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We present a theory for the scanning tunneling microscope~STM! current based on a Keldysh Green
function formalism. In our formalism, we solve self-consistently anab initio linear combination of atomic
orbitals Hamiltonian within a local density formalism. Total energy calculations for xenon deposited on metal
surfaces are performed to obtain the equilibrium position, and the Green functions needed to compute the
current are obtained at the same time. Structural and nonstructural effects that can influence the correct
interpretation of experimental STM results are studied. We find good agreement between our calculations and
experimental images taken under highly controlled conditions, and we conclude that STM images should be
analyzed by comparing iteratively the theory and the experiment, much in the same way as it is usually done
for other surface sensitive techniques like low-energy electron diffraction, photoelectron diffraction, surface-
extended x-ray-absorption fine structure spectroscopy, etc.@S0163-1829~96!01427-0#

I. INTRODUCTION

The real-space nature of the scanning tunneling micro-
scope~STM! provides atomic resolution on a variety of sur-
faces with apparently very little theoretical effort. However,
shortly after the invention of the STM it became clear that
electronic effects were at least as important as pure structural
effects,1 and a theoretical interpretation of the experimental
data is important if a safe procedure for analyzing the experi-
mental data is required. To obtain a theoretical formalism
realistic enough to allow direct comparison with experi-
ments, several difficult points should be considered:~i! in
many cases, experimental conditions are such that a strong
interaction between the tip and the sample is unavoidable, so
simple perturbation theory cannot be used,~ii ! the tunneling
current is intrinsically a nonequilibrium problem,~iii ! it is
difficult to control precisely the tip shape and composition,
making it necessary to try several plausible models for the
tip, and finally~iv! a good description of the electronic prop-
erties of the clean surface, the surface plus any adsorbate~the
sample!, and the scanning tip is important to mimic the real
experiment. Here, we stress the special difficulty of describ-
ing the tip, as it is important to include in the same formu-
lation its quasiatomic character~yielding atomic resolution!
and the existence of a bulk reservoir of electrons, allowing a
steady current to be established between the tip and the
sample. In a way, all these ingredients imply an important
departure from the naive, earlier idea for the STM as a direct

structural tool, but the examples where these factors are cru-
cial to a safe interpretation of STM images are accumulating.

II. A LCAO HAMILTONIAN FOR CALCULATING
TUNNELING CURRENTS

The scanning tunneling microscope is intrinsically a non-
equilibrium setup. Therefore the nonequilibrium Green func-
tion formalism developed by Keldysh2 is most adequate to
analyze, from a theoretical point of view, the experiments
carried out with this technique. The Hamiltonian for the tip-
sample system can be written as a sum of three terms; one
describing the tip (T), another describing the sample (S)
~note that the sample can be a clean surface or a system
composed of a clean surface plus an adsorbate, as previously
defined!, and finally a term that takes into account the inter-
action between the tip and the sample:3

Ĥ5ĤT1ĤS1ĤI . ~1!

The interaction between the tip and the sample is de-
scribed via hopping processes. Therefore we write the term
ĤI coupling tip and sample orbitals as a function of a hop-
ping matrix (T̂TS), and the different creation and annihila-
tion vector operators associated with these orbitals
( ĉT

† ,ĉT , ĉS
† ,ĉS):
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ĤI5(
a j

@ T̂TS~a j !ĉT
†~a!ĉS~ j !1T̂ST~ ja!ĉS

†~ j !ĉT~a!#

~2!

where the sum runs over all the orbitals in the tip (a) and the
sample (j ).

When a steady state~defined by the applied bias! is
reached, the total current between the tip and the sample is
independent of time and can be written4

J5
ie

\ (
a j

@ T̂TS~a j !^ĉT
†~a!ĉS~ j !&2T̂ST~ ja!^ĉS

†~ j !ĉT~a!&#

~3!

where the averaged quantities in Eq.~3! can be expressed in
terms of the nonequilibrium Green functionsĜ12:2

^ĉS
†~ j !ĉT~a!&5

1

i
ĜTa,S j

12 ~ t,t101!5
1

2p i E2`

`

ĜTa,S j
12 ~v!dv,

~4!

^ĉT
†~a!ĉS~ j !&5

1

i
ĜS j,Ta

12 ~ t,t101!

5
1

2p i E2`

`

ĜS j,Ta
12 ~v!dv. ~5!

The last two expressions allow us to write the total current
J as a function of the nonequilibrium Green functions:

J5
e

p\(
a j

E
2`

`

@ T̂TS~a, j !ĜS j,Ta
12 ~v!

2T̂ST~ j ,a!ĜTa,S j
12 ~v!#dv. ~6!

This formula is readily simplified using well-known prop-
erties of the trace:

J5
e

p\E2`

`

Tr@ T̂TSĜST
12~v!2T̂STĜTS

12~v!#dv . ~7!

The nonequilibrium Green functions that appear in the
expression of the current can be related to theequilibrium
retarded and advanced Green functions of the interacting sys-
tem, ĜR and ĜA, using the following Dyson-like equation
for nonequilibrium Green functions:2

Ĝ12~v!5@ Î1ĜR~v!Ŝ#ĝ12~v!@ Î1ŜĜA~v!#, ~8!

where Ŝ yields the interaction between the tip and the
sample (ŜTS5T̂TS, ŜST5T̂ST, and ŜTT5ŜSS50), and
ĝ12 are the Green functions for the noninteracting case
(Ŝ50), and are related to the density of states in the tip
( r̂TT) and the sample (r̂SS) in the following way:

ĝTT
12~v!52p i r̂TT~v! f T~v!,

ĝSS
12~v!52p i r̂SS~v! f S~v!, ~9!

ĝST
12~v!5ĝTS

12~v!50,

where f T,S(v) are the Fermi-Dirac distributions for the tip
and the sample, respectively.

We can obtain the retarded and advanced equilibrium
Green functions for the interacting system from the usual
Dyson equation using the Green functions of the uncoupled
parts of the system,ĝR and ĝA, and the interactionŜ:

ĜR5ĝR1ĝRŜĜR, ĜA5ĝA1ĝAŜĜA. ~10!

Using Eqs.~8!, ~9!, and~10! we can write an expression
for the tip-sample current that only involves the calculation
of the Green functions for the uncoupled tip and sample and
the hopping matrix that couples both parts of the system:

J5
4pe

\ E
2`

`

Tr@ T̂TSr̂SS~v!D̂SS
R ~v!T̂STr̂TT~v!D̂TT

A ~v!#

3@ f T~v!2 f S~v!#dv, ~11!

where

D̂SS
R ~v!5@ Î2T̂STĝTT

R ~v!T̂TSĝSS
R ~v!#21 ~12!

and

D̂TT
A ~v!5@ Î2T̂TSĝSS

A ~v!T̂STĝTT
A ~v!#21. ~13!

These denominators take into account the multiple scattering
effects via the summation up to infinity order of an expan-
sion on the scattering matricesX̂A5T̂TSĝSS

A (v)T̂STĝTT
A (v)

and X̂R5T̂STĝTT
R (v)T̂TSĝSS

R (v), and are responsible for the
saturation of the tunneling current found when the distance
between tip and sample becomes small.5

Equation~11! is our central result for the tunneling cur-
rents. This formula is not based in a perturbation theory ex-
pansion up to some given order, and therefore is valid even
at small distances where multiple scattering effects become
important, as discussed before. It includes more naturally
temperature effects through the presence of the Fermi-Dirac
distribution functions. Due to the high Fermi temperatures
typical for metals, we expect the temperature dependence to
be small at the usual experimental range~from 4 K to room
temperature!, and most easily incorporated in our formalism
through the first term of an expansion aroundT50 K.

We stress the following point: a correct evaluation of ex-
pression~11! should necessarily involve the calculation of
the density of states associated with the tip and the sample
and the corresponding Green functions. We take advantage
here of the self-consistent linear combination of atomic or-
bitals ~LCAO! formalism that we have previously developed
to calculate the chemisorption of atoms on metallic or semi-
conducting surfaces. Therefore we can use the same Green
functions calculated for the chemisorption problem to feed
our Eq. ~11!. This makes a natural connection between the
chemisorption and the STM problem, as we shall further
discuss in the next section.

We also want to mention that expression~11! involves
taking the trace of a multiplication of several matrices. This
can physically be interpreted as a coherent superposition of
different channels. Therefore, under appropriate conditions,
interesting interference effects can be expected to appear.

As the last part of this introduction to our method for
calculating the current between tip and sample, we want to
show how the usual Tersoff-Hamann limit6 can be obtained
from the general expression~11!. When the distance between
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the tip and the sample is large enough, we can approximate
the denominatorsD̂TT

A (v) andD̂SS
R (v) by the identity matrix

to obtain the following expression for the current~valid
whenT̂TS is small compared with the hopping interactions in
the sample!:

J'
4pe

\ E
2`

`

Tr@ T̂TSr̂SS~v!T̂STr̂TT~v!@ f T~v!2 f S~v!#dv.

~14!

In the limit of very low voltages~linear response regime! and
zero temperature, we can simplify Eq.~14! and recover the
Tersoff-Hamann expression for the tunneling current:

J'
4pe2V

\
Tr@ T̂TSr̂SS~EF!T̂STr̂TT~EF1eV!#, ~15!

whereV is the applied voltage andEF is the Fermi level of
the sample.

III. A FIRST-PRINCIPLES LCAO HAMILTONIAN
FOR DESCRIBING THE TIP-SAMPLE COUPLING

AND THE ADSORPTION OF XENON
ON THE SAMPLE

To compute the required Green functions we have to
solve the Hamiltonian for the uncoupled tip and sample sys-
tems. In both cases, we adopt a LCAO approach well suited
for chemisorption problems; this method also affords the
way for calculating T̂ST in the Hamiltonian ~2!. Tight-
binding methods have been introduced in the past as a con-
venient parametrization of the electronic properties of solids.
However, these methods will encounter difficulties when
quantities not closely related to the ones provided by the
parametrization are required. To overcome this limitation,
we have in our previous work7 introduced a self-consistent
tight-binding method, extending the Hohenberg-Kohn
theorem8 for a LCAO Hamiltonian.

In our formalism, we find it useful to analyze separately
the one-electron and the many-body contributions to the
sample Hamiltonian. Therefore we write the following equa-
tions:

ĤS5ĤS
OE1ĤS

MB ~16!

where

ĤS
OE5(

is
Eisn̂is1(

i j ;s
Ti j s~ ĉis

† ĉ js1 ĉ js
† ĉis! ~17!

defines the one-electron contribution and

ĤS
MB5(

i
Ui n̂i↑n̂i↓1

1

2 (
i , jÞ i ;s

@Ji j n̂isn̂ js81 J̃i j n̂isn̂ js#

~18!

defines the many-body part of the total Hamiltonian. In Eq.
~17! Ei

s represent the different orbital levels andTi j
s their

hopping interactions. In Eq.~18!, Ui , Ji j , and J̃i j are the
intrasite and intersite Coulomb interactions between the or-
bital levels i and j . We can obtain the different values ap-
pearing in both equations from the Lo¨wdin wave functions9

of the system (f i); these wave functions are built using the
atomic orbitals (c i) by means of the general equation

f i5(
j

~S21/2! i jc j ~19!

whereSi j is the overlap between the atomic orbitalsi and
j . It has been shown10 that if we expand the orthogonal
Löwdin orbitals up to second order in the overlap matrix, we
can extract the different magnitudes that appear in the total
Hamiltonian from the atomic wave functions of the sample;11

this procedure has been shown to yield good results for most
of the chemisorption problems we have analyzed. In particu-
lar, it has been demonstrated that the hopping interaction
Ti j can be calculated using the Bardeen tunneling current
between the atomic orbitalsc i andc j :

Ti , j52
g

2Es i , j

dS~c i¹c j2c j¹c i ! ~20!

with g a coefficient that typically takes values between 1.3
and 1.5. Moreover,Eis is shown to be the atomic levele i
corrected by2( jSi j Ti j1

1
4 ( jSi j

2 (Ei2Ej ).
Solving the many-body part of Hamiltonian~16! is in

general a difficult task. We have developed7 a density func-
tional approach to LCAO Hamiltonians like the one we are
trying to solve. Using the Kohn-Sham approach, we solve in
a self-consistent way the following effective one-electron
Hamiltonian:

ĤS
eff5ĤS

OE1(
is

@Vis
H 1Vis

XC#n̂is , ~21!

whereVis
H andVis

XC are the Hartree and exchange-correlation
potentials associated with each orbitalis:

Vis
H 5

]EH@nis#

]nis
, Vis

XC5
]EXC@nis#

]nis
, ~22!

with nis being the different occupation numbers. Much the
same as in the Kohn-Sham approach, they must be obtained
in a self-consistent way since the Hartree and exchange-
correlation potentials depend on these values.

The Hartree potential can be written in a straightforward
way:

Vis
H 5Uini s̄1 (

jÞ i ;s
@Ji j nj s̄1 J̃i j njs# ~23!

and it can be shown12 that it is possible to find a functional
dependence with the different occupation numbersnis for
the exchange-correlation part of the Hamiltonian,EXC, and
define the exchange-correlation potential necessary to solve
the Hamiltonian~21!. In particular, a good approximation to
the extra-atomic exchange-correlation energy~the main one
contributing to the Xe physisorption energy! is given by

EXC@ni #52
1

2(
is

a iJinis~12nis!, ~24a!

wherea i is almost independent ofnis and,Ji is the Coulomb
interaction between one of the xenon electrons and the metal
nearest-neighbor electrons. Then,
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VXC52a iJi~
1
22nis!. ~24b!

The Hamiltonian~21! is solved self-consistently using
Eqs. ~22!–~24! for the many-body potentials. Once we cal-
culateni from this solution we obtain the many-body energy
using Eq.~24a!, as well as the Hartree interaction between
different charges.

It is important to notice that the effective one-electron
Hamiltonian~21! defines the electronic properties of the sys-
tem as a superposition of all the bondsi -j . This allows us to
take a step further and analyze only the interaction between
different independent subsystems. We have taken advantage
of this feature to study the following.~i! First, we calculate
the interaction of xenon and the metal, by assuming that the
metal is well described by using some parameters taken from
independent calculations.19 This implies that our approach is
focused on obtaining, as a first step, the adsorption energy
for xenon on a metal surface.~ii ! In a second step, we cal-
culate the interaction between the tip~also described with
some LCAO parameters taken from independent authors!11

and the xenon-metal complex described by the solution of
the problem analyzed in the first step. In this step, we assume
ĤT and ĤS to be unperturbed and calculateĤI by means of
Eq. ~20!.

The effective one-electron Hamiltonian~21! defines the
electronic properties of the independent tip and sample. Thus
we can calculate the Green functions needed for the evalua-
tion of the current between tip and sample@Eq. ~11!#:

ĝSS
R ~v!5

1

~v1 ih! Î2ĤS
eff
, ĝSS

A ~v!5
1

~v2 ih! Î2ĤS
eff
,

ĝTT
R ~v!5

1

~v1 ih! Î2ĤT
eff
,

ĝTT
A ~v!5

1

~v2 ih! Î2ĤT
eff
, ~25!

whereh is a positive constant close to zero.
The total-energy method that we have developed and suc-

cessfully used on various systems13 allows us to calculate the
most favorable equilibrium position for the adsorption of xe-
non on the sample14 and, subsequently, the tunneling cur-
rents between the tip and the sample with~or without! the
xenon atom.

IV. METHOD OF CALCULATION OF THE TIP
AND SAMPLE GREEN FUNCTIONS

The tip must be connected to a reservoir of electrons if a
steady state has to be reached. This point has sometimes
been overlooked in favor of models involving only atomic
orbitals. Although we recognize the relevance of atomic or-
bitals in the explanation of important features for STM ex-
periments, we also want to stress that electronic effects as-
sociated with the reservoir must be included in a realistic
formalism. In our model, we provide such a reservoir by
connecting a small cluster of atoms to a Bethe lattice with
well-known electronic properties.

In all the calculations presented in this paper we have

used the tip model shown in Fig. 1, with a cluster (C) of five
atoms forming a pyramid having a base of four atoms. The
atom at the apex of the pyramid yields most of the tunneling
current defining the resolution of the microscope. In our
model, each of the four atoms of the pyramidal base is joined
to a Bethe lattice having the connection appropriate to the
geometry of the metal tip. Other models with four atoms in
the cluster with and without the atom at the apex have been
considered previously,15 where we have concluded that dif-
ferent tips can introduce changes in the calculations of the
tunneling currents. Although this problem should be ana-
lyzed systematically considering different geometries, in this
paper we concentrate on the particular case we have men-
tioned before for the sake of brevity.

We compute the electronic properties of the tip using a
Green-function approach.16 In this technique, the Bethe lat-
tice is simulated by a self-energy matrixŜB that projects
onto the four atoms of the pyramidal base the different Bethe
lattices. This implies that the Green functions of the tip are
given by the following equations:

ĝTT
R ~v!5

1

~v1 ih! Î2ĤC
eff2ŜB

R~v!
,

ĝTT
A ~v!5

1

~v2 ih! Î2ĤC
eff2ŜB

A~v!
, ~26!

whereĤC
eff is defined by the LCAO Hamiltonian associated

with the five-atom cluster of the tip, andŜB
R(A)(v) is the

retarded~or advanced! self-energy of the Bethe lattice dis-
cussed above. Equation~26! replaces Eq.~25! for the tip,
having introduced the Bethe lattice self-energy.

The effective one-electron Hamiltonian for the sample
with ~or without! the xenon atom is also solved using Green
function techniques. In particular, the semi-infinite crystal is
projected onto the last 12 layers, and the resulting film is
joined to the adsorbed species. One of the advantages of
using Green functions is that we can easily compute the

FIG. 1. Schematic view of the geometrical model for the tip-
adsorbate-sample system. Last shell atoms in the cluster describing
the tip are connected to a Bethe lattice with the appropriate coordi-
nation number.
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single-particle density of states associated with each orbital
and their occupancies~we have already seen that these occu-
pancies are required for self-consistent calculation of the
xenon-sample interaction!.

A simple way to get the two-dimensional Green function
related to the surface is to project the bulk into the surface
using techniques borrowed from renormalization group
methods. In particular, to compute the needed Green func-
tions we use a decimation technique for eachki ~Ref. 17!
that is common to the chemisorption problem. The only dis-
advantage of this procedure is to have to deal with very big
overlayer unit cells needed to describe isolated xenon atoms
adsorbed on the sample. Our computational facilities limit us
to the analysis of a 434 ~Wood notation! overlayer at most,
while the isolated xenon atom needs a 737 at least to be
properly analyzed. Therefore for this 737 periodicity we
have used a real-space approach where we describe the sur-
face as a cluster formed byn shells.18 This model yields all
the Green function componentsĝSS needed to calculate the
tunneling current.

V. RESULTS FOR THE PHYSISORPTION OF XENON
ON THE SAMPLE SURFACE: Al AND Ni CASES

First of all we have analyzed the physisorption of xenon
on two different metal surfaces, namely, Al~100! and
Ni~100!. Both cases present differences and similarities that
are worthy of discussion.

Following the discussion presented in Sec. III, we have
described the metal using conventional tight-binding param-
eters that are known to give a good description of the elec-
tron metal bands.19 Then our method is applied to the calcu-
lation of the short-range interaction between the metal and
xenon.

It is important to make a few comments about the atomic
wave functions used for the metal atoms and xenon in our
calculation. Regarding the metal, Al or Ni, we have used the
single-z wave functions given by Clementi and Roetti:11 core
levels are treated as described in Ref. 20, while the valence
electrons are analyzed in the LCAO approach discussed
above. For xenon, the 5p and 6s levels define the valence
electrons, while deeper levels are treated as the core levels of
the metal. In this case, atomic wave functions are also taken
from Ref. 11 except for the empty 6s state. We should com-
ment that the use of this empty level as an atomic orbital
contributing to the basic LCAO Hamiltonian is based on two
independent pieces of evidence: first of all, previous STM
calculations by Eigler, Weiss, Schweizer, and Lang21 have
shown that this 6s level yields an important contribution to
the tunneling current crossing the xenon atom; on the other
hand, Wandelt and Gumhalter22 have also suggested, using
qualitative models, the importance of that 6s level to the
physisorption of xenon on the metal. Therefore we have ob-
tained the xenon 6s level by means of a standard local den-
sity approximation~LDA ! atomic calculation23 that yields a
6s energy level located close to the vacuum level. Different
interactions in Hamiltonian~1! are calculated from all these
orbitals using standard programs available in the literature.24

The total xenon-metal potential is obtained by adding the
short-range potential we have calculated to the van der
Waals interaction:

VvdW'
C3

~z2zvdW!3
~27!

where zvdW is the reference plane. Saturation effects are
taken into account as discussed by Tang and Toennies,25 and
all the other parameters used in Eq.~27! are taken from
well-known calculations found in the literature.26

We should also make a remark about the many-body po-
tential used in Eq.~24b! for both xenon and the metal. In the
last case, we have followed previous calculations7 and taken
a i51; this includes most of the exchange-correlation effects.
For xenon we have taken, however,a i51/2; this yields the
appropriate image potential for the empty (6s) and the filled
(5p) atomic levels of xenon. This is checked by realizing
that for the 6s level, ni'0, while for the 5p, ni'1; then

VXC~6s!'2 1
4Ji , VXC~5p!' 1

4Ji . ~28!

This shows that Eq.~28! yields the image potential for the
6s and 5p levels as it should.

We have analyzed the cases for xenon approaching the
metal surfaces along three directions: center, bridge, and top
sites. As we do not expect the metallic substrate to suffer
significant reconstructions or even important relaxations, we
have considered, for the sake of simplicity, a bulk-terminated
structure for the substrate. Figure 2 shows~a! the Xe/Ni~100!
and~b! the Xe/Al~100! interaction for xenon approaching the
metal surface along the center position. In both cases, the
minimum in the interaction energy appears for the center
position due to the increase of the hybridization energy.14

Figure 3 shows the short-range xenon-metal interaction split
into its different contributions: kinetic~repulsive!, hybridiza-
tion, electrostatic, and exchange and correlation.13

It is worth noticing the attractive character of the short-
range xenon-metal interaction~defined above!. This is due to
the role played by the 6s orbital which interacts with the
metal very much as in a chemisorbed system; indicating that
the 6s level is strongly broadened by the metal interaction,
thus overlapping with the Fermi energy. Although this over-
lap is small~see Fig. 4!, its effect is to increase substantially
the hybridization contribution to the adsorption energy,
yielding an atractive interaction.

The comparison between the Xe/Al~100! and the
Xe/Ni~100! cases shows important differences associated
mainly with the equilibrium distance for the xenon-
physisorbed potential. While for Al we find that xenon is
located at 4.6 Å from the metal layer, for Ni we find this
distance to be reduced to 3.3 Å. This difference can be ex-
plained by the different density of states that Al and Ni have
for the s electrons at the Fermi level. Al has a very high
density ofs electrons that yield a strong repulsion with the
occupied xenon levels. For Ni, this density is much smaller
and the Ni-Xe repulsion is not strong enough until the Nid
electrons start to interact with xenon. This explains why xe-
non penetrates 1.3 Å deeper in the case of Xe/Ni~100! than
that of Xe/Al~100!. These results are relevant from the STM
point of view, since xenon atoms can be expected to show a
larger corrugation when deposited on Al.
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VI. TUNNELING CURRENTS: CORRUGATION
AND CONDUCTANCE

In this section we analyze the tunneling currents and the
associated corrugations for a given tip-sample configuration,
with and without a xenon atom adsorbed on the surface. First
of all, we consider the clean Al~100! and Ni~100! surfaces,
and their interaction with different tips. Atomic resolution
images of clean metal surfaces27 have attracted a great deal
of attention, and the mechanisms by which they are observed
are still under debate.28 As discussed below, our model can

easily explain corrugations below 0.2 Å for the usual tunnel-
ing conditions. For extreme conditions, i.e., near the close
contact regime, we find inverted images for Al-like tips, with
a significant increase in corrugation by about a factor of 2.
These numbers still fall short by approximately the same
factor to explain values reported in the literature as big as
0.8 Å. But under these conditions the experimental situation
is not clear at all. This regime has been discussed in terms of
physical contact, and therefore involves important experi-

FIG. 2. Adsorption energies for~a! Xe/Al~100! and ~b!
Xe/Ni~100!. Different contributions to the total adsorption well~full
line! are short-range~dotted line! and long-range~dashed line!.

FIG. 3. Different contributions to the short-range interaction:~i!
kinetic ~solid line!, ~ii ! hybridization ~dashed!, ~iii ! electrostatic
~dotted!, and ~iv! exchange-correlation~dashed dotted!. ~a!
Xe/Al~100! and ~b! Xe/Ni~100!.
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mental complications. However, from a theoretical point of
view, that limit is still quite realistically described in our
formalism, which includes the relevant physics here: current
saturation via multiple-scattering effects, and possibly the
formation of new chemical bonding, taken into account via a
hopping matrix. Finally, we proceed to analyze similar cases
with xenon adsorbed on the metal, using the information we
have discussed in the previous section.

A. Clean Al„100… and Ni„100… surfaces

Al and Ni tips have been considered. As discussed in Sec.
IV, it has been assumed that the tip is represented by a py-
ramidal cluster of five atoms. Ni tips can be prepared cur-
rently. Although Al tips cannot be treated in similar ways,
one can expect the formation of a quasiconventional Al tip
via the mechanical contact of another kind of tip~Ni, W,
etc.! with an Al surface, resulting in a group of Al atoms
gathered at the apex of the tip.

1. Aluminum tip

We find a similar behavior regarding tunneling currents
for the Al~100! and Ni~100! surfaces. In general, for dis-
tances between the the tip and the sample larger than 2.8 Å
for Al ~100! and 2 Å for Ni~100!, the conductance reaches the
highest value when the tip is located above the surface atoms
~Fig. 5!, giving images with normal corrugation. From Fig.
5, we obtain that the amplitude of this normal corrugation is
about 0.1 Å and 0.2 Å for Al~100! and Ni~100!, respectively.

For smaller distances between the tip and the sample, the
conductance above the surface atoms becomes lower than
above the bridge and the hollow sites for aluminum and, as a
consequence, the corrugation becomes inverted. The behav-
ior of the tunneling current presented in Fig. 5 is related to
the different orbitals of the apex atom:s and pz orbitals
control the current from the surface region located directly
below the tip, contributing in this way to the normal corru-
gation ~the pz orbital is oriented perpendicularly to the sur-
face!. The contributions of these orbitals dominate over
larger distances, which leads to the normal corrugation of the
total current. On the other hand, for very small distances the
s andpz contributions saturate and then thepx andpy con-
tributions become dominant. As these orbitals are oriented
parallel to the surface, their relative contributions are maxi-
mized when the tip is located above the empty sites of the
two-dimensional~2D! unit cell, leading to the inverted cor-
rugation.

2. Nickel tip

Whend.5.5 Å for Al~100!, or d.3.5 Å for Ni~100! ~Fig.
6!, we find that the nickel tip does not give any appreciable
corrugation. Under these conditions, the conductance does
not change when scanning the surface, and STM images are
flat. For a smaller separation, the Ni~100! surface gives im-
ages with the normal corrugation. This normal corrugation is
caused by thed orbitals of the apex atom giving the strongest
contribution to the tunneling current whend,2.5 Å. The
Al ~100! case is quite similar. As before, for small distances
the most important current contributions are related to the
d orbitals, but the behavior of the tunneling current is now
somewhat more complicated. For 2.5 Å,d,5.5 Å the larg-
est and the lowest conductances appear above the hollow
points and above the surface atoms, respectively, and the
corrugation appears inverted~with an amplitude below 0.1
Å!. But for d,2.5 Å the lowest conductance appears above

FIG. 4. Local density of states on xenon orbitals.~a! Xe/Al~100!
and ~b! Xe/Ni~100!.

FIG. 5. Conductance versus tip-sample separation for an alumi-
num tip on~a! Al ~100! and ~b! Ni~100!.
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the bridge points; then the evolution of the conductance
along the surface shows two types of maxima, the higher one
happening above the hollow sites, and the smaller one ap-
pearing above the surface atoms. Both are due to contribu-
tions from thed orbitals. It should be noted that, contrary to
the Al tip, thes orbital of the apex atom does not contribute
too much to the normal corrugation. This is due to the larger
radius of thes orbital in the Ni atom~compared with Al!.
From these results, we conclude that thed orbitals of the
apex atom control the tunneling current only for very small
tip-sample distances (d,2.8 Å!. These contributions disap-
pear quickly whend increases, and because other orbitals of
the Ni tip in practice do not contribute to the total corruga-
tion, the images of Al~100! and Ni~100! surfaces, obtained
with the Ni tip, are flat for greater distances.

In general, our calculations show that the atomic resolu-
tion of STM images for clean metal surfaces depends con-
siderably on the electronic structure of the tip. The images of
the same surface obtained with different tips may look very
different and present even opposite kinds of corrugation
~normal or inverted! depending on the sample-tip distance.
This conclusion also suggests that the tip geometry must be
important for the atomic resolution operation of the
microscope.15,29

B. Xe-covered Al„100… and Ni„100… surfaces

Using our theoretical results for the deposition of xenon
on Al or Ni, we analyze in this section their STM tunneling
currents. Two different cases will be discussed:~i! isolated
xenon atoms and~ii ! a 232 xenon overlayer.

1. Isolated xenon atoms

For this case, in order to have a good resolution of the
isolated xenon atom, at least a 737 overlayer periodicity has

to be used. This long periodicity guarantees that xenon atoms
do not interfere with each other.

In our calculations, however, we have used the real-space
Green function method~discussed in Sec. IV!, which consid-
ers a single xenon atom adsorbed on a cluster having 50
atoms on the surface and three layers. Regarding the tip, we
have computed its Green function following the technique
also discussed in Sec. IV.

Following this procedure we have calculated, first of all, a
constant-current STM image for the Xe/Ni~100! system. The
tip-sample separation has been chosen to yield the same tun-
neling current as in the experiments of Eigleret al.21

(431024 in units of the quantum of conductance 2e2/h;
notice that the inverse is approximately 11 KV). Figure 7
shows our results for a W tip compared with the experi-
ments: we find that the tip is located around 9.0 Å above the
metal layer, and that the width of the corrugation signal is
large, around two lattice parameters, in good agreement with
the experimental evidence. In this particular case we have
modeled the tip by a single W atom attached to an appropri-
ate Bethe lattice. These results already show that xenon at-
oms can only be observed individually if they are not located
too close to each other. Notice also that the apparent corru-
gation of xenon is 1.8 Å while the adsorption distance of
xenon to Ni~100! is calculated to be 3.4 Å. This is due to a
smaller Fermi level density of states on the xenon atom,
mainly associated with the 6s orbital, than on the Ni surface
atoms, by almost two orders of magnitude. Figure 7 also
shows different corrugation curves for different conduc-
tances, around the value of 431024 considered before. As
clearly seen in this figure, the corrugation increases with de-
creasing conductance: this is related to the fact that at larger
tip-sample distances the tip selects with a larger weight the
density of states associated with the xenon 6s orbital, with
respect to the metal.

FIG. 6. Conductance versus tip-sample separation for a nickel
tip on ~a! Al ~100! and ~b! Ni~100!.

FIG. 7. W tip, isolated xenon atom on Ni~100!: theoretical scan-
nings at different conductances~in units of the quantum of conduc-
tance! are shown along with the experimental result from Eigler
et al. ~full line!.
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Following the same approach we have also calculated the
STM image of a xenon atom adsorbed on Al~100!, as seen
by a W tip. Taking the height calculated above, we obtain the
corrugation signal shown in Fig. 8. The maximum corruga-
tion obtained from Fig. 8 is around 4.5 Å. Notice how this
value is quite similar to the adsorption distance on this sub-
strate, unlike the Xe/Ni~100! case. This is a consequence of
the electronic properties of the system: in this particular case
the densities of states on the Al and xenon atoms are more
alike than before and the contribution of the aluminum atoms
to the total tunneling currents is not large enough to decrease
the corrugation associated with an isolated xenon atom.

2. Xe 232 adsorbed layer

In general, contrary to the single-atom case discussed
above, the STM images of the 232 adsorbed layer depend
considerably on the electronic properties of the tip. We have
found important differences between the behavior of the tun-
neling currents obtained with aluminum and nickel or plati-
num tips.

a. Aluminum tip.For this tip and for tip-sample distances
of around 9.0 Å , the xenon overlayer shows a normal
corrugation30 with an amplitude of 0.5 Å. For smaller tip-
sample distances (d<8.3 Å!, the corrugation for the xenon
overlayer appears inverted, with the tunneling current reach-
ing a maximum either in the bridge or in the hollow sites.

These results can be understood in terms of the tunneling
currents across each individual atom. Figure 9 shows the
single Xe/Al~100! conductance for a constant tip~Al !–
sample distance of 8.95 Å. Two different scans~over the
bridge and the hollow positions, respectively! obtained by
superimposing isolated xenon atom images are shown in the
same figure to mimic the profile of the 232 overlayer.

The result shows that the image of the 232 overlayer can
be obtained by overlapping the signals of the different indi-
vidual atoms.

b. Nickel tip.This tip yields a broader signal for the xenon
corrugation than an aluminum tip. Figure 10 shows the

Xe/Al~100! corrugation for a single xenon atom and different
tip-sample distances. Comparison with Fig. 9 shows that this
signal is broader than the one obtained with an aluminum tip.
This is mainly the result of the nickeld orbitals. They inter-
act not only with the atoms located on the direction perpen-
dicular to the surface but also with other xenon atoms.

Due to the broad signal found for the nickel tip for a
tip-sample distance of 9.0 Å~similar results are also found
for a platinum tip!, the xenon 232 overlayer presents an
inverted corrugation of 0.3 Å. This result can also be de-
duced independently by overlapping the individual signals
coming from each xenon atom. A normal corrugation can
only be obtained with a nickel tip if we go to larger tip-
sample distances.

We conclude that corrugations of individual atoms and
ordered layers depend on the tip used to scan the surface.29

Transition metal tips yield broader corrugation signals than
normal metal tips, and can present, in some cases, inverted
corrugations. Our results also show that the corrugation sig-
nal of a xenon ordered layer can be calculated by adding the
currents associated with each independent atom. This result

FIG. 8. W tip, isolated xenon atom on Al~100!: theoretical scan-
nings at different conductances~in units of the quantum of conduc-
tance! are shown.

FIG. 9. Constant distance (8.95 Å! scanning with an aluminum
tip ~lateral displacement is given in units of the substrate nearest-
neighbor distance! for a single xenon atom adsorbed on Al~100!.
The two upper curves are obtained superimposing isolated atoms, to
simulate a scan of a 232 xenon overlayer along two different di-
rections;~110! and ~010!.

FIG. 10. Same as Fig. 9 with a nickel tip.
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depends mainly on the possibility of neglecting the interfer-
ence between the currents associated with different adsorbed
atoms: this has been found to be the case for the xenon atoms
in a 232 ordered layer. In general, we can expect this result
to be valid if the adsorbed atoms are not too much closer: our
results show that this is always the case if the adsorbed at-
oms are not located on the nearest-neighbor sites of the sur-
face unit cell~details will be published elsewhere!.

VII. CONCLUSIONS

In this paper we have presented a self-consistent LCAO
method that treats on the same footing both the properties of
chemisorbed species and the tunneling currents for the scan-
ning tunneling microscope.7

Self-consistent LCAO Hamiltonians for chemisorption
problems have been analyzed elsewhere. In this approach a
local density approximation, whereby many-body effects are
introduced by means of a local potential associated with each
atomic orbital, is crucial and establishes the formal equiva-
lence between tight-binding Hamiltonians and conventional
LDA methods. This approach also yields the means to com-
pute the coupling between the two sides~tip and sample! of
the interface of a scanning tunneling microscope. The link
between LCAO methods and the calculation of tunneling
currents is provided by the Bardeen matrix element given by
Eq. ~20!.31 This coupling defines the interaction Hamiltonian
between the tip and the sample and allows us, using the
Keldysh method described in Sec. II, to calculate the tunnel-
ing currents for the microscope.

In this paper we have also applied the previous approach
to the calculation of~i! the physisorption of xenon on differ-
ent metals and~ii ! the tunneling currents associated with the
adsorbed xenon atoms. This study has allowed us to apply
our theoretical approach in its full power, obtaining the

chemisorption~or physisorption! properties of the adsorbed
xenon and the tunneling currents for different tips and tip-
sample distances. The advantage of this system studied is
that there is some experimental evidence to check our theo-
retical results. Regarding this point, it is very satisfactory
that our calculations for the tunneling currents and the sur-
face corrugation of xenon on Ni~100! show a remarkable
agreement with the experimental data.21 It is also important
to notice that the corrugation of a single xenon atom is
deeply related to its position with respect to the metal sur-
face. This suggests that the Xe-Ni distance, as obtained in
our calculation ('3.3 Å!, can be taken very confidently. In
this regard, notice that a change of 0.5 Å in the Xe-Ni dis-
tance will be reflected in a change of around 0.3 Å in the
xenon corrugation.

Finally, we have also explored the effects of different tips
on the corrugation of a single xenon atom and a xenon
232 overlayer. In general, we have found that different
metal tips can change the xenon corrugation and modify the
STM images depending on the distance and the surface
geometry.29 These results indicate that STM images should
be analyzed by comparing iteratively theory and experiment,
very much in the same way as it is usually done for other
surface sensitive techniques, like low-energy electron dif-
fraction ~LEED!, photoelectron diffraction, surface-extended
x-ray-absorption fine structure~SEXAFS!, etc.
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