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In applying the semiempirical intermediate neglect of differential overlap~INDO! method based on the
Hartree-Fock formalism to a cubic perovskite-based ferroelectric material KNbO3 , it was demonstrated that
the accuracy of the method is sufficient for adequately describing the small energy differences related to the
ferroelectric instability. The choice of INDO parameters has been done for a system containing Nb. Based on
the parametrization proposed, the electronic structure, equilibrium ground-state structure of the orthorhombic
and rhombohedral phases, andG-TO phonon frequencies in cubic and rhombohedral phases of KNbO3 were
calculated and found to be in good agreement with the experimental data and with the first-principles calcu-
lations available.@S0163-1829~96!07328-6#

I. INTRODUCTION

Potassium niobate, a perovskite-type ferroelectric material
isostructural to barium titanate, has been subject to numerous
ab initio electronic structure calculations during recent years.
Earlier calculations have been performed for the ideal cubic
perovskite structure in order to obtain electron band structure
and to interpret optical1 or x-ray photoelectron2 spectra.
Since then, special attention has been paid to the total-energy
calculations making it possible to determine the equilibrium
geometry,3,4 phonon frequencies,5–8 and interatomic interac-
tion parameters defining the ferroelectric phase transitions.4,9

Most of the calculations cited have been performed using
the local density approximation~LDA !, either with the
pseudopotential method~Refs. 4 and 7! or with linearized
augmented plane wave~Refs. 5, 8 and 10! or linearized
muffin-tin orbital ~LMTO, Refs. 3 and 6! method. The latter
two approaches use some~different! forms of series expan-
sions for the potential inside the muffin-tin spheres and in the
interstitial. In the LDA-based calculation schemes, the poten-
tial is local and orbital independent, unless Coulomb corre-
lation effects aread hocintroduced by one or another imple-
mentation of self-interaction corrections,11 or within the
LDA1U ~Ref. 12! formalism. This seems to be especially
important for treating localized states, such as e.g., those of
transition-metal impurities in insulators. As has been shown
in Ref. 13 for Fe in MgO, the straightforward implementa-
tion of a LDA scheme may lead to wrong results with respect
to the energy positioning of impurity levels and the magnetic
moment related to the impurity.

In contrast to LDA, the Hartree-Fock formalism automati-
cally incorporates the dependence of the potential on the
symmetry of a particular orbital, as well as on whether this
orbital is occupied or not. Another convenient property of
the Hartree-Fock formalism that is typically realized on a
tight-binding basis set is that it can be more or less directly
applied to crystal surfaces, providing correct asymptotics of
the electron density at the vacuum side.

Ab initio Hartree-Fock calculations are excessively com-
putationally demanding~in the sense that quantitative results
of comparable, or better, accuracy are in many cases obtain-

able within the LDA at much lower cost!, therefore the ap-
plications to perovskite systems are not numerous. As an
eventually single example, finite cluster Hartree-Fock calcu-
lation has been reported for a fragment of KNbO3
structure.14 However, a simplification on top of the Hartree-
Fock method known as intermediate neglect of the differen-
tial overlap15,16 ~INDO! allows one to decrease the computa-
tional effort considerably, at the price of treating several
parameters as fitting variables, to be defined from outside the
calculation scheme. In contrast to model calculations, which
usually require anad hocfitting, the INDO parameters are
believed to be largely transferable, so that, once determined
for some chemical constituent, they may be successfully ap-
plied in the calculations for a variety of chemical substances
where the latter participates.

Typical fields of INDO applications include various de-
fects systems based on silica,15,17 ionic oxides, such as
MgO,15,16 corundum,18,19 zirconia,20 or alkali halides.16,21

The choice of INDO parameters is not a straightforward pro-
cedure but rather a trial-and-error loop, aimed at reproducing
reasonably well band structure, equilibrium geometry, and
characteristic energy differences for molecules or crystals, as
based on experimental measurements orab initio calcula-
tions. The list of parameters for several elements is given in
Refs. 15 and 16 along with some discussion on the parameter
optimization for ionic crystals.

The aim of the present paper is to demonstrate that the
semiempirical INDO method may work well for perovskite-
type ferroelectrics, and to provide the optimized set of INDO
parameters for all constituents of KNbO3. Perovskites are
generally expected to present a problem for any parametrized
method, because of varying degree of covalency depending
on chemical composition and because of strong polarizability
of transition-metal–oxygen bonds. An additional difficulty
related to ferroelectric perovskites is that the energy differ-
ences that play a role in stabilizing the ferroelectric distorted
structure, due to a fine balance between long-range Coulomb
forces and short-range chemical bonding, have the order of
magnitude of 1 mRy per formula unit or smaller, i.e., much
lower than;1 eV energy differences being discussed, e.g.,
in relation to charged defects in silica.17 Since this is the first,
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to our knowledge, application of the INDO method to per-
ovskite systems, the question is to be answered whether the
accuracy of the parametrized INDO method is sufficient to
describe the ferroelectric instability, and whether the descrip-
tion of the underlying energetics is reliable. We optimize the
INDO parameter set based on the comparison with available
ab initio calculation results and experiments, and answer the
above question positively by presenting the INDO calcula-
tions for atomic displacement patterns and phonon frequen-
cies that are in good agreement with experimental data.

The paper is organized as follows. In Sec. II, we describe
the essential features of the INDO method and the meaning
of underlying parameters. In Sec. III, the choice of the INDO
parameters used in our calculation is specified, based on the
comparison with total-energyab initio calculations and the
experimental structure data for KNbO3. In Sec. IV, atomic
coordinates in the room-temperature orthorhombic phase and
in the low-temperature rhombohedral phase are found by the
total-energy-based structure optimization, and the results of
INDO calculations forG-TO phonon frequencies are dis-
cussed.

II. INDO METHOD AND PARAMETER OPTIMIZATION

The calculation scheme of the Hartree-Fock-Roothaan
method in the INDO approximation is discussed in detail in
Refs. 15 and 16. Basically, the procedure reduces to diago-
nalizing the matrix of the Fock operator to get the one-
electron energies, and the linear combination of matrix ele-
ments with appropriate weights, depending on the
occupation of corresponding one-electron states, provides the
total energy. The fixed basis set is minimal in the sense that
each of the atom-centered functions related to the valence-
band states~4 in total per oxygen atom, 9 per transition-
metal atom! is encountered only once. The construction of
the on-site and off-diagonal parts of the Fock matrix is de-
termined in terms of several empirical parameters, labeled by
the atom typeA and the index of the atomic orbital~AO!
m ~see Ref. 15!. The interaction of an electron in themth
valence AO on atomA with its own core

Umm
A 52Eneg

A ~m!2 (
nPA

~Pnn
~0!Agmn2 1

2Pnn
~0!AKmn!

contains, apart from thezm value, which specifies the Slater
exponent for a one-exponential basis function and hence
Coulomb and exchange integralsgmn and Kmn , the initial
guesses for the diagonal elements of the density matrix
Pmm
(0)A and for the energy of themth AO Eneg

A (m), i.e., the
ion’s electronegativity. The interaction of themth AO with
the core of another atomB is approximated as

Vm
B5ZB$1/RAB1@^mmunn&21/RAB#exp~2aABRAB!%,

whereRAB is the distance between atomsA andB, ZB is the
core charge of atomB, and parameteraAB describes the
nonpoint character of this interaction.

Finally, the resonance-integral parameterbmn enters the
off-diagonal Fock matrix elements for the spin component
u:

Fmn
u 5bmnSmn2Pmn

u ^mmunn&,

where themth andnth AO are centered at different atoms,
Smn is the overlap matrix between them, and^ u & are two-
electron integrals. Parameterszm , bmn , aAB , andEneg

A (m)
are usually fixed throughout the iterations, whereasPnn

(0)A

may be corrected as the self-consistency is being achieved.
It is in principle possible to implement the calculation in

such a way that the diagonalization is done for a number of
k vectors per iteration. However, conventional usage of the
INDO method, given the low symmetry and possibly the
lack of translation invariance in the systems it is usually
applied to, restricts the diagonalization to theG point of the
Brillouin zone only, taking instead a supercell, or large unit
cell ~LUC!, all atoms of which contribute to the expanded
basis set. For ideal systems, the enlargement of the unit cell
is equivalent to increasing the density of thek mesh in band-
structure calculations, since theG point of the reduced~in the
supercell! Brillouin zone maps onto different points of the
original Brillouin zone of the single cell. For defect systems,
there is no problem to treat, e.g., discrete impurity states in
the dielectric gap, if one or few impurity atoms are included
along with tens of bulk atoms in the LUC, since thek dis-
persion of such states is negligible. Anyway, the enlargement
of the unit cell in case of defect systems increases the varia-
tional freedom of the basis set.

Since the construction of the parametrized Fock matrix is
straightforward, the bottleneck of the method in what regards
the performance and accuracy is the diagonalization of large
matrices. Compared to precise LDA-based schemes such as,
e.g., full-potential ~FP! LMTO, which usually employ
multiple-tail representation of basis functions,22,23 the INDO
method manages to handle considerably larger supercells.
Compared to efficient minimal-basis computational schemes
as, e.g., tight-binding LMTO,24 INDO may exhibit such ad-
vantages as unrestricted spatial form of the potential, absence
of muffin-tin boundary conditions, and of space-packing
empty spheres.

As a method essentially based on the Hartree-Fock ap-
proximation, INDO does not provide a convenient option to
incorporate correlation effects into one-electron equations, as
may be to some extent done within the LDA by an appropri-
ate choice of the exchange-correlation potential. As a result,
the dielectric band gap comes out in INDO overestimated
usually by 3–5 eV~see, e.g., Ref. 15 and 18!. Moreover, the
lack of correlation effects, which imply some additional re-
pulsion between electrons, overestimates the chemical bind-
ing and results in even more underestimated equilibrium
bond lengths than is known to be the case in LDA calcula-
tions. Some part of correlation corrections~usually referred
to as short-range corrections as they are mostly of intra-
atomic nature! may be, however, incorporated in the choice
of INDO parameters, since the latter are based on experimen-
tal or other external information anyway, and this may to
some extent improve the two shortcomings mentioned.

III. PARAMETER OPTIMIZATION

In the choice of INDO parameters for our calculation, we
relied on the experimental information available and on the
data ofab initio calculations for KNbO3 ~cited in Sec. I!,
which essentially agree in the description of the band struc-
ture. Whereas INDO calculations for many oxides and potas-
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sium salts have been done earlier, and the corresponding
parameters for O and K tabulated,16 no INDO calculations
involving Nb have been, to our knowledge, done by now, so
one-center and all involved two-center parameters had to be
found. SinceEneg is related to the central energy position of
an AO in question, which is hybridized with many other
states throughout the valence band, we calculated partial
density of states~DOS! by sampling over a single (G) k
point in a LUC consisting of 23232 or 33333 single
perovskite cells~40 or 135 atoms in total, correspondingly!
and fitted to corresponding partial DOS from a LMTO cal-
culation.bmn affects the resonance interaction of themth AO
with other states and hence the width of the corresponding
hybridized bands, which can be as well fitted to thea priori
known partial DOS. We used for the two-center parameter
bmn a weighted value (bm1bn)/2, thereforebm andbn may
be calibrated in such a case as one-center parameters. For an
initial value of P(0), an expected occupation of individual
AO’s, based on electronegativity considerations, in the com-
pound in question may be taken, and then refined in the
course of iterations. The two-center parameteraAB , which
does not depend on orbital indices, plays a relatively minor
role in what regards the band structure and DOS and affects
primarily the energetics of atomic displacements, equilib-
rium bond lengths, and hence the equilibrium geometry. Fi-
nally, zm , nominally being a Slater exponent parameter, and
as such tabulated for all elements, should of course be con-
sidered here as a free parameter, which is used to improve
the quality of our fixed, single-exponent basis set. It needs
some adjustment based on a compromise between different
properties that are sought to be optimized.

An example of the total DOS per 135-atom LUC of
KNbO3 is shown in Fig. 1 along with the result of FP-
LMTO calculation. The most obvious discrepancy is in the
energy separation between the primarily O 2s band and the
primarily O 2p1Nb 4d valence band. This difference is due
to the neglect of self-interaction in the LDA-based LMTO
calculation and the lack of correlation effects in the INDO;
the experimental x-ray photoelectron measurements set O
2s–O 2p separation at about 15 eV,2 halfway between the
results of Hartree-Fock and LDA calculations. The experi-
mental estimate of the optical gap of 3.3 eV~Ref. 25! is
again in between the LDA value of 1.4 and 6.1 eV from the
INDO calculation.26 These differences have a physical foun-
dation and cannot be removed without attributing unreason-
able values to, e.g., O 2s and O 2p–related INDO param-
eters.

The effective charges found by the Mullikan population
analysis are10.543 for K,12.019 for Nb, and20.854 for
O. This is generally in agreement with simple tight-binding
calculations,27 but emphasizes a higher degree of covalency
of the K-O bond then may be expected from intuitive elec-
tronegativity considerations. One should note, however, that
static effective charges are not well-defined properties and
vary considerably depending on a method used.

K 3s and K 3p states, which were included into the
valence-band basis set in the LMTO calculation, have been
treated as core states in the INDO method. We found that in
order to obtain correct equilibrium volume, it is essential to
treat K 3p states as the basis AO’s within the valence band,
since their overlap with AO’s of other atoms is not negli-

gible. This observation is in agreement with what was earlier
established in FP-LMTO calculations.3 However, the inclu-
sion of K 3p at the expense of K 4p in the minimal one-
exponential basis of the INDO method does not allow one to
describe off-center displacements and phonon frequencies
with sufficient accuracy. Therefore, we prefer to keep the K
4p as a valence AO and to perform the calculations dis-
cussed below at the experimental lattice parameters of
KNbO3.

Keeping in mind the necessity to obtain reliable values of
equilibrium atomic displacements and the shape of the po-
tential surface related to such displacements for subsequent
studies of ferroelectric materials, we concentrated on these
values as primary criteria for the quality of the INDO param-
etrization we look for. It is known that the fine balance be-
tween long-range electrostatic dipole-dipole interaction and
the short-range chemical bonding effects is accountable for
the ferroelectric instability, therefore the parametersaAB and
bm were especially subject to refinement, onceEneg and
P(0) are essentially fixed based on a band-structure analysis.

FIG. 1. Total density of states of KNbO3 calculated with full-
potential LMTO method ~above! and INDO method for a
33333 supercell~below!. Energy scale is relative to the valence-
band top.
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The total-energy results from the INDO calculations for dif-
ferent displacement patterns have been fitted to analogous
data obtained earlier with the FP-LMTO method as de-
scribed in Ref. 3. We made sure that the optimized parameter
set provides reasonable agreement with the FP-LMTO data
in describing different displacement patterns and is not con-
fined to any particular symmetry.

Since the shape of the total-energy hypersurface over
atomic displacements is not directly measurable experimen-
tally, and the results by differentab initio calculation
schemes differ somehow in determining the depth and the
position of the off-center potential minima~see, e.g., Refs. 5
and 10!, we relied also on a neutron-diffraction data concern-
ing the displaced atomic positions in the ferroelectric phases
of KNbO3,

28 and on theG transverse-optic phonon frequen-
cies as additional reference points to test our parametrization.
The one-center INDO parameters we found to provide the
best compromise in reproducing all these properties are
given in Table I. The best-fitted two-center parametersaAB
are 0.15, 0.33, and 0.39 a.u.21 for A5O andB5O, Nb and
K, correspondingly, and zero forA5Nb and K. The results
of our ground-state geometry and phonon calculations are
discussed in the next section.

IV. RESULTS AND DISCUSSION

A. Sequence of ferroelectric phases

As the temperature lowers, KNbO3 undergoes a sequence
of phase transitions from paraelectric cubic to ferroelectric
tetragonal then orthorhombic then rhombohedral phases. The
atomic positions in all these phases have been determined by
Hewat.28 As a first approximation, each of these ferroelectric
phases is characterized by the off-center displacement of the
Nb atom from its symmetric position in the cubic perovskite
cell along @100#, @110#, or @111# in three subsequent ferro-
electric phases, with the gradual lowering of the total energy.
On top of this major distortion, K and O atoms somehow
adjust their positions as compatible with the reduced symme-
try of each particular phase, and a lattice strain eventually
appears. The hierarchy of total-energy lowerings related to
the Nb displacements along three directions is therefore an
important benchmark for the quality of the calculation in
question. In Fig. 2, the energy gain due to the Nb displace-
ments from the central position in the cubic perovskite cell
~with the lattice constanta53.997 Å! is shown as calculated
by the INDO method for the 23232 supercell. As is con-
sistent with the experimental data, the@111# displacement
and hence the rhombohedral phase provides the lowest

ground-state energy, followed by the@110# displacement
~orthorhombic phase! and the@100# displacement~tetragonal
phase!. This qualitative result is relatively stable against
some variations of the INDO parameters. As regards the
magnitudes of the off-center displacements and the depth of
the related total-energy wells, our INDO parametrization
~Table I! provides good agreement with the results of the
FP-LMTO calculations accounting to all three displacement
directions@see Fig. 4~a! of Ref. 3 and Fig. 1~b! of Ref. 9#.

B. G-TO frozen phonons in the cubic phase

As another test for the quality of our INDO parametriza-
tion for the adequate description of the atomic-displacement
potential surface, we calculated theG transverse-optic~TO!
phonon frequencies in the cubic phase of KNbO3. Similar
calculations have been done earlier by other methods,5,6,8and
the experimental data~obtained mostly by infrared reflectiv-
ity measurements32,33! are available. We performed the cal-
culations for a lattice constanta53.997 Å ~that is based on
an experimental perovskite cell volume extrapolated to zero
temperature! within a conventional frozen-phonon scheme,
using the 23232 LUC. Consistently with the symmetry
analysis given, e.g., in Ref. 6, we studied the effect on the
calculated total energy of small coupled distortions compat-
ible with theT1u irreducible representation, that reveals three
TO frequencies, and of the oxygen displacement within the
single ‘‘silent’’ mode compatible with theT2u irreducible
representation of thePm3m space group. The calculated
phonon frequencies and eigenvectors are given in Table II.

The calculated frequencies generally fall within the limits
set by previousab initio calculations,5–7 with somehow bet-
ter agreement for the hardT1u mode and theT2u mode. The
eigenvectors agree well with those calculated in Ref. 5 by the
FP-LAPW method~for the lattice constanta54.016 Å!, and
with those calculated in Ref. 6 by FP-LMTO. Anyway, the
main pattern of atomic vibrations within each particular
T1u mode~primarily Nb displacement in the soft mode; al-

TABLE I. One-center INDO parameters.

Orbital z ~a.u.21! Eneg ~eV! 2b ~eV! P0 ~a.u.!

O 2s 2.27 4.5 16.0 1.974
O 2p 1.86 212.6 16.0 1.96
Nb 5s 2.05 0.0 30.0 0.1
Nb 5p 2.05 22.0 30.0 0.0
Nb 4d 1.60 23.85 16.0 0.6
K 4s 1.10 2.8 2.0 0.1
K 4p 1.25 0.3 3.0 0.03

FIG. 2. Total energy as a function of off-center Nb displace-
ments along different directions from its position in the cubic per-
ovskite structure as calculated with the INDO (23232 supercell!
method.
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most pure K vibration against all other atoms in the interme-
diate mode, and the stretching of the oxygen octahedra in the
hard mode! are correctly reproduced. The detailed structure
of the soft mode eigenvector reveals smaller participation of
K in the displacements with respect to the center of mass
than was obtained in the FP-LMTO calculation.6 This seems
to be consistent with the atomic coordinates in the tetragonal
phase that emerge as the soft mode freezes down~see Ref. 28
for the experimental data, and Fig. 1 of Ref. 6!, and this
behavior comes out correctly based on our INDO parametri-
zation.

C. Equilibrium displacements in the orthorhombic phase

As an additional benchmark for the fine adjustment of
two-center INDO parameters, we aimed at obtaining a pos-
sibly good agreement with the experimental data28 in deter-
mining all atomic positions, and not only the Nb displace-
ment, in the orthorhombic and rhombohedral ferroelectric
phases. The orthorhombic phase is important because it ex-
ists in a broad temperature range around room temperature
and is subject to most studies and practical applications. The
rhombohedral phase is specially discussed below. Keeping
the lattice vectors for the orthorhombic phase fixed and equal
to those listed in Ref. 28 (a53.973 Å alongx5@100# of the
cubic aristotype,b55.695 Å alongy5@01̄1# and c55.721
Å alongz5@011#), we allowed thec relaxation of K and Nb
atoms and theb relaxation of those O atoms that are in the
same@001# plane with Nb in the course of INDO calculations

towards self-consistency. The total-energy minimization is
implemented in the code, making use of the downhill sim-
plex method~see, e.g., Ref. 30!. The resulting atomic posi-
tions within the orthorhombic cell are shown in Table III in
comparison with the neutron-diffraction estimations of Ref.
28. It was of course our aim to provide as good agreement as
possible by an appropriate choice of INDO parameters, but
the encouraging result is that the agreement is very good,
given the small number of parameters that are not directly
related to the structure properties. The most noticeable dis-
crepancy is in the relative displacement of K atoms, which
was somehow overestimated as compared with the experi-
mental value; the similar trend obtained in the FP-LMTO
optimization of the orthorhombic phase was much more
pronounced.31 One should note that the error in determining
the position by neutron scattering is, of all atoms involved,
maximal for K,28 and that our present estimate falls within
the error bars given in Ref. 28.

D. Displacements and phonons in the rhombohedral phase

The rhombohedral phase corresponds to the low-
temperature ground-state structure of KNbO3, which is what
any zero-temperature total-energy minimization should nor-
mally drive at, with all structural constraints lifted. We
looked for optimized atomic positions compatible with the
symmetry of the rhombohedral phase, using the lattice con-
stants ofa5b5c54.016 Å ~Ref. 28! but keeping the rhom-
bohedral strain angle fixed. The reason for this was that the

TABLE II. CalculatedG-TO frequencies and eigenvectors in cubic KNbO3 .

Eigenvectors~present work! v calc. ~cm21) v expt. ~cm21)
Symmetry K Nb O O O Present Ref. 5 Ref. 6 Ref. 7 Ref. 32 Ref. 33

T1u 0.05 20.57 0.70 0.30 0.30 292i 115i 203i 143i 96 115
T1u 20.88 0.34 0.21 0.16 0.16 178 168 193 188 198 207
T1u 20.02 20.19 20.61 0.54 0.54 537 483 459 506 521 522
T2u 0 0 0 1 21 272 266 234 280a

aMeasurements at 585 K~in the tetragonal phase!, Ref. 32.

TABLE III. Positions of atoms in orthorhombic and rhombohedral phases of KNbO3 ~in terms of lattice parameters! as determined by
neutron diffraction measurements, Ref. 28 and optimized in the INDO calculation.

Atom a b c Dexpt. Dcalc

Orthorhombic phase
K 0 0 Dz 0.0138671 0.0209
Nb 1

2 0 1
2

OI 0 0 1
21Dz 0.0364610 0.0347

OII

OII

1
2

1
2

1
41Dy

3
42Dy

1
41Dz

1
41Dz % Dz:

Dy:

0.034269
20.002469

0.0347
20.0028

Rhombohedral phase
K Dz Dz Dz 0.0130681 0.0139
Nb 1

2
1
2

1
2

O
O
O

1
21Dx

1
21Dx

Dz

1
21Dx

Dz
1
21Dx

Dz
1
21Dx

1
21Dx

%
Dx:
Dz:

0.030169
0.0333615

0.0213
0.0328
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total energy was found to be very insensitive to the rhombo-
hedral strain in BaTiO3 in a FP calculation by Cohen and
Krakauer,29 and we do not expect to achieve better accuracy
for KNbO3 in our INDO calculation. Moreover, we ne-
glected the deviation of the rhombohedral strain angle
a589.83° from 90°.

The experimental and our optimized atomic positions in
terms of lattice vectors are given in Table III. This is, to our
knowledge, the first optimization of the atomic positions in
the rhombohedral phase of KNbO3. The maximal discrep-
ancy with the experiment is for theDx~O! parameter that
describes a slight stretching of oxygen octahedra. This pa-
rameter is obviously related to the rhombohedral strain and
may be slightly adjusted in a calculation incorporating the
exact value of the strain angle. The relative displacements of
K, Nb, and O along the polar@111# axis are all found to be in
very good agreement with the experiment.

The quality of the description of the total-energy hyper-
surface in the rhombohedral phase was further controlled by
calculating theG TO-phonon frequencies. The general sym-
metry relations between theG phonon modes in the cubic
and rhombohedral phases may be found, e.g., in Ref. 32. We
consider in the present work only threeA1 modes, which
originate from theT1u block of the cubic phase, as the crys-
tal symmetry lowers and all the soft modes become stabi-
lized. The calculated frequencies and eigenvectors are given
in Table IV. The components of the eigenvector related to K
and Nb displacement exist only along@111#, whereas each of
three equivalent O atoms may also have the normal compo-

nent of the displacement, in the threefold axial symmetry
along the polar axis. The experimental phonon frequency
data for the rhombohedral phase do not seem to be numer-
ous; the values shown in Fig. 8 of Ref. 32 are about 200,
270, and 600 cm21. Our calculated frequencies are in good
agreement with these data. It is interesting to compare the
eigenvectors with those for the cubic structure. One can see
that the ‘‘pure K’’ mode is not affected by the structure
transformation, preserving almost exactly its frequency and
the displacement pattern. The former soft mode of the cubic
phase only slightly changes the eigenvector, but gets hard-
ened up to 278 cm21 in the rhombohedral structure. Finally,
the highest-frequency mode has the lowest contribution of K
and Nb displacements and is essentially related to the
stretching of the oxygen octahedra, as in the cubic phase.

V. SUMMARY

In applying the semiempirical INDO method to the study
of a cubic perovskite system, we demonstrated that the
method is sufficiently sensitive for the adequate decription of
a ferroelectric instability. The energy gain of the order of
;1 mRy per unit cell, i.e., much lower than one has to deal
with in other conventional applications of the INDO method,
are nevertheless reliably reproduced, resulting in a correct
description of the microscopic structure of ferroelectric
orthorhombic and rhombohedral phases and of theG TO-
phonon frequencies and eigenvectors. The choice of the
INDO parameters was proposed for the Nb-containing sys-
tem, and may be used in further applications.

ACKNOWLEDGMENTS

The work has been done as part of the German-Israeli
joint project ‘‘Perovskite-based solid solutions and their
properties.’’ Financial support by the Niedersa¨chsische Min-
isterium für Wissenschaft und Kultur and by the Deutsche
Forschungsgemeinschaft~SFB 225! is gratefully acknowl-
edged. The authors are grateful to Yu. F. Zhukovskii and E.
A. Kotomin for helpful discussions.

*On leave from Institute of Solid State Physics, University of
Latvia, Riga, Latvia.

1Yong-Nian Xu, W. Y. Ching, and R. H. French, Ferroelectrics
111, 23 ~1990!.

2T. Neumann, G. Borstel, C. Scharfschwerdt, and M. Neumann,
Phys. Rev. B46, 10 623~1992!.

3A. V. Postnikov, T. Neumann, G. Borstel, and M. Methfessel,
Phys. Rev. B48, 5910~1993!.

4R. D. King-Smith and D. Vanderbilt, Phys. Rev. B49, 5828
~1994!.

5D. J. Singh and L. L. Boyer, Ferroelectrics136, 95 ~1992!.
6A. V. Postnikov, T. Neumann, and G. Borstel, Phys. Rev. B50,
758 ~1994!.

7W. Zhong, R. D. King-Smith, and D. Vanderbilt, Phys. Rev. Lett.
72, 3618~1994!.

8R. Yu and H. Krakauer, Phys. Rev. Lett.74, 4067~1995!.
9S. Dorfman, D. Fuks, A. Gordon, A. V. Postnikov, and G. Bor-
stel, Phys. Rev. B52, 7135~1995!.

10D. J. Singh, Ferroelectrics164, 143 ~1995!.
11J. P. Perdew and A. Zunger, Phys. Rev. B23, 5048 ~1981!; A.

Svane and O. Gunarsson, Phys. Rev. Lett.65, 1148~1990!.
12V. I. Anisimov, J. Zaanen, and O. K. Andersen, Phys. Rev. B44,

943 ~1991!; A. I. Liechtenstein, V. I. Anisimov, and J. Zaanen,
ibid. 52, R5467~1995!.

13M. A. Korotin, A. V. Postnikov, T. Neumann, G. Borstel, V. I.
Anisimov, and M. Methfessel, Phys. Rev. B49, 6548~1994!.

14H. Donnerberg and M. Exner, Phys. Rev. B49, 3746~1994!.
15A. Shluger, Theoret. Chim. Acta~Berl.! 66, 355 ~1985!.
16E. Stefanovich, E. Shidlovskaya, A. Shluger, and M. Zakharov,

Phys. Status Solidi B160, 529 ~1990!.
17A. Shluger and E. Stefanovich, Phys. Rev. B42, 9664~1990!.
18P. W. M. Jacobs, E. A. Kotomin, A. Stashans, E. V. Stefanovich,

and I. Tale, J. Phys. Condens. Matter4, 7531~1992!.
19E. A. Kotomin, A. Stashans, L. N. Kantorovich, A. I. Lifshitz, A.

I. Popov, I. Tale, and J.-L. Calais, Phys. Rev. B51, 8770~1995!.
20E. V. Stefanovich, A. L. Shluger, and C. R. A. Catlow, Phys. Rev.

B 49, 11 560~1994!.
21A. L. Shluger and E. A. Kotomin, Phys. Status Solidi B108, 673

~1981!.
22M. Methfessel, Phys. Rev. B38, 1537~1988!.

TABLE IV. Calculated frequencies and eigenvectors of theG-
A1 modes in rhombohedral KNbO3 .

Eigenvectors
v ~cm21) K i@111# Nbi@111# Oi@111# O'@111#

173 0.88 20.37 20.16 0.04
278 0.03 20.53 0.40 0.28
593 0.04 0.26 20.23 0.51

2426 54R. I. EGLITIS, A. V. POSTNIKOV, AND G. BORSTEL



23S. Yu. Savrasov and D. Yu. Savrasov, Phys. Rev. B46, 12 181
~1992!.

24O. K. Andersen, Z. Pawlowska, and O. Jepsen, Phys. Rev. B34,
5253 ~1986!.

25E. Wiesendanger, Ferroelectrics6, 263 ~1974!.
26The gap region is smeared up in the lower panel due to the broad-

ening introduced while constructing the DOS by sampling.
27L. Douillard, F. Jollet, C. Bellin, M. Gautier, and J. P. Duraud, J.

Phys. Condens. Matter6, 5039~1994!.
28A. W. Hewat, J. Phys. C6, 2559~1973!.

29R. E. Cohen and H. Krakauer, Phys. Rev. B42, 6416~1990!.
30W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetter-

ling, Numerical Recipes: The Art of Scientific Computing~Cam-
bridge University Press, New York, 1986!.

31A. V. Postnikov and G. Borstel, Phys. Rev. B50, 16 403~1994!.
32M. D. Fontana, G. Me´trat, J. L. Servoin, and F. Gervais, J. Phys.

C 17, 483 ~1984!.
33F. Gervais, Y. Luspin, J. L. Servoin, and A. M. Quittet, Ferro-

electrics24, 285 ~1980!.

54 2427SEMIEMPIRICAL HARTREE-FOCK CALCULATIONS FOR KNbO3


