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Weak disorder behavior of the Lyapunov exponent is investigated for a one-dimensional disordered system
whose band structure and transfer matrix form are manifestly different from the standard ones encountered in
tight-binding models. For diagonal disorder, the critical exponents governing the divergence of the localization
length at zero disorder are identical with those predicted for tight-binding models. For off-diagonal disorder, a
new exponent is found in one of the band edges, indicating a different universality class. The scaling functions
near the different band edges are displayed, and their values for zero arguments are not identical at all edges.
@S0163-1829~96!01725-0#

I. INTRODUCTION

The present work is concerned with localization of a
quantum particle in an effective one-dimensional disordered
system, which has two distinct properties. First, its spectrum
contains a finite gap and second, its transfer matrices are
generically correlated~albeit it is short ranged!.

Localization of electrons within the single-particle ap-
proximation is best illustrated in one-dimensional disordered
systems. In most cases the problem is reduced to the compu-
tation of the Lyapunov exponentg resulting from a product
of random transfer matrices. Despite the apparent elementary
nature of the underlying physics, some subtle points emerge
when the precise dependence of the localization lengthj on
energyE and disorder strengthW is looked for. Even for the
simplest model of a tight-binding Hamiltonian with constant
nearest-neighbor hopping terms and random site energies,
one does not know the functional form of
g(E,W)5j21(E,W). On the other hand, for weak disorder,
self-consistent perturbation theory has been worked out, re-
vealing a rich structure ofg(E,W) in both its arguments.1,2 It
can be briefly summarized as follows:~a! If E is well inside
the energy band@22,2#, theng(E,W)'C(E)W2 where the
functionC(E) is not specified but has an infinite number of
singular points~Kappus-Wegner singularities.3! ~b! When
E is close to the band edge~say the pointEb52), g(E,W) is
nonanalytic in W and can be represented as
g(E,W)5W2/3f (x) where f (x) with x5(E22)W24/3 is a
scaling function which is regular and finite atx50. For
x→` f (x)'Ax while for x→2` Re@ f (x)#'1/x.

Unfortunately, this method works under the restrictive
condition that the transfer matrices are uncorrelated. Further-
more, it is applicable only as long as a single channel is
open. Recently, some progress has been made in circumvent-
ing the later constraint.4–6 On the other hand, if the transfer
matrices are correlated, an analytic expression for the coef-

ficients in a weak disorder expansion is apparently out of
question. Yet, it is interesting to test, at least numerically, the
question of how robust the results mentioned above are, and
whether different behavior of the localization length arises
once the condition of uncorrelated transfer matrices is re-
laxed. In particular, if a new power ofW will arise, it points
toward a different universality class. This is the main moti-
vation for the present work.

Our starting point is a one-dimensional tight-binding
model on a decorated lattice composed of two sublattices,
A and B, such that nearest neighbor hopping is allowed
within the sublatticeA and between sublattices, but not
within sublatticeB. Incidentally, this special geometry is
also used in the construction of a solvable model in the study
of strongly correlated systems.7–10 As far as the single-
particle approximation is concerned, this model can be
mapped on a purely one-dimensional one by eliminating the
sublatticeB. When the system is clean~constant hopping
and zero site energies! the spectrum contains two bands with
a finite gap between them. Furthermore, the bands are not
symmetric with respect to each other and have different ex-
tents. This means that all four band edges are different from
each other as far as the behavior of the Lyapunov exponent is
concerned. When the system is disordered, the 232 transfer
matrix Tn depends~in an irreducible way! on random vari-
ables belonging to then and then21 sites so that the con-
dition for analytic expansion is not fulfilled and we have to
resort to numerical calculations.

For diagonal~site! disorder, we find that the universality
class is identical with the one-dimensional tight-binding
model one, whereas for off-diagonal~bond! disorder, a dif-
ferent universality class prevails at one of the four band
edges. Smooth scaling functions are calculated near the four
band edges and their asymptotic behavior is extracted. It is
also noticed that the vicinities of the band edges where scal-
ing is valid are extremely small.
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In Sec. II we describe the model, and explain the method
of solution. The results are displayed in Sec. III. Finally, in
the Appendix we carry out weak disorder expansion of the
Lyapunov exponent for a one-dimensional chain with off-
diagonal disorder and zero site energies. We then confirm
that the critical exponents in this case are identical with those
found for the one-dimensional chain with constant hopping
matrix elements and random site energies. This result cor-
roborates our argument that the different exponent found
near one of the band edges is generic for the present model.

II. MODEL

We consider the tight-binding Hamiltonian on a decorated
lattice shown in Fig. 1 under the open boundary condition

H5 (
n51

N

@~2tn
~1!cn,1

† cn11,12tn
~2!cn,1

† cn,22tn
~3!cn,2

† cn11,1

1H.c.!1encn,1
† cn,11hncn,2

† cn,2#, ~2.1!

where cn,m is the fermion annihilation operator at site
(n,m), which satisfies the standard anticommutation rela-
tions. Heretn

( j ) ( j 51, 2, 3) is the hopping matrix element
anden andhn are the on-site potentials on the sites (n,1) and
(n,2), respectively. They are randomly distributed according
to a given probability distributionr(X) whereX 5t ( j ), e, or
h. The ground state of this model with infinitely large on-
site Coulomb repulsion is investigated by several authors.7–10

By using a one-particle state which is written as

uC&5 (
n51

N

(
m51,2

cn,mcn,m
† u0&, ~2.2!

wherecn,m are complex coefficients, the Schro¨dinger equa-
tion HuC&5EuC&, whereE is the energy eigenvalue, is

encn,12tn
~1!cn11,12tn21

~1! cn21,12tn
~2!cn,22tn21

~3! cn21,2

5Ecn,1 ,

hncn,22tn
~2!cn,12tn

~3!cn11,15Ecn,2 . ~2.3!

We first show the band structure for the pure case, where
we set tn

(1)5tn
(2)5tn

(3)51 and en5hn50. We consider the
system with an even number of unit cells under the periodic
boundary conditioncN11,15c1,1. From the Fourier transfor-
mationcn,m5(1/AN)(ke

ikncm(k), where

k50,6
2p

N
,6

4p

N
, . . . ,62p

N/221

N
,p, ~2.4!

the Schro¨dinger equation in the momentum space is

Ec1~k!52~2cosk!c1~k!2~11e2 ik!c2~k!,
~2.5!

Ec2~k!52~11eik!c1~k!.

The eigenenergies are

E6~k!52cosk6A11~11cosk!2, ~2.6!

where2 and1 are the band indices. The dispersion rela-
tions are shown in Fig. 2. The edges of the bands are atE
5212A5, 0,211A5, and 2.

Let us now move on to study the disordered system, for
which we employ the transfer matrix method. The following
Schrödinger equation is obtained by eliminating the variables
cn,2 using the second equation in~2.3!:

S tn~1!1
tn
~2!tn

~3!

hn2EDcn11,15S en2E2
~ tn

~2!!2

hn2E
2

~ tn21
~3! !2

hn212EDcn,1

2S tn21
~1! 1

tn21
~2! tn21

~3!

hn212EDcn21,1, ~2.7!

which can be written as

Cn115TnCn , ~2.8!

where

FIG. 1. Lattice structure of the model. The
open circle represents a site which is labeled by
(n,m). The lines represent hoppings of electrons.

FIG. 2. The dispersion relationsE1 andE_. The parameters are
tn
(1)5tn

(2)5tn
(3)51 anden5hn50. The momentumk is expressed

in units of the inverse lattice constant, which is taken to be equal to
unity.
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Cn5S cn,1

cn21,1
D , Tn5S enE~ tn

~2!!2/~hn2E!~ tn21
~3! !2/~hn212E!

tn
~1!1tn

~2!tn
~3!/~hn2E!

tn21
~1! 1tn21

~2! tn21
~3! /~etan212E!

tn
~1!1tn

~2!tn
~3!/~hn2E!

1 0
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This defines the transfer matrix of the effective one-
dimensional problem. It has three properties which makes it
entirely different from the usual 232 transfer matrices en-
countered in one-dimensional tight-binding models.~1! Its
determinant is not equal to unity. This defect can easily be
circumvented though.~2! Its elements have a complicated
dependence on energy, and~3! the Tn depends on random
variables defined on thenth and the (n21)th unit cells. In
particular, the (1,1) element contains a sum of such random
terms. This prevents any attempt to factorize it into a product
of the formTn5VnUn21 which enables the recasting of the
problem in terms of uncorrelated transfer matrices.

The quantity in which we are interested is the Lyapunov
exponentg. In one dimension, all the eigenstates are expo-
nentially localized even in infinitesimally weak disorder,11

and the localization lengthj is the inverse ofg. The method
that we choose in order to evaluate the Lyapunov exponent
has been used in the context of the Anderson localization.11

The exponent is given by

g5 limN→`

1

N
lnuuTNC0uu, ~2.10!

where

TN5 )
n51

N

Tn , ~2.11!

uuTNC0uu denotes the norm of the vector, andC0 is a initial
vector. Since the determinant of the matrixTn is not 1, we
define the ‘‘normalized’’ transfer matrix by

T̃n5A tn
~1!1tn

~2!tn
~3!/~hn2E!

tn21
~1! 1tn21

~2! tn21
~3! /~hn212E!

Tn , ~2.12!

whose determinant is 1, and define the product of the matri-
ces by

T̃N5 )
n51

N

T̃n . ~2.13!

The relation between~2.11! and ~2.13! is

TN5At0
~1!1t0

~2!t0
~3!/~h02E!

tN
~1!1tN

~2!tN
~3!/~hN2E!

T̃N . ~2.14!

Therefore, the Lyapunov exponent~2.10! is written by using
the transfer matrices with the determinant 1 as

g5 limN→`

1

N
lnFAt0

~1!1t0
~2!t0

~3!/~h02E!

tN
~1!1tN

~2!tN
~3!/~hN2E!

uuT̃NC0uuG .
~2.15!

III. RESULTS

Using the numerical procedure explained above we calcu-
late the Lyapunov exponent for two types of randomness,
diagonal disorder, and off-diagonal disorder. Although the
random matrices are correlated, it is anticipated that the
Lyapunov exponent is a self-averaging quantity and hence,
the accuracy of the numerical calculation is limited only by
statistical errors which decay asAN. We perform the calcu-
lation for chain length up toN5108 by normalizing the vec-
tor Cn in every step of the product. Only atE51 the ele-
ments of the transfer matrix diverge and we cannot obtain
solution by this method. Recall our anticipation, namely, that
inside the band, the Lyapunov exponent is analytic inW, so
that g'Wa with an integer critical exponent. On the other
hand, near a band edgeEb , the usual weak disorder pertur-
bation expansion breaks down, since, besideW there is a
second small parameter, namely,E2Eb . Guided by the re-
sults of Ref. 2 we seek a parametrization of the form
g(E,W)5Wa f (x) where f (x) with x5(E2Eb)W

22a is a
scaling function which is regular and finite atx50. For x
large andE outside the band,f (x)'Ax while for x large and
E inside the band, Re@ f (x)#'1/x.

Notice however that the definition of being ‘‘inside the
band’’ applies here also to points which are close to the band
edge. Thus, the pointE51.99 is considered here as being
inside the band, although the band edge isE52. The true
neighborhood of the band edge~judging from the power be-
havior of the Lyapunov exponent! is extremely small in the
present model. Yet, it is unambiguously characterized by a
different power and a scaling function, as we shall show
below.

A. Critical exponents

Starting with diagonal disorder, we sample the site ener-
gies from the uniform rectangular distribution

r~e!51, for 2
W

2
<en<

W

2
, ~3.1!

r~h!51, for 2
W

2
<hn<

W

2
, ~3.2!

and set the hopping matrix element

tn
~ j !51, for j51,2,3. ~3.3!

In Fig. 3 we show the global behavior of the Lyapunov ex-
ponent as a function ofE with various values of the width
~disorder strength! W. This figure clearly indicates that the
power ofW in the weak disorder expansion ofg depends on
whether one is inside the band or close to the band edge. To
investigate it more quantitatively, we plot the Lyapunov ex-
ponents inside the band and near the band edge as a function
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ofW on a log-log plot in Figs. 4 and 5, respectively. As long
asW is small enough, the behavior is definitely a power
Wa. We estimate the critical exponenta by a least squares
fit. The smallest 10 points are used for fitting. The estimates
and thex2 are shown in Table I. The results suggest that for
diagonal disorder, the exponents are 2 inside the band and
2/3 at the band edge.

This behavior is identical in the two bands so we can
conclude that as far as diagonal disorder is concerned, our
result for the critical exponents is the same as that of Ref. 2.
This is valid despite the distinct properties of the transfer
matrices discussed above.

Now let us investigate the case of off-diagonal disorder.
For the random variablestn we choose the rectangular dis-
tribution

r~ t ~ j !!51, for 12
W

2
<tn

~ j !<11
W

2
, ~ j51,2,3!,

~3.4!

and set the on-site potentials

en5hn50. ~3.5!

In Fig. 6 we show the global behavior of the Lyapunov
exponent as a function ofE with various values of the width
W. This shows a behavior similar to the one encountered in
Fig. 3 for diagonal disorder. To elucidate the pertinent pow-
ers, we display the Lyapunov exponents inside the band as a
function ofW in Fig. 7. An estimate of the exponent in terms
of the slope yields againa'2, in agreement with Ref. 2. We
are then tempted to conjecture that the behavior
g(E,W)'W2 inside the band is robust for any tight-binding
model with disorder. Surprisingly, this is not true in general
when the Lyapunov exponent in the neighborhood of the
band edge is analyzed. In Fig. 8 the critical exponent is cal-
culated near the first, the third, and the fourth band edges
~counting from below! and ourx2 indeed suggests that the
exponenta is equal to 2/3 in all three band edges. In Fig. 9
we elucidate the critical exponentsa at the vicinity of the
second band edgeE50, and find that herea'4/3. Hence,

FIG. 3. Estimates of the Lyapunov exponentsg as a function of
energyE, for several values of the widthW. The error is smaller
than the width of the line. The inverse localization lengthg is
expressed in units of the inverse lattice constant.

FIG. 4. Estimates of the Lyapunov exponentsg inside the band
on a logarithmic scale vs the widthW, for several values of energy
E. The error is smaller than the size of the plotted point. The lines
are guides to eyes.

FIG. 5. Estimates of the Lyapunov exponentsg at the band
edges on a logarithmic scale vs the widthW, for several values of
energyE. The error is smaller than the size of the plotted point. The
lines are guides to eyes.

TABLE I. The estimates of the exponenta for diagonal~site!
disorder case.

E a x2

1.99 1.990 0.0002144
Inside the band 1.24 2.009 0.00003568

20.01 1.988 0.0001957
23.23 1.990 0.001002

1.9999999999 0.6698 0.00003796
Band edge 1.2360679775 0.6698 0.000008140

20.0000000001 0.6641 0.00003694
23.2360679774 0.6626 0.00008829
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the present model with diagonal disorder belongs to a differ-
ent universality class. Our precise numerical results for all
the four critical exponents near the band edges for off-
diagonal disorder are summarized in Table II.

B. Scaling functions

Near a band edgeEb with critical exponenta the scaling
argument is defined asx5(E2Eb)/W

2a and the correspond-
ing scaling function is defined asf (x)5g/Wa. Far outside
the band, it is anticipated that the Lyapunov exponent does
not depend on disorder at all, so thatf (x)'x1/2. Deep inside
the band it is expected that the transition to the region where
the exponent isa52 will be smooth, which requires that
Re@ f (x)#'x21. This is not a general rule, and in some
cases5 the decay off (x) inside the band is exponential and
the power behavior inside the band masks its true falloff.

Two typical examples of scaling functions, one for diagonal
and one for off-diagonal disorder, are displayed in Figs. 10
and 11. While we cannot predict the constant multipliers, the
corresponding log plots indicate that the pertinent powers are
indeed 1/2 outside the band and21 inside the bands, as
anticipated. Another interesting question is whether band
edges with identical critical exponents are completely
equivalent in the sense that they have the same value of
f (0). Theeight values of the scaling functions atx50 cor-
responding to four band edges and two types of disorder are
summarized in Table III. From this table we conclude that
some pairs of bands are equivalent while some are not. For
diagonal disorder, no value ofg/^W2&a/2 coincided with the
corresponding figure 0.289 . . . found in Ref. 2 for the one-
chain tight-binding model with diagonal disorder.

FIG. 6. Estimates of the Lyapunov exponentsg as a function of
energyE, for several values of the widthW. The error is smaller
than the width of the line.

FIG. 7. Estimates of the Lyapunov exponentsg inside the band
on a logarithmic scale vs the widthW, for several values of energy
E. The error is smaller than the size of the plotted point. The lines
are guides to eyes.

FIG. 8. Estimates of the Lyapunov exponentsg at the band
edges on a logarithmic scale vs the widthW at
E51.999 999 999 9, 1.236 067 977 5, and23.236 067 977 4. The
error is smaller than the size of the plotted point. The lines are
guides to eyes.

FIG. 9. Estimates of the Lyapunov exponentsg at the band
edges on a logarithmic scale vs the widthW at
E520.000 000 000 1. The error is smaller than the size of the
plotted point. The lines are guides to eyes.
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In conclusion we have investigated numerically the weak
disorder behavior of the Lyapunov exponent for a special
one-dimensional model whose single-particle spectrum con-
tains a gap and whose transfer matrix is a complicated func-
tion of energy. The critical exponents are calculated in all the
relevant energy domains and the scaling functions at the four

band edges are displayed. For off-diagonal disorder, a new
critical exponent is found, whose value differs from the ones
predicted in Ref. 2.
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APPENDIX: ONE-DIMENSIONAL CHAIN WITH OFF-
DIAGONAL DISORDER

In order to show that the occurence of an exponent 4/3 in
our decorated lattice is not trivial, we briefly derive the weak
disorder expansion of the Lyapunov exponent for a one-
dimensional simple chain with off-diagonal disorder and
zero site energies. The procedure follows closely the one of
Ref. 2 with a few changes due to the different kind of disor-

FIG. 10. ~a! Plot of the scaling function of the Lyapunov exponent near the second band edge~counting from below! for diagonal
disorder. That on a log-log plot in the regionsx.0 ~b! andx,0 ~c!. @We show the mirror image off (x) in ~c! to take logarithm.#

TABLE II. The estimates of the exponenta for off-diagonal
~bond! disorder case.

E a x2

1.99 2.002 0.00008475
Inside the band 1.24 1.980 0.0009219

20.01 1.846 0.002842
23.23 1.996 0.0004974

1.9999999999 0.6714 0.0001213
Band edge 1.2360679775 0.6708 0.000008547

20.0000000001 1.369 0.0008678
23.2360679774 0.6750 0.0001417
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der. On the basis of our analysis below it is then argued that
near the band edge, the relevant exponent is indeed
a52/3.

The Schro¨dinger equation is

2tn11cn112tn21cn215Ecn . ~A1!

We assume thattn fluctuate slightly near 1 so we have

tn511lun , ~A2!

where the odd moments ofun vanish, while the even mo-
ments are given. The small parameterl is the pertinent ex-

pansion parameter. Settingtncn5fn leads to a modified
equation, which can be cast in a transfer matrix form with

Tn5S 2
E

tn
21

1 0
D . ~A3!

Now we define the Ricatti variable

Rn5
fn

fn21
, ~A4!

which satisfies the equation

Rn1152
E

tn
2

1

Rn
. ~A5!

Let us writeRn as

Rn5AelBn1l2Cn1l3Dn1l4En1•••. ~A6!

Substitute the expansion~A.6! in ~A.5! and compare equal
powers ofl to get the following set of equations:

FIG. 11. ~a! Plot of the scaling function of the Lyapunov exponent near the fourth band edge~counting from below! for off-diagonal
disorder. That on a log-log plot in the regionsx.0 ~b! andx,0 ~c!. @We show the mirror image off (x) in ~c! to take logarithm.#

TABLE III. Estimates of f (0) at the band edges forW50.01.
For off-diagonal case we useda shown in Table II for the estima-
tion.

E 2 211A5 0 212A5

Diagonal disorder 0.199 0.78 0.20 0.11
Off-diagonal disorder 0.322 1.1 0.16 0.21
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A52E2A21, ~A7!

ABn115Eun1
Bn

A
, ~A8!

ASBn11
2

2
1Cn11D 52Eun

21A21SCn2
Bn
2

2 D , ~A9!

ASBn11
3

6
1Bn11Cn111Dn11D 5Eun

31
1

A SBn
3

6
2BnCn1DnD , ~A10!

ASBn11
4

24
1
Bn11
2 Cn11

2
1
Cn11
2

2
1Bn11Dn111En11D 52Eun

41
1

A S 2
Bn
4

24
1
Bn
2Cn

2
2
Cn
2

2
2Bn11Dn1En11D , ~A11!

and so on. Using the relation between the Ricatti variable and the Lyapunov exponentg, and the assumption that the odd
moments ofun vanish, we have

g5 lnA1l2^C&1l4^E&1•••, ~A12!

where^C&5^Cn&, etc, ~independent ofn). Calculations up to fourth order then yield

g5 lnA1l2S EA^V2&
~A221!

2
E2A2^V2&
2~A221!2D1l4SA2E2~222A222A412A624AE14A5E13A2E212A4E2!^V2&2

2~12A2!5~11A2!

1
AE~222A22AE!~224A214A422AE12A3E2A2E2!^V4&

4~12A2!4 D . ~A13!

This equation indicates that, at least up to fourth order, the
various terms in the expansion of the Lyapunov exponent for
the one-chain model with off-diagonal disorder are distinct
from those encountered in the one-chain model with diago-
nal disorder. Evidently, this is the situation to every order in
the perturbation expansion. The validity of~A.13! is for en-
ergyE outside the band~the energyE may possibly be com-
plex!. To reach the physical region one needs to carry out an
analytic continuation. This procedure is possible as long as
the energyE is not close to the band edge andA2nÞ1, which
indicates that inside the bandg'l2. Near a band edge
Eb , A→1. The second term~proportional to^V2&) and the
third term~proportional tô V2&2) become comparable to the
first. The important point to notice, however, is that the sin-

gularity near the band edge is dominated by the respective
denominators (A221)2 and (A221)5 and not by the de-
nominators (A221) and (A221)4. These singular terms
have the same singularity structure as in the diagonal disor-
der model. The second and third terms then become compa-
rable with lnA when (E2Eb)/l

4/3 is finite. This leads to the
l2/3 behavior of the Lyapunov exponent near the band edges.
Hence, the occurence of an exponent 4/3 in the decorated
model with offdiagonal disorder is not trivial.

Notice the singularity of the Lyapunov exponent at the
band center, whereE50 andA521. The behavior of the
localization length at this special energy was studied
earlier.12
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