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The energetical advantage of diamond in comparison with graphite caused by small particle sizes is estab-
lished by modeling and computation of free energy. The results, obtained for low external pressure,P>0, and
for temperatures up to 1100 °C, indicate that diamond is the stable modification of carbon, and graphite is the
metastable one at small particle sizes which are less than the boundary of stability regions of these phases. The
models of crystal charge lattices have been determined to compute lattice energies by summation of pair
interaction potentials acting between elements~ions, electrons! of the charge lattices. The diamond charge
lattice is presented by an ion-electron lattice of negative bond charges and positive ions. The graphite charge
lattice consists of hexagonal ion-electron nets and collectivized conduction electrons located between the nets.
The consideration of conduction electrons in the graphite model provides the stable graphite structure because
the attraction between the conduction electrons and hexagonal nets compensates for the repulsive forces acting
between the nets. Mechanisms of the nucleation of diamond and graphite have been considered to determine
the structure of clusters forming these phases. The considered mechanism of nucleation of diamond clusters
consists in the forming of octagonal carbon clusters with the following transformation of the octagonal clusters
to the ten-atomic-diamond clusters. The octagonal clusters consist of the same fragments of carbon atoms as
the fragments forming the graphite nets. But the difference is that diamond crystals are generated from an
octagon of atoms and the graphite clusters are formed from hexagons. The intersection of size dependences of
free energies of diamond and graphite indicates the size-related stabilization of diamond nanoparticles. The
established boundaries of the stability regions of diamond and graphite are 10.2 nm at room temperature, 6.1
nm at 525 °C, 4.8 nm at 800 °C, and 4.3 nm at 1100 °C.@S0163-1829~96!04827-8#

I. INTRODUCTION

The low-pressure synthesis of diamond by chemical vapor
deposition~CVD! ~Refs. 1 and 2! and by laser decomposi-
tion of ethylene3 and an existence of diamond nanoparticles
in meteorites4 indicates the homogeneous nucleation of dia-
mond. But there is a question of whether the diamond nano-
particles are stable or metastable in comparison with graphite
ones since the low-pressure diamond formation occurs in the
metastable for the diamond bulk crystal pressure-temperature
region.

We can suppose that the stabilization of diamond is
caused by the small particle size. The effect of stabilization
of a nanosized phase that is unstable in the bulk crystal state
has been established experimentally for many substances,
and explained by the energy advantage caused by small par-
ticle sizes.5,6

A similar assumption has been made in a few
publications7–9 to explain the homogeneous nucleation of
diamond at low pressure. In Ref. 7 an approximate estima-
tion of the energy was made for graphite and for the hexago-
nal modification of diamond, lonsdaleite, based on the calcu-
lation of the number of bonds in these structures. The energy
advantage of lonsdaleite in comparison with graphite was
established for very small nanoparticles elongated along the
c axis. In Ref. 8 the data for surface energies of diamond and
graphite were compared for the investigation of the stability
of the phases. But the uncertainty of the surface energies is
too large to make a careful conclusion about the phase sta-
bilization. In Ref. 9 the more stable state was indicated for
3-nm diamond particles. But the estimation of diamond and

graphite energies was made not by their structure but through
the energies of C-H compounds and therefore could not pro-
vide sufficient accuracy. So the estimation of the energies
made in Refs. 7–9 is too rough to make a careful conclusion
about the stability of the phases, since the models of the
computation methods are not sufficiently accurate.

The present work is devoted to a comparison of the crys-
tal energy of diamond and graphite nanoparticles to answer
the question about the possibility of stabilization of diamond
at low pressure caused by small particle size.

II. METHOD OF CALCULATION

The energetical state of each phase is determined by the
Gibbs thermodynamic potential

G5Eat2TS1PV,

whereEat is the atomization energy,S is the entropy, andP,
T, andV are the external pressure, temperature, and volume,
respectively. At low pressure~P>0! the energy advantage of
a phase is determined by free energy

F5Eat2TS.

The atomization energy is determined by the relation

Eat5E1Ek1I , ~1!

whereE is the lattice energy per atom depending on the
crystal structure and particle sizes, andEk and I are the ki-
netic energy and ionization potential of bond charges per
atom, respectively.
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Our calculations of the lattice energy are based on the
method of summation of pair interaction potentials between
elements of crystal charge lattices—atoms, ions, and
electrons.6,10 We approximate the pair interaction potential
by Born-Lande potentialwmn5(emen/rmn)1(A/r q), where
the first term represents the Coulomb interaction and the sec-
ond term represents the short-range repulsive forces acting
between pairs of atoms;em anden are the charge values of
mth andnth interacting elements in the lattice,rmn is the
distance between these elements,q is the power exponent in
the repulsive potential, andA is a constant.

In the case of equilibrium positions of atoms in a crystal
the Born-Lande potential is known to bewmn5(emen/
rmn)[12(1/q)]. The repulsion power exponentq is deter-
mined by compressibility of a crystal.10 We have calculated
the value ofq by experimental literature data of compress-
ibilities of diamond and graphite.

The structure of the charge lattices of diamond and graph-
ite is determined by excessive negative covalent charges lo-
cated on the bond lines between neighboring atoms.11,12The
charge values in the lattices used for computation of the en-
ergy have been calculated from the experimental structural
x-ray data and from the literature data of atomization
energy.11

There are quantum-mechanical calculations of the struc-
ture and energy of small carbon clusters.13,14 The aim of
these considerations is to determine the energy as the geom-
etry of the clusters and configuration of atoms in the clusters.

Our approach is based on quantum-mechanical effects:
~1! the covalent bond charge is the result of exchange inter-
action between neighboring atoms, and~2! the short-range
repulsive forces are caused by an overlapping of external
orbitals of neighboring atoms.

For our calculations we use the known geometry of crys-
tal lattices in clusters, which is determined by structural ex-
perimental data. Our approach allows us to calculate crystal
energies in the wide range of particle sizes—from one unit
cell to bulk crystal, avoiding the difficult calculations pecu-
liar to the quantum-mechanical methods.

Let us remark that the traditional calculation methods for
lattice energy15–17are useful for 1–2-nm clusters or for mas-
sive crystals, and are not able to provide high accuracy by
computation of the energy over the wide range of particle
sizes and especially for charge lattice structures with a large
number of charges in the unit cell. That is why other meth-
ods were used,6,18–20which contain the approximation of lat-
tice sums by integrals.20

The accuracy of this method equals;1/l 0
4, wherel 0 is the

size of the edge~expressed in the number of crystal unit
cells! of a particle with a cubic external shape whose lattice
energy is included in analytical expressions for calculations
by this method. This energy should be computed by sums,
not by integrals.20 Therefore, l 0 determines the computa-
tional time of the method, and the accuracy of the method.
Largerl 0 gives us better accuracy but requires more time for
computations. We usedl 0510 by our computations. This
provides accuracy in the computation of lattice sums
;0.01%. By these conditions the time spent for computation
of the energy of a crystal of any sizes did not exceed 0.5 h.

Analytical expressions of the lattice energyE for a crystal
of the orthorhombic symmetry with the external shape of a

rectangular parallelepiped are presented in Refs. 6 and 20
and for a crystal of hexagonal symmetry with the external
shape of a hexagonal prism in Ref. 19.

Expressions for atomization energies of diamondEat,d
and graphiteEat,g obtained from~1! have the following form:

Eat,d5Ed1Ek,d1rdI 1 ,

Eat,g5Eg1Ek,g1rgI 1 , ~2!

whereEd andEg are the lattice energies per atom of dia-
mond and graphite particles, respectively;rd andrg are the
values of bond charges per atom~expressed in the values of
the electron charge! in crystal lattices of diamond and graph-
ite particles, respectively;Ek,d andEk,g are the kinetic ener-
gies of electron bond charges per atom in diamond and
graphite, respectively; andI 1 is the carbon first ionization
potential.

Expressions for the kinetic energy of diamond and graph-
ite bond electrons have been derived from the relation

FC5Fcp ~3!

between the Coulomb forceFC acting on a bond electron in
the crystal charge lattice and the bond electron centripetal
forceFcp to the nearest atom.

Equation ~3! is similar to the principal relation for the
derivation of the virial theorem21 that determines the kinetic
energy of an electron belonging to a free atom. The differ-
ence is that the centripetal force acting on a crystal bond
charge is determined by the forceFC of the interaction of the
bond charge not with one atom~as in the case of free atom!,
but with all the surrounding charged atoms in a crystal.

As a result the kinetic energy of diamond bond electrons
~per atom! in a crystal equals

Ek,d5QrdEk,d
~1! , Ek,d

~1!5
2r o~r2r o!

r 2
I 1 ,

whereQ is the atom charge value in the diamond charge
lattice, r is the interatomic distance between neighboring at-
oms, andr o is the carbon orbital radius. A similar approach
has been used to calculate the kinetic energy of graphite
bond electron charges. For instance, the kinetic energy of a
bond electron in a bulk crystal, estimated by the suggested
method, equals 343.6 kJ/mol~3.5 eV! for diamond and 292.7
kJ/mol ~3.0 eV! for graphite.

III. MODELS OF CRYSTAL CHARGE LATTICES

A. Description of the unit cells

Selection of the models has been made in accordance with
the structure and interatomic bond types, and to obtain the
experimental values of the atomization energies of diamond
and graphite bulk crystals in the results of computations. The
diamond charge lattice is presented by excessive negative
covalent bond charges and positive ions~Fig. 1!.22

Covalent bond charges are caused by exchange interac-
tion of neighboring atoms. The covalent bonds are formed by
pairs of sp3 ~in diamond! and sp2 ~in graphite! electrons
with antiparallel spins belonging to neighboring atoms. Ex-
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istence of the excessive negative bond charges requires the
existence of positive carbon ions in the models to provide the
neutrality of the unit cells.

We approximate the charge distribution in the crystal
charge lattices by the point-charge lattice model,11,22 where
bond charges, distributed in space, are substituted by point
charges located in the middle between neighboring carbon
atoms. This approximation makes the programs for compu-
tation less complex, decreases the computation time, and
provides an accuracy of;0.05%.

Besides the traditional diamond model@Fig. 1~a!#, we also
consider a model that does not contain atoms with one cova-
lent bond—the atoms are located at crystal apices and edges.
We can construct this crystal lattice by cells@Fig. 1~b!#
which differ from the traditional diamond unit cells@Fig.
1~a!# by the absence in the cubic cells of atoms with one
covalent bond. But in a crystal we have to add the atoms
located at apices of the cubic cells when the atoms are not
located at apices or edges of the crystal; i.e., we have to add
the atoms bonded with at least two neighboring atoms by a
covalent bond.

The cell presented in Fig. 1~b! contains ten carbon atoms
and we will call it a ‘‘ten-atomic-diamond cluster.’’ This
nontraditional model seems to be energetically more favor-
able because of the larger average value of bonds per atom in
this model in comparison with the traditional one.

The graphite charge lattice consists of hexagonal ion-
electron nets and collectivized conduction electrons located
between the nets~Fig. 2!. Excessive negative charges caus-
ing the covalent bond are located between neighboring atoms
in the nets.

Interaction of elements of the hexagonal nets leads to re-
pulsive forces acting between the nets, and results in an un-
stable graphite structure. This is confirmed by computation
of the inner tension, intracrystalline pressure, caused by the
interaction between the nets~the determination and the cal-
culation method of the intracrystalline pressure in a hexago-
nal crystal is described in Ref. 19!. In the direction of thec
axis, the inner tension is repulsive, and is equal to
Pm,3520.7 kbar for the bulk crystal.

If between the neighboring hexagonal nets we arrange a
small value~in comparison with the electron charge value
e0! of the conduction-electron charge~and we can do this
since graphite is a conductor!, the repulsive tension along the

c axis ~Pm,3,0! switches to attractive tension~Pm,3.0! be-
cause of the attractive forces acting along thec axis between
the hexagonal nets and conduction electrons. For instance, at
a conduction-electron charge value per atom equal to 0.09e0,
Pm,3554 kbar. So we obtain a model describing a stable
graphite structure.

B. Models of octagonal clusters of carbon atoms
and a mechanism of nucleation of diamond

Now we will consider the structure of clusters of carbon
atoms forming the structure of diamond and graphite. This
will allow us to investigate similar and different configura-
tions of atoms in these structures to determine charges in the
models, and to investigate a possible mechanism of nucle-
ation of diamond and graphite.

Let us consider the model of a cluster of covalent bonded
carbon atoms forming an octagon with atoms joined to all or
some of the atoms located at apices. A model of such a
cluster with atoms of type 3 joined to four atoms of type 1
located at apices of the octagon is presented in Fig. 3~a!. This
cluster contains fragments consisting of four atoms—
‘‘quartets’’ of atoms where each atom of type 1 is sur-
rounded by three atoms of types 2 and 3@Fig. 3~a!#.

FIG. 1. Charge lattice cells of diamond:~a! The unit cell in the
traditional model.~b! The cell in the model without one-bonded
atoms. Small black circles are excessive negative charges on the
bond line between nearest atoms. The atoms are designated by large
circles: the shaded part of a large circle means the part of the ab-
solute value of the electron charge belonging to the unit cell.

FIG. 2. Charge unit cell of graphite; atoms are designated by
larger circles; the partly shaded circles mean that a part of an atom
belongs to the unit cell.~1! Ion-electron net.~2! Collectivized con-
duction electrons.~3! Excessive negative charges located between
neighboring atoms in the hexagonal nets.

FIG. 3. Models of octagonal carbon clusters containing quartets
of atoms with threefold symmetry at positions 1; small black circles
are the covalent bond charges. Atoms are designated by large
circles; the shaded part of the circle means the part of the absolute
value of the electron charge given up by the atom for the bond. The
dashed bond lines mean that position 3 may be occupied or not
occupied by an atom.~a! Flat cluster.~b! Cluster containing space
quartets of atoms designated by triangles.
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Each quartet of atoms has threefold symmetry if the three
angles at apices 1 equal 120°. These quartets of octagonal
clusters are similar to quartets of carbon atoms forming
graphite hexagonal nets~Fig. 4!, but the difference is that in
the first case@Fig. 3~a!# carbon atoms form the octagonal
cluster, and the quartets in graphite nets~Fig. 4! form the
hexagons.

The octagonal cluster presented in Fig. 3~a! contains two
atoms of type 3 which can occupy any two of four possible
neighboring positions. Such a cluster contains ten carbon at-
oms and we will call it an ‘‘octagonal ten-atomic-carbon
cluster.’’

We can consider a more general model of a cluster with
the octagonal configuration that contains space quartets of
atoms, instead of the flat ones, forming pyramids with equal
flat angles at apices 1@Fig. 3~b!#. The surrounding of atoms
of type 1 by atoms of types 2 and 3 becomes the tetrahedral
diamondlike one when the flat angles in the quartets become
equal to 109.47°.

The octagonal ten-atomic-carbon cluster with tetrahedral
quartets of atoms can be transformed into the ten-atomic-
diamond cluster@Fig. 1~b!# by a turn of the quartets of atoms
relative to the sides of the square presented in Fig. 3, so that
each atom of type 3 becomes the common atom of two op-
posite quartets and is bonded with two atoms of type 1. This
transition seems to be energetically favorable because of the
two additional covalent bonds in the ten-atomic-diamond
cluster in comparison with the octagonal one at the same
number of atoms in the clusters.

It is natural to expect that the octagonal clusters, like the
hexagonal ones, can be generated from unclosed elements
consisting of carbon atoms: dimers—pairs; trimers—three;
and quartets—four of covalent bonded atoms; and single car-
bon atoms @Fig. 5~a!#. For instance, the octagonal ten-
atomic-carbon cluster~Fig. 3! can be formed from two trim-
ers and two dimers.

So we can suppose a possible mechanism of the nucle-
ation of diamond by a joining of the unclosed elements@Fig.
5~a!# in the octagon clusters with the subsequent transforma-
tion to ten-atomic-diamond clusters@Fig. 5~b!#.

Similarly, the nucleation of graphite can be considered a
result of joining the same unclosed elements of carbon atoms
@Fig. 5~a!# in hexagonal nets with the following joining of
the nets in a graphite nucleus by conduction electrons@Fig.
5~c!#.

The 14-atomic-diamond cluster realizing the diamond unit
cell in the traditional model@Fig. 1~a!# can also be generated
by transformation of an octagonal carbon cluster containing
an additional four carbon atoms joined to the apices of the
octagon in comparison with the octagonal ten-atomic-carbon
cluster. But the 14-atomic-diamond cluster seems to be en-
ergetically less favorable than the ten-atomic-diamond clus-
ter because of the lower value of the covalent bonds per atom
in the 14-atomic-diamond cluster.

Let us remark that quantum-mechanical calculations of
the structure and energy of small carbon clusters, containing
2–10 atoms, indicate stable cyclic hexagonal and octagonal
clusters13 with small differences in the atomization energy of
these clusters. These results indicate the possibility of form-
ing hexagonal as well as octagonal clusters for nucleation
graphite clusters as diamond clusters by the mechanisms de-
scribed above~Fig. 5!.

FIG. 4. Model of a hexagonal carbon cluster. Small black circles
are the covalent bond charges. Atoms are designated by large
circles; the shaded part of the circle means the part of the absolute
value of the electron charge given up by the atom for the bond. The
dashed bond lines mean that position 3 may be occupied or not
occupied by an atom.

FIG. 5. Mechanism of nucleation of diamond and graphite.~a!
Fragments forming diamond and graphite clusters:~1! single atom,
~2! dimer, ~3! trimer, and ~4! quartet. ~b! Transformation of the
octagonal carbon cluster~left! to the ten-atomic-diamond cluster
~right!. ~c! Transformation of elements of hexagonal carbon nets
~left! to the graphite unit cell cluster~right!. Small black circles are
the covalent bond charges. Atoms are designated by large circles;
the shaded part of the circle means the part of the absolute value of
the electron charge given up by the atom for the bond. The dashed
bond lines mean that position 3 may be occupied or not occupied by
an atom. The unshaded small circles in the graphite unit cell cluster
designate the conduction electrons.
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The question about the preference of the transformation of
hexagonal clusters in graphite clusters or octagonal clusters
in diamond clusters should be answered by computations of
the energies of diamond and graphite clusters. Results of
these computations are presented below in Sec. IV.

C. Determination of charges in the models

Let us determine the charge values of elements of the
charge lattices which are necessary for a calculation of the
energy. For the determination we use the following postu-
late: each inner atom of a crystal gives up one electron
charge value for the bond. This postulate has been confirmed
by a computation of the crystal energy and size-related
changes of lattice parameters for many substances: platinum,
palladium, nickel, diamond, silicon, germanium, etc.22–24,11

For diamond the bond charge value is one electron per
atom distributed over all the bond directions. For each inner
atom the one-electron-bond charge is distributed over four
directions corresponding to the tetrahedral surrounding by
sp3 bond electrons@Fig. 6~a!#.

For graphite the bond charge value is one electron per
atom distributed over three covalent bonds ofsp2 electrons
located in the hexagonal nets, and over two bonds of con-
duction electrons in the perpendicular direction@Fig. 6~b!#.
Let us designate the covalent bond charge value per atom by
Q0 and the conduction electron charge value per atom by«0.

We have estimatedQ0 and «0 from the experimental
data—structural x-ray data of the size-related change of the
lattice parameterc in small graphite particles. Precise mea-
surements indicate the increase of the lattice parameterc and
the decrease of the lattice parametera in highly disperse
samples.12 For instance, the relative increase of parameterc
in the soot sample with an average size of crystallites of;5
nm in comparison with the bulk crystal equals
~2.560.07!31022. By a comparison of the experimental data
with the computation of the size-related change of lattice
parameters by the same model of the crystal charge lattice
~Fig. 2! that was used for the computation of crystal energy,

the following charge values were established:Q050.7813e0
and «050.2187e0 @(Q01«0)/e051, in accordance with the
above mentioned postulate#.

The bond charges in the graphite charge lattice corre-
sponding to the experimental literature data of the bulk crys-
tal atomization energy equal Q050.8051e0 and
«050.1949e0. The good coincidence of the charge valuesQ0
and«0 calculated from the size-related change of lattice pa-
rameters in small graphite particles and from the bulk crystal
atomization energy of graphite shows that the suggested
models and methods are correct, and may be used for com-
putations.

We have been using the two last values ofQ0 and «0,
presented above, for a computation of the size dependences
of the atomization energy to provide literature data of the
bulk crystal atomization energy. It is important, by the deter-
mination of the point of intersection of the energy size de-
pendences~that is, the boundary of the stability regions of
the phases!, because the bulk crystal atomization energies
determine the mutual positions of the atomization energy
size dependences of diamond and graphite.

The bond charge of a surface atom has been determined
by the number of bonds of the atom with surrounding neigh-
boring atoms. The bond charge values of an atom in graphite
corresponding to one neighboring atom in the hexagonal net
areQ0/35(e02«0)/3 for each~of three! covalent bond in
the net, and«0/6 for each~of two! conduction electron charge
located between the hexagonal nets@Fig. 6~c!#. So we can
determine the bond charge values given up by an inner atom
or a surface atom depending on the number of its neighbor-
ing atomsn,

qg5n
Q0

3
5n

e02«0
3

,

~4!

«5nk
«0
6
,

whereqg and« are the total charges given up by each graph-
ite atom for the bond in the hexagonal nets~covalent bond!,
and in interplanar spacings between the hexagonal nets
~conduction-electron charge!, respectively;k is the number
of interplanar spacings between the nets neighboring to the
atom: k52 for the atom located in an inner hexagonal net,
andk51 for the atom located in a surface hexagonal net.

Diamond surface atoms with one, two, or three neighbor-
ing atoms are surrounded similarly by other carbon atoms as
in graphite, since the clusters forming diamond~Fig. 3! and
graphite~Fig. 4! consist of similar quartets of atoms; atoms
of type 3 are joined with the nearest atoms by one covalent
bond, atoms of type 2 are joined with the cluster atoms by
two bonds, and atoms of type 1 are joined with the nearest
atoms by three bonds.

The difference is that in diamond there are no conduction
electrons. That is why for the bond charges given up by
diamond surface atoms expression~4! has been used at
«050. So for a diamond surface atom the bond charge

qd5
ne0
3

, ~5!

FIG. 6. Distribution of bond electron charges in diamond and
graphite.~a! Tetrahedral configuration of atoms of type 1 in dia-
mond bonded bysp3 bond electrons 2.~b! sp2 covalent electron
bond charges 3 in graphite hexagonal nets of atoms of type 1 and
conduction electron bond charges 2.~c! Bond charge values given
up by one atom 4 in graphite for the five directions:~3! for covalent
bond with atoms of type 1 in hexagonal nets, and~2! for conduction
electron bond between the nets. The shaded part of circles 3 and 2
refers to the part of chargesQ0 and«0 given up by the atom of type
4 for covalent bond and conduction electron bond, respectively.
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wheren is the number of neighboring atoms. It follows from
~5! that, for a one-bonded atom, an atom located at an apex
or an edgen51, thatqd5e0/3, for a face atomn52, that
qd52e0/3, and for surface atoms bonded with three atoms
thatn53, and this results inqd5e0 .

IV. SPECIFIC ENERGY OF DIAMOND AND GRAPHITE
NANOPARTICLES

The preference for the nucleation of diamond or graphite,
and especially the preference of the type of diamond clusters
forming the nucleus—with one-bonded atoms@Fig. 1~a!# or
without them@Fig. 1~b!#—has been determined by a compu-
tation of the energies of diamond and graphite nanoparticles.

Results of the computation of the atomization energy of
diamond and graphite clusters, containing one cell, are pre-
sented in Table I. Computed values of the atomization en-
ergy of very small nanoparticles are presented in Fig. 7 for
crystals with an equilibrium external shape: cubic for dia-
mond and hexagonal prism for graphite. The equilibrium
shape of graphite crystals has been obtained by a minimiza-
tion of the lattice energy depending on the relation between
particle sizes:L3 along thec axis, andL1 perpendicular to
the c axis. The equilibrium shape is determined by relation
L151.4L3 . Computation results show that the diamond
model that does not contain one-bonded atoms@Fig. 1~b!# is

energetically more favorable than the traditional diamond
model @Fig. 1~a!#.

So we have to compare the energy dependences 1 and 3
of diamond and graphite~Fig. 7!, and they show that dia-
mond nanoparticles are energetically more favorable than
graphite ones. These two energy dependences, though in a
larger range of particle sizes, are presented in Fig. 8, and
they show that small diamond particles are more stable than
graphite ones until the point of intersection of these depen-
dences,L5L0515 nm. At sizes larger thanL0 graphite is
the more stable modification of carbon. So the sizeL0 is the
boundary of the stability regions~of sizes! of diamond and
graphite. It is valid at temperatureT50 K, since the free
energyF5Eat2TS is equal to the atomization energy at
T50.

Let us remark that the atomization energy of graphite
crystals without one-bonded atoms has also been computed,
and the energy is almost the same as for crystals containing
one-bonded atoms~Fig. 2!. That is why only one energy size
dependence is presented for graphite.

The increase of the temperatureT moves the diamond and
graphite size dependences of the free energy apart from each
other, so that the difference between the bulk crystal energies
becomes larger on the valuedF5T(Sg2Sd), whereSg and
Sd are the graphite and diamond entropies, respectively. The
nonzero differencedF shifts the point of intersection of the
energy size dependences toward smaller values of sizesL,

TABLE II. Boundary of stability regions~of particle sizes! L0 of
diamond and graphite at various temperaturest.

L0 ~nm! t ~°C! Correspondence to a process

10.2 25 Room temperature
6.1 525 Mean temperature of crystallization

by laser decomposition of ethylene
4.8 800 Mean temperature of crystallization

by the CVD method
4.3 1100 Upper temperature in the CVD method

TABLE I. Atomization energy per atomEat of diamond and
graphite clusters;N is the number of atoms in a cluster.

Type of a cluster N Eat ~kJ/mol!

Ten-atomic-diamond cluster
which does not contain
one-bonded atoms

10 2370.1

Diamond unit-cell cluster
in the traditional model

14 2204.8

Graphite unit-cell cluster 10 231.3

FIG. 7. Atomization energiesEat of diamond nanoparticles with
cubic external shape:~1! Model of a crystal without one-bonded
atoms.~2! Traditional model containing one-bonded atoms and of
graphite~3! with the external shape of a hexagonal prism.L is the
diamond particle size; each sizeL corresponds to the same number
of atoms in the diamond and graphite particle.

FIG. 8. Atomization energiesEat of small particles of diamond
~1! and graphite~2! computed for the cubic external shape for dia-
mond and for the hexagonal prism shape for graphite.L is the
diamond particle size; each sizeL corresponds to the same number
of atoms in the diamond and graphite particle.
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and therefore leads to a decrease of the range of stability of
diamond. The results of a calculation of the sizesL0 at vari-
ous temperatures are presented in Table II. The calculation
was made bydS5Sg2Sd53.37 kJ/mol at room tempera-
ture, and bydS54.59 kJ/mol at 800–1100 °C. We can see
from Table II the boundary of the stability regions of dia-
mond and graphiteL0510.2 nm at room temperature, and
that it decreases to;4 nm by an increase of the temperature
to 1100 °C.

V. CONCLUSION

Results obtained by the considered models at low external
pressure and temperatures up to 1100 °C indicate that dia-
mond is the stable modification of carbon, and that graphite
is the metastable one at small particle sizes which are less
than a critical size—the boundary of stability regions of dia-
mond and graphite.
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