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In this paper we clarify the role of heat flux in the hydrodynamic balance equations, facilitating the formu-
lation of an Onsager relation within the framework of this theory. Previously thought to be unobtainable from
the present form of the theof¥X.L. Lei, J. Cai, and L.M. Xie, Phys. Rev. B8, 1529(1988], our verification
of the Onsager relation for linear particle and heat flux currents driven by electric fields and temperature
gradients resolves a puzzling issue of long standing. Our results show that, for any temperature, when electron
density is sufficiently high, the linear predictions of balance equation theory exactly satisfy the Onsager
relation. The condition of high density is consonant with the requirement of strong electron-electron interac-
tions for the validity of the Lei-Ting balance equations. Our results support the validity of this theory for a
weakly nonuniform system. We also discuss a possible method of extending this theory to a system further
removed from thermal equilibriuniS0163-182@6)02027-9

[. INTRODUCTION models strive to avoid. This difficulty is circumvented by
one of the following ways. One approach is to calculate the
The balance equation transport theory of Lei and ¥fg relaxation times by Monte Carlo simulations. Another em-
was originally developed to treat high-field electrical condi-ploys empirical forms of relaxation times. The third is to
tion in homogeneous semiconductors and has achieved mugostulate a distribution function with unknown parameters
success in hot-electron semiconductor transport problem&nd use the hydrodynamic equations to solve for these pa-
This theory is based on a separation of the center of mass odmeters. One of the most popular parametrized distribution
the system from the relative motion of electrons in the presfunctions is the drifted Maxwell distribution, which depends
ence of a uniform electric field. The center of mass is treate@®n two unknown parameters: the electron drift velocity and
as a classical particle, whereas the relative electron systerthe electron temperature. The hydrodynamic balance equa-
which is composed of a large number of interacting particlestion approach employs a drifted local equilibrium description
is treated fully quantum mechanically. The theory has beewsimilar to the latter. In this it employs unknown parameters
successfully applied to a variety of transport problems andncluding the local electron temperatufg(R), local elec-
the results obtained have exhibited good agreement witlron drift velocity v(R), and local chemical potential
experiments. This theory was subsequently generalized tow(R). The distinctive features of the balance equation
deal with weakly nonuniform, inhomogeneous systems bytheory rest with the ansatz of such local equilibrium param-
Lei et al* The resulting hydrodynamic balance equations ob-eters in an appropriately chosen initial density matrix, which
tained by them consist of the following three equatiof@: is treated quantum mechanically, describing the dynamics of
the continuity equation(b) the momentum balance equation, the many-body system of electrons, impurities, and phonons.
and(c) the energy balance equation. Of course, these unknown parameters are also to be deter-
The form of these hydrodynamic balance equations apmined from the resulting balance equations. It is now be-
pears very similar to their classical counterparts, generalljieved that the specific quasiequilibrium form of the initial
called hydrodynamic modefs® However, in fact, they are density matrix chosen in balance equation theory is specifi-
quite different. The latter is derived from the Boltzmann cally suited to the condition of strong electron-electron inter-
transport equation, as the first three moments of that equactions, since it requires rapid thermalization about the
tion. Very recently, the fourth moment was discussed bydrifted transport stat&”?! A salient feature of this hydrody-
Anile et al’%%in an attempt to include the equation de- namic approach is that it includes a microscopic description
scribing heat flux. Although, in principle, a complete deter-of scattering in the form of a frictional force function due to
mination of Boltzmann equation is equivalent to the determi-electron-impurity and electron-phonon scattering, as well as
nation of all the moments, it is not practical to solve thean electron energy loss rate function due to electron-phonon
infinite hierarchy of coupled equations governing the varioudnteraction. These functions are calculated within the model
moments. The hydrodynamic approach is based on truncatself, as functions of carrier drift velocity and carrier tem-
tion of this hierarchy after the second-order moment anderature, along with the carrier density, which are themselves
simplification of the remaining equations. However, thesedetermined self-consistently within the same model. These
three moment equations by themselves do not form a closdaydrodynamic balance equations have recently been applied
system, requiring input of information about scattering, gento device simulations by Cait al??~4
erally supplied in the form of momentum and energy relax- A hitherto unresolved question, unanswered since the de-
ation times. Nevertheless, to accurately evaluate the relaxelopment of hydrodynamic balance equations, concerns the
ation times requires a predetermination of the distributioncapability of this theory to lead to the correct form of On-
function, which is precisely the task that the hydrodynamicsager relatiorfS'?® and/or how to determine Onsager rela-
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tions within the framework of this theory. There is even

some misunderstanding that the energy flux predicted by this N(R)=2>, &(r—R). (4)
theory is zero. The purpose of this paper is to clarify the role !

of heat flux in this theory and also to show how to generateSimilarly the R-dependent momentum density is given by
Onsager relations within the framework of this theory. We

have closely checked the Onsager relation predicted by this B

theory and find that for any temperature, when electron den- P(R)= Z Pio(ri—R). )
sity is sufficiently high, the balance equation theory satisfies

Onsager relations exactly. The condition of high density is-ettingv(R) be the average electron velocity in the fluid cell
consonant with the requirement that Lei-Ting balance equaabout R, which is a parameter to be determined self-
tions hold only for strong electron-electron interactions. Fur-consistently from the resulting balance equations, one can
thermore, our results support the validity of this theory inwrite the statistical average of the momentum density as
weakly nonuniform systems. To our knowledge, this is the

first set of hydrodynamic equations that obeys Onsager rela- (P(R))=mn(R)V(R), (6)

tion exactly. Anile and Muscato showed very recerfyny yith n(r)=(N(R)), the statistical average of the electron

Monte Carlo simulation, that the Onsager relation fails in the, ;mper density. Introducing relative electron variables
traditional hydrodynamic models.

This paper is organized as follows. In Sec. Il we briefly p/=p,—mv(R), r/=r—R, (7)
review the hydrodynamic balance equations by eeial?
This is not insignificant because this is the starting point ofwhich represent the momentum and coordinate of ithe
our further discussion. Moreover, we further explicitly ex- €lectron relative to the center of mass of the fluid cell around
hibit the role of the energy flux in this theory and rewrite the R, we can write the statistical averagetdf(R) as
hydrodynamic force and energy balance4 equations in forms 1
somewhat different from those of Let al,” which clarifies _ - 2
the meaning of every term. Then, in Sec. lll we derive the (He(R)=u(R) + Zmn(R)v (R), ®
Onsager relation for linear particle and heat flux currents .
driven by electric field and temperature gradient and check iY‘”th
closely. We present our conclusions and discussions in Sec. p_,z
| ’
V. u<R>—<Z 2m6<ri>> 9
[l. HYDRODYNAMIC BALANCE EQUATIONS denoting the average kinetic energy of the relative electron in
cell R. It is noted that in deriving Eq(8) we have treated
electron-electron Coulomb interaction effect in the spirit of
Landau fermi-liquid theory, which is appropriate for elec-
trons in semiconductors and metals, i.e., it leads to a self-
energy correction in the single electron energy, and also
H:f dR[H(R)+H,(R)]. (1) renormalizes the bare phonon frequency, jointly with the
bare electron-phonon interaction vertex, and also the
electron-impurity interaction verte¥:??® We assume that
these renormalized corrections are already included in the

The starting point of hydrodynamic balance equation
theory developed by Lat al* consists of the fluid-element-
composed electron Hamiltonian

Here

p2 1 2 corresponding quantities. The use of the Hamiltonian above
Ho(R)=2, | ==+ =2, ——|8(ri—R) (2) s well established and similar to those discussed in the book
T [2m 21 [ri—ryl of Zubarev?®

d he kineti d Coulomb i . Lei et al? derived hydrodynamic balance equations by
enotes the meyc energy and foulom |nteract|op energ}fonsidering the statistical rates of change given by Heisen-
of electrons within a fluid cell aroun&. Macroscopically berg equations of motion for particle number density
this cell is small, over which all the expectations of physicaIN(R): Zi[N(R),H] momentum densit P(R)
guantities change little, whereas microscopically it is Iarge:_i[P(R) H] 7an,d electron  kinetic enery densit
enough that a great number of particles are withip,itand i (R)= —i’[H ,(R) H]. The resulting hydrodygimic bal-y

. i e - e ’ .

fi are the momentum and coordinate of thie electron, ance equations describe continuity, momentum balance, and

energy balance asespectively

H.(R)=Ei [eg(r)+®(r)]8(ri—R) 3

Z—?+V-(nv)=0, (10
is the interaction Hamiltonian in whichg(r) denotes
the potential of the external electric fieldE, oV oVy e f
hence E=—Vg(r), and  ®(r)=3,u(r—R,) o VVv=—f —+ —Et—, (1
+3=,u,-Vuv,(r—R,) represents the scattering potential due at 3mn m- mn
to randomly distributedR,) impurities and lattice vibrations U .
(R, stands for the lattice sitesThe number density of elec- Ay w2 v
trons in the cell aroundk may be written as at Fv-vu 3 u(v-v)=w=v-f. (12
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In these equationd, represents the resistive force experi- ville equationi dp/9t=[H,p] with an appropriate initial con-
enced by the field element due to impurity and phonon scatdition. In the balance equation theory, the electron-impurity
terings andw is the electron energy loss rate. They are givenand electron-phonon couplings are turned on fiiga®, to-
by gether with the electric fiel&E. Meanwhile, in the present
model the interactions between different fluid cells are in-
f(R)=— < > Vd(r]+ R)5(ri’)> , (13)  cluded approximately in the local potential with a mean-field
i treatment. Therefore different cells are dynamically indepen-
dent and thus evolve separately from their own initial state.
Thus theR-dependent initial density matrix is chosen such
that the relative electron system in the fluid cell is in a local
quasi-thermal equilibrium state at electron temperature
, P , T(R) and chemical potential(R), which are parameters to
+ §< Z VO(ri+R)- H5<ri )> —V(R)-f(R). be determined self-consistently from the resulting hydrody-
namic balance equations, whereas the phonon system is as-
(14 sumed in thermal equilibrium

Introducing the particle flux density operati(R), which

can be derived from the momentum density operator(gQ.
. Y operator(®. - — Zexp[ > [Ho(R)~V(R)-P(R) ~ uN(R)ITe(R)

W(R)= %< > %‘-vq>(r{+R)5(r()

J(R)——P(R) E—&(rl R), (15) Xexp(—Hpn/T), (22)

with H,, and T being the phonon Hamiltonian and tempera-

we can rewrite the momentum balance equatitl) as ture, respectively. It follows that the resistive force and the

9 2 en(R)E energy transfer rate are given by
E<J(R)>+V'[<J(R)>V]= - %VU(RH
f(R) f(R)=f(n<R).Te<R),v(R>)=ni§ qlu(a)|?Mx(q.9- V(R))
o (16
(J(R)) denotes the statical average IR) and it follows -2> alM(a,M)[*I2(q, Qgy —a- Va)
that aA
(I(R)=n(RIV(R). (17) I %)_n(ﬂqvq'v(m
T Te(R) ’

The energy flux operator, which is central to identifying sys-
tem response to a temperature gradient, is given by
W(R)=w(n(R),T¢(R),V(R))
W(R=2 ——5( i—R) (18)
=22 0qM(a,M) 1140, 0~ va)
and its statistical average is ¢
Q

Q| (Qa—d-v(R)
T Te(R)

This is just the energy flux predicted by hydrodynamic bal-with n(x)=(e*—1)"! being Bose distribution functiom;
ance equation theory. Usingl,(R)), the energy balance the impurity density{), the phonon frequency of wawg

x|n , (23

5 1
(Iu(R))= §u(R)V(R)+ Emn(R)vz(R)v(R). (19

equation can be rewritten as and mode\, u(q) the electron-impurity interaction potential,
au 5 1 andM(q,\), the electro_n—phpnon correction matrix eleme_nt.
—+V~<JH>=—v~Vu+—mu2V-(nv) IT,(g,\) denotes the imaginary part of electron density-
d 3 density correction function. Note thatandw depend orR
1 through the quantities(R), T¢(R), andv(R). The average
+ Smnv: Vol—w—v-f. (20) local kinetic energy density of the relative electrons is
Equations(10) and (16) are now structurally in the same
form as those of hydrodynamic model, which are derived UIZ; exfl(ex—w)/Te] (24)
from first and second moments of the Boltzmann equation as
in Refs. 17-19.

and the local chemical potentigl(R) is related to the local

The resistive forcd and the energy transfer rate, to- densityn(R) of electrons through the relation

gether with the local kinetic energy and the local density
n, are calculated within the framework of balance equation

theory! which requires knowledge of the density matfix n=22 f[(e— )/ Te] (25)
This density matrix can be determined by solving the Liou- K e
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with e, =k?/2m and f(x)=1/(e*+1) representing the en- The fluxes(J) and(J,) have already been defined in the
ergy dispersion of electrons and fermi distribution function,previous section by Eq$17) and (19). Our first task is to
respectively. express them in terms of linear response in the form of Egs.
Within the framework of hydrodynamic balance equation(27) and(28).
theory, the velocity field/(R), the electron temperature field  The first relation can be acquired directly by linearization
T<(R), as well as the chemical potential fieddR) are fun-  of force balance equatiofl6) near thermal equilibrium, so
damental parametric variables. The other pertinent variablethat we only need to consider a steady state with the external
to be determined are particle flud), energy flux(J,),  electric fieldE and the spatial gradient being very snidll.
average local kinetic energy densityR), local number ThenT.=T andv is also very small. We takg, VT, and
density of electrons(R), as well as local electrical potential v to be in thex direction and treat Eq16) to first order in
¢(R) or field E(R). Moreover, there are three balance equa-the small quantities. This means, for instance, that the gradi-
tions (10), (16), and (20), supplemented by four relations ent operatoiV,=d/Jx is a first-order small quantity angl,
(17), (19), (24), and (25), as well as the Poisson equation is also a first-order small quantity; thdé,v, is a higher-
relating the electron density with the potential order small quantity and can be neglected. These facts
should be kept in mind in all of our following calculations.
V2¢p=—4me[n(R)—n"], (26)  Therefore the force balance equati@) can be written as

with n* as the density of the ionized donor background. 2 eE, f,
These eight equations form a close set of equations for the 0= Vaut —+—. (32)
hydrodynamic device modeling.

All the quantities in the other two directions are zero. For

IIl. ONSAGER RELATION IN THE HYDRODYNAMIC small vy, f, is proportional tov,,? thus proportional to
BALANCE EQUATION APPROACH (Jx), and
In this section, we demonstrate the Onsager rel&idh; B fo fy
more accurately, we verify the validity of hydrodynamic bal- P 2%, néXdy (32)

ance equations in regard to the Onsager relation. It is well

known that the Onsager relation is a manifestation of microis the resistivity and independentaf ((J,)), which is given
scopic irreversibility for any statistical system near thermalby

equilibrium. Therefore any properly formulated statistical

physics model should satisfy this relation. It is very easy to p=— 4m E qle(q )\)|2[_ 1n’<%)
verify this relation in the framework of Kubo linear-response Wq,x X ' T T
theory. Moreover, if one can determine the distribution func-

tion from the Boltzmann equation, it is also straightforward _ f(8k+q_:“)
to verify the Onsager relation by calculating the pertinent T
moments of the distributionéfulgction. However, for the tra- N P
ditional hydrodynamic model,~® verification has been elu- o 2 2 7

sive. In fact, in a very recent article, Anile and Muscato W% Au(@] t9wH2(q’w)|‘°:°' 33
showed that the Onsager relation breaks down in this mode|

Although they tried to circumvent this difficulty, they did not V& then have

O(ex+q— ekt Qqn)

establish the existence of the relation they employed within E. 2 V.
the model itself by Monte Carlo simulation. Here we will (3,)= =__ X (34)
examine the Onsager relation within the framework of the ep 3 nep
hydrodynamic balance equations. Employing Egs(24) and(25), we can express E¢34) in the
The Onsager relatiéh is concerned with the linear re- forng o¥ E?]-(gﬁ( w)ith 9. P ®4
sponse of the particle curreqi) and the heat fluxJg) near ’
thermal equilibrium, which flow as a result of forc¥s on T
the system: LH=—s, (39
pe
J)=L"X+L7X,, 2
< > 1 2 ( 7) - T2 5 F3/2(§) g} (36)
=— (= —7rl
(J)=LZX, +L2X,, (28) pe[3 Fudl)
with X,=— (1/T) V(u+e¢) and X,=V(L/T). The On- Here = u/T and the functiorF ,(y) is defined by
sager relation states that " vd
Fn- | o 37
[12—p 21 (29) Y o expx—y)+1°
The heat flux(Jg) relates to the energy flux in Eq19) The procedure for identifying the linearized heat flux is,
through of course, similar to that of particle flux. Therefore we con-

sider the rate of change of the energy flux operadiprde-
(Jg)={(In) — u(J). (300  fined by Eq.(198):
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JH(R)= —i[Ju(R),H] one, Fhen Eq(42) should be consistent with Eq&L0)—(20).
This is to say that if we calculate every unknown parameter
1o (BE+F)-pipi from the hydrodynamic balance equations presented in Sec.
=—V-A+ Ezi 2m Eé(ri_R) Il and substitute them in Eq(42), then Eg.(42) should
merely be an identity. Unfortunately, in fact, this is not the
1o pi-(eE+F) p case, especially when the system is a bit far away from
+ EEi m Eé(ri_R) weakly nonuniform system. However, here we do not care
about it because we only need this equation holds near ther-
1 p? eE+F; mal equilibrium. In this circumstance, the density matrix,
2% om T m o(ri—R) chosen in balance equation theory, has already been shown
to be reasonable, in particular for a system with strong
1 eE+F p? electron-electron interactiod%?! Therefore Eq(42) should
+§ : m ﬁ&ri—R) yield agreement with the balance equations near thermal

equilibrium and we may use it to determine the linear re-
sponse relation ofJy) with the external forceX; and ex-

1o pi (EE+F)-p; ' _ - .
to2 T o, 9i—R) amine whether the result obtained satisfies Onsager relation.
! Thus, to the first order in the small quantities, EtR) can
1< pi pi-(€E+F) be written in the form
32 om AR, (39) : .
s—euR)E,— 5sV,S(R)+(B,)=0. 46
where we have used the relations 3mSURE 3 V.S(R) (B4 (46)
Fi=—i[r;,H]=p;/m (39) In deriving this equation, we have used the linearized force
' ' b and energy balance equatiafid) and(12) and(B,) has also
pi=—i[p;,H]=[eE—V®(r;)]/m=(eE+F;)/m. been linearized and is proportional{d;), which is3uv, to
(40) first order. Thus we may define
The tensorA is defined as 1 (B 47
p? pi p T R
A:Z ﬁﬁﬁﬁ(ri_m' 42 \which is also independent af, ((Jy)). Substituting this
) o relation into Eq.(46) and calculating the gradient & R) in
Performing the statistical average of £§8), we have Eq. (45), we find that the average energy flux is given by
. 5 5 T2 Fyul) T3[7 FsplQ)
(Iu)+V-(A)=(B)+ z—euE+enE-w Jy=— o 8 X —| = 225
3m =" 3 m 0 ™ m|3 Fyg) Y
! ! 5 Fadl)
+ —em?E+ = vf—wv. (42 _ S, . 48
2 2 3 F 0|7 49

Itis understood that the right-hand side of B4p) is derived g piractingu(J), we obtain the linearized heat flux in terms

by transforming the coordinate and moment operators to thg¢ X, andX, and can identify the linear coefficients of Eq.
relative variables of Eq.7), before performing the statistical (28) as

averages. The expression ) is given in the Appendix

and(.A) can be expressed as . T2[ 7pe? 5 Fy(l) }
) ) ST TR v U
(A):§[S(R)+uv2]I+<JH)v+v<JH)—uvv—Emnvzvv, 5 0 ()
T2 7 Fgi( ¢ 5 F3u(¢
43 22:_7-_ _L J— L}
it “ - m |3 Fllz(é“)Fl/Z(g) 3§F1/2(é“)
{T3[5 Fapld) }
" _samsEel . (50
S<R>=<E %5(r(>>. (44 pel3 Fal )

Comparing Eq(49) with Eqg. (36), we find that the condition
This average can be calculated in the balance equation theownder which the Onsager relation holds is given by
mentioned using the density matrix discussed in Sec. I,

2
) e
with the result |=— P =1. (51
k4 Ex— M "
S(R)=2; ﬁﬁf T, | (45 We have closely examined E(1) for a GaAs system to

see if it is indeed satisfied in balance equation theory. Both
It should be emphasized here that if the density matrixp [Eq. (33)] and(B,) (Appendix are composed of contribu-
employed in the balance equation is exactly the real physicdlons due to electron-impurity, electron—LO-phonon, and
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electron—acoustic-phonon scatteringsith the electron— The expressions fdrobtained from the balance equations
acoustic-phonon scatterings due to longitudinal mode acouste given by
tic phonons via deformation potential and piezoelectric inter-
actions, and transverse mode via piezoelectric intergction

We have examined each scattering contribution in detail to > q2|u(q)|2[il'[§(q,w)

check Eq.(51) separately for each interaction. It is clear that q Jo ©=0

if — (e2p,/m)/(1/7);=1 is satisfied for each interaction, we lei=T577, 7 . (52
have — (eZ;p;/m)/Z;(1/7);=1. Moreover, this procedure (§>(ﬁ)2 q2|u(q)|2[£1]2(q,w)

effects the fact that the result should be independent of im- q =0

purity concentration and parameters of the electron-phonon
interaction matrixes. due to electron-impurity scattering; and

Q Y
) IM(q,Ml?QqA(sqqu)n'(Tq”)H2<q,nqx> > |M(qA)lz%n'(T‘”)Haq,—nqu

Ie—ph()\): , (53

5\/u C]2 , Qq)\ 5\(u q2 , Qq)\)
(g)(ﬁ)% IM(q,M)[?—n (T)HZ(q-Qq)\) (5)(ﬁ)§ IM(a.M)[?—n (T M5(q,2,)

due to electron-phonon scattering, for phonons of mede q.] The matrix element due to longitudinal deformation po-
le-pn(N) is further composed of contributions due to tential coupling is|M(q,dl)|?x<q, that due to longitudinal
electron—LO-phonon scatterind., o, due to electron— piezoelectric interaction i$M(q,pl)|20<(qquqz)2/q7, and
longitudinal acoustic phonons by deformation potential coufor the two branches of the independent transverse piezoelec-
pling e, by piezoelectric interaction,, and due to tric interaction =;_; ] M(q,pt;)|?<[qZa+ 0702 +0q5a%

electron—transverse acoustic phonons by piezoelectric inter—(3qquqz)2/q2]/q5_ For acoustic phonon$), can be

actionlqp. IT5 in Egs.(52) and(53) is defined by written asvsqg, with the longitudinal sound speed, being
5.29x10° m/s and the transverse sound speed being 2.48
. e — M x 10° m/s. The effective mass of electron is @7, with
Hz(q@)=277; e d(ertq™ et o) f( T ) m, denoting the free-electron mass.

The results of our numerical calculations are presented in

Exiq— M Figs. 1 to 5, where contributions tb due to the various
—f -1 I (54) interactions discussed above are plotted against electron den-
For the LO phonon{), o= ,=35.4 meV and the Fiich
matrix element igM(q,LO)|?=e?(k,, 1=k 1) Qo/(2809?) 15 — -
«1/g?. [Since the constants in the matrix elements cancel in .
Eqg. (53), in the following we only specify their relation to 14 | -
13 | ]
1.2 [’ T 1 T
‘ 1 12 | 1
Q ]
= 11} ]
- [
~ 1}
0.9 >
08 ]
06 b ettt i ] 102 1% 10 1% 107 10% 107
102 102 102 10% 10 10% 10% 107 10%® 10% 3
3 N (m™)
N (m”)

FIG. 1.1 due to electron-impurity scattering is plotted as a func-  FIG. 2. | due to electron—LO-phonon scattering is plotted as a
tion of electron density for several different temperatures. function of electron density for several different temperatures.
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FIG. 5.1 due to electron—transverse acoustic-phonon scattering

ing via deformation potential coupling is plotted as a function of via piezoelectric interaction is plotted as a function of electron den-
electron density for several different temperatures.

sity for several different temperatures.

sity for several different temperatures. As it is generally bedt is also seen from the figures that as temperature becomes
lieved that the contribution of acoustic phonons is importantigher, the electron density needed to make the Onsager re-
only at low temperature, while the contribution of LO lation hold is also higher. An interesting exception is the LO
phonons is dominant at high temperature, our temperaturgshonon in Fig. 2, in which we can see that the needed den-
are chosen as 10, 20, and 40 K for the former and 50, 30Gsity for T=300 K is lower than that fol =50 K, to ensure
500, and 1000 K for the latter. Impurity scattering is presenthat| o o=1.

at any temperature, so we take=10, 50, 100, 300, and

1000 K in Fig. 1. From these figures it is evident that, for
any temperature, when electron density is sufficiently high
| is exactly unity, indicating that the Onsager relation holds.

1.1 AR UL TR AR I ™
T=10K
1 -
= 40K
Sm—
0.9 .
20 K
0.8 | PR | ool N | il il

102 10* 10®  10%
N (m?)

1627'
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IV. CONCLUSIONS AND DISCUSSION

In this paper, we have clarified the role of heat flux in
hydrodynamic balance equations. We have further shown
that, for any temperature, when electron density is suffi-
ciently high, the hydrodynamic balance equation theory sat-
isfies the Onsager relation. This is consistent with the under-
standing that the Lei-Ting balance equation theory holds
only for strong electron-electron interactions. Our result sup-
ports the validity of this theory in a weakly nonuniform sys-
tem. To our knowledge, this is the first set of hydrodynamic
equations that satisfies the Onsager relation self-contained
and without thead hoc introduction of terms that do not
originate within the theory.

However, we should also point out that the hydrodynamic
balance equations can only be used to describe weakly non-
uniform systems. When the temperature gradient is large
and/or there is a large heat flux in the system, for example, in
phenomena such as impact ionization and heat generation in
nonuniform systems, the energy flux equatjé. (42)], or
heat flux equation, which is of paramount importance in de-
scribing these phenomena, is no longer consistent with the
other balance equatioriggs.(10)—(20)) and a contradiction
emerges. This reflects the inadequacy of the assumed initial
density matrix, Eq.(21), in the Lei-Ting balance equation
theory, by failing to include the detailed information about

FIG. 4.1 due to electron—longitudinal acoustic-phonon scatter-the physics of heat flux. This can be further illustrated as
ing via piezoelectric interaction is plotted as a function of electronfollows: In our deriving the average energy flux operator Eq.

density for several different temperatures.

(18), there should be another term
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more additional unknown parameters in the initial density
matrix (in high-order terms so that they do not violate the
particle and momentum balance equatjdonsbe followed by

(59)

on the right-hand side of E¢L9). Moreover, in obtaining the
average of the tensod in Eq. (41), there should be another
term v-(Z; (p{/m)(p{/m)(p{/m)s(r{)) on the right-hand

their determination from expanded balance equations, which
now include the heat flux equati@). This problem is cur-
rently under investigation and the results are planned to be

side of Eq.(43). These two terms do not vanish when the published elsewhere.
system is not near thermal equilibrium and should be in-
cluded in the theory if they are calculated fromeal physi-
cal density matrix. Anile and Muscat8.have included such
terms in their traditional hydrodynamic equations mentioned
in the Introduction. Unfortunately, these terms are exactly One of the authoréV.W.W.) would like to thank Profes-
zero as predicted by balance equation theory. sor X.L. Lei, who first brought this problem to his attention.

It is clear that for mediately nonuniform systems and/orThis research was supported by U.S. Office Naval Research
systems far from thermal equilibrium, an accurate prediction(Contract No. N66001-95-M-3472and the U.S. Army Re-
of the behavior of heat flux requires the inclusion of one orsearch Offic6Contract No. DAAH04-94-G-041)3
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APPENDIX

The expression ofB) is composed of two parts. One is due to collisions with impuritigg ¥) and the other is due to

interaction with phonons(By,)). They are given by
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m

<Bi>=2wnik2q lu(@)|2(exs q— &4

q
m

k+
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