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Universality class in the one-dimensional localization problem
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Weak disorder behavior of the Lyapunov exponent is investigated for a one-dimensional disordered system
whose band structure and transfer matrix form are manifestly different from the standard ones encountered in
tight-binding models. For diagonal disorder, the critical exponents governing the divergence of the localization
length at zero disorder are identical with those predicted for tight-binding models. For off-diagonal disorder, a
new exponent is found in one of the band edges, indicating a different universality class. The scaling functions
near the different band edges are displayed, and their values for zero arguments are not identical at all edges.
[S0163-182606)01725-0

I. INTRODUCTION ficients in a weak disorder expansion is apparently out of
question. Yet, itis interesting to test, at least numerically, the
The present work is concerned with localization of aquestion of how robust the results mentioned above are, and
guantum particle in an effective one-dimensional disorderedvhether different behavior of the localization length arises
system, which has two distinct properties. First, its spectrunbnce the condition of uncorrelated transfer matrices is re-
contains a finite gap and second, its transfer matrices anaxed. In particular, if a new power &k will arise, it points

generically correlatedalbeit it is short ranged toward a different universality class. This is the main moti-
Localization of electrons within the single-particle ap- vation for the present work.
proximation is best illustrated in one-dimensional disordered Our starting point is a one-dimensional tight-binding
systems. In most cases the problem is reduced to the compthodel on a decorated lattice composed of two sublattices,
tation of the Lyapunov exponent resulting from a product A and B, such that nearest neighbor hopping is allowed
of random transfer matrices. Despite the apparent elementagyithin the sublatticeA and between sublattices, but not
nature of the underlying physics, some subtle points emerggithin sublattice B. Incidentally, this special geometry is
when the precise dependence of the localization lefgith  also used in the construction of a solvable model in the study
energyE and disorder strengt is looked for. Even for the of strongly correlated systems!® As far as the single-
simplest model of a tight-binding Hamiltonian with constant particle approximation is concerned, this model can be
nearest-neighbor hopping terms and random site energiemapped on a purely one-dimensional one by eliminating the
one does not know the functional form of sublatticeB. When the system is cleaftonstant hopping
¥(E,W)= & 1(E,W). On the other hand, for weak disorder, and zero site energigthe spectrum contains two bands with
self-consistent perturbation theory has been worked out, rex finite gap between them. Furthermore, the bands are not
vealing a rich structure of(E, W) in both its arguments? It symmetric with respect to each other and have different ex-
can be briefly summarized as follow®) If E is well inside  tents. This means that all four band edges are different from
the energy banfi—2,2], theny(E,W)~C(E)W? where the each other as far as the behavior of the Lyapunov exponent is
function C(E) is not specified but has an infinite number of concerned. When the system is disordered, the Zransfer
singular points(Kappus-Wegner singulariti€s. (b)) When  matrix T, dependgin an irreducible way on random vari-
E is close to the band edgsay the poinE,=2), y(E,W) is  ables belonging to tha and then—1 sites so that the con-
nonanalytic in W and can be represented as dition for analytic expansion is not fulfilled and we have to
y(E,W)=W?3f(x) where f(x) with x=(E—2)W *3is a resort to numerical calculations.
scaling function which is regular and finite at&=0. For For diagonal(site) disorder, we find that the universality
x—o f(x)~ /X while for x— —o R f(x)]~1/x. class is identical with the one-dimensional tight-binding
Unfortunately, this method works under the restrictivemodel one, whereas for off-diagonddond disorder, a dif-
condition that the transfer matrices are uncorrelated. Furtheferent universality class prevails at one of the four band
more, it is applicable only as long as a single channel idges. Smooth scaling functions are calculated near the four
open. Recently, some progress has been made in circumveftand edges and their asymptotic behavior is extracted. It is
ing the later constraiff.® On the other hand, if the transfer also noticed that the vicinities of the band edges where scal-
matrices are correlated, an analytic expression for the coefng is valid are extremely small.
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FIG. 1. Lattice structure of the model. The
L. 1) @ L. open circle represents a site which is labeled by
n n (n,m). The lines represent hoppings of electrons.
(1,2) 2.2) (n-1,2) m2mn,
In Sec. Il we describe the model, and explain the method Eyy(k)=—(2coK) ¢1(k)_(1+e—ik)¢2(k),
of solution. The results are displayed in Sec. lll. Finally, in (2.5

the Appendix we carry out weak disorder expansion of the
Lyapunov exponent for a one-dimensional chain with off-
diagonal disorder and zero site energies. We then confirrﬁl
that the critical exponents in this case are identical with those
found for the one-dimensional chain with constant hopping
matrix elements and random site energies. This result cor- E. (k)= —cok=* y1+(1+cok)?, (2.6)
roborates our argument that the different exponent found
near one of the band edges is generic for the present modayhere — and + are the band indices. The dispersion rela-
tions are shown in Fig. 2. The edges of the bands ate at
=-1-5,0,—1+5, and 2.

Let us now move on to study the disordered system, for

We consider the tight-binding Hamiltonian on a decoratedwhich we employ the transfer matrix method. The following
lattice shown in Fig. 1 under the open boundary condition Schralinger equation is obtained by eliminating the variables

¥n 2 Using the second equation (8.3):

Edhp(k)=—(1+€") g1 (k).

he eigenenergies are

II. MODEL

N
1 2 3
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n=1 n n—-1
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+H.C)+ €nCh1Cn 1+ 70Ch Ln 2], (2.1 n
where ¢, , is the fermion annihilation operator at site
(n,m), which satisfies the standard anticommutation rela-
tions. Heret!) (j =1, 2, 3) is the hopping matrix element
ande, and n, are the on-site potentials on the sitesl) and
(n,2), respectively. They are randomly distributed according
to a given probability distributiop(X) whereX =t ¢, or Vo1 =TaWh, 2.8
7. The ground state of this model with infinitely large on-
site Coulomb repulsion is investigated by several authdfs. Where

By using a one-particle state which is written as

which can be written as

N E(k)
W)= 3 tnchal0), 22 | f
n=1m=1.2 \_//-
where ¢, ,, are complex coefficients, the Schinger equa- s 1
tion H|W)=E| V), whereE is the energy eigenvalue, is
O s
entna— 15 Un i1t 110t Yo o=t 112
= Elﬂn,l,
2 3 2T
7]n¢n,2_t£1 )¢n,l_t§1 )lﬂn-#l,l: Edno. 2.3
We first show the band structure for the pure case, where
we settM=tD=t(3=1 ande,= 5,=0. We consider the 4T
system with an even number of unit cells under the periodic

boundary conditiorty; ;=C; ;. From the Fourier transfor-

mation ¢, n=(1//N) =, e "¢ (K), where - 2 : m
2m 4w N/2—1 FIG. 2. The dispersion relatiorts, andE_. The parameters are

k—O,i—N ,i—N y e ,i 277 N , T, (24) t(l)*t(z)*t“)*l Efndé _ —0.Th — p_
no= == n=n,=0. The momentunk is expressed

) in units of the inverse lattice constant, which is taken to be equal to
the Schrdinger equation in the momentum space is unity.
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enE(t)2 (9, —E)tD DU (gn_1—E) tM+t2t3 /(eta, ,—E)

i,
\Pn=( y " T ty) + 5t (9.~ E) W+t P(-E) |, (29
n-1,1 1 0
T
This defines the transfer matrix of the effective one- Ill. RESULTS

dimensional problem. It has three properties which makes it

entirely different from the usual 22 transfer matrices en-
late the Lyapunov exponent for two types of randomness,

countered in one-dimensional tight-binding modé€. Its . : . X
determinant is not equal to unity. This defect can easily bedlagonal disorder, and off-diagonal disorder. Although the

circumvented though(2) Its elements have a complicated La';d%rr?o\zn:;”%ensenir?s (;O;r;:‘?;?/i,r;if ar&t;iﬁ:gf\te;n;hﬁént(r:\:
dependence on energy, af® the T, depends on random yap P ging g y '

variables defined on theth and the fi—1)th unit cells. In the accuracy of the numerical calculation is limited only by

particular, the (1,1) element contains a sum of such rando ;{aigf]tlf%erllcir;?rzslevxhlt?]hudetﬁx ?@lbwﬁoesr:;?irz% th;ga\lllgg:
terms. This prevents any attempt to factorize it into a produc gth up = y 9

of the formT,=V,U,_; which enables the recasting of the or W, in every step of the. pro_duct. Only &=1 the ele- .
ments of the transfer matrix diverge and we cannot obtain

problem in terms of uncorrelated transfer matrices, solution by this method. Recall our anticipation, namely, that
The quantity in which we are interested is the Lyapunov; y j P ' Y,

exponenty. In one dimension, all the eigenstates are expo—ms'de the band, the Lyapunov exponent is analytitinso

nentially localized even in infinitesimally weak disordér, Lhat(}’%W W'Eh a(;] n;tegert;rlncal Txponlfr:jt_. Og the o';her
and the localization lengtk is the inverse ofy. The method and, near a band edgs,, the usual weak disorder pertur-

that we choose in order to evaluate the Lyapunov expone ation dexpar|1|3|on bre?ks down, sEce, Gbegmfgerteh IS a
has been used in the context of the Anderson localization. SE€ONC Small parameter, namelly- Ey . >uided by the re-
The exponent is given by sults of Ref. 2 we seek a parametrization of the form

y(E,W)=Wf(x) wheref(x) with x=(E—E,))W 2% is a
1 scaling function which is regular and finite at=0. For x
y= IimNHmNIn| I TN ol (2.10  large ancE outside the band,(x)~ \x while for x large and
E inside the band, Ré(x)]~ 1/.
where Notice however that the definition of being “inside the
band” applies here also to points which are close to the band
N edge. Thus, the poinE=1.99 is considered here as being
=11 T, (2.1  inside the band, although the band edgdis2. The true
n=1 neighborhood of the band edgedging from the power be-
havior of the Lyapunov exponenis extremely small in the
present model. Yet, it is unambiguously characterized by a
different power and a scaling function, as we shall show
below.

Using the numerical procedure explained above we calcu-

[ITNPol| denotes the norm of the vector, at, is a initial
vector. Since the determinant of the matfix is not 1, we
define the “normalized” transfer matrix by

T 2):(3
tg )+tﬁ] >t$] )/( ) A. Critical exponents
n= T ANE) T,, (212 )
t it 2/ (-1~ E)

=l

Starting with diagonal disorder, we sample the site ener-
whose determinant is 1, and define the product of the matrigies from the uniform rectangular distribution

ces by W
ple)=1, for ——=<e,<

N 5 > (3.1

Tn=11 Ta. (2.13

n=1 w W
, . p(m)=1, for ——<m=-, (3.2
The relation betweef2.11) and(2.13 is
and set the hopping matrix element
tV+ 2t (9—E) -
_ 0 0 ‘o "\ 7o 21 i )

N VT @ =B (2.14 th=1, for j=123. (3.3

In Fig. 3 we show the global behavior of the Lyapunov ex-
ponent as a function dE with various values of the width
(disorder strengthW. This figure clearly indicates that the

Therefore, the Lyapunov expongi 10 is written by using
the transfer matrices with the determinant 1 as

EONE) power of W in the weak disorder expansion ¢fdepends on
= lim iln \/to g tg (7 _E)||? W, whether one is inside the band or close to the band edge. To
N=2N t+t@t(py—E)" VO] investigate it more quantitatively, we plot the Lyapunov ex-

(2.15 ponents inside the band and near the band edge as a function
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FIG. 3. Estimates of the Lyapunov exponestas a function of
energyE, for several values of the widtWW. The error is smaller
than the width of the line. The inverse localization lengthis
expressed in units of the inverse lattice constant.

of W on a log-log plot in Figs. 4 and 5, respectively. As long

as W is small enough, the behavior is definitely a power

W<, We estimate the critical exponeatby a least squares
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FIG. 5. Estimates of the Lyapunov exponentsat the band
edges on a logarithmic scale vs the widkh for several values of
energyE. The error is smaller than the size of the plotted point. The
lines are guides to eyes.

_ w W .
p(t(l)):]_, for 1_E$t'("])$1+?’ (J=1,2,3),

(3.9

fit. The smallest 10 points are used for fitting. The estimategnd set the on-site potentials
and they? are shown in Table I. The results suggest that for

diagonal disorder, the exponents are 2 inside the band and

2/3 at the band edge.

This behavior is identical in the two bands so we can

conclude that as far as diagonal disorder is concerned, o
result for the critical exponents is the same as that of Ref.
This is valid despite the distinct properties of the transfe
matrices discussed above.

€= 1n=0. (3.5

In Fig. 6 we show the global behavior of the Lyapunov
exponent as a function & with various values of the width

Y. This shows a behavior similar to the one encountered in

ig. 3 for diagonal disorder. To elucidate the pertinent pow-

ers, we display the Lyapunov exponents inside the band as a

function of W in Fig. 7. An estimate of the exponent in terms

Now let us investigate the case of off-diagonal disorder s e slope yields again~2, in agreement with Ref. 2. We

For the random variables, we choose the rectangular dis-
tribution

0.1
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0.001

In W

FIG. 4. Estimates of the Lyapunov exponemntinside the band
on a logarithmic scale vs the widw, for several values of energy

E. The error is smaller than the size of the plotted point. The lines

are guides to eyes.

are then tempted to conjecture that the behavior
v(E,W)~W? inside the band is robust for any tight-binding
model with disorder. Surprisingly, this is not true in general
when the Lyapunov exponent in the neighborhood of the
band edge is analyzed. In Fig. 8 the critical exponent is cal-
culated near the first, the third, and the fourth band edges
(counting from below and oury? indeed suggests that the
exponenta is equal to 2/3 in all three band edges. In Fig. 9
we elucidate the critical exponents at the vicinity of the
second band edgé=0, and find that herex~4/3. Hence,

TABLE I. The estimates of the exponeatfor diagonal(site)
disorder case.

2

E o X
1.99 1.990 0.0002144
Inside the band 1.24 2.009 0.00003568
—-0.01 1.988 0.0001957
—-3.23 1.990 0.001002
1.9999999999 0.6698 0.00003796
Band edge 1.2360679775 0.6698 0.000008140
—0.0000000001 0.6641 0.00003694
—3.2360679774 0.6626 0.00008829




232 MASANORI YAMANAKA, YSHAI AVISHAI, AND MAHITO KOHMOTO 54

T T 1
001 —— w=00 —
w=0.01
w=0.025
w=8.8§5
B w=0. ]
ooo8f-  F o w=8.0 0.1
0.006 |- .
-
- <
0.01
0.004 |- _ -
0.002 Y = 0.001 o o E= 1.9999999999
=T e E= 1.2360679775
S N s IO e/ I 1l E=-3.2360679774
| | | [ | | ! 00001 | | |
54 3 24 0 ! 2 3 " 0.0001 0.001 0.01 0.1 1

InW

FIG. 6. Estimates of the Lyapunov exponemtas a function of
energyE, for several values of the widtWW. The error is smaller
than the width of the line.

FIG. 8. Estimates of the Lyapunov exponentsat the band
edges on a logarithmic scale vs the widttw at
E=1.999 999999 9, 1.236 067 977 5, ant.236 067 977 4. The
error is smaller than the size of the plotted point. The lines are

the present model with diagonal disorder belongs to a differ?uides to eyes.

ent universality class. Our precise numerical results for al
the four critical exponents near the band edges for off-Two typical examples of scaling functions, one for diagonal
diagonal disorder are summarized in Table II. and one for off-diagonal disorder, are displayed in Figs. 10
and 11. While we cannot predict the constant multipliers, the
corresponding log plots indicate that the pertinent powers are
indeed 1/2 outside the band anrel inside the bands, as

! . anticipated. Another interesting question is whether band
argument is defined as= (E—E,,)/W?* and the correspond- edges with identical critical exponents are completely
ing scaling function is defined agx)=y/W®. Far outside equivalent in the sense that they have the same value of
the band, it is anticipated that the Lyapunov exponent doeg((). Theeight values of the scaling functions a0 cor-

not depend on disorder at all, so tHgx) ~x"% Deep inside  responding to four band edges and two types of disorder are
the band it is expected that the transition to the region whergymmarized in Table Ill. From this table we conclude that
the exponent isx=2 will be smooth, which requires that some pairs of bands are equivalent while some are not. For
Re[f(x)]=x"*. This is not a general rule, and in some giagonal disorder, no value of/(W2)*2 coincided with the
case$ the decay off(x) inside the band is exponential and corresponding figure 0.28 . . found in Ref. 2 for the one-
the power behavior inside the band masks its true falloffchain tight-binding model with diagonal disorder.

B. Scaling functions

Near a band edgE, with critical exponenix the scaling
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FIG. 7. Estimates of the Lyapunov exponemntinside the band

FIG. 9. Estimates of the Lyapunov exponentsat the band

on a logarithmic scale vs the widW, for several values of energy edges on a

are guides to eyes.

logarithmic
E. The error is smaller than the size of the plotted point. The linesE=—0.000 000 000 1. The error is smaller than the size of the

scale vs

the widtiw at

plotted point. The lines are guides to eyes.
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TABLE Il. The estimates of the exponent for off-diagonal

(bond disorder case.

E a X2
1.99 2.002 0.00008475
Inside the band 1.24 1.980 0.0009219
—0.01 1.846 0.002842
-3.23 1.996 0.0004974
1.9999999999 0.6714 0.0001213
Band edge 1.2360679775 0.6708  0.000008547
—0.0000000001 1.369 0.0008678
—3.2360679774  0.6750 0.0001417
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band edges are displayed. For off-diagonal disorder, a new
critical exponent is found, whose value differs from the ones
predicted in Ref. 2.
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APPENDIX: ONE-DIMENSIONAL CHAIN WITH OFF-
DIAGONAL DISORDER

In conclusion we have investigated numerically the weak

disorder behavior of the Lyapunov exponent for a special

one-dimensional model whose single-particle spectrum co
tains a gap and whose transfer matrix is a complicated fun

relevant energy domains and the scaling functions at the fo

f(x)

w=0.01
w=0.025 |
w=0.05
w=0.075
w=0.1

n_
C_

) o , imensional simple chain with off-diagonal disorder an
tion of energy. The critical exponents are calculated in aIIthe§i ensional simple_cha th off-diagonal disorder and

In order to show that the occurence of an exponent 4/3 in
our decorated lattice is not trivial, we briefly derive the weak
disorder expansion of the Lyapunov exponent for a one-

ero site energies. The procedure follows closely the one of

YRef. 2 with a few changes due to the different kind of disor-
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FIG. 10. (a) Plot of the scaling function of the Lyapunov exponent near the second band(ealgging from belowy for diagonal
disorder. That on a log-log plot in the regiors 0 (b) andx<0 (c). [We show the mirror image df(x) in (c) to take logarithm].
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FIG. 11. (a) Plot of the scaling function of the Lyapunov exponent near the fourth band (edgeting from below for off-diagonal
disorder. That on a log-log plot in the regiors 0 (b) andx<0 (c). [We show the mirror image df(x) in (c) to take logarithm].

der. On the basis of our analysis below it is then argued thgbansion parameter. Settingy,= ¢, leads to a modified
near the band edge, the relevant exponent is indeeéquation, which can be cast in a transfer matrix form with

a=2/3.

The Schrdinger equation is _E _1
T,= th . (A3)
—ths1tns1i—tho1n_1=Ed,. (A1) 1 0
We assume that, fluctuate slightly near 1 so we have Now we define the Ricatti variable
tha=1+Au,, A2
n n ( ) Rn:—¢¢n y (A4)
where the odd moments af, vanish, while the even mo- _ o _ -t
ments are given. The small parameleis the pertinent ex- Which satisfies the equation
TABLE lll. Estimates off(0) at the band edges fok/=0.01. R.. .= _E_i (A5)
For off-diagonal case we usedshown in Table Il for the estima- n+1 th Ry
tion.
Let us writeR, as
E 2 —1+5 0 -1-\5 R.=AeBnt A2 Cn+ %D +AE + - (AB)
n .
Diagonal disorder 0.199 0.78 0.20 0.11
Off-diagonal disorder ~ 0.322 11 0.16 021  Substitute the expansioi.6) in (A.5) and compare equal

powers of\ to get the following set of equations:
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A=—E-A"1 (A7)
ABn+1=Eun+Kn, (A8)
B2 B2
A( '12+1+Cn+1)=—Euﬁ+A‘1(Cn—?n), (A9)
Bﬁ-%—l 3 1 ﬁ
Al =5~ +Bn+1Cn1+Dyer | =EUi+ 7| 5 —BnCq+ Dy, (A10)
Br.i B21Cny Chyy 1( Bj BXC, Ci
A( ;4 + st “2 +Bps1Dps1t+Ena =—Eu;‘+K —2—;‘1+ “2 —7“—Bn+1Dn+En+l, (A11)

and so on. Using the relation between the Ricatti variable and the Lyapunov expgnantl the assumption that the odd
moments ofu,, vanish, we have

y=INA+\%(C)+ A\ E)+-- -, (A12)
where(C)=(C,), etc,(independent ofh). Calculations up to fourth order then yield
EA(V2) E2A%(V?)

= 2 -
Y= AN o) T A 1)?

o APE?(2—2A%—2A%+2A°— 4AE+AAE+3AE*+ 2AE?)(V?)?
2(1-A%5(1+A?)

AE(2—2A%—AE)(2—4A%+4A%—2AE+2A3E— A%E?)(V?)
" 4(1-A%* : (A13)

This equation indicates that, at least up to fourth order, thgularity near the band edge is dominated by the respective
various terms in the expansion of the Lyapunov exponent fodenominators A2—1)? and (A>—1)° and not by the de-
the one-chain model with off-diagonal disorder are distinctnominators A?—1) and @A?—1)* These singular terms
from those encountered in the one-chain model with diagohave the same singularity structure as in the diagonal disor-
nal disorder. EVidently, this is the situation to every order inder model. The second and third terms then become compa-
the perturbation expansion. The validity @.13) is for en-  aple with IMA when E—E,)/\*? s finite. This leads to the
ergy E outside the bandthe energyE may possibly be com- ) 23 pepavior of the Lyapunov exponent near the band edges.

plex). To reach the physical region one needs to carry out 8yance  the occurence of an exponent 4/3 in the decorated
analytic continuation. This procedure is possible as long 3% 0del with offdiagonal disorder is not trivial

the energyE is not close to the band edge ahél'+ 1, which Notice the singularity of the Lyapunov exponent at the

indicates that inside the bangl=\2?. Near a band edge _ _ .
E,, A—1. The second terrfproportional to<V2>) and the band center, wher&=0 andA 1. The behavior of the

third term(proportional to(V2>2) become comparable to the E;:ﬁlézr?r}'on length at this special energy was studied
first. The important point to notice, however, is that the sin- '
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