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Energy-loss function in the two-pair approximation for the electron liquid
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The imaginary part of the proper polarizability, lh arising due to excitations of two electron-hole pairs,
is studied in detail for electron systems of arbitrary dimensionality, and taking into account arbitrary degen-
eracy of the electron bands. This allows an application to semiconductors with degenerate valleys, and to
ferromagnetic metals. The results obtained not only confirm expressions already known for paramagnetic
systems in the high-frequency region, but are also rigorously shown to be valid for all frequencies outside the
particle-hole continuum. For a sufficiently high momentum transfer a cutoff frequéetyw which ImII=0)
is established for not only two-pair but also ampair processes. In contrast, there is no upper cutoffifed. .
The energy-loss function, including the discussed two-pair contributions, is calculated. The effects of screening
are investigated. Numerical results, illustrating various aspects and properties of this function, especially
showing finite-width plasmon peaks, are obtained for a two-dimensional electron gas.
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. INTRODUCTION Szymansktt>!*and Nakano and Ichimars.The above stud-
ies are based on different approaches and ansatzes, but have
Dynamic excitations of electronic systems have beernn common that they globally account for Coulomb correla-
widely studied, both by electron-energy-loss spectroscopyions to infinite order. It is therefore difficult to use them for
(EELS) (Refs. 1-4 and in x-ray scattering experiments.  estimating the respective contributions of the various pos-
The doubly differential scattering cross section measured ijble excitations. However, a better knowledge of the pro-
these experiments is proportional to the energy-loss functiogesses involved appears highly desirable for an improved
interpretation of the measured spectra. The current work
aims at reducing this gap by a detailed investigation of the
' 1) most prominent multipair process, the excitation of two
particle-hole pairs. This information additionally provides
whereq and» denote the momentum and energy transferredvaluable input for ion-induced-electron-emission studfes.
to the system. Whereas in the EELS experiments the longAs will be demonstrated, the two-pair excitations in the
wavelength region is accessible, measurements using x raygany-electron system represent the leadiogest perturba-
probe the larger domain. Accordingly, descriptions of the tion orde) virtual processes resulting in a finite width of the
dielectric functione(q,w) which are adequate in the whole plasmon excitations—the most important collective phenom-
(q,w) plane are required. Measurements for three-€nain the electron liquid, observed at sntpiis peaks of the
dimensional(3D) metals showed that, besides a likely rel- energy-loss functior(1). Thus our investigation will shed
evance of lattice effect&® strong many-body correlations light on these collective excitations, as well as on the dy-
beyond the random-phase approximati®PA) are of cru- namic dielectric functiofwhich is involved in Eq.(1)] in
cial importance. In particular, recent x-ray experimérms ~ metals. The influence of the multipair excitations on the plas-
Al have given strong evidence of the influence of multipairmon’s dispersion coefficiett is beyond the scope of the
excitations, and many-body effects had to be explicitly in-perturbational approach presented here.
voked to satisfactorily explain the data for Be and£it° It is convenient to represent the dielectric functiern
A number of dynamic theories for the energy-loss func-terms of the proper polarizabilitil as
tion have been reported in the literature, fundamental works
being those of Awa, Yasahura, and As&kiravind, Holas,
and Singwi! Lee and Hond? Green, Neilson, and e(q,0)=1—v(qI(q, ), 2)
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with v(q) denoting the Fourier transform of the Coulomb treated differently and, accordingly, may result in a modifi-
interaction(4e?/q® in 3D and 27e?/q in 2D, respectively.  cation of the GL expressioH.

We start by deriving a general property—a lower cutoff  All the investigations and results discussed so far hold for
frequency of ImII"Pa—due toarbitrary n-pair excitations both 3D and 2D systems. In the final two sections of this
in Sec. Il. Subsequently, special emphasis is put on the leadvork we apply the developed formalism to the 2D case. In
ing contribution, the excitation of two particle-hole pairs. Sec. VI a transformation of variables is presented, allowing
They are included in the second-order polarizability dia-for a significantly more efficient numerical evaluation of
grams(i.e., containing two interaction lingsThese diagrams Im IT?72" In Sec. VII the energy-loss function is evaluated
consist of two contributions of different physical origin. Ten numerically, and the corresponding data are presented for
of them describe processes where the second electron-holarious densities, momentum transfers, and degeneracies.
pair is excited after annihilation of the first pair, so only oneWe conclude with a critical discussion of the applied meth-
electron and one hole exist all the time. The other ten diaeds and the obtained results.
grams show two virtual electron-hole pairs propagating si-
multaneously during some intermediate time interval. These ||, FREQUENCY RANGE COVERED BY THE n-PAIR
latter dlz_igrams will be the _subje_ct of the present analysis. CONTRIBUTION TO Im TI(q,w)

The first results for the imaginary part &f due to two- o ) )
pair excitations, In1?"®" have been given by Glick and Gen'erahzmg the known expressions for 'the'one-pa|r and
Long™ (hereafter referred to as Glfor 3D systems in the [wo-pair cases, the-(partlcle—hole)—'palr'gontrlbutlon to the.
high-frequency region. Corresponding studies of the twoimaginary part of the proper polarizability may be written in
dimensional (2D) case were presented by Holas andthe form
Singwi?° Independent calculations &F2"3" using either dia- .
grams or Green’s functions have resulted in a full complex nPair _ —(2n-1)D Dp 4D
expressioft~24 involving various products of energy de- Im I°%(q, ) =(2m) ™ f{,ﬂl d”h;d pjnhjnpj]
nominators. Besides confirming these results by means of a
diagrammatic analysigAppendix B and Sec. I)| the present X 8(q—qo)[ 8(w—wg) — S(w+ wp)]
work explicitly demonstrates in Sec. IV that the validity of Pair
the GL formula can be extended fail g and for w both XFH Ny, - PPy ), ()
aboveand below the single-pair continuum. For the proof, where
the zeros of all denominators are checked for variewmnd Lo ) ) 5
g. wOEE[(pl—F”'+pn)_(h1+”'+hn)] (5)

A further compelling motivation for studying the two-pair
excitations arises from the behavior of modéquasiy 2D
semiconductor structurdgjuantum wells and metal-oxide- = _
semiconductor field-effect transistorMOSFET'9].25%" Go=(Pat =+ Pn) = (Nt o) ®
The plasmon in these systems, experimentally widelyS then-pair excitation momentum. The occupation functions
studied?®2°3%has a lifetime which is substantially influenced . s s ~ 2
by two-pair processe&:*? Also, for certain symmetry direc- N = 0(kg—k%), ne =6(k"—kg) )
tions in Si-SiQ MOSFET's a valley degeneragy,,, of the
electron bands occurs in addition to the usual spin dege
eracy. Both sources of degeneracy can be combined into
overall degeneracy factdi.

is then-pair excitation energy, and

in Eq. (4) indicate that the particle momenta are denoted by
); , the hole ones by, [here &(x) is the unit-step function,
dkg the Fermi momentum, and all quantities are measured
in atomic unitsA=1=m*]. The ¢ functions impose conser-
vation of the total momentum and energy of the system. Due
Ng=NgpinNyar- 3 to the antisymmetry of InbI(q,w) with respect taw, seen in
particular in Eq.(4), in the following it is sufficient to con-
Ngpinis 1 in ferromagnetic and 2 in the paramagnetic case. Iisider thew=0 case.

systems with degenerate valleys, besides>1, N, =1 can It is known that both the Lindhard functiody(q,w) and
also be realized, depending on the den¥l}. Therefore, the first-order polarizabilii? follow from one-pair excita-
typical values folN, are 1,24 . .. . Forensuring the correct tions only, and, therefore, IHi"#(q,w) is zero outside the

fulfillment of Pauli's exclusion principle, this degeneracy particle-hole continuum “strip” in the(q,w) plane. We in-

factor Ny mustbe taken into account. Therefore, the calcu-vestigate now if a similar property is connected with any

lation of IT1?72" given in Sec. Il is extended to the case of n-(particle-holé-pairs contribution. Such a strip, if it exists,

arbitrary degeneraciy . is defined from below by the minimum valug;¥'(q), and
Before using these results for numerical evaluations of thérom above by the maximum Valugan:)‘(ir(q), of the excita-

energy-loss function for specific systems, the general invesion energyw, at a fixed value ofg. The search for these

tigations are rounded off by a brief study of screening in Secextrema is done in the space of ajl and p; with the con-

V. A standard approach, known in the literature, accountstraints due to their occupation functions and to the momen-

globally for a class of higher-order processes by replacingum conservation, which ties the resultdovia |gy/=|g|=9.

the bare interaction, in the@xac perturbational result, with |t proves convenient to partition the momentum transfer into

a screened on€:’>**The application of this procedure to separate pair transfers by setting

our diagrammatic analysis leads to a split of the final expres-

sion into two contributions in which screening may be p;=h;+ «a;q, (8)
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and then impose the global momentum conservation by th¢

constraint

n
2 o= (9)
Using Eq.(5), this leads to
n
omn (@)= min LZI w%nf’r?"ua,lq)] (10
aptetap=1
where
opn0=" min  3[(h+k)?-h7]. (1]
h2<k2, |hh+k\2>k§

Analogous relations hold for the upper boumﬂ’a?r(q). For

D=2 it is easy to check that the well-known bounds of the

(n=1) particle-hole continuum are obtained as

Or2K) = wypy (K), (12
@EEAK) = wyp_ (K) B(w1p-(K)), (13)
with
w1p= (K)=3k(k* 2Kg). (14)
nPai

In order to estimatev;.5'(q) for n=2 from the “maxi-
mum” analog of Eq.(10), the n-dimensional trial vector
a=(aq,1—a;,0,...,0 is considered. This obviously satis-
fies the constraint9) and leads to the inequality

1Pair,

nPalr
=
w max

1Pair,
max (

lag|a) + 0P | oy — 1| q). (15

In the limit |;|—, both terms on the right-hand side of Eq.

W
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FIG. 1. The ten second-order polarization diagrams describing
“true” two-pair processes. The lines with arrows denote the free
single-particle propagators, the dotted lines are the bare Coulomb
interactions. Dotted lines with arrows show the vertices of entrance/
exit for each diagram.

(15) tend to infinity, so that, in contrast to the single-pair

excitations, the multipair contributions are not bound from

above, i.e.,

o ai(q)=+0 for n=2. (16)

The lower bound, however, is found to be finite forlpair
excitations. Leaving details of the derivation to Appendix A
this bound is obtained as

nPa|
WD min

(@)= wnp- (D) 0(wnp-(a)), 7

with

1
wnps(K) = 5 k(k*2nke) (18)

being a generalization of the single-pair c&%d).

Thus, whereas single-pair excitations make a nonze
contribution to ImIl(qw) in a stip ofi<e

<wPd(q)—the particle-hole continuum range, multipair
eXC|tat|ons make such a contribution in a semi-infinite fre

guency rangev> w:2(q).

Ill. TWO-PAIR CONTRIBUTION TO Im  II(q,w)
IN THE SECOND-ORDER APPROXIMATION

The ten second-order Feynman diagrams containing
“true” two-pair excitations are displayed in Fig. {Here we
also note a misprint in Fig. 2 of GL: diagramsand h are
equivalent, whereas the analogftobut with opposite arrow

'directions, is missing.The resulting compleXl(q,w) ob-
tained by evaluating and summing these ten diagréehs
Appendix B contains both single- and two-pair contribu-
tions. For the imaginary part dl the latter are separated out
in the form

nqln%l’]qsl’]%1

>

d1,92,93.94

Im 2P q,w;[v])= Q53

X 5‘1@3‘*’%“11_‘12

ro
X[8(w—wg)— S(w+ wg) ]

X F2Patq, g Ng:[v]),
(19
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where() is the D-dimensional volume of the system, and 01 =03+ 04— Qp=0;+0q,

5
F2 Pair_ N§| E Froi(Qq, - ,q4;[u])] 02 =03t ds—01=02+0Q,
=1 (26)

5
Oz»=0:1+0>—0s=03—q,
—Nd[jElf[l,-](ql,...,q4;[v]>]. (20 g e

Here F4;) represents the contribution of the one-fermion- G4 =01+t 02—-03=0s—Q.

loop diagram 1, and F,;; the same for the two-loop dia-

gram 3. In Eq. (20) the dependence on the total degeneracyThe potential factors;; are defined as

Ng4 of the electron conduction bardf. Eq. (3)] is seen ex-

plicitly. It is obtained via an extension of the usual summa-

tion over two spin states thl; states, performed separately vij=v(g—0qj)- (27)
for each fermion loop. BesideN,, a factor(—1) is also

connected with each loop. The two-pair excitation energyThe above equation&3) and (24) are valid under the as-

[compare Eq(5)] is sumption thatw; #0 during integrations oveg; .
Because all elements of E¢L9) exceptF2"a" are sym-
wo=wo(0y, ..., 0s)=€3t€e,—€;—€,=0, (21)  metrical with respect tay;<0, and gz—q,, the value of

Im 112 P@" remains unchanged after such a symmetrization of

where expressiong23) and (24),

€=€q =30 (22)
5
is the free-electron energy. The occupation faciofsare -1 _ -1 -1 -1 -1
defined in Eq(7). gy i " ™2, Fan= (CBlvsey —op)tosdog - 0y))
The evaluation of the diagrams in Appendix B results in 1 P
X[vgAw, —wy, )+v41(w3, —w, )],
> i (28)

1 _ -1
an 2 ﬁlj]—2(0311)32+031041)a)2; w4,
j=1 5

-1 . 1 -1 1
24 ool 713 Fiop=(— D{va( o, — 0,")
— U310, T g @, ) & e 2 4 5
2, -1 -1 L L
“Vvawadwg o ey, (23) toglwg — 0, )]+ [vadw, —o;))
-1 -1
° +ug(wy —w, )12 (29)

— -1 -1 -2 -2
T 12 }—[Zj]zz(v41v32+v§1)w2, Wy _04211(0’2/ +w3,) _ . _ .
=1 After inserting expression&8) and (29) into Eg. (20), the
-1 -1, -1 -1 final result is obtained with the integrand negative every-
UV 0, t g w,). (29 where: 9 9 y
Herein the abbreviations;: denote the occurring combina-
tions of energies, namely

2 Pair . __z —
wl’:€3+64_€1’_62:(q3_q2)'(q4_q2), F (ql! s ,Q4,Nd,[l)])— 4 Nd{(Nd l)[(ASJ.

2 2
wy =€zt € €1~ € == (03— 1) (dzg— 1), + A"+ (Agrt Agy)”]
(25) +[(Ag+Ag)+ (A

w3 = €3+ €4~ €1~ €= +(0s—d1) (44— 02), [(AsrtAn) +(As

+Aw 1%, (30
wyr = €3t €4 — €1~ €=+ (03— 1) (43— 2),
with the corresponding momenta where
(dp—0n) - (Ap+9p—0n—0ln)

Aor(Q1, - - - Gai[v]) =v(dp—ap) R T (31)

[(dp—0n) - (dp—dn) [ (Ap—an) - (dp—an) ]

The pairs of indices occurring therein are so in any caseqy,+Q,—0y,—dn=q holds due to the

o ) N momentum-conservatiod function in Eq.(19).
(=22 or (22); (p.p)=(3,4) or (43, (32) For Ny=2 (spin degeneracy onlythe obtained result is



2364 BACHLECHNER, HOLAS, BOHM, AND SCHINNER 54

equivalent to the symmetrized GL restityalid, according 0=w3=(qs— 1) (Us— )
to their claim, in the high-frequency region. In Sec. IV we
determine the range of validity more precisely. =(g2+Qg—ds)- (g1 +q—0ds)

=q;- G+ (91 +0p) - (q—0a3) +(q—03)>. 40
IV. FREQUENCY RANGE FOR WHICH G182 (A1 +G2)- (G~ g) + (A~ Go) 40

THE ASSUMPTION OF NONZERO DENOMINATORS

. 2 . .
IS SATISFIED With the help of Eq(40), the value ofg; can be obtained in

the form
We claim that the conditiongy-#0, i=1, 22, P3_, and 4,
allowing the use in Eq(19) of the integrand7 2" in the 2_ N2 2 2 _ 2
form (3%), are fulfilled Cgorw lying outsic?e the particle-hole 03= (01t 2+ q—Gs)" =01+ o+ (1-2)(9~da)" (41)
continuum. For the proof we assume tlagt=0, from which
the contradiction is obtained, that somgis outside the in-
tegration range defined bﬁj Again, because of the anti-

symmetry of Imll(q,w), it is sufficient to considew=0.
From now on, we introduce system units: the Fermi momen- 5
tum kg for momenta, and the double Fermi enerdye2 k 2 q4<2-C(q,w). (42)
for energies.
We start with the casie=1 and use relation@5) and(26) However, forw lying outside the particle-hole continuum,
to obtain we haveC(q,w)>1; see Eqs(36) and (37). Therefore Eq.
(42) leads to

Taking into account Eq(39) and the inequalities3<1 and
q5<1, we estimateyj as

0:&)1!:(63“1‘ €4 €1 62)_(611_ 61)
=wo—3[ (a1 +)* 7. (33 <1, (43

For >0 we havew,=w due to thes function in Eq.(19), so . ) ) . . . _ .

from Eq. (33 it follows that q,-(q/q)=w/q—q/2, and we i.e., q, is outside the integration range limited b¥4 in Eq.

end up with (19). Again, the proof can be extendedite4 by symmetry
considerations.

q7=C(q,»), (34)
where V. MODIFICATION OF Im II(q,w)
e BY MEANS OF SCREENING
w -
C(q,0)= (E_ > (35) OF THE ELECTRON-ELECTRON INTERACTION

As was noticed by previous worket$2%233534yhen the
In the frequency rangabovethe particle-hole continuum, second-order expression for [ P2" Eqgs.(19) and(30), is
®>w1p.(0)=39°+q [cf. Eq.(12)], from Eq.(35) we have  used for the calculation of the plasmon damping, the ob-
) tained results show a strong overdamping in comparison
_ 9} ~1, (36) with the experimental data. This means that titie order in
2 ' v contributions to ImMI(q,w), n>2, are important. One idea
to include some infinite class of higher-order diagrams is to
replace the bare electron-electron interaction lines in the ten
second-order diagrams of Fig. 1 by “dressed” lingspre-
wp (@) —o q q]? senting the screened interaction order to avoid double
(— _+ 5—1) - E} >1. (37) counting of some diagrams, such a replacement can be ap-
q plied to the “skeleton” diagrams onl$¥ Among the dia-
Both Egs.(36) and (37) show thatq; in Eq. (34) is outside grams in Fig. 1, these denoted by “23,” “24,” and “25” do
the integration range limited bggl in Eq. (19). Due to the ot belong to this class. They may be viewed as first-order

t ith t to the holes, thi f also holds f rQiagrams modified in su'ch a way that their bare interaction
fir;me fy With respect fo the holes, Tis proot &150 nolds 0Ilne is replaced by the line with one lodghe zeroth-order

polarizability I1y) inserted into it. Such a modification repre-
sents only one of an infinite number of terms which sum up
to form the RPA screened interaction

(“’_w1P+(Q) 4 9+1
q 2
whereasbelow the continuum, &Xw<w;p_(q)=3q

for q>2, [cf. Eq. (13)], we get

C(q,w)=

’—q

C(q,w)=

Next the case=3 is considered. As before,
0= [OFY :(€3+ €4 €1 62)_ (63_ 63!)

— 1 — — g
=wot3[(ds—a)*—q3]. (38) v(p) v(p)

So atwy,=w, We obtain(gs—q)-g/q=w/q—q/2, which re- v(p.po) = 1= 0(p)o(p,po) €A, Po)
sults in

(44)

— )= [here the argument paip,py) represents momentum and fre-
(G5~ 9)"=C(q,0). (39 quency components of théD+1)-dimensional argument
Using an alternative representation ey from Eq.(25), we  vector, as it is adopted in Appendix]BTherefore, the cor-
have rect way to include screening in the mentioned diagrams is to
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replace the term which represents the two interaction lines After inserting the replacementd8) and (50) into Egs.

with a bubble between theifsee, e.g., Fig.)7with the fol-  (23) and(24), we obtain the following expression farsdar,
lowing expression: which replacesF?Pain Eq. (19) when selective screening is
included,

x ~ [v(P)]*TTo(p,Po)] _ |
V(plpO)HO(p!pO):v(p!pO)_U(p): 1_U(p)l_;)0(p130) . féspalr(ql, RN ,q4,Nd;[U]):f2PaI|(q1, Ce ,Q4,Nd;[’5])
4

5 . _
( ) +f%|‘|3:alr(qlv e 1q41Nd;[U]).
The leading term of a formal expansion of expressih) in -
powers ofv,

The first term represents the standard overall-screened con-
v Do) ILo(D. Do) = 2[1,(p.po) +O(v3), (46 tribution, and the sepond one th_e differen@dF) between
(P.Po)Ilo(p.Po) =[v(P) J"Tlo(P.Po) + O™, (48) T approaches in the following form

represents the original contributigbefore screeningwhich
demonstrates the correctness of the proposed replacement. -2 Pai NS = — ™ N2 A2+ 0O, A2

In order to evaluate the expressions for IFAP2" effi- Fore (dus - -+ AN [vD == 7 Nl QarAayt QuAz,
ciently, we need to introduce an additional approximation ~ ~,
that neglects the frequency dependenceB¥(p,p,). Fol- +QaA% T QuALl, (52
lowing the arguments given by G static screening is cho- where
sen in all diagrams contributing to the imaginary part of the
dielectric func.tilon. In contrast to GL, however, Wher.e the Qph=Q"Alg,—apn],00=€""A(q,—n,00—1>0 (53
Thomas-Fermi interaction was used, we take the static RPA
dielectric functione?”A(p,0) to screen the potential in a way and
which is valid also for a larger momentum range. Therefore,

we finally obtain Ap=Ap( - [V ]), (54
- - see Eq.(31). Expression(52) for FZ&2" follows from the
V(p,po)o(p,po)=V(p)ILo(p,Po), (47)  second term in the square brackets in E4f), applied to
o these elements of E¢B0) which belong to two-fermion-loop
where the replacement due to screeninfsie Eq.(45)] diagrams(«N3) and contain a squared potential. As the
2(p) static Lindhard functiorl, is negative and the bare potential
~ = v ; . RPA ; o
V(D)— V(D)= _=2 1— My(p.0)], is positive,Q (k,0) is positive for anyk [cf. Eg. (53)].
(P)=V(p) €“PAp,0) (PI[L=0v(p)o(p.0)] Therefore, the two terms in E¢p1) are of the same sign: the

(48)  DIF part enhances the overall-screened one.
with [see Eq.(44
[ C{( d VI. TRANSFORMATION OF VARIABLES
_ _ v(p) FOR AN EFFICIENT NUME_RICAL EVALUATION
v(p)=v(p,0)= D0 (49 OF Im II?P3" N 2D

In the thermodynamic limit, where summations over mo-
- R menta are replaced by integrations, and again using the sys-
screened interaction, this potentié{p) should replacé/|, tem units ofkg and 2, for momenta and energies, H4.9)
for a=24, 23, and 25 in Eq(92), etc. For the remaining takes the form

diagramsV,; should be modified in EqB16), etc. accord- opa .
ing to IMmIT“™(q, w)=(27)"*"[1(q,0) —1(q,~ @)], (59

where

Accordingly, for the evaluation of ImI>P3" with the

v(p)v(K)—=v(p)o(K). (50

In the above equation&™(p,0) can be replaced by another :f Dy 4Dpy.ADry. D a2\ A g2
chosen model static dielectric functieff'(p). '(q.) d7a:d70207a3d7q,0(1 = 07) 6(1~a)
At this point we note that the result obtained in this way
differs from previous calculation®.g., Refs. 32, 19, 20, and
35), where the replacemeff0) was used foarll v factors in

X 0(q3—1)0(93—1) &l (ds+ds) — (A1 + A2+ )]
(95+a3) —(ai+q3)

the second-order expression. In the further discussion such X 0l 5 ®
results will be calledoverall screened0S). As the most
refined version of such approacfelas led to very satisfac- X F(01,02,03,04). (56)

tory results both in comparison with other theotfeand

experiment: it is not a priori obvious that this procedure For D=2 the potential in the system units is
gives results inferior to those obtained with E4g) for the  v(d) =2max(Ng)rs/q, where ap(Ng)=(Ng/4)"% andr, is
terms discussed above. These will be referred tsalsc-  the density parameter connected with the area densitya
tively screenedS9 in the following. We now derive the rsag=(mn,) Y%  while for D=3 we have
corresponding expressions f@2 " while the results will  v(q)=4mas(Ng)rda?, with ag(Ng)=(2Ng/(9m)*® and
be discussed in Sec. VII. ras=(3mn;) 3. Using the above notationskea}
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TABLE I. The auxiliary variablesug, i, @, ag, ¢10, 20, andeyg, and the vectorg,, . .. k, defined in
terms ofq, w, {1, . . . {5 for the integral Eq(67). * is the equation to obtaighs in the range & ¢3<21.

1. Ho=max0,1-w) 12. ky=kqn(¢)

2. w=po+ (=m0 13. ko=kan[ 1+ oot (T—2¢20){4]

3. a=ml2 14. k3= (kax,Ksy) =an(0)+k;

4. k=2u"*coda) 15, ka=(k3+k3,)"2

5. kp=u'?sina) *16.  N(dg)=kaks

6. ay=w—39°+k3+3kq 17. as=w—ig?+k3—1k,q

7. a=(0—30°+k5)/(3k0) 18.  k,=aj?

8. ¢1o=arccogmin(1,a;)) 19.  ag=(p+w—1)/(ksKs)

9. a;=(1—u)/(kika) 20. dao=arccogmin(1,az))
10. dao=arccosmin(1,a,)) 21. Kq=Kan[ b3+ dao+ (=240 L5}
11. =10t 2T 1043

=[ap(Ng)rs] "t in D dimensions. As discussed previously, in the coordinate system connected with the veqtegn(0)

F=F2Pa given by Eqs(30)—(32), shows the symmetry ~ —(0,0), we define angular variables of integratign, ¢,,
¢3, and ¢, via the relations

f(q11q21q31q4):f(q2rq11q3iq4):}—(qqu21q41q3)(‘-57) klzkln(¢1): k2=k2n(¢1+ &>, (63)

The presence of thé functions allows us to reduce the di- kz=Ksn(p3), Ks=kan(ps+ da), (64)
mensionality of the integration bip +1), but the integration g e havek, -k, =k, K,Cod ¢,) andks-k,—kzKk,co9¢,). The

hypervolume in the remaining3D —1)-dimensional space momentum- and energy-conservatiorfunctions rewritten
has such a complicated shape that a Monte Carlo methad oyr new variables are

must be used. The fact that the integrand has a definite sign

(Whenw is outside the particle-hole continuiiis very help- , [KE-K5

ful in obtaining accurate results with this method. ol kz—(gq+ky)]é k4—( 7 Tketo
For D =2 a transformation of variables, reducing this five-

dimensional volume to a hypercube with a unit edge, isAfter integration in the wholé; space and over the radiks

shown below. As a first step additional vector variables ofin the k, space, we obtain

integrationky, k,, k3, andk, are introduced via

. (69

(g, )= f d%k,d%k,0(1— %) 0(1—03) 6(a,)

ki=0,+0; g1=k./2—k,
- 0 Xfwd¢ 0(92—1) (92— 1) F1(Kq Ko, k3,Kz)
k2:(q2_ql)/2 q2:k1/2+k2, 0 4003 a4 1,%2,13:04/,
(66)
Ks=04+03 az=Ka/2—Kky where ky=q+k;, a,=~w—ig?—igq-k,+k3, and K,
< (59 =a3n(¢s+¢,). In the next step, the occupation factors con-

Ka=(0s—03)/2 da=k3z/2+K,. cerninggz andq, are exploited to determine the actual inte-
gration limits for ¢,, and this integral is then transformed to
The Jacobian of this transformation is 1. The functifjy @ unit-interval one ovegs. Similarly, integrations oveg,
obtained fromF by means of transformatiori§8) and(59),  and ¢, are transformed to those ovéf and 3. In the final
step a two-dimensional vecto§K, k) is represented in po-
L s lar coordinates ag{coga), sin(e)] and then variableg
Flky ko k3, kg)=F > Ky, tkaf, (60 anda are transformed to unit intervals in termsgfand¢,.
Finally we obtain

has the property

1 1
1(q,w)=2m6 1- d d,sin(2a) 6
FTKs Ky oK k) = P ke — Ky Ko ) (9,0)=276(w)( Mo)fo §1MJO £osin(2a) 6(ap)

= 7T — 1 1
Flhakeka—ka) (61 X (= a0 (720 |tz

due to the symmetry of, Eq. (57). Therefore, the angular

integration ovek, andk, can be performed in a half space 1 .
only with a doubled integrand. In terms of a unit vector X (=240 JO disF (ky,Kz,Kks,Ky), (67)
function

where the auxiliary variablegg, u, «, ag, @10, P20, aNdeyg
n(¢)=(coq ¢),sin(¢)) (62 and the vectorsky, ... k, defined in terms ofq, o,
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FIG. 2. Energy-loss function of an electron layerrgt=0.7, FIG. 4. Energy-loss function of an electron layerrat=0.7,
calculated with the unscreened interaction. The momentum transfet, |- iated with the unscreened interaction. Dashed INg=1

g of all three curves was taken to be K1 Dashed lineNy4=1; full q=0.04&: full line: Ny=2, q=0.07Ck; dotted line: Ny=4,
line: Nyg=2 (i.e., the most commonly realized case of nondegenerat%: 0.10&Ke .

valleys and two spin possibilitigsdotted line:Ny=4. Upper part:

the full ordinate is shown in order to display the relative heights of

the peaks. The frequency is displayed in units of twice the Fermi

energy.

ReI(q,w)~Rely(q,w). (69

{1, . .. & are given in Table lin a proper order. The NUMEN- rhis is, in essence, a “leading term” approximation: the

cal evaluation of (q,w) using Eq.(67) can be implemented . . . oC )

by means of either a multidimensional integration procedure'm"’lgmaIry part of the'Llndhar'd funpthn IS qsed n the fr_e—
or the Monte Carlo method. It should be noted that fordU€Ncy range of the single-pair excitation strip, while outside
0> w1y We have alwaysa(;>0 s0 fag)=1, and there- this range, the smallest-order nonzéramely the second

fore the whole volume of the hypercube contributes to_ordeb contribution due to two-pair excitations is used. There

1(q,©). For @<w;p_(q) the valued(ag)=0 may occur in is no need to include the two-pair contribution within the

) ) . : single-pair strip, because there it would be a second-order
some region of thé{;,4,) unit square, which, finally, covers : .
L . correction only. Then the real part of the approximate
the whole square whew approaches the limib,p_(q), in

agreement with the result of Sec. Il

VII. DISCUSSION AND CONCLUSION

The energy-loss function I-1/e(q,w)] is now calcu-
lated for selected two-dimensional systems by taking th
proper polarizabilitylI(g, ) in the following approximation

I1(g,w) can be obtained from Ifl(q,w) by means of the
Hilbert transform. But the contribution due to the trans-
formed ImIT?72" from Eq. (68) can be neglected for all fre-
quencies, as a second-order correction to the zeroth-order
Relly(q,w). Represented by a one-fermion-loop diagram,
I15(g,w) is proportional toN4 [cf. Eq. (20) for the second-

rder polarizability. Thus the Lindhard functiotknown for

paramagnetic electron liguidnultiplied by (Ny4/2) givesII,

(for &>0): for arbitrary N .*°
o ¢ 1Paic 1Pair In the following we discuss the resulting energy-loss
IMIT(q )~ Im gg}gi*r‘”) OF @iin () << Wy (0) function (ELF) with respect to its dependence on the degen-
' ImI“"*Y(q,w) for remainingw eracy, momentum, and frequency, together with the influ-
(68)  ence of the model used for screening. For all presented re-
sults no lines are drawn in the vicinity of the frequencies
300 F w1p+, Where perturbation theory is not applicable.
%88: In Figs. 2—4 Im —1/€] is shown for three different de-
0 generaciesNyg=1, 2, and 4. A starting point is the result for
0.14 ELF displayed in Fig. 2 in the system units @t0.1 (note
012 the same upper bound of the single-pair excitations for all
i:’ 0.10 three curvep Both the dispersion and the broadening of the
€ 0.08 plasmon peak can be seen clearly. It should be mentioned
" oosl that for small g the dispersion is given by
ooal v wy(9) = 3N 34(r.a) ™. Figure 3 then shows the same three
0.02| curves, plotted with the energy transfer measured infe¥
N \ S recalculation the effective mass and the background dielec-
0 002 004 006 008 040 042 o1 tric constant corresponding to a Si-SIMOSFET have been

w [eV]

used. A “reversed” ordering of the plasmon peaks positions
is observed. The dependence of the plasmon’s widtN pis

FIG. 3. The same as Fig. 2, but with the frequency displayed iless pronounced in comparison to the previous figure, but

units of eV.

still clearly to be seen. Finally, in Fig. 4, we compare plas-
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FIG. 5. Energy-loss function of an electron layerrat=0.7, 0.96 . . . L L
calculated with the unscreened interaction. The curves correspond 00 01 02 03 04 05 06
to the momentay= 3.5 (full line), g=5.0kg (dashed ling and q/kr
g=6.5% (dotted ling. Inset: the same plot with a magnified ordi-
nate. FIG. 6. Relative width of the plasmon peak of an electron layer

atr¢=0.7, calculated with variously screened interactions. The up-
mons measured at a particular energy, but arising in the thrgger and lower lines representing the frequencies at half height are
systems of the same electron density and different degenarahown with the same line type. Full lines: unscreened result; dotted
cies. This can be obtained only by choosing different modines: overall-screened result; dashed lines: selectively screened re-
mentum transfergin the effective atomic unitsja}=0.13,  Sult.
0.14, and 0.15 foNy=1, 2, and 4, respectivelyWhile these
momenta differ by only 7%, observed enormous differenceplasmons due to the selectively screened interaction exceeds
in widths indicate their strong dependenceNy. (We also  the bare interaction result, yielding a nonvanishing value in
note that theNy=4 curves of Figs. 3 and 4 are almost the the g—0 limit, while the width due to the overall screened
same). interaction is seen to be the smallest one. Thus Fig. 6 shows
Figure 5 gives the energy-loss function in the lacgee-  that the width of a plasmon peak is extremely sensitive to the
gion, where plasmon excitations are impossible. Howeverscreening type applied in the evaluation of TF™2",
results in this region may be of interest for interpreting stop- In order to gain some general understanding of this fact,
ping power experiment¥. For eachq the single-pair peak we calculated 1me2"3(q,w)=—v(q)Im [123{(q,w) for a
(the RPA resultis seen, surrounded on both sides by tailsseries of rg, with the remaining parameters kept fixed
due to two-pair excitations. The low-frequency tail starts at(Ny=2, q=0.1kr, andw=0.24X2E- corresponding to the
the finite frequencyw,p_, Eq. (17), whereas the high- plasmon peak position at=0.7). It should be recalled here
frequency tail spreads to infinity, although it diminishes rap-that the plasmon width is, roughly speaking, proportional to
idly, as is clearly seen in the inset. Im € at the peak frequency; see, e.g., Ref. 20. The values of
Finally, the influence of screening is displayed in Fig. 6. €}, =Im 272" given in Table Il, are separated there into con-
Because the peak around the plasma frequengq), is not  tributions due to various diagrams for [F"2"
symmetric, two frequencies at half heiglat;;(q), situated
on both sides of the peak, are shown. The tendency for the v . ; ,
asymmetry is seen to grow with For smallg the width of €ot= €20) T €[2a] T €[1a7 (70

TABLE II. Values of €'=Im €”3(q=0.1kg, @=0.24x 2E¢) and of the contributions to it due to the
different types of diagrams.

Selective screening Overall screening

100ef, Efzb] € fza] E{la} 100e(, fflzb] GE’Za] Efla]

Is _r3_ P P P _r3_ & & &
S tot tot tot S tot tot tot
o+ 1.72 7.98 -6.72 -0.26 1.719 8.0 -6.7 -0.3
0.1 2.56 4.17 —-3.05 -0.12 0.602 14.5 —-13.0 -0.5
0.2 2.86 3.20 —-2.12 —-0.08 0.361 18.4 —-16.8 —-0.6
0.5 2.99 2.24 —-1.20 —-0.04 0.156 24.6 —22.8 -0.8
0.7 2.91 1.98 —-0.95 -0.03 0.109 27.1 —-25.3 -0.8
1.0 2.72 1.74 —-0.72 —-0.02 0.071 29.3 —27.4 -0.9
2.0 2.19 1.41 —-0.40 —-0.01 0.028 33.0 —-31.1 -0.9

4.0 1.48 1.23 -0.22 —0.01 0.010 35.2 —33.3 -0.9
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where the subscript [ denotes the contribution due to sum  TABLE lll. Logarithmic derivative x=d In €'/d Inr for the

of the two-fermion-loop diagramg23], [24], and[25] (de- total ¢ and the separate contributions to it. Here
pending on the squared potentjalhe subscript [8] that  €'=Im €7*(q=0.1kg , @=0.24x 2E¢).

due to the sum of the two-fermion-loop diagraf24] and : - :
[22] (depending on the product of two potentjaland the Selective screening Overall screening
subscript [B] that due to the sum of the one-fermion-loop
diagramg11], . . . [15] (depending on the product of the two —
potentials. of 30 30 30 30 30 30 30 30

Whenq and w are fixed,e’ depends ong only viathe 01 31 28 27 26 23 27 27 26
potential factors and their screening. In particula¢k) is 02 3.1 27 2.6 25 23 25 2.6 2.5
proportional tor g when the system units are used. Thus threed5 2.9 2.6 2.3 23 20 22 2.3 2.3
potential factorgtwo in the integrand ofl and one inthe 07 28 25 2.1 21 19 21 2.1 2.1
front of IT) provide ther 2 factor in €', which is accounted 1,0 2.8 24 21 20 18 19 21 20
for in the way the results are presented in Table Il. Aremainog 25 23 1.7 16 15 17 1.7 1.6
ing dependence ong stems from screening factors in the 49 23 22 14 14 14 14 14 1.4
integrand. Therefore, the unscreened results, shown in the
first row (r .—0) of Table Il, are valid, in fact, for alt ;. We
see for them that the summasf}, value arises as an effect of = L )
a substantial cancellation between the positive][2ontri-  ation effects, resulting in very different values ¢ for the
bution, which is eight times larger thaef,, itself, and the WO Screenings discussed. Accordingly, the effective expo-
negative terms of remaining diagrams. Although tha][1 nent of €;; is quite different than exponents of its separate
contribution is much weaker than that Oft[por [Za] taken Contributions(except in the |arge-s region, where it is close
separately, nevertheless its role is significant for the totalo the exponent of the dominant contribution
result in almost all case@xcept for the selective screening ~ The two different concepts of an effectivecreenelin-
case in tha >0.5 region. With increasing (i.e., increas- teraction in the perturbational analysis of plasmon damping,
ing strength of screeninghe character of the observed can- investigated by us, can thus be summarized as follows. Both
cellation changes: it is more and more pronounced in the@pproaches seem to show a close resemblance and, in par-
case of overall screening, while it diminishes in the case oficular, are using principally the same formalism. Thus it is
selective screening. This leads to drastically different plasespecially important to discuss the fundamental differences
mon peak widths at finiteg: already atrg=0.5 the width  among them in more detail.
corresponding to the selective screening is 20 times larger The first method, which we refer to within the present
than that with overall screening, andrat=1 it is 40 times  paper asoverall screeningwas in its basic concept devel-
larger; but, on the other hand, it is only 1.7, at least, timegped by Glick and Long® It tries to take into account
larger than the unscreened width. higher-order effects in a global way by replaciati Cou-

This behavior may be explained by the form of the |omb potentials in the second-order expression fodIfR®"
dependence of the RPA static dielectric function used foly an effective interaction. Physically, this can be interpreted
screening. Let us recall that, in the system units, the Thomass ana priori introduction of the finite “effective range of
Fermi momentum iskz=2"r;, and €*"A(k,0)~kse/k for  electron-electron interaction already within the electron gas
k<<kre, while €°A(k,0)~1 for k>ky. Therefore, due to the Hamiltonian. Such an anticipation of the shielding effects in
factor 1£°"Ak,0), the intergrands of selectively screenedthe many-electron collective has the main disadvantage that
[2b] diagrams gain an additional * factor in such integra- it makes the theory more distant from the first principles.
tion regions, where the argumeft is small. For large However, calculations using this method have been success-
enoughr these regions cover almost the whole integrationfylly compared with experiments as well as other theoretical
volume, and the diagrams become proportional toapproaches® so it nevertheless appears that they correctly

3,-1_,2 H H
rsts “=rs. The same reasoning applied to overall screenedepresent relevant aspects of the problem.

Xtot  X[2b] X[2a] X[1a] Xtot X[2b] X[2a] X[1a]

[2b] diagrams and L(imaining screened diagrambpzaving On the other hand, starting from the fundamental pertur-
two such factors ") leads to the dependencér ;?=r3  pation series for the proper polarizability, it is shown in Sec.
for largers. V that not all interaction lines in various second-order dia-

The results collected in Table 11l allow us to see how thisgrams are equally replaced by an effective potential, when
predicted dependence develops in reality. The displayedystematically taking into account higher-order effects. This
logarithmic derivative Ol €[5y, tc. shows the effective method is denoted bgelective screeningithin the present
exponentx in the representation of a particular function aswork. Although it has the obvious advantage of following
proportional tor k. We find that with increasing these the pure first principles more closely, it also raises nontrivial
exponents diminish gradually from the value 3, characteristigproblems, as is shown by our numerical analysis: it appears
for unscreened contributions, to the value 2.2 for the][2 that the approach of selective screening more easily breaks
selectively screened contribution and 1.4 for remaining diadown, i.e., leads to unphysical results, when going to mod-
gram contributiongall at r=4) showing a tendency to ap- erately low densities or small wave vectors. For example, the
proach the predicted values 2 and 1 for very large Al- fact that, forq—0, the plasmon half-width remains finite
though, at moderateg, this difference in the exponents is demonstrates that even rather fundamental large-scale sym-
less pronounced, nevertheless the different growth of SS andetry properties of the system can be sensitive to an incon-
OS €/, leads to weaker and strongeespectively cancel-  sistent choice of the effective interaction: it is most probable
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that this particular problem will be solved by using an ap-schaftlichen Forschung,” Project No. P09504-PHY.
propriate dynamic screening function.

Closing the above discussion, the two ways of introducing
shielding effects into a model based on finite-order perturba- APPENDIX A: DERIVATION OE THE LOWER
tion theory should be considered as two different approxima- BOUND w!h8"(q)
tions, rather than two aspects of a single approach. Conse- pair _ S _
quently, the two methods have their advantages and In determiningwgi(q), first the minimization is consid-
disadvantages: using overall screening leads to results witered in a subspace at where its all components; are
no obvious breakdown of the model; the more fundamentaPositive (=1, ... ,n). The result of this minimization will
approach of selective screening, however, provides the basdhe denoted by+wrr]nF|‘r?lr(q) When substitutingofya (k) into
for a systematic, completely first-principles-based analysis.the right-hand side of Eq10) we first usew;p_ (k) in the

In summary, in this paper we present an analytical andvhole range rather than the full expression given in @#6).
numerical analysis of the imaginary part of the proper polarThIS procedure is correct, prowded that the resulting solution
izabilty Eq. (4) for electron systems. Since both the spacea’ is checked to lie in the regl0a1q>2kp for eachj. So
dimensionality and the electron band degeneracy enter odxd. (10) is rewritten as
calculations as arbitrary parameters, a wide applicability to
many systems is possible. Within the framework of a pertur- n n
bational expansion, a low-frequency cutoff E&j7), charac- &Tﬁ"(q)—mln[ 5 (E ) kpq( > aj) ]
teristic of eachn-pair process, is derived as an exact prop- - (A1)
erty. Concentrating on the leading terms, i.e., the two-pair
processes, numerical results concerning the energy-loss funBecause of the constraif®), the term linear ing does not
tion are presented for an electron layer with various bandiepend ona. The coefficient ag%2 is just the squared ra-
degeneracy factors, which represents an important modelius vector @, the end of which lies on the hyperplane
system for two-dimensional semiconductor devices. Goingy+-:-+a,=1. The shortest is perpendicular to this plane,
beyond the bare perturbational evaluation, the effects o$0 the solution is
screening on a plasmon peak width are studied. It appears to
be of great importance to distinguish clearly between the two o (1 1
conceptionally different methods of building effective inter- a=\h (A2)
actions into the theory, as is discussed in detail earlier in this
section. Although a more extensive comparison of varioussubstitutinga= a® into Eq. (A1) gives
screening ansatzes must be left to future work, it is quite
likely that the fundamental approach proposed in this paper Foma() = wnp-(K) (@np-(K)), (A3)
will provide an important tool to unify them finally into a
promising theoretical description.

with w,,p_ (k) defined in Eq(18). This result can be used for
a?q= (1/n)q>2kg, as mentioned above. The zero result for
g<2nkg, included already in EqA3), can be obtained by
insertinga® as a triale in Eq. (10), and then using resul1.3)
ACKNOWLEDGMENTS to get 0. Sinceny=0 is of interest, other triadr cannot “im-

One of us(M.E.B.) wants to express her deep gratitude toProve” the zero lower bound for it.
the late Professor W. Macke, who was her advisor for the NOw we allow somey; to be negative during the minimi-
doctoral thesis on which this contribution is based, and sh&ation in Eq.(10). Let the number of posmvezj ben”, and
thanks Professor U. M. Titulaer for helpful discussions. Thisth® number of negatlvez] be n"=n—n". In terms of two
work was partially carried out during our participation in the Sets {a| >0l= ntiagt- +an+— 1} and {e
Workshop on Condensed Matter Physics at the Internationat-0,l = N :a;+---+a,-=1} and a parameter=0,
Center for Theoretical Physics, Trieste, Italy. Our thanks argve defmea satisfying the constraing; +---+a,=1, to be
due to the I.C.T.P. for its hospitality, and to Professor M.

Tosi for his interest in this work. We also acknowledge fi- (1+X)al_+ forj=1,...n"

nancial support by the “Rat fuAuslandsbeziehungen der T B fori=nt (A4)
I a4 orj=n"+1,...)n

Johannes Kepler Universita Part of the work was sup- J=n

ported by the Austrian “Fonds zur Faerung der wissen- So Eq.(10) can be rewritten as

n n“=n-nt N
nPair, _ f ; : 1Pa| : 1Pa|r -
®min ()= min  min min Zl min '[a] (1+x)q] | + min Z Wmin (@ X0)
1=n*=nx=0 a3 >0,..., a:+>OJ a;>0,..., o >0
011—-%- +a:+:1 )+ ta _=1

(A5)
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By applying result(A3) of the minimization in the positive
@; subspace to each square bracket, we get

WP )= min min{* o P (1+x)q]

1=<nt<nx=0

++w(n_—n+)Pair(Xq)}_ (AB)

Since " w!"3(k) is a nondecreasing function &f the mini-

mum (A6) is reached ax=0:

nPalr

Omin (4)= min +wmi;)Pair(q).

1<nt=n

(A7)

Finally, since " w!"3(q) is a nonincreasing function of

the minimum in Eq(A7) is obtained fom™ =n. So we dem-
onstrated that

wlbal(q) =" Wbl q),

which is given in Eq(17) in the main text.

(A8)

APPENDIX B: EVALUATION OF DIAGRAMS

The contribution to the proper polarizability Ih{(q,w)
due to one of the diagrams shown on Fig. 1, say diaggam
can be written a§*

Q314(9,q0)=—(— (B1)

Ng)Nn > Via1Gra; s
I,m,p
whereNy is the number of fermion loops ia and Ny the
total degeneracy of the electron band, see(Bg.The sum-
mation goes over three intermediate momenta, andp,
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IH+q

I4q

Hqpe g 1 H

[12] [24]

FIG. 7. Two of the diagrams of Fig. 1 shown with detailed
information on internal 4-momenta.

Vig=v(p)o(l+g—p—m), (B4)
Viog=[v(p)12, (BS)
while the Green-function factors are common:
- - dlodmydpo
G[lz]:G[zzu:f 2ai)? G(l+q)
XG(l+g—p)G(MG(M+p)G(l+qg)G(l).
(B6)

Actually, all remaining diagrams may_be arranged in pairs
and labeled in such a way th&;;;= G35}, G13= Gy25),
Gp14)= G2}, and Gy35.= Gz, While their interaction fac-
tors are different. The Green function used in E@3) and
(B6) is

and the remaining factors represent the two interactions in

the diagramgdashed lines which are supposed to be static

(frequency independent

Vig=v(..)v(...), (B2)

and six Green functiongcontinuous linegs which are inte-
grated out over all intermediate frequencies

Gra)= f

dlodmgydpg

2my? Cl+a) ..

.G(). (B3

G(k)=G(k,ko)=n [ko— (ex—im)]~*

+ny [ko— (ec+im]H,

7—07" (B7)
[see Eqs(7) and(22) for the definitions o, ande,]. This
G(k) leads to the time-ordered version Wf,;(q,q0) when
G4 Obtained in Eq(B6) is inserted into Eq(B1). The re-

As an example, we evaluate now diagrams 12 and 24 labelddrded version, used in the electron response applications,

as in Fig. 7. TheD +1)-dimensional vectors likg=(q,q,)
andl=(l,l,) are indicated there. We see thé{=1 for dia-

can be readily obtained from the above version by shifting its
poles, i.e., by replacinggg=i%) with (go+i%) in each de-

gram 12 and\;=2 for 24, and that their interaction factors nominator of the result of the integrations in EB3). So we

are also different:

~ _ A _rnt + o+ -
Gr121= Gr241= [Nm+ pNis pNi% g pNem My

| —0.0][qotin—

obtain

(Em+p+El+qu_5m_fl)]71[QO+i77 El+q €|)]7

Fotat - ; -1 -2
—[nmny nl+qnm+pn|+q—p_0-o-][q0+|77_(6m+p+el+q7p_6m_fl)] [6m+p+el+q7p_€m_fl+q]

+[nr;-%—pnrnlt—q—pnr;nlj—q_O-O']{[QO+i 77_(El+q_ €)]”

+[dot+in—(€+q—€)]”

1 -2
[€m+pT €4q-p— €m— €1+q] 1.

2 -1
[Em+p+ €l+g-p~ €m— 6I+q]

(B8)

Here 0.0. means the opposite occupation term, i.e., obtained from the preceding term by applying the repgcemegnin

each occupation factor. We see the poles at the two-particle-hole pair excitation energy in the first and second terms of the
can be calculated according to E&1) for go=w using the following two

right-hand side of Eq(B8). Therefore ImiTZ®"
terms of ImG; :
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2Pair_ 2Pair__ - - - + _+ _
Im G[12] Im G[24] = N NN g—pMmN (= M) 0 —(€mipt€1g-p—€m—€) H{(€mipt €lrg-p— €m—€119) “IRre

- anq+pn|_+qun|++an;n|+( —m)Slo—(€mipT €4q-p~ €m— €)](€EmspT €14q—p— Em— €I+q)_2 (B9)
|
[the terms due to the positive excitation energy only should \‘/[21]:,)41032, (B22)
be included; see Eq19)]. We introduced the symbdf}g,
defined forf in terms of naturah,,n,, ... andrealx,y ...,

~ ~ A ~ - -y -1 -1
0r131= O25= 01141 = 1217 = 2Ny Ny L 05 FReW
{x"My M2 }pe= lim  Re{(x+in) "(y+in) "2} _1, - _ 1
© 0<7—0 +2n2+,n;r,w2,l{w4,l}Re+2n2,nz,{w2,lw4,1}Re
(B10) PP
+2n2[n4lw21 w4/ . (823)
This is a combination of principal-value and Dirac-delta dis-

tributions and their derivatives, with argumernty, ... . In In diagrams 15 and 22 the energy is found in two differ-
the final step, in order to have the standard form shown 'rént representations in terms bfm, and p; therefore Eq.
Eq. (19), we change the variables of summation into (B12) must be replaced in this case by ’

g;=m, d,=Il, gz=l+gq—p, Qgs=m+p. (B1Y

‘7:[3] = WV[Aa]g[Aa] + 71-\/Fa]g[sa] ) (B24)
Then the contribution7 of diagrama to Im I12P3" corre- wher
sponding toV Im G4 in Eq. (B1) can be written as ere
]:[a]:ﬂ'\?[a]g[a]r (B12) V'[A15]:U41031, V[Bl5]:U41U421 (B29
where, for the considered diagrams, we have, from ). “n eg
and (BS), Vi22= V22 = Va0 32, (B26)
Vi12=vawsi, (B13 - - - - -1 -1 -1 -1
- gf15]=gf22]=—n3,n4,w3, Wy _n;‘r’nz’{ws' Wy }Re
R - -1, -1 -5 -1 -1
Vizg=02, (B14) —Nging g {w, tre Mg Ny {05 Treoy,
and from Eq.(B9) (B27)
- -2 + =2 ~ ~ _ _ _ _ _
9121=0124= — Ny { @, Jre— Ny @, . (B19 g[Bls]zg[Bzz]z —nyny o) 0y ke NpNy 0] 0y

A compact form of Eq(B15) and analogous results for the N S Tt T
remaining diagrams are possible due to the shorthand nota- 1Nz @ dRey Ny Nz 03 {0 e

tion for the occurring combinations of energies and momenta (B28)
and for the potential, shown in EqR5)—(27). All remaining

diagrams can be evaluated in a similar way to give
After substituting the expressions @7, , given in Egs.

. (B12—(B29), into Eq. (19), Im 123" can be obtained for
Vi1 = Va2, (B16)  arbitrary (g, ) by means of3D —1)-fold numerical integra-
tion (after taking into account thé functiong. However,

| _ .2
Vizg =vay B ted by the symbo{f}g. [see Eq.(B10)], this integration
may be extremely difficult to perform in practice. But, if we

+p =2 -
Op111=0j231= — Ny {5 Fre— Ny @3,
p R Tt dRe T w;#0, the symbolqf}g. reduce just td. The region of the

because of the principal value and other distributions, gener-

-2 (B18) assume that during integration all denominators satisfy

(g,w) plane, where this assumption is satisfied, is deter-

V013 =v31032, (B19)  mined in Sec. IV, while below the consequences of this as-
sumption are taken into account.

The identityn, +n, =1 allows us to simplify the expres-
sions forg[a] when the symbol } is omitted, e.g.9[17
A wz, in Eq. (B15). The final result, obtained in analo-
V[14= Va3, (B21)  gous way, is given in Eqg23) and(24) of the main text.

\A/[zs]:l)%l: (B20)
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