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In this paper we clarify the role of heat flux in the hydrodynamic balance equations, facilitating the formu-
lation of an Onsager relation within the framework of this theory. Previously thought to be unobtainable from
the present form of the theory@X.L. Lei, J. Cai, and L.M. Xie, Phys. Rev. B38, 1529~1988!#, our verification
of the Onsager relation for linear particle and heat flux currents driven by electric fields and temperature
gradients resolves a puzzling issue of long standing. Our results show that, for any temperature, when electron
density is sufficiently high, the linear predictions of balance equation theory exactly satisfy the Onsager
relation. The condition of high density is consonant with the requirement of strong electron-electron interac-
tions for the validity of the Lei-Ting balance equations. Our results support the validity of this theory for a
weakly nonuniform system. We also discuss a possible method of extending this theory to a system further
removed from thermal equilibrium.@S0163-1829~96!02027-9#

I. INTRODUCTION

The balance equation transport theory of Lei and Ting1,2

was originally developed to treat high-field electrical condi-
tion in homogeneous semiconductors and has achieved much
success in hot-electron semiconductor transport problems.
This theory is based on a separation of the center of mass of
the system from the relative motion of electrons in the pres-
ence of a uniform electric field. The center of mass is treated
as a classical particle, whereas the relative electron system,
which is composed of a large number of interacting particles,
is treated fully quantum mechanically. The theory has been
successfully applied to a variety of transport problems and
the results obtained have exhibited good agreement with
experiments.3 This theory was subsequently generalized to
deal with weakly nonuniform, inhomogeneous systems by
Lei et al.4 The resulting hydrodynamic balance equations ob-
tained by them consist of the following three equations:~a!
the continuity equation,~b! the momentum balance equation,
and ~c! the energy balance equation.

The form of these hydrodynamic balance equations ap-
pears very similar to their classical counterparts, generally
called hydrodynamic models.5–16 However, in fact, they are
quite different. The latter is derived from the Boltzmann
transport equation, as the first three moments of that equa-
tion. Very recently, the fourth moment was discussed by
Anile et al.17–19 in an attempt to include the equation de-
scribing heat flux. Although, in principle, a complete deter-
mination of Boltzmann equation is equivalent to the determi-
nation of all the moments, it is not practical to solve the
infinite hierarchy of coupled equations governing the various
moments. The hydrodynamic approach is based on trunca-
tion of this hierarchy after the second-order moment and
simplification of the remaining equations. However, these
three moment equations by themselves do not form a closed
system, requiring input of information about scattering, gen-
erally supplied in the form of momentum and energy relax-
ation times. Nevertheless, to accurately evaluate the relax-
ation times requires a predetermination of the distribution
function, which is precisely the task that the hydrodynamic

models strive to avoid. This difficulty is circumvented by
one of the following ways. One approach is to calculate the
relaxation times by Monte Carlo simulations. Another em-
ploys empirical forms of relaxation times. The third is to
postulate a distribution function with unknown parameters
and use the hydrodynamic equations to solve for these pa-
rameters. One of the most popular parametrized distribution
functions is the drifted Maxwell distribution, which depends
on two unknown parameters: the electron drift velocity and
the electron temperature. The hydrodynamic balance equa-
tion approach employs a drifted local equilibrium description
similar to the latter. In this it employs unknown parameters
including the local electron temperatureTe(R), local elec-
tron drift velocity v(R), and local chemical potential
m(R). The distinctive features of the balance equation
theory rest with the ansatz of such local equilibrium param-
eters in an appropriately chosen initial density matrix, which
is treated quantum mechanically, describing the dynamics of
the many-body system of electrons, impurities, and phonons.
Of course, these unknown parameters are also to be deter-
mined from the resulting balance equations. It is now be-
lieved that the specific quasiequilibrium form of the initial
density matrix chosen in balance equation theory is specifi-
cally suited to the condition of strong electron-electron inter-
actions, since it requires rapid thermalization about the
drifted transport state.20,21 A salient feature of this hydrody-
namic approach is that it includes a microscopic description
of scattering in the form of a frictional force function due to
electron-impurity and electron-phonon scattering, as well as
an electron energy loss rate function due to electron-phonon
interaction. These functions are calculated within the model
itself, as functions of carrier drift velocity and carrier tem-
perature, along with the carrier density, which are themselves
determined self-consistently within the same model. These
hydrodynamic balance equations have recently been applied
to device simulations by Caiet al.22–24

A hitherto unresolved question, unanswered since the de-
velopment of hydrodynamic balance equations, concerns the
capability of this theory to lead to the correct form of On-
sager relations25,26 and/or how to determine Onsager rela-
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tions within the framework of this theory. There is even
some misunderstanding that the energy flux predicted by this
theory is zero. The purpose of this paper is to clarify the role
of heat flux in this theory and also to show how to generate
Onsager relations within the framework of this theory. We
have closely checked the Onsager relation predicted by this
theory and find that for any temperature, when electron den-
sity is sufficiently high, the balance equation theory satisfies
Onsager relations exactly. The condition of high density is
consonant with the requirement that Lei-Ting balance equa-
tions hold only for strong electron-electron interactions. Fur-
thermore, our results support the validity of this theory in
weakly nonuniform systems. To our knowledge, this is the
first set of hydrodynamic equations that obeys Onsager rela-
tion exactly. Anile and Muscato showed very recently,19 by
Monte Carlo simulation, that the Onsager relation fails in the
traditional hydrodynamic models.

This paper is organized as follows. In Sec. II we briefly
review the hydrodynamic balance equations by Leiet al.4

This is not insignificant because this is the starting point of
our further discussion. Moreover, we further explicitly ex-
hibit the role of the energy flux in this theory and rewrite the
hydrodynamic force and energy balance equations in forms
somewhat different from those of Leiet al.,4 which clarifies
the meaning of every term. Then, in Sec. III we derive the
Onsager relation for linear particle and heat flux currents
driven by electric field and temperature gradient and check it
closely. We present our conclusions and discussions in Sec.
IV.

II. HYDRODYNAMIC BALANCE EQUATIONS

The starting point of hydrodynamic balance equation
theory developed by Leiet al.4 consists of the fluid-element-
composed electron Hamiltonian

H5E dR@He~R!1HI~R!#. ~1!

Here

He~R!5(
i

F pi22m1
1

2(iÞ j

e2

ur i2r j u
Gd~r i2R! ~2!

denotes the kinetic energy and Coulomb interaction energy
of electrons within a fluid cell aroundR. Macroscopically
this cell is small, over which all the expectations of physical
quantities change little, whereas microscopically it is large
enough that a great number of particles are within it.pi and
r i are the momentum and coordinate of thei th electron,

HI~R!5(
i

@ef~r i !1F~r i !#d~r i2R! ~3!

is the interaction Hamiltonian in whichf(r ) denotes
the potential of the external electric fieldE,
hence E52¹f(r ), and F(r )5(au(r2Ra)
1( l ul •¹v l (r2Rl ) represents the scattering potential due
to randomly distributed (Ra) impurities and lattice vibrations
(Rl stands for the lattice sites!. The number density of elec-
trons in the cell aroundR may be written as

N~R!5(
i

d~r i2R!. ~4!

Similarly theR-dependent momentum density is given by

P~R!5(
i
pid~r i2R!. ~5!

Letting v(R) be the average electron velocity in the fluid cell
about R, which is a parameter to be determined self-
consistently from the resulting balance equations, one can
write the statistical average of the momentum density as

^P~R!&5mn~R!v~R!, ~6!

with n(r )5^N(R)&, the statistical average of the electron
number density. Introducing relative electron variables

pi85pi2mv~R!, r i85r i2R, ~7!

which represent the momentum and coordinate of thei th
electron relative to the center of mass of the fluid cell around
R, we can write the statistical average ofHe(R) as

^He~R!&5u~R!1
1

2
mn~R!v2~R!, ~8!

with

u~R!5K (
i

pi8
2

2m
d~r i8!L ~9!

denoting the average kinetic energy of the relative electron in
cell R. It is noted that in deriving Eq.~8! we have treated
electron-electron Coulomb interaction effect in the spirit of
Landau fermi-liquid theory, which is appropriate for elec-
trons in semiconductors and metals, i.e., it leads to a self-
energy correction in the single electron energy, and also
renormalizes the bare phonon frequency, jointly with the
bare electron-phonon interaction vertex, and also the
electron-impurity interaction vertex.27,26,28We assume that
these renormalized corrections are already included in the
corresponding quantities. The use of the Hamiltonian above
is well established and similar to those discussed in the book
of Zubarev.29

Lei et al.4 derived hydrodynamic balance equations by
considering the statistical rates of change given by Heisen-
berg equations of motion for particle number density
Ṅ(R)52 i @N(R),H#, momentum density Ṗ(R)
52 i @P(R),H#, and electron kinetic energy density
Ḣe(R)52 i @He(R),H#. The resulting hydrodynamic bal-
ance equations describe continuity, momentum balance, and
energy balance as~respectively!

]n
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, ~11!
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]t
1v•“u52
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3
u~“•v!2w2v•f. ~12!
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In these equations,f represents the resistive force experi-
enced by the field element due to impurity and phonon scat-
terings andw is the electron energy loss rate. They are given
by

f~R!52K (
i
“F~r i81R!d~r i8!L , ~13!

w~R!5
1

2K (i pi8

m
•“F~r i81R!d~r i8!L

1
1

2K (i “F~r i81R!•
pi8

m
d~r i8!L 2v~R!•f~R!.

~14!

Introducing the particle flux density operatorJ(R), which
can be derived from the momentum density operator Eq.~5!
as

J~R!5
1

m
P~R!5(

i

pi
m

d~r i2R!, ~15!

we can rewrite the momentum balance equation~11! as

]

]t
^J~R!&1“•@^J~R!&v#52

2

3m
“u~R!1

en~R!E

m

1
f~R!

m
. ~16!

^J(R)& denotes the statical average ofJ(R) and it follows
that

^J~R!&5n~R!v~R!. ~17!

The energy flux operator, which is central to identifying sys-
tem response to a temperature gradient, is given by

JH~R!5(
i

pi
2

2m

pi
m

d~r i2R! ~18!

and its statistical average is

^JH~R!&5
5

3
u~R!v~R!1

1

2
mn~R!v2~R!v~R!. ~19!

This is just the energy flux predicted by hydrodynamic bal-
ance equation theory. UsinĝJH(R)&, the energy balance
equation can be rewritten as

]u

]t
1“•^JH&5

2

3
v•“u1

1

2
mv2“•~nv!

1
1

2
mnv•“v22w2v•f. ~20!

Equations~10! and ~16! are now structurally in the same
form as those of hydrodynamic model, which are derived
from first and second moments of the Boltzmann equation as
in Refs. 17–19.

The resistive forcef and the energy transfer ratew, to-
gether with the local kinetic energyu and the local density
n, are calculated within the framework of balance equation
theory,1 which requires knowledge of the density matrixr̂.
This density matrix can be determined by solving the Liou-

ville equationi ]r̂/]t5@H,r̂ # with an appropriate initial con-
dition. In the balance equation theory, the electron-impurity
and electron-phonon couplings are turned on fromt50, to-
gether with the electric fieldE. Meanwhile, in the present
model the interactions between different fluid cells are in-
cluded approximately in the local potential with a mean-field
treatment. Therefore different cells are dynamically indepen-
dent and thus evolve separately from their own initial state.
Thus theR-dependent initial density matrix is chosen such
that the relative electron system in the fluid cell is in a local
quasi-thermal equilibrium state at electron temperature
Te(R) and chemical potentialm(R), which are parameters to
be determined self-consistently from the resulting hydrody-
namic balance equations, whereas the phonon system is as-
sumed in thermal equilibrium

r̂05
1

Z
expH 2(

R
@He~R!2v~R!•P~R!2mN~R!#/Te~R!J

3exp~2Hph/T!, ~21!

with Hph andT being the phonon Hamiltonian and tempera-
ture, respectively. It follows that the resistive force and the
energy transfer rate are given by

f~R!5f„n~R!,Te~R!,v~R!…5ni(
q
quu~q!u2P2„q,q•v~R!…

22(
q,l

quM ~q,l!u2P2~q,Vql2q•vd!

3FnS Vql

T D2nS Vql2q•v~R!

Te~R! D G ,
w~R!5w„n~R!,Te~R!,v~R!…

52(
q,l

VqluM ~q,l!u2P2~q,Vql2q•vd!

3FnS Vql

T D2nS Vql2q•v~R!

Te~R! D G , ~23!

with n(x)5(ex21)21 being Bose distribution function,ni
the impurity density,Vql the phonon frequency of waveq
and model, u(q) the electron-impurity interaction potential,
andM (q,l), the electron-phonon correction matrix element.
P2(q,l) denotes the imaginary part of electron density-
density correction function. Note thatf andw depend onR
through the quantitiesn(R), Te(R), andv(R). The average
local kinetic energy density of the relative electrons is

u52(
k

«k f @~«k2m!/Te# ~24!

and the local chemical potentialm(R) is related to the local
densityn(R) of electrons through the relation

n52(
k

f @~«k2m!/Te#, ~25!
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with «k5k2/2m and f (x)51/(ex11) representing the en-
ergy dispersion of electrons and fermi distribution function,
respectively.

Within the framework of hydrodynamic balance equation
theory, the velocity fieldv(R), the electron temperature field
Te(R), as well as the chemical potential fieldm(R) are fun-
damental parametric variables. The other pertinent variables
to be determined are particle flux̂J&, energy flux ^JH&,
average local kinetic energy densityu(R), local number
density of electronsn(R), as well as local electrical potential
f(R) or fieldE(R). Moreover, there are three balance equa-
tions ~10!, ~16!, and ~20!, supplemented by four relations
~17!, ~19!, ~24!, and ~25!, as well as the Poisson equation
relating the electron density with the potential

“

2f524pe@n~R!2n1#, ~26!

with n1 as the density of the ionized donor background.
These eight equations form a close set of equations for the
hydrodynamic device modeling.

III. ONSAGER RELATION IN THE HYDRODYNAMIC
BALANCE EQUATION APPROACH

In this section, we demonstrate the Onsager relation;25,26

more accurately, we verify the validity of hydrodynamic bal-
ance equations in regard to the Onsager relation. It is well
known that the Onsager relation is a manifestation of micro-
scopic irreversibility for any statistical system near thermal
equilibrium. Therefore any properly formulated statistical
physics model should satisfy this relation. It is very easy to
verify this relation in the framework of Kubo linear-response
theory. Moreover, if one can determine the distribution func-
tion from the Boltzmann equation, it is also straightforward
to verify the Onsager relation by calculating the pertinent
moments of the distribution function. However, for the tra-
ditional hydrodynamic model,5–16 verification has been elu-
sive. In fact, in a very recent article, Anile and Muscato19

showed that the Onsager relation breaks down in this model.
Although they tried to circumvent this difficulty, they did not
establish the existence of the relation they employed within
the model itself by Monte Carlo simulation. Here we will
examine the Onsager relation within the framework of the
hydrodynamic balance equations.

The Onsager relation26 is concerned with the linear re-
sponse of the particle current^J& and the heat flux̂JQ& near
thermal equilibrium, which flow as a result of forcesX i on
the system:

^J&5L11X11L12X2 , ~27!

^JQ&5L21X11L22X2 , ~28!

with X152 (1/T) “(m1ef) and X25“(1/T). The On-
sager relation states that

L125L21. ~29!

The heat flux^JQ& relates to the energy flux in Eq.~19!
through

^JQ&5^JH&2m^J&. ~30!

The fluxes^J& and ^JH& have already been defined in the
previous section by Eqs.~17! and ~19!. Our first task is to
express them in terms of linear response in the form of Eqs.
~27! and ~28!.

The first relation can be acquired directly by linearization
of force balance equation~16! near thermal equilibrium, so
that we only need to consider a steady state with the external
electric fieldE and the spatial gradient being very small.30

ThenTe5T andv is also very small. We takeE, “T, and
v to be in thex direction and treat Eq.~16! to first order in
the small quantities. This means, for instance, that the gradi-
ent operator“x[]/]x is a first-order small quantity andvx
is also a first-order small quantity; thus“xvx is a higher-
order small quantity and can be neglected. These facts
should be kept in mind in all of our following calculations.
Therefore the force balance equation~2! can be written as

052
2

3nm
“xu1

eEx
m

1
f x
nm

. ~31!

All the quantities in the other two directions are zero. For
small vx , f x is proportional tovx ,

2 thus proportional to
^Jx&, and

r52
f x

n2e2vx
52

f x
ne2^Jx&

~32!

is the resistivity and independent ofvx (^Jx&), which is given
by

r52
4p

n2e2(q,l qx
2uM ~q,l!u2F2

1

T
n8S Vql

T D GF f S «k2m

T D
2 f S «k1q2m

T D Gd~«k1q2«k1Vql!

2
ni
n2e2(q qx

2uu~q!u2
]

]v
P2~q,v!uv50 . ~33!

We then have

^Jx&5
Ex

er
2
2

3

¹xu

ne2r
. ~34!

Employing Eqs.~24! and~25!, we can express Eq.~34! in the
form of Eq. ~27!, with

L115
T

re2
, ~35!

L125
T2

re2 F53 F3/2~z!

F1/2~z!
2z G . ~36!

Herez5m/T and the functionFn(y) is defined by

Fn~y!5E
0

` xndx

exp~x2y!11
. ~37!

The procedure for identifying the linearized heat flux is,
of course, similar to that of particle flux. Therefore we con-
sider the rate of change of the energy flux operatorJH de-
fined by Eq.~18!:
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J̇H~R!52 i @JH~R!,H#

52“•A1
1

2(i
~eE1Fi !•pi

2m

pi
m

d~r i2R!

1
1

2(i
pi•~eE1Fi !

2m

pi
m

d~r i2R!

1
1

2(i
pi
2

2m

eE1Fi
m

d~r i2R!

1
1

2(i
eE1Fi
m

pi
2

2m
d~r i2R!

1
1

2(i
pi
m

~eE1Fi !•pi
2m

d~r i2R!

1
1

2(i
pi
m

pi•~eE1Fi !

2m
d~r i2R!, ~38!

where we have used the relations

ṙ i52 i @r i ,H#5pi /m, ~39!

ṗi52 i @pi ,H#5@eE2“F~r i !#/m[~eE1Fi !/m.
~40!

The tensorA is defined as

A5(
i

pi
2

2m

pi
m

pi
m

d~r i2R!. ~41!

Performing the statistical average of Eq.~38!, we have

^J̇H&1¹•^A&5^B&1
5

3m
euE1enE•vv

1
1

2
env2E1

1

2
v2f2wv. ~42!

It is understood that the right-hand side of Eq.~42! is derived
by transforming the coordinate and moment operators to the
relative variables of Eq.~7!, before performing the statistical
averages. The expression of^B& is given in the Appendix
and ^A& can be expressed as

^A&5
1

3
@S~R!1uv2#I1^JH&v1v^JH&2uvv2

1

2
mnv2vv,

~43!

with

S~R!5K (
i

pi8
4

2m3 d~r i8!L . ~44!

This average can be calculated in the balance equation theory
mentioned using the density matrixr̂ discussed in Sec. II,
with the result

S~R!52(
k

k4

2m3 f S «k2m

Te
D . ~45!

It should be emphasized here that if the density matrix
employed in the balance equation is exactly the real physical

one, then Eq.~42! should be consistent with Eqs.~10!–~20!.
This is to say that if we calculate every unknown parameter
from the hydrodynamic balance equations presented in Sec.
II and substitute them in Eq.~42!, then Eq. ~42! should
merely be an identity. Unfortunately, in fact, this is not the
case, especially when the system is a bit far away from
weakly nonuniform system. However, here we do not care
about it because we only need this equation holds near ther-
mal equilibrium. In this circumstance, the density matrix,
chosen in balance equation theory, has already been shown
to be reasonable, in particular for a system with strong
electron-electron interactions.20,21 Therefore Eq.~42! should
yield agreement with the balance equations near thermal
equilibrium and we may use it to determine the linear re-
sponse relation of̂JH& with the external forcesX i and ex-
amine whether the result obtained satisfies Onsager relation.

Thus, to the first order in the small quantities, Eq.~42! can
be written in the form

5

3m
eu~R!Ex2

1

3
“xS~R!1^Bx&50 . ~46!

In deriving this equation, we have used the linearized force
and energy balance equations~11! and~12! and^Bx& has also
been linearized and is proportional to^JH&, which is 5

3uvx to
first order. Thus we may define

1

t
5

^B&
n~R!^JH&

, ~47!

which is also independent ofvx (^JH&). Substituting this
relation into Eq.~46! and calculating the gradient ofS(R) in
Eq. ~45!, we find that the average energy flux is given by

^JH&52
5

3

T2

m

F3/2~z!

F1/2~z!
tX12

T3

m F73 F5/2~z!

F1/2~z!
F1/2~z!

2
5

3
z
F3/2~z!

F1/2~z!GtX2 . ~48!

Subtractingm^J&, we obtain the linearized heat flux in terms
of X1 andX2 and can identify the linear coefficients of Eq.
~28! as

L215
T2

re2 F2
tre2

m

5

3

F3/2~z!

F1/2~z!
2zG , ~49!

L2252
tT3

m F73 F5/2~z!

F1/2~z!
F1/2~z!2

5

3
z
F3/2~z!

F1/2~z!G
2

zT3

re2 F53 F3/2~z!

F1/2~z!
2z G . ~50!

Comparing Eq.~49! with Eq. ~36!, we find that the condition
under which the Onsager relation holds is given by

I[2
tre2

m
51 . ~51!

We have closely examined Eq.~51! for a GaAs system to
see if it is indeed satisfied in balance equation theory. Both
r @Eq. ~33!# and^Bx& ~Appendix! are composed of contribu-
tions due to electron-impurity, electron–LO-phonon, and
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electron–acoustic-phonon scatterings~with the electron–
acoustic-phonon scatterings due to longitudinal mode acous-
tic phonons via deformation potential and piezoelectric inter-
actions, and transverse mode via piezoelectric interaction!.
We have examined each scattering contribution in detail to
check Eq.~51! separately for each interaction. It is clear that
if 2 (e2r i /m) /(1/t) i51 is satisfied for each interaction, we
have2 (e( ir i /m) /( i(1/t) i51. Moreover, this procedure
effects the fact that the result should be independent of im-
purity concentration and parameters of the electron-phonon
interaction matrixes.

The expressions forI obtained from the balance equations
are given by

I ei5

(
q
q2uu~q!u2F ]

]v
P2

«~q,v!GU
v50

S 53D S unD(q q2uu~q!u2F ]

]v
P2~q,v!GU

v50

, ~52!

due to electron-impurity scattering; and

I e-ph~l!5

(
q

uM ~q,l!u2Vql~«q1Vql!n8S Vql

T DP2~q,Vql!

S 53D S unD(q uM ~q,l!u2
q2

m
n8S Vql

T DP2~q,Vql!

1

2(
q

uM ~q,l!u2
q2

m
n8S Vql

T DP2
«~q,2Vql!

S 53D S unD(q uM ~q,l!u2
q2

m
n8S Vql

T DP2~q,Vql!

, ~53!

due to electron-phonon scattering, for phonons of model.
I e-ph(l) is further composed of contributions due to
electron–LO-phonon scatteringI e-LO , due to electron–
longitudinal acoustic phonons by deformation potential cou-
pling I edl , by piezoelectric interactionI epl , and due to
electron–transverse acoustic phonons by piezoelectric inter-
action I ept . P2

« in Eqs.~52! and ~53! is defined by

P2
«~q,v!52p(

k
«kd~«k1q2«k1v!F f S «k2m

T D
2 f S «k1q2m

T D G . ~54!

For the LO phonon,Vq,LO5V0535.4 meV and the Fro¨lich
matrix element isuM (q,LO)u25e2(k`

212k21)V0 /(2«0q
2)

}1/q2. @Since the constants in the matrix elements cancel in
Eq. ~53!, in the following we only specify their relation to

q.# The matrix element due to longitudinal deformation po-
tential coupling isuM (q,dl)u2}q, that due to longitudinal
piezoelectric interaction isuM (q,pl)u2}(qxqyqz)2/q7, and
for the two branches of the independent transverse piezoelec-
tric interaction ( j51,2uM (q,ptj )u2}@qx

2qy
21qy

2qz
21qz

2qx
2

2(3qxqyqz)
2/q2#/q5. For acoustic phononsVql can be

written asvsq, with the longitudinal sound speedvs being
5.293103 m/s and the transverse sound speed being 2.48
3103 m/s. The effective mass of electron is 0.07me , with
me denoting the free-electron mass.

The results of our numerical calculations are presented in
Figs. 1 to 5, where contributions toI due to the various
interactions discussed above are plotted against electron den-

FIG. 1. I due to electron-impurity scattering is plotted as a func-
tion of electron density for several different temperatures.

FIG. 2. I due to electron–LO-phonon scattering is plotted as a
function of electron density for several different temperatures.
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sity for several different temperatures. As it is generally be-
lieved that the contribution of acoustic phonons is important
only at low temperature, while the contribution of LO
phonons is dominant at high temperature, our temperatures
are chosen as 10, 20, and 40 K for the former and 50, 300,
500, and 1000 K for the latter. Impurity scattering is present
at any temperature, so we takeT510, 50, 100, 300, and
1000 K in Fig. 1. From these figures it is evident that, for
any temperature, when electron density is sufficiently high
I is exactly unity, indicating that the Onsager relation holds.

It is also seen from the figures that as temperature becomes
higher, the electron density needed to make the Onsager re-
lation hold is also higher. An interesting exception is the LO
phonon in Fig. 2, in which we can see that the needed den-
sity for T5300 K is lower than that forT550 K, to ensure
that I eLO51.

IV. CONCLUSIONS AND DISCUSSION

In this paper, we have clarified the role of heat flux in
hydrodynamic balance equations. We have further shown
that, for any temperature, when electron density is suffi-
ciently high, the hydrodynamic balance equation theory sat-
isfies the Onsager relation. This is consistent with the under-
standing that the Lei-Ting balance equation theory holds
only for strong electron-electron interactions. Our result sup-
ports the validity of this theory in a weakly nonuniform sys-
tem. To our knowledge, this is the first set of hydrodynamic
equations that satisfies the Onsager relation self-contained
and without thead hoc introduction of terms that do not
originate within the theory.

However, we should also point out that the hydrodynamic
balance equations can only be used to describe weakly non-
uniform systems. When the temperature gradient is large
and/or there is a large heat flux in the system, for example, in
phenomena such as impact ionization and heat generation in
nonuniform systems, the energy flux equation@Eq. ~42!#, or
heat flux equation, which is of paramount importance in de-
scribing these phenomena, is no longer consistent with the
other balance equations~Eqs.~10!–~20!! and a contradiction
emerges. This reflects the inadequacy of the assumed initial
density matrix, Eq.~21!, in the Lei-Ting balance equation
theory, by failing to include the detailed information about
the physics of heat flux. This can be further illustrated as
follows: In our deriving the average energy flux operator Eq.
~18!, there should be another term

FIG. 3. I due to electron–longitudinal acoustic-phonon scatter-
ing via deformation potential coupling is plotted as a function of
electron density for several different temperatures.

FIG. 4. I due to electron–longitudinal acoustic-phonon scatter-
ing via piezoelectric interaction is plotted as a function of electron
density for several different temperatures.

FIG. 5. I due to electron–transverse acoustic-phonon scattering
via piezoelectric interaction is plotted as a function of electron den-
sity for several different temperatures.
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^ jH&5K (
i

pi8
2

2m

pi8

m
d~r i8!L ~55!

on the right-hand side of Eq.~19!. Moreover, in obtaining the
average of the tensorA in Eq. ~41!, there should be another
term v•^( i (pi8/m)(pi8/m)(pi8/m)d(r i8)& on the right-hand
side of Eq.~43!. These two terms do not vanish when the
system is not near thermal equilibrium and should be in-
cluded in the theory if they are calculated from areal physi-
cal density matrix. Anile and Muscato.19 have included such
terms in their traditional hydrodynamic equations mentioned
in the Introduction. Unfortunately, these terms are exactly
zero as predicted by balance equation theory.

It is clear that for mediately nonuniform systems and/or
systems far from thermal equilibrium, an accurate prediction
of the behavior of heat flux requires the inclusion of one or

more additional unknown parameters in the initial density
matrix ~in high-order terms so that they do not violate the
particle and momentum balance equations! to be followed by
their determination from expanded balance equations, which
now include the heat flux equation~s!. This problem is cur-
rently under investigation and the results are planned to be
published elsewhere.
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APPENDIX

The expression of̂B& is composed of two parts. One is due to collisions with impurities (^Bi&) and the other is due to
interaction with phonons (^Bph&). They are given by

^Bi&52pni(
k,q

uu~q!u2~«k1q2«k!
k1q/2

m
d~«k1q2«k1q•v!F f S «k2m

Te
D2 f S «k1q2m

Te
D G

12pni(
kq

uu~q!u2S q•vk1q

m
1k•v

q

mD d~«k1q2«k1q•v!F f S «k2m

Te
D2 f S «k1q2m

Te
D G

1pni(
k,q

uu~q!u2~«k1q1«k!
q

m
d~«k1q2«k1q•v!F f S «k2m

Te
D2 f S «k1q2m

Te
D G ~A1!

and

^Bph&524p(
k,ql

uM ~q,l!u2~«k1q2«k!
k1q/2

m
d~«k1q2«k1Vql2q•v!F f S «k2m

Te
D2 f S «k1q2m

Te
D G

3FnS Vql

T D2nS Vql2q•v

Te
D G24p(

k,ql
uM ~q,l!u2S q•vk1q

m
1k•v

q

mD d~«k1q2«k1Vql2q•v!

3F f S «k2m

Te
D2 f S «k1q2m

Te
D GFnS Vql

T D2nS Vql2q•v

Te
D G22p(

k,ql
uM ~q,l!u2~«k1q1«k!

3
q

m
d~«k1q2«k1Vql2q•v!F f S «k2m
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D2 f S «k1q2m

Te
D GFnS Vql

T D2nS Vql2q•v
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