motivated by the fact that the nor-
model system for realistic Fermi systems for several reasonsnal RPA in one dimension breaks down with increasing cou-
(i) The exact solution for its ground-state energy is knownpling, indicating an instability of the HF ground state.
from the Bethe ansatzso one can test approximate solutions Moreover, even for very weak coupling the so-called Peierls
for this system. This has been done for mean-field approxiinstability’ characteristic for 1D occurs, which leads to
mations [plane-wave Hartree-FockHF), non-plane-wave imaginary eigenvalues in the vicinity of wave numbers
HF, and BC$ by Quick, Esebagg, and de LlaAdThey q=2kg. In contrast, we will demonstrate that the quasipar-
found that the BCS solution can describe the crossover bdicle RPA gives real solutions for all couplings. In particular,
tween weak couplinga weakly interacting gas of fermions it yields the Bogoliubov sound mode for the weakly interact-
and strong couplinga gas of bosonic two-particle pajrs ing boson gas in the extreme strong coupling, where the
the system. In particular, they found that the BCS solutiorrelevant degrees of freedom are two-particle bound states.
for the ground-state energy coincides with the exact solutiohus it is of interest to follow the evolution of the collective
in both weak and strong coupling. Thus the system maynodes in one dimension between these two physically quite
serve as a simple model to study the transition betweedistinct limits.
weak- and strong-coupling superconductivity in a one- We will derive the quasiparticle RPA equations for the
dimensional (1D) Fermi system. This transition between two-quasiparticle propagators starting from the Bogoliubov
weak and strong coupling has been discussed by Léggetiransformed Hamiltonian of the system and using the equa-
and by Noziees and Schmitt-Rirfkin three dimensions. tions of motion for the two-quasiparticle Green’s functions.
(ii) The simple form of the interaction allows one to carry The homogeneous two-particle equations yield the condition
out approximations beyond the mean-field level such as orfor the collective excitations in the system, which can be
dinary random-phase approximatiof®PA’s) or generalized given in a closed form. It coincides with the result found by
RPA’s in a controlled fashion. Thus one is able to calculateAnderson'® Rickayzen! and Bardasis and Schrieffémwith
contributions to the ground-state energy of the system bethe equation of motion method.
yond the mean-field ground-state energy. The ordinary This condition is evaluated numerically together with the
(particle-holg RPA for the one-dimensional electron gas wasBCS gap and density over the whole range from weak to
discussed by Williams and Blothand by Brenner and strong coupling. A smooth transition is found for the behav-
Haug® The Singwi-Sjolander generalization of the ordinaryior of the collective modes between these two limits. We
RPA has been applied to the 1D electron gas by Friesen ardbmonstrate that the soft modegat 2k (Peierls instability
Bergerser. characteristic for the ordinary RPA in one dimension is
(iii) This model may serve as an initial approximation toavoided in the quasiparticle RPA, which yields real eigenval-
realistic systems such as quasi-one-dimensional metals. Fowgs for allg over the whole density range. We derive ana-
review of these systems see Ref. 8. lytical approximations in the long-wavelength limit for weak
Within this paper we will calculate the collective excita- and for strong coupling that are consistent with the numerical
tions for the 1D attractive Fermi gas withdinteraction at  results. In particular, we can show thereby that the strong-
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coupling limit of the quasiparticle RPA excitations yields the HZ , =2[(e — w) b .+ %<k1k2|v_|k1k2>vﬁ U vk

Bogoliubov dispersion relation for the weakly interacting 172 ! 1 Z

Bose gas of two-particle pairs. —(kl—k1|V|k2—k2>(uE _vﬁ YUy, V.. (4
Related results for the attractive Hubbard model in two o e

and three dimensions were derived by Sofo, Balseiro, ang gne demands the off-diagonal pat2° (4) to vanish, this

Castillo}!® Kostyrko and Micnas;' Alexandrov and Rubin? yields the BCS, gap equation and the well-known relations
and Belkhir and Randeri&.For a review for the application for u, anduy

to the highT . superconductors see Ref. 17. The quasiparticle

RPA has also been applied to the problem of exciton con-

densation on highly excited semiconductors by Nazeand uZ=1-vi=
Comté?® and Cote and Griffirt?

©)

whereé,= e+ VHF— 1 and the BCS quasiparticle energy is

given asE,=\/&2+AZ. The H®! term in the Hamiltonian is
given, e.g., in Ref. 22; however, it does not contribute to the
RPA equations.

The remaining terms in the Hamiltonian describe the re-

] o o sidual interaction among the BCS quasiparticles. They are
Our starting point is the Hamiltonian for a one- giyen pyt2

dimensional Fermi gas, which is given in a second quantiza-
tion as

II. QUASIPARTICLE RPA EQUATIONS

Hﬁfk2k3k4: an [—(kako|V|—ks— Ka) (U, Ui 00k,

H=> eajacti > <k1k2|V_|k3k4>allal2ak4ak3, Uk DigUigUic,) T (Kaka| VI —ko —ky)
X Ky Kg ks kg
(1) X (Ug, U, Uk Uk, T Uk, Uk,Uk;Uk,)

_ +(Kako| V| —ky—Kys)
where thek; denote momentum and spin quantum number of

the particles andk,k,|V|ksk,) is the antisymmetrized ma- X (U Ui,V iegUi, + Uk, Uk UkUk,) ] ®
trix element of the two-body interaction. Within this paper
we will transform the Hamiltoniaiil) using the Bogoliubov 422 =[—(k.k VIkak (Up Uy U U+ U Dl 0.0k
transformation for the creation and annihilation operators. kikokske (k| Vlske) Uiy Ui Uiy T VgD kP,
The transformed Hamiltonian has been derived by several —<k1—k3|V_|k4—k2>(uk ViU Uk

1 P2 "3 "4

authors’®~#?1t can be cast in the form Z
+ 0k Uk Uk Uk,) T (Ko = ks V[ks—kq)

X (v, Uk, U, Uk, T Uk, Uk, Uk, Uk,) - (7
H=H°+k§2 H&ikzallak;r%k%z (Hioy ai o +H.c) L s
These terms are neglected in the usual BCS approximation.
However, in order to go beyond the BCS mean-field approxi-
mation it is necessary to include the residual interaction
among the quasiparticles.

Within this section the quasiparticles will be treated
within the generalized RPA approximation. We introduce
two-particle Green’s function with respect to the quasiparti-
cle basis as

40 Pttt
—|—k kEk ) (Hk1k2k3k4aklak2ak3ak4+H.C.)
1Kz K3 kg

31 tot ot

+ .C.
K kEk " (Hk1k2k3k4aklak2ak3ak4+H C)
1,82,83,%4

22 Tt
+1 H ap a, o Q.. 2
P2 Rk, 2)
1:%2,83,%4 ,
t—t

Gll G12

2 22
In Eq. (2) H? is the BCS ground-state energy and the diag-( G* G kyKokgk,
onal partH! is given by
_ <T(aklak2)t(al3al4)t'> (T(ak o )iy o))
= L]

<T(“llal2)t(al3al4)t'> <T(allalz)t(a’k3ak4)t’>

(8

where @),=e'"'a(0)e 'H'. As shown in Ref. 23, one can

derive an approximation for the equation of motion for this
The off-diagonal part®° is given by matrix Green’s functiorG in the form

Hick i, =L (€, = 1) 8k, 1, + 3(KaKal VIKiko)ok TTuf —of ]

+2(Kky =Ky |V[ka— kg Uy v, U, Uk, ()
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d G(kk'q,w) =G5 (KQ, ) &
! alek2k3k4,t—t'

+ Gél(kq, (1))2 ;&kk”qul( k"k’ q,(l))
K"

0
:5(t_t )5k1,k35k2,k4( 0 _1) —Gél(kq,w)z BkkrquZ:L(k"k/q,(D), (14)
k!/
(Ex, +Ek,) Sk, k;5k, k, 0
+ B G2 (kk'g,0)=G34kq,®) X, BirgG (k"K' q, )
0 (Ex, T Ex,) 6k, k;5k, k, K’
X Gk -t —GH(ka,®) Y, AgeqG2iK'k' ),
—~ k//
1 0 Ak, Brykokik, 15
* 0 - 1 /2/ - B Ie! —K ! 11 22
k3 .k, kykokzky kykakik), where  Gg(kg,0)=1/(w—Eyg), Go(kg,w)=1/(w

+Exq)> andEl%g: Ex+ Ex+q- An analogous coupled system
1 0 is found for G** and G2 Adding and subtracting Eq$14)
X 0 —1 Gkék"lk3k4,t7t’ . 9 and(15), taking into account that the matrix elements for our
model are constants in momentum space, i.e.,
i . <k1k2|V|k3k4>: v 5k1+ k2,k3+ k4( 50'1,0350'2,0'4_ 50'1,0'450'2,0'3)1
Equation(9) has the form of a Dyson equation for the two- 5nq assuming that the collective pairs have zero total spin
particle propagator matrixs, where the static elements of (see also Ref. 21 we arrive at the expressions
the mass operatoA and B are given by the double

commutator&' GM(kK g, )+ G?Y(kk'q,w)
1
-~ _ 11
Ak Kok, = Akykokgk, ™ (B T Ek) Sk, 1k Sk, ky =Go(ka,w) o + W EL, [2Exkqm(K,Q)Zir g,
+Ek, n(k,q)Ak/’ 'w-l-wl(k,q)Fk,' ,w] (16)
Aty = ([ @iy, [H, e el 1), (10 ‘ ‘ ‘
and
and Gll(kk’q,w)—G21(kk’q,w)
1
Bicjkokak, = ~ (L, [H an i D). (1) =Gg'(Kg, ) Sy + W?—EZ [2om(K,q)Zy' g0
w — k.q
In our case() means averaging with respect to the BCS +on(K,q) Ay g0t Exgl (KD g0l (A7)

ground state. However, if instead of the BCS ground state an . ) )
approximation to the correlated ground state is used, thighe quantitiesZ, A, andI" are given by the equations
corresponds to a generalized quasiparticle RB#e Ref. 25

for detailg. The double commutation with respect to the Z __v 2 m(k",q)[ G Y K"kq, ») + GZH(K"Kq, )]
’q,w 1 il il il

Hamiltonian(2) can be carried out with the resdft: 2 <
(18
Aok, = HE ok (12
Tee e Akgo=—0> N(K.D[G(K'k,0) + GZHK'kq,w)],
k//
and (19)
§k1k2k3k4=4!H§Sk2k3k4v (13 Tqo=—v>2 1(K,Q[GYK'kq )~ GH(K'kg,w)]

K"

where the expressions fét*° and forH?? are given by Egs. (20

(6) and (7). and them(k,q), n(k,q), andl(k,q) are combinations ofi,
For the § interaction under consideration it is possible toandv,, given by

solve the system of equations in therepresentation alge-

braically. This will be demonstrated for the coupled equa- M(K,q) = U+ g+ VUit g (21)
tions for G* and G%! (G?2 and G*? can be treated analo-
gously. Introducing relative coordinates for the momenta N(K,q) = Ugly4 = ViVk+q 5 (22)

and omitting the spin indices, the corresponding equations
read I(K,Q)=UgUys g+ Uik q- (23
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Multiplying in Eqg. (16) subsequently withm with n and in Ill. THE COLLECTIVE MODE SPECTRUM
Eq. (17) with | and summing ovek, we arrive at the system IN THE GENERALIZED RPA

of equations for the quantities, A, andT’, According to the preceding subsection, the collective

modes for a contact interaction are given by the solution of
1+vlgan(d,0)  vlgn(g,) 2vlg nm(g, ) Eq. (26). Before discussing the numerical solution for the
vlyni(Qo)  14+vlg;(q0) 20l m(d,) collective modes, we will derive analytical expressions for

smallg and Q).
02 nm(@ o) 0/2 gm0 o) 1+vlgmm(do) g

A —vn(k,q)G(l)1 A. Weak-coupling case
11
x| T = —vl(k,q)Gp ul (24) The analysis of the weak-coupling case has already been
z —v/2m(k,q)Gg given by Belkhir and Randeri§. We quote their result for

k,q,® . . . . .
the weak-coupling collective mode in one dimension:

The quantitied , , . are in the notation of Ref. 16, given by
1/2 k
F

m

1m
9(q>=[1—v——

e o @7

a(k,q)b(k,q)c(k,
lape= S AT qu )
a where the density of states in one dimension for the para-
with a(k,q)=[Eyq. ] and b(k,q),c(k,q) bolic dispersion was used. For the details of the expansion
=[n(k,q),l(k,q),m(k,q)]. This is a linear inhomogeneous Wwe refer to Ref. 16. Thus the long-wavelength collective
system of equations for the quantitiésI’, andZ, which can ~ modes in the weak-coupling case have a phononlike spec-
be solved easily by matrix inversion. With the solution for trum and are independent of the gap. If one compares Eq.
these quantities the elements of the Green’s function matrix27) with the smallg expansion of the collective modes in
are given by(16) and(17) and the corresponding equations the particle-hole RPA, one finds that both coincide. This
for G?? andG*2 In the homogeneous case, i.e., if the right-means that in weak coupling the behavior of the collective
hand side of the equation vanishes, E2) is an eigenvalue modes for smalfj is not changed from the normal particle-
problem for the determination of the collective modes in thehole RPA.
quasiparticle RPA. The condition for a nontrivial solution is However, for largeq and in particular near the point

the vanishing of the determinant g=2kg, the gquasi-particle RPA differs from the particle-
hole RPA qualitatively. Due to the presence of a finite gap
T+0lenn(9.Q)  vlgni(a,Q) 201 g o (0, Q) the continuum does not reach zeraat 2k as it does in the

particle-hole RPA case. This means that the imaginary eigen-
vlani(@.Q)  1tvlg(a.Q)  2vlg|m(d.Q) values at this particular energy typical for the particle-hole
/2 nm(@,Q)  v/20)m(qQ)  1+vlemm(a.Q) RPA do not necessarily show up in the generalized RPA. In
=0, (26) fact, as will be shown below by our numerical evaluation,
imaginary eigenvalues no longer appear at any coupling in

whereQ(q) denotes the eigenvalue for the collective excita-the quasiparticle RPA. However, in the high-densitieak-
tions. An analogous condition t626) for the collective coupling limit the tendency of the system towards the for-
modes in the Hubbard model has also been derived by
Belkhir and Randeri4 using the equation of motion method 10
of Bardasis and Schriefféf.

The elements of the coefficient matrix in EQ4) can be
interpreted as generalizations of the well-known Lindhard
functiorf® of the ordinary RPA. In particular, the element
le mm(Q,@) is the generalization of the one-dimensional
Lindhard functiori of the ordinary particle-hole RPA, which
it approaches in the limih—0. The elementdg ,, (q,v), NE,
le,(q,w), and 1, ,,(g,w) constitute the corresponding
generalization of the particle-particiaole-holé RPAZ2 All
the other elements of the matrix represent couplings between
the particle-hole and the particle-particle channel and conse-
guently vanish in the limin—0. In short, we see that in the
nonsuperconducting limit we recover the well-known

particle-hole and particle-particle(hole-holg branches ool v e
separately? As has already been noted in Ref. 16, in the 00 20 O e % 80 100
limit g—0 the element *vlg, ,(q=0,w=0) yields the ’

BCS gap equation. FIG. 1. BCS gap parametex as a function of the effective

In the next subsection we will discuss the behavior of thechemical potentialu* for a fixed coupling strengtly/(27)=0.3.

collective modes from the numerical solution of E&6) as  Both quantities are given in units of the two-particle binding energy
well as analytically in certain limiting cases. in the vacuung,.
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mation of density waves remains, as indicated by a pro- v v
nounced minimum of)(q) atq=2kg (see below 1- 5" 7 tQ —vAt
v

B. Strong-coupling case — % tQ % [(3z+wW—y)q?—x0?] 2 Ax€) =0.
In Ref. 16 the strong-coupling case is treated for the Hub-

bard model. Here we will derive expressions for the strong- | — — At v AXQ
coupling case for the continuum model under consideration.
In the extreme strong-coupling limit the gap goes to zero
with the density? Thus we will start from an expansion of
the determinant for the collective modg) (in the smallg
and {) limit) with respect to a small gap. As a first step we
expand the gap equation in termsA#,

v
1- E AZX

(32

The coefficients ,t,w,X,y,z as well as their expansion in
terms ofAZ are given in the Appendix.

Thus the long-wavelength dispersion relation in the
strong-coupling limit is given by

v (= 1
1=5. fo dk ——71m Q(qg)=cq, (33
+ [
|§k|( ! Ifklz) where the sound velocity depends on the gap. Using the

. 1 A2 (o 1 expression32) together with the expansions for the coeffi-
- v f dk ——p — J' dk — cients given in the Appendix, the sound velocity was evalu-
2w Jo [&d 4m Jo [&d ated in the lowest nonvanishing order4A. In the next step

5 we used the low-density expansion of the BCS den&)
L ﬁ to substituteA? by the densityn. Moreover, we expressed the
Ji NE (28) ’ y ;
27 4w chemical potential in the integralk (see the Appendixby

It is interesting to note that the integral in the first line of Eq.the Interactiorv using Eq.(30_) (in the lowest or_der im).
(28) is convergent for a contact interaction without a cutoff Col!ectm_g the various t_erms 1, one ends_up with the_fol-
due to the one dimensionality of the system. An analogougOWIng S|mpl_e e?""fe_ss'o” for the collective modes in the
expansion of the BCS density equation yields strong-coupling limit:

1/2

L[ a(g)=| 2 34
n=;fo dkl—ﬁ (q)_ m qg. ( )
| &l AL . . . :
k Introducing the pair massng=2m and the pair density
1 ° 1 1 ng=n/2, this expression reads
~—A2J dk —==— A2%J, (29

2 o |&lIF 2w ’ vng| 2

where&,=k?/2m— u* and u* is the effective chemical po- aq)= me| & 39

tential including the quasiparticle shift. The integrd|sare
given in the Appendix. With the help of these expansions, The result Eq(34) for the sound velocity can easily be
the effective chemical potential can be expressed in terms aferified starting from the ground-state energy in the BCS

the density and the coupling strength as approximation(strong-coupling limit as given in Eq(9) of
> Ref. 2. This can be done using thermodynamic relations, as
w1222 a2y 2 2 3 30 presented in detall in Ref. 29. o
|| 8 salllv- =810 (30 However, repeating the same derivation for the exact

ground-state enerdyof which the strong-coupling limit was
derived in Refs. 2 and 27, one finds the following result for
the velocity of sound:

In the limit of zero density or zero gap, respectively, EBf)
yields the condition

2|,U,*|=mTv2=EO. (31 7hn
c= m, (36)
This means that in the extreme strong-coupling limit the
chemical potential, i.e., the energy to remove a patrticle fronn being the total density. EquatidB6) is the exact result for
the system, is just half the two-particle binding energlf,  the sound velocity, which is independent of the attraction
in the vacuunt. strength. This is at variance with the perturbative re@4#4.

As a next step we carry out an expansion of the element$he reason for this difference can be traced back to the fact
of the determinan{26) for small g and €. In the weak- that the BCS approximation for the ground-state energy in
coupling case considered in Ref. 16, it is sufficient to conthe strong coupling has a different behavior compared to the
sider the elementsfll g |, 1+lg o, andlg | only. How-  exact solution(see Ref. 2 for details Thus although the
ever, in order to treat the strong-coupling limit we carried outBCS approximation approaches the exact expression for the
the expansion for the other elements|t , ,, lg,n, and  ground-state energy in the limit of strong coupliigv —0)
lgn in EqQ. (26) as well. After this expansion the approxi- derivative quantities such as the sound velocity may differ
mate expression for the determind@6) reads substantially from the exact solution in this limit. The inclu-
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tion at this particulalg value for arbitrarily weak coupling.

ized RPA is necessary in order to improve the perturbativeThis is known as Peierls instabiltyand is characteristic for

treatment.

Equation(35) is the well-known Bogoliubov dispersion
relation for the weakly interacting Bose ¢&&°in the limit
of smallq, which is linear inq, i.e., phononlike. Thus, start-

the one-dimensional system.

In Fig. 2(b) the effective chemical potential
w*=3.386E, and the corresponding gap=0.451&,. The
distance of the collective mode to the continuum edge has

is

ing from interacting Fermions with an attractive interaction,increased due to the increased coupling. The behavior is still
the quasiparticle RPA in the strong-coupling limit yields the Characterized by a minimum gt=2ke . However, due to the

dispersion relation for a weakly interacting gas of boson
(two-particle bound statgsThis has already been shown for

the attractive Hubbard model by Belkhir and Randéfi@he

fact that the magnitude of the repulsive interaction amon

the bosons in Eq(35) is given by the fermionic interaction
strengthv is consistent with the results of HaussmafRe-
lating the bosonic scattering length in three dimensino
the interaction among the bosons in the usual
ag=mgug/fi24m (Ref. 29 andar=mgvA2/4m, the condi
tion ag=2ar (Ref. 30 yieldsvg=vg. This coincides with
our result in one dimension Eq&84) and(35). In the oppo-
site limit of large q the strong-coupling dispersion ap-
proaches the valu@ = q%/2mg for noninteracting pairs.

darger gap(2A as the minimum of the continuum edge is
given by the dash-dotted linethe way the finite gap pre-
vents the collective modes from becoming soft is more
clearly to be seen. This means the finite gap acts as to stabi-
Yize the BCS ground state against the formation of density
waves, which always show up in the HF ground state in the
corresponding particle-hole RPA.

The form of the dispersion relation in the weak- and

WaYntermediate-coupling regimes is similar to the excitation

spectrum of liquid®*He. In particular, it starts linearly for
small g and it exhibits a pronounced rotorlike minimum at
higherq.

In Fig. 2(c) the effective chemical potential
w*=1.1286, and the corresponding gap=0.803&,

is

In order to investigate the behavior of the collective (close to the maximum gap in Fig).JOne observes that the
modes between the two limiting cases of weak and strongehavior of the collective modes has changed compared to

coupling and within the wholg range one has to evaluate
Eq. (26) numerically. We solve Eq26) for a fixed value of
v/(27)=0.3. With this value forv the BCS gap equation
[first line in Eqg.(28)] is solved to obtain the gap for a
given effective chemical potential* (or densityn, respec-
tively).

In Fig. 1 we give the BCS gap as a function of the
effective chemical potential* (both quantities in units of
the two-particle binding energ¥,). We see that the gap
starts at zero fou* =—0.5E,, corresponding to the density
n=0 (strong coupling limit, consistent with Eq(29). The
gap has a maximum of at* =0.5E, and then gradually de-
creases with increasing chemical potentidénsity in the

weak-coupling limit. The fact that the gap will not reach zero
for any finite density is due to the purely attractive interac-

tion among the fermions.

Having solved the BCS theory, we are able to solve nu
merically the condition for the dispersion relation of the col-
lective modeq26). In order to demonstrate the behavior of
the collective modes if one goes from weak coupling to

strong coupling we keep the interactiem(27)=0.3 fixed
and vary the effective chemical potentiar the density re-
spectively.

In Fig. 2(a) we present the extreme weak-coupling regime

corresponding to large densiti¢g* =11.2&,). The gap in
this limit is very smallA=0.052 9E,. The numerical solu-
tion for the dispersion relatiof2(q) is given as a solid line.
It starts atg=0 and is linear inq for small g values(see
below). We find that the full solution(solid line) is very
close to the continuum eddeotted ling over the wholeq
range. The above-mentioned tendency towards the formati

the weak-coupling case. There is only a very weak minimum
at q=2kg. The distance to the continuum edge has further
increased.

In Fig. 2(d) we have reached the extreme strong-coupling
limit (u*=-0.496€&, A=0.0721&;,. We see that no
longer is there a minimum in the dispersion relation for the
collective mode. Instead it is a monotonically increasing
function, which approaches the free particle limitq%/4m
for all except very smalf] values. For very smaly values
we have a linear behavior iq, which will be discussed
below[Fig. 3(b)].

In Figs. 3a) and 3b) we will demonstrate that the behav-
ior of the numerically found collective modes for smalis
consistent with the corresponding expansions for weak- and
strong-coupling carried out above.

In Fig. 3@ we consider the weak-coupling case
(u*=3.386,). The behavior of the numerical solutigfull
line) is compared to the weak-coupling expansion Exy)
(dashed ling Both coincide for smaltj, indicating the con-
sistency of the numerical solution with the well-known
weak-coupling result, which was obtained by Andef8dn
the 3D case.

In Fig. 3(b) the strong-coupling limifw* =—0.4966 ) is
plotted for smally. We see that indeed the full solution starts
linearly in q, consistent with the strong-coupling expansion
given in Eg.(35), which is plotted as a dashed line. This
confirms the interpretation of the collective excitations in the
strong-coupling limit as Bogoliubov sound modes of the

two-particle Bose gas that is formed in this limit. Also plot-
ted is the free-particle dispersiarf/2mg (dash-dotted ling
0\Nhich is reached by the full solution for large

of density waves is signaled by the pronounced minimum at
gq=2kg. However, due to the presence of the gap, the con-
tinuum edge does not reach zero in this case as it does in the
normal particle-hole RPA. This makes it possible for the The equations for the quasiparticle RPA were derived us-
collective mode to have a real valuegt 2kg, which is in  ing Green’s function methods for the Hamiltonian in the rep-
contrast to the normal RPA, where it has an imaginary soluresentation by Bogoliubov quasiparticles. A condition for the

IV. SUMMARY
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FIG. 2. (a) Collective mode (in units of u*), as a function of the wave number(in units ofkg), given as the solid line. The coupling
strength isv/(27)=0.3 and the effective chemical potentialg$ =11.2& . The continuum edge is given as a dotted line. The dash-dotted
line indicates the value/fas the minimal value for the continuum edge). Same as irfa) but for u* =3.38€,. (c) Same as irfa) but for
w*=1.128@,. (d) Collective mode) as a function of the wave numbgrfor u*=—0.496€ (solid line). The collective mode$) are
given in terms of the two-particle binding energy in the vacuggndefined in the text, and the wave numlgein terms ofag= \/ﬁ The
dashed line denotes the minimal value for the continuum edge, which*fe10 is given by 2/u*2+AZ.

collective modes in one dimension was found for the case ofange. The finite gap stabilizes the ground state with respect
an attractives interaction. Analytical approximations were to the Peierls instability. With decreasing density the mini-
derived in the long-wavelength limit for the weak- and the mum atq= 2k becomes less pronounced due to the increas-
strong-coupling limits. In particular, we could show that in ing gap. In the strong-coupling limit the dispersion relation
the weak-coupling limit we recover Anderson’s restllt, changes qualitatively. It is a monotonic function gfthat
whereas in the strong-coupling limit the Bogoliubov disper-reproduces the?/2mg behavior for largey. For smallq it
sion relatio® for the interacting Bose gas of two-particle reproduces the phononlike Bogoliubov dispersion relation of
pairs can be derived from the quasiparticle RPA. This isthe weakly interacting Bose gas.
consistent with the fact that the BCS theory is capable of Summarizing, we could show that the treatment of the
describing the extreme strong-coupling limit, i.e., the gas ofesidual interaction in the Hamiltonia) within the quasi-
two-particle bound states, properly and reproduces the exapgrticle or generalized RPA allows one to study the behavior
result for the ground-state energy in this lirfit. of the collective modes over the whole coupling range. In
In order to study the transition from weak to strong cou-particular, it yields the physically plausible result of the Bo-
pling the condition for the collective modes was evaluatedgoliubov mode for the weakly interacting Bose gas at very
numerically for the wholeg range. We found that the ten- low densities. Thus the quasiparticle RPA, in contrast to the
dency of the system to form density waves is reflected in aormal RPA, may serve as a reasonable starting point for a
pronounced minimum of the dispersion fA(q) at q=2kg calculation of the ground-state energy, including the scatter-
in the extreme weak-couplindpigh-density case. However, ing part of Eq.(16). However, the comparison of our result
there are no imaginary eigenvaluescgt 2k as character- for the sound velocity in the strong-coupling limit derived
istic for the normal RPA(Ref. 5 over the whole coupling from the quasiparticle RPA with the value for the sound
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APPENDIX

In Egs. (28), (29), and (A2) integralsJ; are introduced.
They will be evaluated for the strong-coupling lines, i.e., for
u* <0 throughout. Here we give the explicit expressions

(a) q/k

0.015 . . - Ji:fo dk —kz—)r,

(A1)
0.010 |

0
e P

. 2
A Ji2:f dk—kz—l-
2m )

QfE,

wos | T | The integrals (Al) are easily evaluated to yield
0:009 et J;=mmP (2| u* Y2 J —m1’2w/(2)y, )32 J,=3mY2m/
L 2" 1, * 152, and Jg,=m*27/257 u* |32 The epr|C|t results
T for J,, J5, and Js, are not needed for the strong-coupling
e expansion32) to the order ofAZ.

P ‘, ‘ ‘ As the next step we will give the results for the coeffi-
) 0.00 0.05 ‘;,‘ao 0.15 0.20 cients of the elements in the determin&®®) resulting from

an expansion for smaty and (). For 1+lg , ,, 1+Ig .

FIG. 3. (8 Collective mode() for small momentag, in the ~ @Ndlg | m We quote the weak-coupling results of Ref. 16. In
weak-coupling caséu* =3.38€). The numerical solutiorfull  addition, the expansions forllg o, I 1, @ndlg 5 m NEC-
line) is compared to the weak-coupling expansi@¥) (dashed €ssary for strong coupling are given. These coefficients are
line). (b) Collective mode(), for small momentay, in the strong-  then evaluated to ordex?:
coupling caséu* =—0.4966E,). The numerical solutiofifull line)
is compared to the strong-coupling expansi@8) (dashed ling
The free dispersiofl=g?%/4m is also given as a dash-dotted line. =— f

1 3A2
& +A2)3’2 T

velocity derived from the exact solution for the ground-state
energy is in qualitative disagreement. This demonstrates the 1 * dk & 1 3A?
necessity to further improve the perturbative treatment in the - J (E+A2)%2 7 2= 2 Ja,
strong-coupling limit.
Finally, we would like to mention possible extensions of )
the treatment given above. Bychkov, Gorkov, and — 1 xdk €k - i J.— ﬂ
Dzyaloshinski* suggested, in order to treat the Peierls insta- mm Jo  (&+A%)%2  mm 27m
bility and the Cooper singularity in a finite temperature ap- (A2)
proach on equal footing, the introduction, in addition to the . )
BCS gap, of a so-called dielectric gap that opens at the criti- = i J' dk 1 ~ E Jae ﬂ
cal temperature for the Peierls transition. (E+A%2 773 2n¢
In order to improve the treatment given above at interme-
diate couplings it is necessary to include ground-state corre- 5 5
lations beyond the quasiparticle RBA3? Such an calcula- y= 1 " dk K _ 1 3 34
tion beyond the standard RPA has recently been carried out mm* Jo (§§+ A?)32 " am? 27 2mm
for the Heisenberg antiferromagriétin particular, it has
been shown that for the seniority motfed generalization of 2 K2 A2
the quasiparticle RPA vyields genuine four-particle — f ~
correlations®® Work in this direction is in progress. 27 e J dk (&+AH2 am? Jsz-

2 ‘J521
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