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The imaginary part of the proper polarizability, ImP, arising due to excitations of two electron-hole pairs,
is studied in detail for electron systems of arbitrary dimensionality, and taking into account arbitrary degen-
eracy of the electron bands. This allows an application to semiconductors with degenerate valleys, and to
ferromagnetic metals. The results obtained not only confirm expressions already known for paramagnetic
systems in the high-frequency region, but are also rigorously shown to be valid for all frequencies outside the
particle-hole continuum. For a sufficiently high momentum transfer a cutoff frequency~below which ImP50!
is established for not only two-pair but also anyn-pair processes. In contrast, there is no upper cutoff forn.1.
The energy-loss function, including the discussed two-pair contributions, is calculated. The effects of screening
are investigated. Numerical results, illustrating various aspects and properties of this function, especially
showing finite-width plasmon peaks, are obtained for a two-dimensional electron gas.
@S0163-1829~96!00128-2#

I. INTRODUCTION

Dynamic excitations of electronic systems have been
widely studied, both by electron-energy-loss spectroscopy
~EELS! ~Refs. 1–4! and in x-ray scattering experiments.5–7

The doubly differential scattering cross section measured in
these experiments is proportional to the energy-loss function

d2s

dV dv
}ImF2

1

e~q,v!G , ~1!

whereq andv denote the momentum and energy transferred
to the system. Whereas in the EELS experiments the long-
wavelength region is accessible, measurements using x rays
probe the large-q domain. Accordingly, descriptions of the
dielectric functione~q,v! which are adequate in the whole
~q,v! plane are required. Measurements for three-
dimensional~3D! metals showed that, besides a likely rel-
evance of lattice effects,5,8 strong many-body correlations
beyond the random-phase approximation~RPA! are of cru-
cial importance. In particular, recent x-ray experiments6 on
Al have given strong evidence of the influence of multipair
excitations, and many-body effects had to be explicitly in-
voked to satisfactorily explain the data for Be and Li.5,9,10

A number of dynamic theories for the energy-loss func-
tion have been reported in the literature, fundamental works
being those of Awa, Yasahura, and Asaki,10 Aravind, Holas,
and Singwi,11 Lee and Hong,12 Green, Neilson, and

Szymanski,13,14and Nakano and Ichimaro.15 The above stud-
ies are based on different approaches and ansatzes, but have
in common that they globally account for Coulomb correla-
tions to infinite order. It is therefore difficult to use them for
estimating the respective contributions of the various pos-
sible excitations. However, a better knowledge of the pro-
cesses involved appears highly desirable for an improved
interpretation of the measured spectra. The current work
aims at reducing this gap by a detailed investigation of the
most prominent multipair process, the excitation of two
particle-hole pairs. This information additionally provides
valuable input for ion-induced-electron-emission studies.16,17

As will be demonstrated, the two-pair excitations in the
many-electron system represent the leading~lowest perturba-
tion order! virtual processes resulting in a finite width of the
plasmon excitations—the most important collective phenom-
ena in the electron liquid, observed at smallq as peaks of the
energy-loss function~1!. Thus our investigation will shed
light on these collective excitations, as well as on the dy-
namic dielectric function@which is involved in Eq.~1!# in
metals. The influence of the multipair excitations on the plas-
mon’s dispersion coefficient18 is beyond the scope of the
perturbational approach presented here.

It is convenient to represent the dielectric functione in
terms of the proper polarizabilityP as

e~q,v!512v~q!P~q,v!, ~2!
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with v(q) denoting the Fourier transform of the Coulomb
interaction~4pe2/q2 in 3D and 2pe2/q in 2D, respectively!.

We start by deriving a general property—a lower cutoff
frequency of ImPnPair—due toarbitrary n-pair excitations
in Sec. II. Subsequently, special emphasis is put on the lead-
ing contribution, the excitation of two particle-hole pairs.
They are included in the second-order polarizability dia-
grams~i.e., containing two interaction lines!. These diagrams
consist of two contributions of different physical origin. Ten
of them describe processes where the second electron-hole
pair is excited after annihilation of the first pair, so only one
electron and one hole exist all the time. The other ten dia-
grams show two virtual electron-hole pairs propagating si-
multaneously during some intermediate time interval. These
latter diagrams will be the subject of the present analysis.

The first results for the imaginary part ofP due to two-
pair excitations, ImP2Pair, have been given by Glick and
Long19 ~hereafter referred to as GL! for 3D systems in the
high-frequency region. Corresponding studies of the two-
dimensional ~2D! case were presented by Holas and
Singwi.20 Independent calculations ofP2Pair using either dia-
grams or Green’s functions have resulted in a full complex
expression21–24 involving various products of energy de-
nominators. Besides confirming these results by means of a
diagrammatic analysis~Appendix B and Sec. III!, the present
work explicitly demonstrates in Sec. IV that the validity of
the GL formula can be extended forall q and forv both
aboveand below the single-pair continuum. For the proof,
the zeros of all denominators are checked for variousv and
q.

A further compelling motivation for studying the two-pair
excitations arises from the behavior of modern~quasi-! 2D
semiconductor structures@quantum wells and metal-oxide-
semiconductor field-effect transistors,~MOSFET’s!#.25–27

The plasmon in these systems, experimentally widely
studied,28,29,30has a lifetime which is substantially influenced
by two-pair processes.31,32Also, for certain symmetry direc-
tions in Si-SiO2 MOSFET’s a valley degeneracyNval of the
electron bands occurs in addition to the usual spin degen-
eracy. Both sources of degeneracy can be combined into an
overall degeneracy factorNd .

Nd5NspinNval . ~3!

Nspin is 1 in ferromagnetic and 2 in the paramagnetic case. In
systems with degenerate valleys, besidesNval.1,Nval51 can
also be realized, depending on the density.33,34 Therefore,
typical values forNd are 1,2,4 . . . . Forensuring the correct
fulfillment of Pauli’s exclusion principle, this degeneracy
factorNd mustbe taken into account. Therefore, the calcu-
lation of P2Pair given in Sec. III is extended to the case of
arbitrary degeneracyNd .

Before using these results for numerical evaluations of the
energy-loss function for specific systems, the general inves-
tigations are rounded off by a brief study of screening in Sec.
V. A standard approach, known in the literature, accounts
globally for a class of higher-order processes by replacing
the bare interaction, in the~exact! perturbational result, with
a screened one.19,20,35 The application of this procedure to
our diagrammatic analysis leads to a split of the final expres-
sion into two contributions in which screening may be

treated differently and, accordingly, may result in a modifi-
cation of the GL expression.19

All the investigations and results discussed so far hold for
both 3D and 2D systems. In the final two sections of this
work we apply the developed formalism to the 2D case. In
Sec. VI a transformation of variables is presented, allowing
for a significantly more efficient numerical evaluation of
Im P2Pair. In Sec. VII the energy-loss function is evaluated
numerically, and the corresponding data are presented for
various densities, momentum transfers, and degeneracies.
We conclude with a critical discussion of the applied meth-
ods and the obtained results.

II. FREQUENCY RANGE COVERED BY THE n-PAIR
CONTRIBUTION TO Im P„q,v…

Generalizing the known expressions for the one-pair and
two-pair cases, then-~particle-hole!-pair contribution to the
imaginary part of the proper polarizability may be written in
the form

Im PnPair~q,v!5~2p!2~2n21!DE H )
j51

n

dDhjd
Dpjnhj

1npj
2J

3d~q2q0!@d~v2v0!2d~v1v0!#

3FnPair~h1 , . . . ,hn ,p1 , . . . ,pn!, ~4!

where

v0[
1
2 @~p1

21•••1pn
2!2~h1

21•••1hn
2!# ~5!

is then-pair excitation energy, and

q0[~p11•••1pn!2~h11•••1hn! ~6!

is then-pair excitation momentum. The occupation functions

nk
15u~kF

22k2!, nk
25u~k22kF

2 ! ~7!

in Eq. ~4! indicate that the particle momenta are denoted by
pj , the hole ones byhj @hereu(x) is the unit-step function,
andkF the Fermi momentum, and all quantities are measured
in atomic units,\515m* #. Thed functions impose conser-
vation of the total momentum and energy of the system. Due
to the antisymmetry of ImP~q,v! with respect tov, seen in
particular in Eq.~4!, in the following it is sufficient to con-
sider thev>0 case.

It is known that both the Lindhard functionP0~q,v! and
the first-order polarizability36 follow from one-pair excita-
tions only, and, therefore, ImP1Pair~q,v! is zero outside the
particle-hole continuum ‘‘strip’’ in the~q,v! plane. We in-
vestigate now if a similar property is connected with any
n-~particle-hole!-pairs contribution. Such a strip, if it exists,
is defined from below by the minimum valuevmin

nPair(q), and
from above by the maximum valuevmax

nPair(q), of the excita-
tion energyv0 at a fixed value ofq. The search for these
extrema is done in the space of allhj andpj with the con-
straints due to their occupation functions and to the momen-
tum conservation, which ties the result toq via uq0u5uqu5q.
It proves convenient to partition the momentum transfer into
separate pair transfers by setting

pj5hj1a jq, ~8!
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and then impose the global momentum conservation by the
constraint

(
j51

n

a j51. ~9!

Using Eq.~5!, this leads to

vmin
nPair~q!5 min

a1 , . . . ,an
a11•••1an51

H (
j51

n

vmin
1Pair~ ua j uq!J , ~10!

where

vmin
1Pair~k!5 min

h
h2,kF

2 , uh1ku2.kF
2

1
2 @~h1k!22h2#. ~11!

Analogous relations hold for the upper boundvmax
nPair(q). For

D>2 it is easy to check that the well-known bounds of the
~n51! particle-hole continuum are obtained as

vmax
1Pair~k!5v1P1~k!, ~12!

vmin
1Pair~k!5v1P2~k!u„v1P2~k!…, ~13!

with

v1P6~k!5 1
2k~k62kF!. ~14!

In order to estimatevmax
nPair(q) for n>2 from the ‘‘maxi-

mum’’ analog of Eq.~10!, the n-dimensional trial vector
a5~a1,12a1,0, . . . ,0! is considered. This obviously satis-
fies the constraint~9! and leads to the inequality

vmax
nPair>vmax

1Pair~ ua1uq!1vmax
1Pair~ ua121uq!. ~15!

In the limit ua1u→`, both terms on the right-hand side of Eq.
~15! tend to infinity, so that, in contrast to the single-pair
excitations, the multipair contributions are not bound from
above, i.e.,

vmax
nPair~q!51` for n>2. ~16!

The lower bound, however, is found to be finite for alln-pair
excitations. Leaving details of the derivation to Appendix A,
this bound is obtained as

vmin
nPair~q!5vnP2~q!v„vnP2~q!…, ~17!

with

vnP6~k!5
1

2n
k~k62nkF! ~18!

being a generalization of the single-pair case~14!.
Thus, whereas single-pair excitations make a nonzero

contribution to ImP~q,v! in a strip vmin
1Pair,v

,vmax
1Pair(q)—the particle-hole continuum range, multipair

excitations make such a contribution in a semi-infinite fre-
quency rangev.vmin

nPair(q).

III. TWO-PAIR CONTRIBUTION TO Im P„q,v…
IN THE SECOND-ORDER APPROXIMATION

The ten second-order Feynman diagrams containing
‘‘true’’ two-pair excitations are displayed in Fig. 1.~Here we
also note a misprint in Fig. 2 of GL: diagramsi andh are
equivalent, whereas the analog tof , but with opposite arrow
directions, is missing.! The resulting complexP~q,v! ob-
tained by evaluating and summing these ten diagrams~cf.
Appendix B! contains both single- and two-pair contribu-
tions. For the imaginary part ofP the latter are separated out
in the form

Im P2 Pair~q,v;@v# !5VD
23 (

q1 ,q2 ,q3 ,q4
nq1

1nq2
1nq3

2nq4
2

3dq,q31q42q12q2

3@d~v2v0!2d~v1v0!#

3F 2 Pair~q1 , . . . ,q4 ,Nd ;@v# !,

~19!

FIG. 1. The ten second-order polarization diagrams describing
‘‘true’’ two-pair processes. The lines with arrows denote the free
single-particle propagators, the dotted lines are the bare Coulomb
interactions. Dotted lines with arrows show the vertices of entrance/
exit for each diagram.
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whereVD is theD-dimensional volume of the system, and

F 2 Pair5Nd
2H (

j51

5

F@2 j #~q1 , . . . ,q4 ;@v# !J
2NdH (

j51

5

F@1 j #~q1 , . . . ,q4 ;@v# !J . ~20!

Here F[1 j ] represents the contribution of the one-fermion-
loop diagram 1j , andF[2 j ] the same for the two-loop dia-
gram 2j . In Eq. ~20! the dependence on the total degeneracy
Nd of the electron conduction band@cf. Eq. ~3!# is seen ex-
plicitly. It is obtained via an extension of the usual summa-
tion over two spin states toNd states, performed separately
for each fermion loop. BesidesNd , a factor ~21! is also
connected with each loop. The two-pair excitation energy
@compare Eq.~5!# is

v05v0~q1 , . . . ,q4!5e31e42e12e2>0, ~21!

where

e i[eqi[
1
2qi

2 ~22!

is the free-electron energy. The occupation factorsnk
6 are

defined in Eq.~7!.
The evaluation of the diagrams in Appendix B results in

p21(
j51

5

F@1 j #52~v31v321v31v41!v28
21v48

21

2v41v31~v28
22

1v38
21v48

21
!

2v41v42~v38
22

1v18
21v28

21
!, ~23!

p21(
j51

5

F@2 j #52~v41v321v31
2 !v28

21v48
21

2v41
2 ~v28

22
1v38

22
!

2v41v32~v18
21v28

21
1v38

21v48
21

!. ~24!

Herein the abbreviationsvi 8 denote the occurring combina-
tions of energies, namely

v185e31e42e182e25~q32q2!•~q42q2!,

v285e31e42e12e2852~q32q1!•~q42q1!,
~25!

v385e381e42e12e251~q42q1!•~q42q2!,

v485e31e482e12e251~q32q1!•~q32q2!,

with the corresponding momenta

q185q31q42q25q11q,

q285q31q42q15q21q,
~26!

q385q11q22q45q32q,

q485q11q22q35q42q.

The potential factorsv i j are defined as

v i j5v~qi2qj !. ~27!

The above equations~23! and ~24! are valid under the as-
sumption thatvi 8Þ0 during integrations overqi .

Because all elements of Eq.~19! exceptF 2 Pair are sym-
metrical with respect toq1↔q2 and q3↔q4, the value of
Im P2 Pair remains unchanged after such a symmetrization of
expressions~23! and ~24!,

p21(
j51

5

F@1 j #5~2 1
2 !@v31~v48

21
2v28

21
!1v42~v38

21
2v18

21
!#

3@v32~v48
21

2v18
21

!1v41~v38
21

2v28
21

!#,

~28!

p21(
j51

5

F@2 j #5~2 1
4 !$@v31~v48

21
2v28

21
!

1v42~v38
21

2v18
21

!#21@v32~v48
21

2v18
21

!

1v41~v38
21

2v28
21

!#2%. ~29!

After inserting expressions~28! and ~29! into Eq. ~20!, the
final result is obtained with the integrand negative every-
where:

F 2 Pair~q1 , . . . ,q4 ,Nd ;@v# !52
p

4
Nd$~Nd21!@~A31

1A42!
21~A321A41!

2#

1@~A311A42!1~A32

1A41!#
2%, ~30!

where

Aph~q1 , . . . ,q4 ;@v# !5v~qp2qh!
~qp2qh!•~qp1qṗ2qh2qḣ!

@~qp2qh!•~qp2qḣ!#@~qp2qh!•~qṗ2qh!#
. ~31!

The pairs of indices occurring therein are

~h,ḣ!5~1,2! or ~2,1!; ~p,ṗ!5~3,4! or ~4,3!,
~32!

so in any caseqp1qṗ2qh2qḣ5q holds due to the
momentum-conservationd function in Eq.~19!.

For Nd52 ~spin degeneracy only! the obtained result is
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equivalent to the symmetrized GL result,19 valid, according
to their claim, in the high-frequency region. In Sec. IV we
determine the range of validity more precisely.

IV. FREQUENCY RANGE FOR WHICH
THE ASSUMPTION OF NONZERO DENOMINATORS

IS SATISFIED

We claim that the conditionsvi 8Þ0, i51, 2, 3, and 4,
allowing the use in Eq.~19! of the integrandF2 Pair in the
form ~30!, are fulfilled forv lying outside the particle-hole
continuum. For the proof we assume thatvi 850, from which
the contradiction is obtained, that someqj is outside the in-
tegration range defined bynqj

6 . Again, because of the anti-

symmetry of ImP~q,v!, it is sufficient to considerv>0.
From now on, we introduce system units: the Fermi momen-
tum kF for momenta, and the double Fermi energy 2EF5k F

2

for energies.
We start with the casei51 and use relations~25! and~26!

to obtain

05v185~e31e42e12e2!2~e182e1!

5v02
1
2 @~q11q!22q1

2#. ~33!

Forv.0 we havev05v due to thed function in Eq.~19!, so
from Eq. ~33! it follows that q1•~q/q!5v/q2q/2, and we
end up with

q1
2>C~q,v!, ~34!

where

C~q,v!5S v

q
2
q

2D
2

. ~35!

In the frequency rangeabove the particle-hole continuum,
v.v1P1(q)5

1
2q

21q @cf. Eq. ~12!#, from Eq.~35! we have

C~q,v!5F S v2v1P1~q!

q
1
q

2
11D2

q

2G2.1, ~36!

whereasbelow the continuum, 0,v,v1P2(q)5
1
2q

22q
for q.2, @cf. Eq. ~13!#, we get

C~q,v!5F S 2
v1P2~q!2v

q
1
q

2
21D2

q

2G2.1. ~37!

Both Eqs.~36! and ~37! show thatq1 in Eq. ~34! is outside
the integration range limited bynq1

1 in Eq. ~19!. Due to the

symmetry with respect to the holes, this proof also holds for
i52.

Next the casei53 is considered. As before,

05v385~e31e42e12e2!2~e32e38!

5v01
1
2 @~q32q!22q3

2#. ~38!

So atv05v, we obtain~q32q!•q/q5v/q2q/2, which re-
sults in

~q32q!2>C~q,v!. ~39!

Using an alternative representation forv3 from Eq. ~25!, we
have

05v385~q42q1!•~q42q2!

5~q21q2q3!•~q11q2q3!

5q1•q21~q11q2!•~q2q3!1~q2q3!
2. ~40!

With the help of Eq.~40!, the value ofq4
2 can be obtained in

the form

q4
25~q11q21q2q3!

25q1
21q2

21~122!~q2q3!
2.

~41!

Taking into account Eq.~39! and the inequalitiesq1
2<1 and

q2
2<1, we estimateq4

2 as

q4
2<22C~q,v!. ~42!

However, forv lying outside the particle-hole continuum,
we haveC(q,v).1; see Eqs.~36! and ~37!. Therefore Eq.
~42! leads to

q4
2,1, ~43!

i.e., q4 is outside the integration range limited bynq4
2 in Eq.

~19!. Again, the proof can be extended toi54 by symmetry
considerations.

V. MODIFICATION OF Im P„q,v…
BY MEANS OF SCREENING

OF THE ELECTRON-ELECTRON INTERACTION

As was noticed by previous workers,19,20,23,35,37when the
second-order expression for ImP2 Pair, Eqs.~19! and~30!, is
used for the calculation of the plasmon damping, the ob-
tained results show a strong overdamping in comparison
with the experimental data. This means that thenth order in
v contributions to ImP~q,v!, n.2, are important. One idea
to include some infinite class of higher-order diagrams is to
replace the bare electron-electron interaction lines in the ten
second-order diagrams of Fig. 1 by ‘‘dressed’’ lines~repre-
senting the screened interaction!. In order to avoid double
counting of some diagrams, such a replacement can be ap-
plied to the ‘‘skeleton’’ diagrams only.38 Among the dia-
grams in Fig. 1, these denoted by ‘‘23,’’ ‘‘24,’’ and ‘‘25’’ do
not belong to this class. They may be viewed as first-order
diagrams modified in such a way that their bare interaction
line is replaced by the line with one loop~the zeroth-order
polarizabilityP0! inserted into it. Such a modification repre-
sents only one of an infinite number of terms which sum up
to form the RPA screened interaction

ṽ ~p,p0!5
v~p!

12v~p!P0~p,p0!
5

v~p!

eRPA~p,p0!
~44!

@here the argument pair~p,p0! represents momentum and fre-
quency components of the~D11!-dimensional argument
vector, as it is adopted in Appendix B#. Therefore, the cor-
rect way to include screening in the mentioned diagrams is to
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replace the term which represents the two interaction lines
with a bubble between them~see, e.g., Fig. 7! with the fol-
lowing expression:

Ṽ̂~p,p0!P0~p,p0!5 ṽ~p,p0!2v~p!5
@v~p!#2P0~p,p0!]

12v~p!P0~p,p0!
.

~45!

The leading term of a formal expansion of expression~45! in
powers ofv,

Ṽ̂~p,p0!P0~p,p0!5@v~p!#2P0~p,p0!1O~v3!, ~46!

represents the original contribution~before screening!, which
demonstrates the correctness of the proposed replacement.

In order to evaluate the expressions for ImP2 Pair effi-
ciently, we need to introduce an additional approximation
that neglects the frequency dependence ofeRPA~p,p0!. Fol-
lowing the arguments given by GL19 static screening is cho-
sen in all diagrams contributing to the imaginary part of the
dielectric function. In contrast to GL, however, where the
Thomas-Fermi interaction was used, we take the static RPA
dielectric functioneRPA~p,0! to screen the potential in a way
which is valid also for a larger momentum range. Therefore,
we finally obtain

Ṽ̂~p,p0!P0~p,p0!' Ṽ̂~p!P0~p,p0!, ~47!

where the replacement due to screening is@see Eq.~45!#

V̂~p!→ Ṽ̂~p!5
v2~p!

eRPA~p,0!
5 ṽ2~p!@12v~p!P0~p,0!#,

~48!

with @see Eq.~44!#

ṽ~p![ ṽ~p,0!5
v~p!

eRPA~p,0!
. ~49!

Accordingly, for the evaluation of ImP2 Pair with the

screened interaction, this potentialṼ̂(p) should replaceV̂[a]
for a524, 23, and 25 in Eq.~92!, etc. For the remaining
diagrams,V̂[a] should be modified in Eq.~B16!, etc. accord-
ing to

v~p!v~k!→ ṽ~p!ṽ~k!. ~50!

In the above equationseRPA~p,0! can be replaced by another
chosen model static dielectric functioneM(p).

At this point we note that the result obtained in this way
differs from previous calculations~e.g., Refs. 32, 19, 20, and
35!, where the replacement~50! was used forall v factors in
the second-order expression. In the further discussion such
results will be calledoverall screened~OS!. As the most
refined version of such approaches32 has led to very satisfac-
tory results both in comparison with other theories39 and
experiment,4 it is not a priori obvious that this procedure
gives results inferior to those obtained with Eq.~48! for the
terms discussed above. These will be referred to asselec-
tively screened~SS! in the following. We now derive the
corresponding expressions forF 2 Pair, while the results will
be discussed in Sec. VII.

After inserting the replacements~48! and ~50! into Eqs.
~23! and~24!, we obtain the following expression forF SS

2 Pair,
which replacesF 2 Pair in Eq. ~19! when selective screening is
included,

F SS
2 Pair~q1 , . . . ,q4 ,Nd ;@v# !5F 2 Pair~q1 , . . . ,q4 ,Nd ;@ ṽ# !

1FDIF
2 Pair~q1 , . . . ,q4 ,Nd ;@ ṽ# !.

~51!

The first term represents the standard overall-screened con-
tribution, and the second one the difference~DIF! between
the two approaches in the following form

FDIF
2 Pair~q1 , . . . ,q4 ,Nd;@ ṽ# !52

p

4
Nd
2@Q31Ã31

2 1Q42Ã42
2

1Q32Ã32
2 1Q41Ã41

2 #, ~52!

where

Qph5QRPA~ uqp2qhu,0![eRPA~qp2qh,0!21.0 ~53!

and

Ãph5Aph~ . . . ;@ ṽ# !, ~54!

see Eq.~31!. Expression~52! for F DIF
2Pair follows from the

second term in the square brackets in Eq.~48!, applied to
these elements of Eq.~30! which belong to two-fermion-loop
diagrams~}Nd

2! and contain a squared potential. As the
static Lindhard functionP0 is negative and the bare potential
is positive,QRPA ~k,0! is positive for anyk @cf. Eq. ~53!#.
Therefore, the two terms in Eq.~51! are of the same sign: the
DIF part enhances the overall-screened one.

VI. TRANSFORMATION OF VARIABLES
FOR AN EFFICIENT NUMERICAL EVALUATION

OF Im P2Pair IN 2D

In the thermodynamic limit, where summations over mo-
menta are replaced by integrations, and again using the sys-
tem units ofkF and 2EF for momenta and energies, Eq.~19!
takes the form

ImP2Pair~q,v!5~2p!23D@ I ~q,v!2I ~q,2v!#, ~55!

where

I ~q,v!5E dDq1d
Dq2d

Dq3d
Dq4u~12q1

2!u~12q2
2!

3u~q3
221!u~q4

221!d@~q31q4!2~q11q21q!#

3dS ~q3
21q4

2!2~q1
21q2

2!

2
2v D

3F ~q1 ,q2 ,q3 ,q4!. ~56!

For D52 the potential in the system units is
v(q)52pa2(Nd)r s/q, wherea2(Nd)5(Nd/4)

1/2, and r s is
the density parameter connected with the area densityn2 via
r saB*5(pn2)

21/2, while for D53 we have
v(q)54pa3(Nd)r s/q

2, with a3(Nd)5„2Nd/~9p!…1/3 and
r saB*5( 43pn3)

23. Using the above notations,kFaB*
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5@aD(Nd)r s#
21 in D dimensions. As discussed previously,

F5F 2Pair, given by Eqs.~30!–~32!, shows the symmetry

F ~q1 ,q2 ,q3 ,q4!5F ~q2 ,q1 ,q3 ,q4!5F ~q1 ,q2 ,q4 ,q3!.
~57!

The presence of thed functions allows us to reduce the di-
mensionality of the integration by~D11!, but the integration
hypervolume in the remaining~3D21!-dimensional space
has such a complicated shape that a Monte Carlo method
must be used. The fact that the integrand has a definite sign
~whenv is outside the particle-hole continuum! is very help-
ful in obtaining accurate results with this method.

ForD52 a transformation of variables, reducing this five-
dimensional volume to a hypercube with a unit edge, is
shown below. As a first step additional vector variables of
integrationk1, k2, k3, andk4 are introduced via

k15q21q1 q15k1/22k2
⇔

k25~q22q1!/2 q25k1/21k2,

~58!

k35q41q3 q35k3/22k4
⇔

k45~q42q3!/2 q45k3/21k4.

~59!

The Jacobian of this transformation is 1. The functionFT,
obtained fromF by means of transformations~58! and~59!,

FT~k1 ,k2 ,k3 ,k4!5F S k12 2k2 , . . . ,
k3
2

1k4D , ~60!

has the property

FT~k1 ,k2 ,k3 ,k4!5FT~k1 ,2k2 ,k3 ,k4!

5FT~k1 ,k2 ,k3 ,2k4! ~61!

due to the symmetry ofF , Eq. ~57!. Therefore, the angular
integration overk2 andk4 can be performed in a half space
only with a doubled integrand. In terms of a unit vector
function

n~f!5„cos~f!,sin~f!… ~62!

in the coordinate system connected with the vectorq5qn~0!
5~q,0!, we define angular variables of integrationf1, f2,
f3, andf4 via the relations

k15k1n~f1!, k25k2n~f11f2!, ~63!

k35k3n~f3!, k45k4n~f31f4!, ~64!

so we havek1•k25k1k2cos~f2! andk3•k45k3k4cos~f4!. The
momentum- and energy-conservationd functions rewritten
in our new variables are

d@k32~q1k1!#dFk422S k122k3
2

4
1k2

21v D G . ~65!

After integration in the wholek3 space and over the radiusk4
in the k4 space, we obtain

I ~q,v!5E d2k1d
2k2u~12q1

2!u~12q2
2!u~a4!

3E
0

p

df4u~q3
221!u~q4

221!FT~k1 ,k2 ,k3 ,k4!,

~66!

where k35q1k1, a45v21
4q

221
2q•k11k2

2, and k4
5a4

1/2n~f31f4!. In the next step, the occupation factors con-
cerningq3 andq4 are exploited to determine the actual inte-
gration limits forf4, and this integral is then transformed to
a unit-interval one overz5. Similarly, integrations overf2
andf1 are transformed to those overz4 andz3. In the final
step a two-dimensional vector (1

2k2 ,k1) is represented in po-
lar coordinates asm1/2@cos~a!, sin~a!# and then variablesm
anda are transformed to unit intervals in terms ofz1 andz2.
Finally we obtain

I ~q,v!52pu~v!~12m0!E
0

1

dz1mE
0

1

dz2sin~2a!u~a0!

3~p2f10!~p22f20!E
0

1

dz3E
0

1

dz4

3~p22f40!E
0

1

dz5FT~k1 ,k2 ,k3 ,k4!, ~67!

where the auxiliary variablesm0, m, a, a0, f10, f20, andf40
and the vectorsk1, . . . ,k4 defined in terms ofq, v,

TABLE I. The auxiliary variablesm0, m, a, a0, f10, f20, andf40, and the vectorsk1, . . . ,k4 defined in
terms ofq, v, z1, . . . ,z5 for the integral Eq.~67!. * is the equation to obtainf̂3 in the range 0<f3,2p.

1. m05max~0,12v! 12. k15k1n~f1!

2. m5m01~12m0!z1 13. k25k2n@f11f201~p22f20!z4#
3. a5 p/2 z2 14. k35(k3x,k3y)5qn~0!1k1
4. k152m1/2 cos~a! 15. k35(k 3x

2 1k 3y
2 )1/2

5. k25m1/2 sin~a! *16. n~f3!5k3/k3
6. a05v2

1
4q

21k 2
21

1
2k1q 17. a45v2

1
4q

21k 2
22

1
2k1•q

7. a15(v2
1
4q

21k 2
2)/( 12k1q) 18. k45a 4

1/2

8. f105arccos„min~1,a1!… 19. a35(m1v21)/(k3k4)
9. a25(12m)/(k1k2) 20. f405arccos„min~1,a3!…
10. f205arccos„min~1,a2!… 21. k45k4n@f31f401~p22f40!z5#
11. f15f1012~p2f10!z3
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z1, . . . ,z5 are given in Table I in a proper order. The numeri-
cal evaluation ofI (q,v) using Eq.~67! can be implemented
by means of either a multidimensional integration procedure
or the Monte Carlo method. It should be noted that for
v.v1P1(q) we have alwaysa0.0, sou~a0!51, and there-
fore the whole volume of the hypercube contributes to
I (q,v). For v,v1P2(q) the valueu~a0!50 may occur in
some region of the~z1,z2! unit square, which, finally, covers
the whole square whenv approaches the limitv2P2(q), in
agreement with the result of Sec. II.

VII. DISCUSSION AND CONCLUSION

The energy-loss function Im@21/e~q,v)] is now calcu-
lated for selected two-dimensional systems by taking the
proper polarizabilityP(q,v) in the following approximation
~for v.0!:

ImP~q,v!' H ImP0~q,v!

ImP2Pair~q,v!

for vmin
1Pair~q!,v,vmax

1Pair~q!

for remainingv
~68!

and

ReP~q,v!'ReP0~q,v!. ~69!

This is, in essence, a ‘‘leading term’’ approximation: the
imaginary part of the Lindhard function is used in the fre-
quency range of the single-pair excitation strip, while outside
this range, the smallest-order nonzero~namely the second
order! contribution due to two-pair excitations is used. There
is no need to include the two-pair contribution within the
single-pair strip, because there it would be a second-order
correction only. Then the real part of the approximate
P~q,v! can be obtained from ImP~q,v! by means of the
Hilbert transform. But the contribution due to the trans-
formed ImP2Pair from Eq. ~68! can be neglected for all fre-
quencies, as a second-order correction to the zeroth-order
ReP0~q,v!. Represented by a one-fermion-loop diagram,
P0~q,v! is proportional toNd @cf. Eq. ~20! for the second-
order polarizability#. Thus the Lindhard function~known for
paramagnetic electron liquid! multiplied by ~Nd/2! givesP0
for arbitraryNd .

40

In the following we discuss the resulting energy-loss
function ~ELF! with respect to its dependence on the degen-
eracy, momentum, and frequency, together with the influ-
ence of the model used for screening. For all presented re-
sults no lines are drawn in the vicinity of the frequencies
v1P6, where perturbation theory is not applicable.

In Figs. 2–4 Im@21/e# is shown for three different de-
generacies,Nd51, 2, and 4. A starting point is the result for
ELF displayed in Fig. 2 in the system units atq50.1 ~note
the same upper bound of the single-pair excitations for all
three curves!. Both the dispersion and the broadening of the
plasmon peak can be seen clearly. It should be mentioned
that for small q the dispersion is given by
vpl(q)5

1
2Nd

3/4(r sq)
1/2. Figure 3 then shows the same three

curves, plotted with the energy transfer measured in eV~for
recalculation the effective mass and the background dielec-
tric constant corresponding to a Si-SiO2 MOSFET have been
used!. A ‘‘reversed’’ ordering of the plasmon peaks positions
is observed. The dependence of the plasmon’s width onNd is
less pronounced in comparison to the previous figure, but
still clearly to be seen. Finally, in Fig. 4, we compare plas-

FIG. 2. Energy-loss function of an electron layer atr s50.7,
calculated with the unscreened interaction. The momentum transfer
q of all three curves was taken to be 0.1kF . Dashed line:Nd51; full
line:Nd52 ~i.e., the most commonly realized case of nondegenerate
valleys and two spin possibilities!; dotted line:Nd54. Upper part:
the full ordinate is shown in order to display the relative heights of
the peaks. The frequency is displayed in units of twice the Fermi
energy.

FIG. 3. The same as Fig. 2, but with the frequency displayed in
units of eV.

FIG. 4. Energy-loss function of an electron layer atr s50.7,
calculated with the unscreened interaction. Dashed line:Nd51,
q50.046kF ; full line: Nd52, q50.070kF ; dotted line: Nd54,
q50.104kF .
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mons measured at a particular energy, but arising in the three
systems of the same electron density and different degenara-
cies. This can be obtained only by choosing different mo-
mentum transfers~in the effective atomic units,qaB*50.13,
0.14, and 0.15 forNd51, 2, and 4, respectively!. While these
momenta differ by only 7%, observed enormous differences
in widths indicate their strong dependence onNd . ~We also
note that theNd54 curves of Figs. 3 and 4 are almost the
same.!

Figure 5 gives the energy-loss function in the large-q re-
gion, where plasmon excitations are impossible. However,
results in this region may be of interest for interpreting stop-
ping power experiments.37 For eachq the single-pair peak
~the RPA result! is seen, surrounded on both sides by tails
due to two-pair excitations. The low-frequency tail starts at
the finite frequencyv2P2, Eq. ~17!, whereas the high-
frequency tail spreads to infinity, although it diminishes rap-
idly, as is clearly seen in the inset.

Finally, the influence of screening is displayed in Fig. 6.
Because the peak around the plasma frequency,vpl(q), is not
symmetric, two frequencies at half height,v1/2(q), situated
on both sides of the peak, are shown. The tendency for the
asymmetry is seen to grow withq. For smallq the width of

plasmons due to the selectively screened interaction exceeds
the bare interaction result, yielding a nonvanishing value in
the q→0 limit, while the width due to the overall screened
interaction is seen to be the smallest one. Thus Fig. 6 shows
that the width of a plasmon peak is extremely sensitive to the
screening type applied in the evaluation of ImP2Pair.

In order to gain some general understanding of this fact,
we calculated Ime 2Pair(q,v)52v(q)Im P2Pair~q,v! for a
series of r s , with the remaining parameters kept fixed
~Nd52, q50.1kF , andv50.2432EF corresponding to the
plasmon peak position atr s50.7!. It should be recalled here
that the plasmon width is, roughly speaking, proportional to
Im e at the peak frequency; see, e.g., Ref. 20. The values of
e tot9 5Im e 2Pair, given in Table II, are separated there into con-
tributions due to various diagrams for ImP2Pair,

e tot9 5e@2b#9 1e@2a#9 1e@1a#9 , ~70!

TABLE II. Values of e95Im e2Pair~q50.1kF , v50.2432EF! and of the contributions to it due to the
different types of diagrams.

Selective screening Overall screening

r s
100etot9

rs
3

e@2b#9

e tot9

e@2a#9

e tot9

e@1a#9

e tot9

100e tot9

rs
3

e@2b#9

e tot9

e@2a#9

e tot9

e@1a#9

e tot9

01 1.72 7.98 26.72 20.26 1.719 8.0 26.7 20.3
0.1 2.56 4.17 23.05 20.12 0.602 14.5 213.0 20.5
0.2 2.86 3.20 22.12 20.08 0.361 18.4 216.8 20.6
0.5 2.99 2.24 21.20 20.04 0.156 24.6 222.8 20.8
0.7 2.91 1.98 20.95 20.03 0.109 27.1 225.3 20.8
1.0 2.72 1.74 20.72 20.02 0.071 29.3 227.4 20.9
2.0 2.19 1.41 20.40 20.01 0.028 33.0 231.1 20.9
4.0 1.48 1.23 20.22 20.01 0.010 35.2 233.3 20.9

FIG. 5. Energy-loss function of an electron layer atr s50.7,
calculated with the unscreened interaction. The curves correspond
to the momentaq53.5kF ~full line!, q55.0kF ~dashed line!, and
q56.5kF ~dotted line!. Inset: the same plot with a magnified ordi-
nate. FIG. 6. Relative width of the plasmon peak of an electron layer

at r s50.7, calculated with variously screened interactions. The up-
per and lower lines representing the frequencies at half height are
shown with the same line type. Full lines: unscreened result; dotted
lines: overall-screened result; dashed lines: selectively screened re-
sult.
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where the subscript [2b] denotes the contribution due to sum
of the two-fermion-loop diagrams@23#, @24#, and @25# ~de-
pending on the squared potential!, the subscript [2a] that
due to the sum of the two-fermion-loop diagrams@21# and
@22# ~depending on the product of two potentials!, and the
subscript [1a] that due to the sum of the one-fermion-loop
diagrams@11#, . . . ,@15# ~depending on the product of the two
potentials!.

When q andv are fixed,e9 depends onr s only via the
potential factors and their screening. In particular,v(k) is
proportional tor s when the system units are used. Thus three
potential factors~two in the integrand ofP and one in the
front of P! provide ther s

3 factor in e9, which is accounted
for in the way the results are presented in Table II. A remain-
ing dependence onr s stems from screening factors in the
integrand. Therefore, the unscreened results, shown in the
first row ~r s→0! of Table II, are valid, in fact, for allr s . We
see for them that the summarye tot9 value arises as an effect of
a substantial cancellation between the positive [2b] contri-
bution, which is eight times larger thane tot9 itself, and the
negative terms of remaining diagrams. Although the [1a]
contribution is much weaker than that of [2b] or [2a] taken
separately, nevertheless its role is significant for the total
result in almost all cases~except for the selective screening
case in ther s.0.5 region!. With increasingr s ~i.e., increas-
ing strength of screening! the character of the observed can-
cellation changes: it is more and more pronounced in the
case of overall screening, while it diminishes in the case of
selective screening. This leads to drastically different plas-
mon peak widths at finiter s : already atr s50.5 the width
corresponding to the selective screening is 20 times larger
than that with overall screening, and atr s51 it is 40 times
larger; but, on the other hand, it is only 1.7, at least, times
larger than the unscreened width.

This behavior may be explained by the form of ther s
dependence of the RPA static dielectric function used for
screening. Let us recall that, in the system units, the Thomas-
Fermi momentum iskTF521/2r s , and eRPA(k,0)'kTF/k for
k!kTF , while eRPA~k,0!'1 for k@kTF . Therefore, due to the
factor 1/eRPA~k,0!, the intergrands of selectively screened
[2b] diagrams gain an additionalr s

21 factor in such integra-
tion regions, where the argumentk is small. For large
enoughr s these regions cover almost the whole integration
volume, and the diagrams become proportional to
r s
3r s

215r s
2. The same reasoning applied to overall screened

[2b] diagrams and remaining screened diagrams~all having
two such factors 1/eRPA! leads to the dependencer s

3r s
225r s

1

for large r s .
The results collected in Table III allow us to see how this

predicted dependence develops in reality. The displayed
logarithmic derivative ofe tot9 , e@2b#9 , etc. shows the effective
exponentx in the representation of a particular function as
proportional to r s

x. We find that with increasingr s these
exponents diminish gradually from the value 3, characteristic
for unscreened contributions, to the value 2.2 for the [2b]
selectively screened contribution and 1.4 for remaining dia-
gram contributions~all at r s54! showing a tendency to ap-
proach the predicted values 2 and 1 for very larger s . Al-
though, at moderater s , this difference in the exponents is
less pronounced, nevertheless the different growth of SS and
OS e@2b#9 leads to weaker and stronger~respectively! cancel-

lation effects, resulting in very different values ofe tot9 for the
two screenings discussed. Accordingly, the effective expo-
nent of e tot9 is quite different than exponents of its separate
contributions~except in the large-r s region, where it is close
to the exponent of the dominant contribution!.

The two different concepts of an effective~screened! in-
teraction in the perturbational analysis of plasmon damping,
investigated by us, can thus be summarized as follows. Both
approaches seem to show a close resemblance and, in par-
ticular, are using principally the same formalism. Thus it is
especially important to discuss the fundamental differences
among them in more detail.

The first method, which we refer to within the present
paper asoverall screening, was in its basic concept devel-
oped by Glick and Long.19 It tries to take into account
higher-order effects in a global way by replacingall Cou-
lomb potentials in the second-order expression for ImP2Pair

by an effective interaction. Physically, this can be interpreted
as ana priori introduction of the finite ‘‘effective range of
electron-electron interaction already within the electron gas
Hamiltonian. Such an anticipation of the shielding effects in
the many-electron collective has the main disadvantage that
it makes the theory more distant from the first principles.
However, calculations using this method have been success-
fully compared with experiments as well as other theoretical
approaches,35 so it nevertheless appears that they correctly
represent relevant aspects of the problem.

On the other hand, starting from the fundamental pertur-
bation series for the proper polarizability, it is shown in Sec.
V that not all interaction lines in various second-order dia-
grams are equally replaced by an effective potential, when
systematically taking into account higher-order effects. This
method is denoted byselective screeningwithin the present
work. Although it has the obvious advantage of following
the pure first principles more closely, it also raises nontrivial
problems, as is shown by our numerical analysis: it appears
that the approach of selective screening more easily breaks
down, i.e., leads to unphysical results, when going to mod-
erately low densities or small wave vectors. For example, the
fact that, for q→0, the plasmon half-width remains finite
demonstrates that even rather fundamental large-scale sym-
metry properties of the system can be sensitive to an incon-
sistent choice of the effective interaction: it is most probable

TABLE III. Logarithmic derivative x5d ln e9/d ln r s for the
total e9 and the separate contributions to it. Here
e95Im e2Pair~q50.1kF , v50.2432EF!.

r s

Selective screening Overall screening

xtot x[2b] x[2a] x[1a] xtot x[2b] x[2a] x[1a]

01 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
0.1 3.1 2.8 2.7 2.6 2.3 2.7 2.7 2.6
0.2 3.1 2.7 2.6 2.5 2.3 2.5 2.6 2.5
0.5 2.9 2.6 2.3 2.3 2.0 2.2 2.3 2.3
0.7 2.8 2.5 2.1 2.1 1.9 2.1 2.1 2.1
1.0 2.8 2.4 2.1 2.0 1.8 1.9 2.1 2.0
2.0 2.5 2.3 1.7 1.6 1.5 1.7 1.7 1.6
4.0 2.3 2.2 1.4 1.4 1.4 1.4 1.4 1.4
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that this particular problem will be solved by using an ap-
propriate dynamic screening function.

Closing the above discussion, the two ways of introducing
shielding effects into a model based on finite-order perturba-
tion theory should be considered as two different approxima-
tions, rather than two aspects of a single approach. Conse-
quently, the two methods have their advantages and
disadvantages: using overall screening leads to results with
no obvious breakdown of the model; the more fundamental
approach of selective screening, however, provides the basis
for a systematic, completely first-principles-based analysis.

In summary, in this paper we present an analytical and
numerical analysis of the imaginary part of the proper polar-
izabilty Eq. ~4! for electron systems. Since both the space
dimensionality and the electron band degeneracy enter our
calculations as arbitrary parameters, a wide applicability to
many systems is possible. Within the framework of a pertur-
bational expansion, a low-frequency cutoff Eq.~17!, charac-
teristic of eachn-pair process, is derived as an exact prop-
erty. Concentrating on the leading terms, i.e., the two-pair
processes, numerical results concerning the energy-loss func-
tion are presented for an electron layer with various band
degeneracy factors, which represents an important model
system for two-dimensional semiconductor devices. Going
beyond the bare perturbational evaluation, the effects of
screening on a plasmon peak width are studied. It appears to
be of great importance to distinguish clearly between the two
conceptionally different methods of building effective inter-
actions into the theory, as is discussed in detail earlier in this
section. Although a more extensive comparison of various
screening ansatzes must be left to future work, it is quite
likely that the fundamental approach proposed in this paper
will provide an important tool to unify them finally into a
promising theoretical description.
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APPENDIX A: DERIVATION OF THE LOWER
BOUND vmin

nPair
„q…

In determiningvmin
nPair(q), first the minimization is consid-

ered in a subspace ofa where its all componentsaj are
positive (j51, . . . ,n). The result of this minimization will
be denoted by1vmin

nPair(q). When substitutingvmin
1Pair(k) into

the right-hand side of Eq.~10! we first usev1P2(k) in the
whole range rather than the full expression given in Eq.~13!.
This procedure is correct, provided that the resulting solution
a0 is checked to lie in the regiona j

0q.2kF for each j . So
Eq. ~10! is rewritten as

1vmin
nPair~q!5minH 12 q2S (

j51

n

a j
2D 2kFqS (

j51

n

a j D J .
~A1!

Because of the constraint~9!, the term linear inq does not
depend ona. The coefficient atq2/2 is just the squared ra-
dius vectora, the end of which lies on the hyperplane
a11•••1an51. The shortesta is perpendicular to this plane,
so the solution is

a05S 1n , . . . , 1nD . ~A2!

Substitutinga5a0 into Eq. ~A1! gives

1vmin
nPair~q!5vnP2~k!u„vnP2~k!…, ~A3!

with vnP2(k) defined in Eq.~18!. This result can be used for
a j

0q5(1/n)q.2kF , as mentioned above. The zero result for
q,2nkF , included already in Eq.~A3!, can be obtained by
insertinga0 as a triala in Eq. ~10!, and then using result~13!
to get 0. Sincev0>0 is of interest, other triala cannot ‘‘im-
prove’’ the zero lower bound for it.

Now we allow someaj to be negative during the minimi-
zation in Eq.~10!. Let the number of positiveaj ben

1, and
the number of negativeaj be n

25n2n1. In terms of two
sets $a l

1.0,l51, . . . ,n1:a1
11•••1an1

1
51% and $a l

2

.0,l51, . . . ,n2:a1
21•••1an2

2
51% and a parameterx>0,

we defineaj , satisfying the constrainta11•••1an51, to be

a j5H ~11x!a j
1

2xa j2n1
2

for j51, . . . ,n1

for j5n111, . . . ,n. ~A4!

So Eq.~10! can be rewritten as

vmin
nPair~q!5 min

1<n1<n

min
x>0 H F min

a1
1

.0, . . . ,a
n1
1

.0

a1
1

1•••1a
n1
1

51

(
j51

n1

vmin
1Pair@a j

1~11x!q#G1F min
a1

2
.0, . . . ,a

n2
2

.0

a1
2

1•••1a
n2
2

51

n25n2n1

(
j51

n2

vmin
1Pair~a j

2xq!G J .

~A5!
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By applying result~A3! of the minimization in the positive
aj subspace to each square bracket, we get

vmin
nPair~q!5 min

1<n1<n

min
x>0

$1vmin
~n1!Pair@~11x!q#

11vmin
~n2n1!Pair~xq!%. ~A6!

Since 1vmin
lPair(k) is a nondecreasing function ofk, the mini-

mum ~A6! is reached atx50:

vmin
nPair~q!5 min

1<n1<n

1vmin
~n1!Pair~q!. ~A7!

Finally, since1vmin
lPair(q) is a nonincreasing function ofl ,

the minimum in Eq.~A7! is obtained forn15n. So we dem-
onstrated that

vmin
nPair~q!51vmin

nPair~q!, ~A8!

which is given in Eq.~17! in the main text.

APPENDIX B: EVALUATION OF DIAGRAMS

The contribution to the proper polarizability ImP(q,v)
due to one of the diagrams shown on Fig. 1, say diagrama,
can be written as38,41

VD
3P@a#~q,q0!52~2Nd!

Nfl (
l,m,p

V̂@a#Ĝ@a# , ~B1!

whereNfl is the number of fermion loops ina andNd the
total degeneracy of the electron band, see Eq.~3!. The sum-
mation goes over three intermediate momental, m, andp,
and the remaining factors represent the two interactions in
the diagrams~dashed lines!, which are supposed to be static
~frequency independent!

V̂@a#5v~ . . . !v~ . . . !, ~B2!

and six Green functions~continuous lines!, which are inte-
grated out over all intermediate frequencies

Ĝ@a#5E dl0dm0dp0
~2p i !3

G~ l1q! . . .G~ l !. ~B3!

As an example, we evaluate now diagrams 12 and 24 labeled
as in Fig. 7. The~D11!-dimensional vectors likeq5~q,q0!
and l5~l,l 0! are indicated there. We see thatNfl51 for dia-
gram 12 andNfl52 for 24, and that their interaction factors
are also different:

V̂@12#5v~p!v~ l1q2p2m!, ~B4!

V̂@24#5@v~p!#2, ~B5!

while the Green-function factors are common:

Ĝ@12#5Ĝ@24#5E dl0dm0dp0
~2p i !3

G~ l1q!

3G~ l1q2p!G~m!G~m1p!G~ l1q!G~ l !.

~B6!

Actually, all remaining diagrams may be arranged in pairs
and labeled in such a way thatĜ[11]5Ĝ[23], Ĝ[13]5Ĝ[25],
Ĝ[14]5Ĝ[21], and Ĝ[15]5Ĝ[22], while their interaction fac-
tors are different. The Green function used in Eqs.~B3! and
~B6! is

G~k![G~k,k0!5nk
2@k02~ek2 ih!#21

1nk
1@k02~ek1 ih!#21,

h→01 ~B7!

@see Eqs.~7! and~22! for the definitions ofnk
6 andek#. This

G(k) leads to the time-ordered version ofP@a#(q,q0) when
Ĝ[a] obtained in Eq.~B6! is inserted into Eq.~B1!. The re-
tarded version, used in the electron response applications,
can be readily obtained from the above version by shifting its
poles, i.e., by replacing (q06 ih) with (q01 ih) in each de-
nominator of the result of the integrations in Eq.~B3!. So we
obtain

Ĝ@12#5Ĝ@24#5@nm1p
1 nl1p

1 nl1q2p
1 nm

2nl
22o.o.#@q01 ih2~em1p1e l1q2p2em2e l!#

21@q01 ih2~e l1q2e l!#
22

2@nm
1nl

1nl1q
1 nm1p

2 nl1q2p
2 2o.o.#@q01 ih2~em1p1e l1q2p2em2e l!#

21@em1p1e l1q2p2em2e l1q#
22

1@nm1p
1 nl

1nl1q2p
1 nm

2nl1q
2 2o.o.#$@q01 ih2~e l1q2e l!#

22@em1p1e l1q2p2em2e l1q#
21

1@q01 ih2~e l1q2e l!#
21@em1p1e l1q2p2em2e l1q#

22%. ~B8!

Here o.o. means the opposite occupation term, i.e., obtained from the preceding term by applying the replacementnk
6→nk

7 in
each occupation factor. We see the poles at the two-particle-hole pair excitation energy in the first and second terms of the
right-hand side of Eq.~B8!. Therefore ImP@a#

2Pair can be calculated according to Eq.~B1! for q05v using the following two
terms of ImĜ[a] :

FIG. 7. Two of the diagrams of Fig. 1 shown with detailed
information on internal 4-momenta.
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Im Ĝ@12#
2Pair5Im Ĝ@24#

2Pair52nm1p
2 nl1q

2 nl1q2p
2 nm

1nl
1~2p!d@v2~em1p1e l1q2p2em2e l!#$~em1p1e l1q2p2em2e l1q!

22%Re

2nm1p
2 nl1q2p

2 nl1q
1 nm

1nl
1~2p!d@v2~em1p1e l1q2p2em2e l!#~em1p1e l1q2p2em2e l1q!

22 ~B9!

@the terms due to the positive excitation energy only should
be included; see Eq.~19!#. We introduced the symbol$f %Re
defined forf in terms of naturaln1 ,n2 , . . . andrealx,y . . . ,

$x2n1y2n2•••%Re5 lim
0,h→0

Re$~x1 ih!2n1~y1 ih!2n2•••%.

~B10!

This is a combination of principal-value and Dirac-delta dis-
tributions and their derivatives, with argumentsx,y, . . . . In
the final step, in order to have the standard form shown in
Eq. ~19!, we change the variables of summation into

q15m, q25 l, q35 l1q2p, q45m1p. ~B11!

Then the contributionF [a] of diagrama to ImP2Pair corre-
sponding toV̂[a] Im Ĝ[a] in Eq. ~B1! can be written as

F @a#5pV̂@a#ĝ@a# , ~B12!

where, for the considered diagrams, we have, from Eqs.~B4!
and ~B5!,

V̂@12#5v41v31, ~B13!

V̂@24#5v41
2 , ~B14!

and from Eq.~B9!

ĝ@12#5ĝ@24#52n28
2 $v28

22%Re2n28
1 v28

22. ~B15!

A compact form of Eq.~B15! and analogous results for the
remaining diagrams are possible due to the shorthand nota-
tion for the occurring combinations of energies and momenta
and for the potential, shown in Eqs.~25!–~27!. All remaining
diagrams can be evaluated in a similar way to give

V̂@11#5v41v42, ~B16!

V̂@23#5v41
2 , ~B17!

ĝ@11#5ĝ@23#52n38
1 $v38

22%Re2n38
2 v38

22, ~B18!

V̂@13#5v31v32 , ~B19!

V̂@25#5v31
2 , ~B20!

V̂@14#5v41v31, ~B21!

V̂@21#5v41v32, ~B22!

ĝ@13#5ĝ@25#5ĝ@14#5ĝ@21#52n28
2 n48

2 $v28
21%Rev48

21

12n28
1 n48

1 v28
21$v48

21%Re12n28
2 n48

1 $v28
21v48

21%Re

12n28
1 n48

2 v28
21v48

21. ~B23!

In diagrams 15 and 22 the energyv0 is found in two differ-
ent representations in terms ofl, m, and p; therefore Eq.
~B12! must be replaced in this case by

F @a#5pV̂@a#
A ĝ@a#

A 1pV̂@a#
B ĝ@a#

B , ~B24!

where

V̂@15#
A 5v41v31, V̂@15#

B 5v41v42, ~B25!

V̂@22#
A 5V̂@22#

B 5v41v32, ~B26!

ĝ@15#
A 5ĝ@22#

A 52n38
2 n48

2 v38
21v48

21
2n38

1 n48
1 $v38

21v48
21%Re

2n38
2 n48

1 v38
21$v48

21%Re2n38
1 n48

2 $v38
21%Rev48

21,

~B27!

ĝ@15#
B 5ĝ@22#

B 52n18
2 n28

2 $v18
21v28

21%Re2n18
1 n28

1 v18
21v28

21

2n18
2 n28

1 $v18
21%Rev28

21
2n18

1 n28
2 v18

21$v28
21%Re.

~B28!

After substituting the expressions forF [a] , given in Eqs.
~B12!–~B28!, into Eq. ~19!, Im P2Pair can be obtained for
arbitrary (q,v) by means of~3D21!-fold numerical integra-
tion ~after taking into account thed functions!. However,
because of the principal value and other distributions, gener-
ated by the symbol$ f %Re @see Eq.~B10!#, this integration
may be extremely difficult to perform in practice. But, if we
assume that during integration all denominators satisfy
vi 8Þ0, the symbols$ f %Re reduce just tof . The region of the
(q,v) plane, where this assumption is satisfied, is deter-
mined in Sec. IV, while below the consequences of this as-
sumption are taken into account.

The identitynk
11nk

251 allows us to simplify the expres-
sions for ĝ[a] when the symbol$ %Re is omitted, e.g.,ĝ@12#

52v28
22 in Eq. ~B15!. The final result, obtained in analo-

gous way, is given in Eqs.~23! and ~24! of the main text.
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