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We theoretically investigated the image of atomic-scale friction of graphite in atomic-force microscopy
~AFM!, based on numerical simulation for a static model. We performed systematic calculations of lateral
force images of AFM aiming to clarify the effects of cantilever stiffness, scan direction, anisotropy of the
cantilever, and surface deformation. The simulation is performed for a simple atomistic model with a single-
atom tip connected with the cantilever spring scanned on a monolayer graphite surface. The process in which
the conservative lateral force becomes a nonconservative frictional force is clarified. ‘‘Stick regions’’ of the tip
atom are also discussed in relation to the cantilever stiffness. Calculated frictional-force image patterns are in
good agreement with experimental ones. We also find the supercell frictional-force images and discuss their
mechanisms.@S0163-1829~96!01727-4#

I. INTRODUCTION

Friction between two solids is an indispensable phenom-
enon for our daily life, and its mechanism has long been
investigated by researchers ranging from fundamental to ap-
plied sciences. Recent development of atomic-force
microscopy1 ~AFM! has enabled us to observe the atomic-
scale friction, and has opened a new research area of
friction—nanotribology.2 Therefore AFM, which, in the
measurement of friction, is usually called frictional-force mi-
croscopy, is a powerful tool for understanding the basic fric-
tion mechanism between a single asperity and an atomically
flat surface. Atomic-scale frictional forces have been ob-
served so far by AFM for the surfaces of graphite,2–7

mica,8–10and transition-metal dichalcogenides.11,12Theoreti-
cal studies of friction in relation to AFM have been also
performed by using simple physical models,12 molecular dy-
namics simulations,13–16 first-principles calculations,17–19

and an analytical method.20

Recently the two-dimensional nature of the atomic-scale
friction has attracted our attention, because it might reveal
some important behaviors of the tip apex on the surface,
which are essentially related to the origin of the friction.
Fujisawaet al.7,9,11measured frictional forces both along and
across the scan direction, and explained the experimental im-
ages by the ‘‘two-dimensional stick-slip model.’’ Kersse-
makers and De Hosson12 also observed the frictional-force
images of transition-metal dichalcogenides, and described
them based on two physical models: static~geometrical! and
dynamical ones. It was shown that the observed image pat-
terns are strongly dependent on a two-dimensional stick slip.
Gyalog et al.20 analytically investigated the mechanism of
atomic-scale friction in terms of a two-dimensional model,
and calculated the two-dimensional regions where friction
occurs, in relation to cantilever stiffness and anisotropic cou-
pling between a tip and a support.

However, from a theoretical viewpoint, the fundamental
problem—how the macroscopic mechanical condition such
as the cantilever stiffness has influence on lateral force
images—has not been fully discussed yet. It is very impor-
tant to know what kind of information is included in the most

available experimental results—force images. Therefore, in
the present work, we focus on the lateral force images and
investigate several influences on them based on numerical
simulation on a static model. We performed overall studies
about the lateral force images of AFM systematically in re-
lation to cantilever stiffness, scan direction, anisotropy of the
cantilever, and surface deformation. Some of the general fea-
tures of the two-dimensional atomic-scale friction in AFM
are also clarified. The simulation is performed by the simple
atomistic model with a single-atom tip connected with the
cantilever spring scanned on a graphite monolayer surface.
In this work, it is assumed that the term ‘‘lateral force’’
means the lateral component of the forceFx or Fy acting on
the tip atom, irrespective of whether it is frictional or not. On
the other hand, ‘‘vertical force’’ is assumed to mean the
vertical component of the forceFz , vertical to the surface
plane.

In Sec. II, our model and the method of the calculation are
presented with the parameters of potential. In Sec. III, the
results obtained by the model calculation are discussed. First,
a vertical force curve is calculated, in order to clarify the
condition of the normal reaction forceFz for the scanning
the tip in the lateral direction. Then, we reproduce the lateral
force images for various values of the cantilever stiffness.
The process in which the conservative lateral force image
becomes nonconservative frictional force image is clearly
presented. The relation between the image pattern and the
arrangement of the graphite atom is discussed. The appear-
ance of the supercell frictional-force images and their mecha-
nisms are also discussed. Then the mechanism of stick-slip is
explained by the feature of the potential energy surfaceV.
Further, we investigate influences on lateral force images by
various parameters as scan direction, anisotropy of the can-
tilever and surface deformation. The simulated frictional-
force images are compared to the observed ones.

II. MODEL AND METHOD OF CALCULATION

In our calculation, a single-atom tip connected with a can-
tilever is scanned on a monolayer graphite surface as shown
in Fig. 1. The total potential energyV is assumed to consist
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of the elastic energy of the cantileverVT and surfaceVS , and
the microscopic tip-surface interactionVTS. This relation can
be written asV5VT1VS1VTS. Both VT and VS are as-
sumed to be harmonic. In particular, the cantilever is repro-
duced by an equivalent three-dimensional virtual spring.

In the simulation, the following conditions are assumed:
First, it is supposed that the tip-surface system is under the
condition of absolute zero pointT50 K. In this case, thermal
activated processes can be perfectly neglected. Further, the
scanning speed of the tip in the AFM experiment is much
smaller than the characteristic velocity of the lattice vibra-
tion. Therefore, we can assume that the tip scanning velocity
v is almost in the limit of zero. The potential energy surface
of the tip-surface system for a given cantilever basal position
is very slowly changed in time with the scan of the basal
position. Note that the adiabatic potential surface itself
evolves in time by the external force, driving the cantilever.
The system is always located at an equilibrium position of
the potential surface as shown in Fig. 2 for each scan point.
Therefore, it is implicitly assumed that the energy of the
system is supplied or removed by the external force driving
the cantilever. This is schematically understood by a simple
one-dimensional model shown in Fig. 2. It is assumed that
the surface is rigid and thatV(x)5VT(x)1VTS(x). x is a
direction in which the tip is moved one dimensionally on the
surface. By changing the stiffness of the cantilever, two
types of potential energy surfaces appear as shown in Figs.
2~a! and 2~b!. For the stiff cantilever, the total energyV is
nearly parabolic and only a single minimum appears. How-
ever, for the soft cantilever, several metastable points corre-
sponding to local minima appear. Thus the appearance of the
case of Fig. 2~a! or Fig. 2~b! is determined by the ratio be-
tween the magnitude of the spatial variation ofVT andVTS.

Therefore, for the stiff cantilever, the representative point
of the system~the tip atom in this case! is always moving
trapped in a minimum of the potential energy surface and
shifts continuously@Fig. 2~a!#. On the other hand, for the soft
cantilever, discontinuity of the motion of the tip atom occurs
as shown in Fig. 2~b!. In this case, for some period of the
cantilever scan, the tip atom is moving continuously. But it
makes a sudden jump from one minimum to another deeper
minimum, when the barrier between two minima disappears.
The system energy is dissipated instantaneously when the tip

atom slips from a local potential minimum to another. This
mechanism of energy dissipation is only an assumption we
make and it is not necessarily correct from the standpoint of
the dynamics. Nevertheless, in this work, we discuss various
features of atomic-scale friction based on this mechanism.

Here, the details of the potential are described. First,VT is
expressed as follows:

VT5 1
2 @kx~x2xs!

21ky~y2ys!
21kz~z2zs!

2#, ~1!

where ki( i5x,y,z) is an elastic constant of the cantilever
spring parallel to thei ( i5x,y,z) direction. This spring is
also assumed to include the effect of the microscopic inter-
atomic bonds of the tip. (x,y,z) denotes the actual tip atom
position, and (xs ,ys ,zs) denotes the equilibrium position of
the tip atom for the system without the interaction with the
surface. We call (xs ,ys ,zs), ‘‘the lever basal position,’’
hereafter.

Here thex and y directions parallel to the surface are
defined as shown in Fig. 3 and thez axis is perpendicular to
the surfacex-y plane. The origin of thez axis is defined as
the position of the graphite surface before deformation. The
vertical componentkz is assumed to be 0.25 N/m, which is of
the same order as realized in experimental works.kx andky
are assumed to be parameters.

FIG. 1. Schematic illustration of the system used in our calcu-
lation. The single-atom tip connected with the cantilever spring is
scanned on a monolayer graphite surface.

FIG. 2. Schematic illustration of the total energyV obtained by
the sum of the elastic energy of the cantilever springVT and the
tip-surface interactionVTS. Two cases for a~a! stiff and ~b! soft
cantilever are presented.~1!–~4! denote the time evolutions of the
potential by the tip scan. For the stiff cantilever, total energyV is
nearly parabolic, and the tip atom~the shaded circle! is always
located at the minimum. However, for the soft cantilever, several
metastable points corresponding to local minima appear, and the tip
atom jumps to the deeper minimum at these points, when the barrier
between two minima disappears.
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Similarly, VS is assumed to consist of three types of har-
monic terms as follows:

VS5
1

2 (
i2 j

m r~r i j2r 0!
21

1

2 (
i2 j2k

mur 0
2~u i jk2u0!

2

1
1

2 (
i2~ j ,k,l !

mpS dzi2
dzj1dzk1dzl

3 D 2. ~2!

This potential was used by Yoshimori and Kitano21 in order
to study the lattice vibration and specific heat of graphite.
The indices of the summationi2 j , i2 j2k, and i2( j ,k,l )
represent the nearest-neighbor bonds, bond pairs, and bond
triples, respectively. The first and the second term corre-
spond to the bond stretching, and the bond bending energy,
respectively.r i j is the nearest-neighbor bond length between
the bondi - j . ui jk denotes the angle between the bondi - j and
the bond j -k within the same honeycomb net plane. The
third term is the bending energy of the local planar structure
due to the normal displacement of thei th atom from the
coplanar position with respect to the three neighboring atoms
j , k, and l ; dzi denotes the normal displacement of thei th
atom from the initial position. As monolayer graphite is
treated, the interlayer bond stretching energy is neglected.
The parameters ofVS are assumed asr 051.4210 Å,
mr541.881 eV/Å2, u052p/3 rad, mu52.9959 eV/Å2, and
mp518.225 eV/Å2, respectively.

The model of the graphite monolayer surface consists of
600 carbon atoms and 271 hexagons, and the lattice constant
of the graphite is assumed to be 1.421 Å. The center of the
hexagon is called the hollow site hereafter. First, this graph-
ite surface is assumed to be rigid andVS is neglected in Secs.
III A–III D, in order to examine the tip-induced dry friction.
Then in Sec. III E, the surface is allowed to deform by the
potential modelVS , in order to examine the effect of surface
deformation. In this case, the range of the tip scan will be
limited near the center of the surface model, to avoid the
artificial boundary effect.

Tip-surface interactionVTS can be obtained as the sum of
all the pair interactions between the single-atom tip and the
substrate surface atoms. The Lennard-Jones potential is em-
ployed as each interatomic interaction as follows:

VTS5(
i
4eF S s

r 0i
D 122S s

r 0i
D 6G . ~3!

Here, r 0i is the distance between the tip atom and thei th
atom in the graphite surface, and the parameters are assumed
to be e50.8738131022 eV, s52.4945 Å. This interaction
potential with these parameters can be excellently reproduce
the corrugation amplitude of AFM images of the
graphite.22–24

The simulation has been performed under the constant-
height mode. Therefore, (xs ,ys) is varied withzs fixed, and
the total energyV is minimized for each (xs ,ys), based on
the Polak-Ribiere–type conjugate gradient method.25 Then
the optimized position of the tip atom (x,y,z), and the lateral
force Fi( i5x,y) acting on the lever basal position are ob-
tained. The lateral forceFi acting in the2i direction, as
defined in Fig. 1, is given by

Fi5
]V

]xi
U

~x,y,z!5~xs ,ys ,zs!

~ i5x,y!. ~4!

Here, zs is an equilibrium tip-atom position measured
from the surface for the system without the tip-surface inter-
action as mentioned before. The deflection of the cantilever
Dz is defined asDz5zs2z. It should be remarked that the
distancezd between the actual lever basal position and the
surface is defined according to the natural length of the can-
tilever spring. If the natural spring length in thez direction is
l 0, zd is represented aszs1 l 0 , for the rigid surface. Then, in
a constant-height mode, the tip is scanned in the condition of
zd5const, or equivalently in the condition ofzs5const. In
our calculation, the tip is scanned at the constant-height
mode withzd5 l 026 Å, that is to say,zs526 Å. Under this
condition, the average normal reaction force^Fz& is repul-
sive and it is about 0.21 nN.

III. RESULTS OF CALCULATIONS

A. Vertical force curve

First, the vertical forceFz curve is calculated. Then the
mechanism of hysteresis in the vertical direction is de-
scribed. Figure 4 is azs-Fz(zs) relation on the hollow site. A
horizontal axis represents the lever basal positionzs . Solid
and dotted curves correspond to the force curve for ap-
proaching or retracting the lever basal position, respectively.
Hysteresis appears in this force curve. The lever basal posi-
tion is moved in the order ofa→c→d→e→c8→b→a, on
the force curve, as shown in Figs. 4~a!–~e! correspond to
zs57.5 Å ~a!, 7.0 Å ~b!, 6.0 Å ~c! or ~c8!, 5.2 Å ~d!, and 4.5
Å ~e!, respectively. In our simulation, when the cantilever
deflectionDz5zs2z, ~.! 0, the tip atom receives repulsive
~attractive! force Fz. ~,! 0. Adsorption force with which
the tip atom is stuck onto the surface is about20.066 nN,
and the adhesive force with which the tip atom is retracted
from the surface is about 0.11 nN. These forces are one or
two orders smaller than those observed in UHV or air, re-
spectively. This discrepancy arises because our model in-
cludes neither the contamination layer such as water and
other gas molecules, nor long-range attractive forces reflect-
ing the macroscopic tip shape.

FIG. 3. The schematic view of the lattice structure of the graph-
ite. c0 is the length of a unit translational vector of graphite.b0 is
the C-C bond length of graphite.c052.46 Å, andb051.42 Å. The
X or Y axis is obtained by rotating thex or y axis 15° counterclock-
wise around the origin~hollow site!.
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The behavior of the hysteresis of the force curve can be
explained from the total energyV5V(z;zs) on the hollow
site. When the lever basal position approaches the surface,
the tip atom is at first located at the local minimum~Figs. 5
curvesa–e! andFz varies continuously withzs . The curves
labeleda–e in Fig. 5 correspond to thezs positions marked
in Fig. 4, respectively. Atzs55.2 Å @the case ofd#, the tip
atom suddenly jumps from one minimum to another deeper
minimum, because the barrier between the two minima dis-
appears~Fig. 5, curved!. Here, the jump of the force curve
appears as shown by the solid curve of Fig. 4. In this case,
the tip atom is adsorbed onto the surface. Just after this ad-
sorption, theFz is attractive. But as the lever basal position
approaches the surface further,Fz becomes repulsive at
zs52.3 Å. Our simulations for lateral force images are per-
formed under the constant heightzs526 Å with the repul-
sive forceFz as mentioned in Sec. II.

On the other hand, when the tip atom is retracted from the
surface, the position where the tip atom makes a sudden
jump appears atzs57.0 Å ~Fig. 5, curveb!. Thus the posi-
tion where the tip atom jumps for the tip retraction is differ-

ent from that for the tip approach. This is the mechanism of
the hysteresis from the viewpoint of the adiabatic total po-
tential V. As will be seen later, the two-dimensional stick-
slip motion during the tip scan takes place by the similar
mechanism.

B. Cantilever stiffness and mechanism of stick-slip

In this section, the influence of the cantilever stiffness on
lateral force images are systematically investigated. Here, we
will find that the effect on the friction image of changing the
cantilever stiffness is almost equivalent to that by changing
the tip-surface interaction. For example, a soft cantilever cor-
responds to a strong tip-surface interaction or a large load
Fz .

1. Lateral force images

Two-dimensional lateral force images are calculated for
various values of cantilever stiffness. The width of each
mesh of the scan point isc0/4050.0614 Å in thex direction.
Here,c0 is the length of a unit translational vector of graphite
as shown in Fig. 3. If thisx scan is repeated in they direc-
tion, the two-dimensional lateral force image is constructed.
The width of each mesh of the scan point in they direction is
b0/1050.142 Å. b0 is the C-C bond length of graphite as
shown in Fig. 3. The scanning region of the lever basal po-
sition is 9.8 Å38.5 Å. The tip is scanned under the constant
height mode ofzs526 Å, with ^Fz&.0.21 nN.

Here it should be noted that the initial condition for the
start of the scan is assumed asx5xs50 andy5ys in our
calculations. Therefore at the start point of each scan line
before relaxation, the tip atom is located at the samex-y
position as the lever basal position. Then the tip atom is
totally relaxed after optimization. Although this start condi-
tion is different from that usually employed in experiments,
we use the start condition in calculating lateral force images
in this work.

This procedure is repeated for several kinds of cantilever
stiffness. The isotropic cantilever spring ofkx5ky5k is
used. For eachk, bothx andy components of lateral forces
are obtained. Figures 6~a!–6~f!. are calculated lateral force
images fork52.5 ~a!, 1.5 ~b!, 1.0 ~c!, 0.75~d!, 0.50~e!, and
0.25 N/m~f!, respectively. The rightmost figures for~b!–~f!
represent the shapes of the boundary where the brightness
rapidly changes from maximum to minimum inFy . Cantile-
ver spring constantskx andky mentioned above are two or
three orders of magnitude smaller than those in experiments.
One reason for this problem, weak spring, is that our model
adopts a single-atom tip model, which detects much smaller
force than the experimental one. Therefore we must use
weak spring. However, Abraham and Batra26 pointed out that
the flake tip actually detects force on the graphite surface in
contact-AFM experiments. If the calculation is performed by
the flake tip including a large number of carbon atoms, we
must use a spring that is as strong as that in experiments. The
other reason is that the effective spring constant becomes
small during the scanning by the flexing of the tip apex.
Griffith and Grigg27 pointed out the possibility of the flexing
of the tip apex by the lateral force.

Solid curves in Fig. 7 show the cross sections ofFx in
Fig. 6 at the line indicated by the thick arrows along thex

FIG. 4. Force curve of thezs-Fz relation on the hollow site with
kz50.25 N/m. The solid line denotesFz when the tip approaches
the surface. The dotted line denotesFz when the tip is retracted
from the surface. The lever basal position is moved in the order of
a→c→d→e→c8→b→a. zs5~a! 7.5, ~b! 7.0, ~c! or ~c8! 6.0, ~d!
5.2, and~e! 4.5 Å.

FIG. 5. One-dimensional adiabatic potentialV(z;zs) in the case
of Fig. 4.zs5~a! 7.5, ~b! 7.0, ~c! or ~c8! 6.0, ~d! 5.2, and~e! 4.5 Å.
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direction. Figures 7~a!, 7~b!, 7~c!, and 7~d! correspond to
Figs. 6~b!, 6~d!, 6~e!, and 6~f!, respectively. These cross sec-
tions meanxs2Fx(xs) relations with the lever basal position
scanned along thex direction on the broken line in Fig. 3. In
Fig. 7, the left-hand vertical axis meansFx(xs), and the
right-hand one means the cantilever deflection in thex direc-
tion, Fx(xs)/k. Dotted curves in Figs. 7~a!–7~d! are obtained
by the2x scan. In Fig. 7~a!, hysteresis is not observed in the
force curve. In this case,Fx is frictionless and conservative,
and it is defined only by the lever basal positionxs . Further-
more, it can be shown that

^Fx&5
1

c0
E
0

c0
Fx~xs!dxs50,

directly indicating the absence of dynamic friction. However,
when the cantilever becomes soft, the force curves show
sawtooth behavior with a discontinuous jump corresponding

to the slip motion of the tip atom, as shown in Figs. 7~b!–
7~d!. In these cases, hysteresis is clearly observed, and it
becomes more remarkable as the cantilever becomes softer.
Therefore, Fx becomes nonconservative, that is to say,
^Fx&Þ0, indicating the appearance of the dynamic frictional
force. Fork51.5, 0.75, 0.50, and 0.25 N/m,^Fx&.0, 0.018,
0.034, and 0.052 nN, as shown in dot-dashed lines of Figs.
7~a!–7~d!, respectively. The value of^Fx& as a function ofk
is presented in Fig. 8 for 0.5 N/m<k<1.5 N/m. As seen in
this figure,kc.1.3 N/m is a critical value of the cantilever
stiffness for the appearance of a finite value of^Fx&. Fy
equals 0 on the broken line in Fig. 3 because of the symme-
try of the graphite lattice.

Thus it can be said that Figs. 6~a! and 6~b! for k.kc , are
conservative force~frictionless! images and Figs. 6~d!–6~f!
for k,kc , are nonconservative force~frictional force! im-
ages. It should be remarked, however, that the critical value
of kc varies by they coordinate where thex scan is per-
formed. The feature of the image pattern of Fig. 6~e!, espe-
cially the periodicity, is very similar to that of the experi-
mental image observed by Fujisawaet al.7 @see Fig. 1~b! in

FIG. 6. Lateral force images ofFx andFy , with the tip scanned
in the x direction of Fig. 3. The rightmost figures represent the
shape of the boundary where the brightness rapidly changes from
maximum to minimum inFy . Spring constantskx5ky5k5~a! 2.5,
~b! 1.5, ~c! 1.0, ~d! 0.75, ~e! 0.50 and~f! 0.25 N/m. The scanning
region is 9.8 Å38.5 Å.

FIG. 7. The cross sections ofFx in Fig. 6 at the line indicated by
the thick arrows along thex direction. They mean lateral force
curves of thexs-Fx relation. Spring constantskx5ky5k5~a! 1.5,
~b! 0.75, ~c! 0.50, and~d! 0.25, N/m. The left-hand vertical axis
meansFx(xs), and the right-hand one means the cantilever deflec-
tion in the x direction,Fx(xs)/k. The solid and dotted line corre-
spond to the force curve with the tip scanned in thex and 2x
direction, respectively. The average lateral force^Fx& for thex scan
is represented by dot-dashed lines.c0 is the length of a unit trans-
lational vector of graphite, as shown in Fig. 3, andc052.46 Å.
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Ref. 7 under the constant height mode. For example, the
calculated sawtooth periodicity of the cross section indicated
by a thick arrow in Fig. 6~e! along thex direction@the lateral
force curve Fig. 7~c!#, is c052.46 Å, which agrees well with
the experimental one, 2.560.3 Å.7 Thus it is confirmed that
our simple atomistic model can reproduce experimental
frictional-force images. However, we cannot reproduce the
cantilever spring constantk and the loadFz quantitatively.
Therefore the calculated corrugation amplitude 1.83 Å of the
images is different from the experimental one 2.560.3 Å.7 In
this point it can be concluded that the agreement between our
calculation and experiments is qualitative.

2. Features of image patterns

In the following, features of image patterns of Figs. 6~a!–
6~f! are described in more detail. Fork52.5 N/m corre-
sponding to Fig. 6~a!, the cantilever spring is so stiff that the
effect of it hardly appears, thus Fig. 6~a! almost reflects the
tip-surface interactionVTS itself. However, fork51.5 N/m
corresponding to Fig. 6~b!, the effect of the cantilever be-
comes enhanced, and the image of Fig. 6~b! considerably
deforms compared to Fig. 6~a!. The honeycomb lattice in
Fig. 6~b! corresponds perfectly to the network of the graphite
bonds. The relation between the image pattern in Fig. 6 and
the arrangement of the graphite atom is discussed below.
Figures 9~a! and 9~b! represent the relation between the
graphite atom site and the cross section ofFx in Figs. 6~b!
and 6~e! at the line indicated by a thick arrow. The lateral
forceFx and the total energyV are shown in relation to the
graphite atom sites—hollow sites~white circles! and C-C
bond sites~black circles!. As seen in Fig. 9~a!, the total en-
ergyV varies continuously. ThenV takes a maximum at the
C-C bond site, and a minimum at the hollow site, that is to
say,Fx equals 0 at both the hollow sites and C-C bond sites.
Further, it can be clearly shown thatFmax andFmin are lo-
cated symmetrically around the C-C bond site. Therefore the
sharp boundary between the positive~bright! and the nega-
tive ~dark! Fx regions appears as the network line of the
honeycomb lattice corresponding to the graphite bonds. In
both Fx andFy in Fig. 6~b!, the C-C bonds of the graphite
that are not parallel to they axis make zigzag patterns. These

zigzag patterns consist of zigzag lines with periodicity ofc0
along thex direction as shown in the rightmost figure of Fig.
6~b!.

With further decrease of the value ofk, we get into the
nonconservative force image regime, then two kinds of dras-
tic changes of the image occur: one is the disappearance of
the zigzag pattern, and the other is the shift of the position of
the maximum or the minimum ofFx . First, the rapid change
of the zigzag pattern is described. At first, zigzag patterns
comprised of zigzag lines with the periodicity ofc0 are
clearly observed in the rightmost figure of Fig. 6~c!. How-
ever, these patterns decrease as the cantilever spring be-
comes soft, as shown in the rightmost figure of Fig. 6~d!.
Eventually, zigzag patterns vanish perfectly in the rightmost
figure of Fig. 6~e!. Figures 6~e! and 6~f! have only straight
shaped images parallel to thex axis. The reason for these
changes will be explained based on the two-dimensional dis-
tribution of the tip atom in Sec. III B 4.

Then the shift of the position of the maximum or the
minimum ofFx is mentioned. As seen in Fig. 9~b!, the total
energyV varies discontinuously, and the discrete jump be-
tweenFmax andFmin occurs. Because of the stick of the tip
atom,FmaxandFmin shift in thex direction. Therefore in Fig.
9~b!, FmaxandFmin do not appear symmetrically with respect
to the C-C bond, although the image pattern itself has the
periodicity of the C-C bond length of the graphite. The fea-
ture and mechanism of the stick-slip are mentioned in Sec.
III B 5.

3. Supercell feature of images

Further, we find a strange supercell feature as seen in Fig.
6~f!. When we pay attention to the variation of the image

FIG. 8. The relation between the cantilever stiffnessk and av-
erage lateral forcêFx&, for the scan on the broken line in Fig. 3.
kc.1.3 N/m is a critical value of the cantilever stiffness for the
appearance of a finite value of^Fx&.

FIG. 9. The relation between the lateral forceFx and graphite
atomic sites, in relation to the total energyV. Fx’s are cross sections
of Fig. 6 at the line indicated by the thick arrows along thex
direction. White and black circles mean hollow sites and C-C bond
sites, respectively.c0 is 2.46 Å. Spring constantskx5ky5k5~a!
1.5 and~b! 0.50 N/m.Dx in ~b! is c0/20 Å, indicating the width of
two meshes of the scan point.
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pattern in they direction, it can be noticed that the same
pattern appears in the cycle ofb0 and 2b0. Therefore the
frictional force image has a 132 supercell symmetry with
respect to the unit cell of the graphite lattice. The periodicity
in the y direction and the supercell are presented by sche-
matic illustrations in Fig. 10~a!. The frame made by the thick
straight line means the scan region, corresponding to Fig.
6~f!. As shown in Fig. 10~a!, the periodicity ofb0 and 2b0 in
the y direction corresponds to the graphite atom spacing on
the start lineAB of thex scan. When we shift the start line of
the scanAB of Fig. 10~a! to the positionA8B8 of Fig. 10~b!,
an image different from Fig. 10~a! is obtained. The appear-
ance of the two alternative long period images is a remark-
able feature for the soft tip cases and it is caused by the
two-dimensional stick-slip hysteresis motion of the tip atom.

4. Two-dimensional distribution of the stick region

Since the feature of the image patterns mentioned in Sec.
III B 2 can be explained by the motion of the tip atom, the
behavior of the tip atom during the scan is investigated be-
low. In order to know clearly where the tip atom sticks, and
between which site it slips, we also calculate the optimized
positions of the tip atom (x,y). The scanning region of the
lever basal position is 9.8 Å38.5 Å. Figures 11~a!–11~d! are
obtained by plotting (x,y), corresponding to the cases of
kx5ky5k52.5 ~a!, 1.5 ~b!, 1.0 ~c!, and 0.25 N/m~d!, re-
spectively. In these figures, each dot represents the position
of the tip atom after each minimization ofV, and solid lines

represent C-C bonds of the graphite lattices. Fork.kc , the
tip atom is distributed continuously over the entirex-y plane
@Figs. 11~a! and 11~b!#. However, with the decrease ofk, the
density of the distribution of the tip atom around the hollow
site becomes large. Finally, fork,kc , the tip atom exists
only around the hollow site@Figs. 11~c! and 11~d!#, indicat-
ing the appearance of the stick-slip motion. The stick regions
become smaller as the cantilever becomes softer, as shown in
Figs. 11~c! and 11~d!. Therefore it is clearly demonstrated
that the atomic-scale dynamic friction is due to the two-
dimensional stick-slip motion of the tip atom.

In the z direction, stick regions are distributed over only
about 0.20 Å aroundz.2.2 Å. Therefore it can be concluded
that the stick regions are distributed over a pancake-shaped
region parallel to the surface, because of the flatness of the
graphite surface. The stick regions make triangular lattices as
a whole, and each of them is located above the hollow site of
graphite. These results are in good agreement with the pic-
ture of the two-dimensional stick-slip model inferred by
Fujisawaet al.7,9,11This concept of the two-dimensional fric-
tion from the standpoint of the cantilever stiffness was also
discussed theoretically by Gyaloget al.20

Here the variation of the image pattern mentioned in Sec.
III B 2 is simply explained using the two-dimensional tip-
atom distribution. We focus on the scan that intersects the
C-C bonds tilted by 30° or 150° from thex axis. Then the
tip-atom position (x,y) for this scan line is presented as
shown in Fig. 12. The position of the scan line~broken line
in Fig. 12! is xs>0 andys53.7c0 , corresponding to the po-
sition indicated by the thin arrows along thex direction in
Figs. 6~a!, 6~b!, 6~c!, and 6~f!. Each dot connected by the
line represents the continuous tip-atom motion fork52.5 ~a!
and 1.5 N/m~b!, and the stick motion fork51.0 ~a! and 0.25
N/m ~b!, respectively.

FIG. 10. Schematic illustration of two kinds of supercell fric-
tional force images ofFx for k50.25 N/m. The start line of the scan
A8B8 in ~b! is obtained by shiftingAB in ~a! by 1.23~5c0/2! Å, in
the x direction. The masked area has the width of 1.42~5b0! Å in
the y direction. The frame made by a thick straight line means the
scan region, corresponding to Fig. 6~f!. The rhomboids represented
by the solid lines show 132 supercell structures with respect to the
unit cell of the graphite lattice.

FIG. 11. Two-dimensional distribution of the tip atom. Each dot
is the position of the tip atom after each minimization ofV, and
solid lines represent C-C bonds of the graphite surface. Spring con-
stantskx5ky5k5~a! 2.5, ~b! 1.5, ~c! 1.0, and~d! 0.25 N/m. The
scanning region is 9.8 Å38.5 Å. Stick regions appear in~c! and~d!.
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For the case ofk52.5 N/m @Fig. 12~a!#, the tip-atom dis-
tribution deviates only a little from the scan line within the
x-y plane toward the hollow siteH1, H2, andH3. Therefore
the amplitude of the locus of the tip-atom position along the
y direction is small. As the cantilever becomes softer„k51.5
N/m @Fig. 12~b!#…, the tip-atom position shifts closer toH1,
H2, and H3. Therefore the amplitude of the locus of the
tip-atom position along they direction becomes large. This
continuous tip-atom motion, which goes beyond the C-C
bondsL1 ~L2! towardH2 ~H3!, produces the zigzag patterns
mentioned in Sec. III B 2. Fork51.0 N/m @Fig. 12~c!#, the
gap of the tip-atom distribution appears and the tip atom
exists in the regions aroundH1, H2, andH3. This stick-slip
motion ofH1→H2→H3 produces the zigzag patterns.

However, for the very soft cantilever„k50.25 N/m@Fig.
12~d!#…, the tip atom is located very close to the hollow site,
and the tip-atom motionH1→H2→H3 turns intoH1→H3 .
In this case, the position where the tip atom sticks just before
it slips toH3 is approximately closer toH3 thanH2, that is to
say, the potential barrier of the C-C bondL3 becomes lower
than that ofL1. In this case the zigzag pattern vanishes.

Thus the variation of the image pattern is explained by the
two-dimensional tip-atom behavior.

5. The mechanism of the stick-slip

The mechanism of stick-slip motion in our system is ana-
lyzed quantitatively in this section, based on the spatial
variation of the total energyV. The concept of this mecha-
nism is based on Tomlinson’s picture,28 and is also similar to
that proposed by McClelland13 or Tomanek, Zhong, and
Thomas.18,19As an example, the total potentialV for k50.5
N/m is calculated as a function ofx and z, for each lever
basal positionxs , on the broken line of Fig. 3;V can be
regarded asV(x,z;xs) by the symmetry. Figures 13~a!–13~d!
represent the case forxs50 ~a!, 1.23 ~b! ~5c0/2!, 2.09 ~c!,
and 2.46 Å~d! ~5c0!. The black circle corresponds to the

tip-atom position. First, forxs50 Å, the tip atom is caught
by the minimum ofV at the hollow site@Fig. 13~a!#. Then,
for xs5c0/2 Å, V has two minima, which are located sym-
metrically with respect tox5c0/2 Å @Fig. 13~b!#. The tip
atom cannot jump the energy barrier atx5c0/2 Å. Therefore
the tip atom is still stuck to the region around the hollow site,
and moves only minutely. However, forxs52.09 Å, the bar-
rier trapping the tip atom disappears and the tip atom moves
along the dotted curve toward the deeper minimum@Fig.
13~c!#. This dotted path neglects the variation of the potential
surface by the motion of the tip atom. Thus the tip atom slips

FIG. 12. The part of Fig. 11, corresponding to the tip-atom
position (x,y) for the scan line which intersects the C-C bondsL1
or L2 tilted by 30° or 150° from thex axis. The region of the scan
line ~broken line! is xs>0 andys53.7c0 . Each dot is the tip-atom
position, the solid circle is a carbon atom, the open circle is a
hollow site, and solid lines represent C-C graphite bonds. Spring
constantskx5ky5k5~a! 2.5, ~b! 1.5, ~c! 1.0, and~d! 0.25 N/m.
‘‘Stick regions’’ appear in~c! and ~d!.

FIG. 13. Two-dimensional adiabatic potential surfaceV(x,z;xs)
for a contour plot expression. The black circle corresponds to the
tip-atom position.xs is ~a! 0, ~b! 1.23~5c0/2!, ~c! 2.09, and~d!
2.46~5c0! Å.
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discontinuously between the nearest-neighboring hollow
sites towards the scanning direction, and a sudden energy
dissipation occurs. This mechanism of energy dissipation is
only an assumption we made, mentioned in Sec. II. For
xs5c0 Å, it is clearly shown that the tip atom is caught by
the hollow site next to the initial hollow site in thex direc-
tion @Fig. 13~d!#. This stick-slip process is repeated with the
period ofc0. On the other hand, for the2x scan in Fig. 3,
the tip atom takes a similar stick-slip motion symmetrically
with respect tox5c0/2 Å. In this case, the position where
the atom starts to jump appears atxs50.368 Å.

C. Scan directional dependence

Lateral force images for other scan directions are calcu-
lated, and the dependence of the image by the scan direction
is investigated. First, the scan direction is rotated 90° from
the one mentioned before: the tip is scanned in they direc-
tion as shown in Fig. 3. Calculated images fork51.50 and
0.75 N/m are shown in Figs. 14~a! and 14~b!, respectively.
Figure 14~a! is an image of the conservative force, and it is
just the same as Fig. 6~b!. Please note the direction of thex
and y axes. However, the nonconservative force image is
clearly different from the corresponding one of before, as
exemplified by the difference between Fig. 14~b! and Fig.
6~d!.

Then,Fy andFx in Fig. 15 are the cross sections of Fig.
14~b! over the scan line indicated by the arrow.Fy andFx
mean the lateral force curves ofys-Fy(ys) and ys-Fx(ys)
relations, respectively. The left-hand vertical axis meansFy
or Fx , and the right-hand one means the cantilever deflec-
tion, Fy(ys)/k or Fx(ys)/k. Fy exhibits the sawtooth be-
havior with the periodicity 3b0/2, whileFx takes the square-
wave behavior, whose rise and fall are synchronized with the
sharp slip in the sawtooth behavior ofFy . These behaviors

indicate the two-dimensional zigzag stick-slip of the tip atom
between the stick region. Similarly to the case for thex scan
in Fig. 6~e!, the lateral force image in Fig. 14~b! and the
force curve in Fig. 15 agree very well with experimental
results by Fujisawaet al.7 @see Fig. 1~a! and Fig. 2~a! in Ref.
7, respectively#. Fx has an image pattern of honeycomb type,
andFy is a wavelike stripe image parallel to thex axis. This
agreement is also qualitative, similarly to the case of Fig.
6~e!.

Next, the tip atom is scanned in theX direction as shown
in Fig. 3. TheX axis is obtained by rotating thex axis 15°
counterclockwise around the origin~hollow site!. The image
for kX5kY50.75 N/m is presented in Fig. 16. This noncon-
servative force image depends remarkably on the scan direc-
tion. Thus, it is a general feature that the nonconservative
force images significantly vary with the scan direction.

This scan directional dependence together with the aniso-
tropic cantilever was also discussed in relation to the canti-
lever stiffness by Gyaloget al.20 We will also discuss the
influence of the anisotropy of the cantilever in the next sec-
tion.

FIG. 14. Lateral force images ofFy andFx with the tip scanned
in the y direction of Fig. 3. Cantilever spring constants
ky5kx5k5~a! 1.5 and~b! 0.75 N/m. The scanning region is 9.9
Å39.8 Å.

FIG. 15. The cross sections of Fig. 14~b! at the line indicated by
the arrow along they direction.Fy andFx mean lateral force curves
of ys-Fy(ys) and ys-Fx(ys) relations, respectively. Spring con-
stantskx5ky5k50.75 N/m. The left-hand vertical axis meansFy

or Fx , and the right-hand one means the cantilever deflection,
Fy(ys)/k or Fx(ys)/k. The tip is scanned in they direction.c0 and
b0 are the same as those in Fig. 3.c052.46 Å, andb051.42 Å.

FIG. 16. Lateral force images ofFX andFY with the tip scanned
in the X direction of Fig. 3. Cantilever spring constants
kX5kY50.75 N/m. The scanning region is 10 Å310 Å.
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D. Anisotropy of the cantilever

The lateral force images are calculated for the case of
kxÞky , to see the effect of the anisotropy of the cantilever.
First, the tip atom of the cantilever withkx,ky is scanned in
the x direction of Fig. 3. The images ofFx are presented in
Figs. 17~a-1! and 17~a-2!. Figure 17~a-1!, for (kx ,ky)5~0.50,
5.0!, has a sharper shape in thex direction than the corre-
spondingFx image in Fig. 6~e! for (kx ,ky)5~0.50, 0.50!.
Similarly, Fig. 17~a-2!, for (kx ,ky)5~0.25, 2.5!, has a
sharper shape in thex direction than the correspondingFx

image in Fig. 6~f!, for (kx ,ky)5~0.25, 0.25!. The reason why
the sharp image in thex direction appears can be qualita-
tively explained as follows: Suppose that the lever basal po-
sition is scanned in thex direction, on the line that a distance
d from the stick region. In this case, the cantilever deflection
Dy in the y direction can be approximately regarded asd.
Therefore, asd increases for the samexs , the lateral force
Fy(5kyd) increases rapidly becausekx,ky , and the tip
atom can slip more easily in thex direction. Thus the image
as shown in Fig. 17~a-1! and 17~a-2! are obtained.

Next, we consider they scan for the tips withkx.ky :
(kx ,ky)5~10.0, 0.50! and ~2.5, 0.25!. The images ofFy are
presented in Figs. 17~b-1! and 17~b-2!. In these cases, the
images sharp in they direction appear as shown in Fig.
17~b-1! and 17~b-2!, by the similar reason mentioned above.
In particular, the wavelike pattern of Fig. 17~b-1! is qualita-
tively in good agreement with that of the experimental image
obtained by Ruan and Bhushan5 @see Fig. 6~a! in Ref. 5#.
Thus, by considering the anisotropic cantilever, the direction
where the tip atom can easily move appears, and the image
becomes sharp toward that direction. Therefore the image by

an anisotropic cantilever is considerably different from that
by an isotropic one. It can be thought that most of the ex-
perimental images might be influenced by an anisotropic
spring, which is the sum of the elasticity of the macroscopic
cantilever and the microscopic interatomic bonds of the tip.

E. Surface deformation

Finally, we allow the graphite surface to deform, using
the surface potentialVS , formula ~3! in Sec. II. The lateral
force images with they scan are presented as shown in Figs.
18~a!–18~c!. Figure 18~b! is an image of an elastic surface
for kx5ky5k50.50 N/m. Figures 18~a! and 18~c! are im-
ages of rigid surfaces fork50.50 and 0.75 N/m, respectively.
As seen in these force images, Fig. 18~b! is more similar to
Fig. 18~c! than to Fig. 18~a!. This feature is quantitatively
examined in the cross sections of Figs. 18~a!–18~c! at the
line indicated by the thick arrow along they direction. In
Fig. 19, the lateral force curve withk50.50 N/m for an elas-
tic surface takes a behavior similar to that withk50.75 N/m
for a rigid surface. Therefore, the surface deformation makes
the cantilever effectively stiff. This feature can be explained
based on the behavior of the total energyV as follows. The
elastic energy of the cantileverVT does not depend on
whether the surface is rigid or elastic. On the other hand, the
spatial variations of the tip-surface interaction potentialVTS
become reduced when the surface deformation is introduced.
This is because when the tip atom approaches the potential
barrier ofVTS, the nearby surface atoms will be relaxed to
lower the value ofVTS. The degree of the stick-slip is deter-
mined by the ratio between the magnitudes of spatial varia-

FIG. 17. ~a! Lateral forceFx images, with the tip scanned in the
x direction of Fig. 3, and~b! Fy images with they scan. Spring
constants (kx ,ky)5~a-1! ~0.50, 5.0!, ~a-2! ~0.25, 2.5!, ~b-1! ~10.0,
0.50!, and~b-2! ~2.5, 0.25!.

FIG. 18. The comparison of lateral forceFy image for the elas-
tic surface, with those for the rigid surface. The tip is scanned in the
y direction on a~a! rigid surface fork50.50 N/m,~b! elastic surface
for k50.50 N/m, and~c! rigid surface fork50.75 N/m. The scan-
ning region is 9.9 Å39.8 Å.

FIG. 19. The cross sections of Fig. 18 at the line indicated by
the arrow along they direction. The dotted, solid, and broken lines
correspond to~a! rigid surface fork50.50 N/m,~b! elastic surface
for k50.50 N/m, and~c! rigid surface fork50.75 N/m, respec-
tively.
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tion of VT andVTS, as mentioned in Sec. II. Therefore, in
this particular case of Fig. 18~b!, the ratioVT/VTS for the
elastic surface becomes larger than that for the rigid surface,
for the same cantilever or the sameVT . The enhanced ratio
can be realized for the stiffer spring for the rigid surface.
Thus, it can be said that the effect of elasticity of the surface
in thex andy direction is included in the cantilever stiffness
kx andky , in the weak loading condition̂Fz&.0.21 nN of
our calculations.

IV. CONCLUSION

In this work, we calculated the lateral force images of the
graphite in AFM, and investigated systematically general
features of two-dimensional images of atomic-scale fric-
tional force, based on the static calculations. Some of the
calculated frictional-force images qualitatively agree well
with the observed images. However, the cantilever spring
constantk and the loadFz are not reproduced quantitatively.
The process in which the weakness of the cantilever spring
makes lateral conservative force nonconservative is also
clarified from the transition of the lateral force image pat-
terns. On the specific scan line, the critical value of cantile-
ver stiffnesskc is about 1.3 N/m. It is made clear that, for
k,kc , the discrete ‘‘stick regions’’ appear around the hol-
low sites. The relation between the image pattern and the
arrangement of the graphite atom is discussed. We find that,
in the case of the soft cantilever, super structure images ap-
pear, and their phase is determined by the initial condition,
i.e., the start line of the scan. It is also shown that the scan
direction has a significant influence on the nonconservative
lateral force image. Further, in the case of the anisotropic
cantilever, the direction where the tip atom hardly moves
appears, and the image becomes rather different from that for
the isotropic lever. Under the comparatively small loadFz ,

the effect of elasticity of the surface is included in the can-
tilever stiffness. Therefore surface deformation makes the
cantilever effectively stiff.

There are many problems to be solved. First, only the
static feature of friction is discussed in this work. However,
dynamics of atoms in the cantilever and the surface under the
finite temperatureTÞ0 K must be included in order to ex-
amine the rate of the energy dissipation and its effects on the
frictional force. Next, cantilever spring constantskx and ky
used in our calculation are by two or three orders of magni-
tude smaller than those in experiments. Two speculations
about this problem were presented in Sec. III B 1. One rea-
son is that we use a single-atom tip model. Therefore the tip
detects much smaller force than the experimental one, which
allows us to use a weak spring. The other reason is that the
effective spring constant can become small during the scan-
ning process by the flexing of the tip apex pointed out by
Griffith and Grigg.27 This problem must be considered with
the use of more realistic AFM and lateral force models. The
scan directional dependence of critical stiffnesskc will give
us further understanding of the two-dimensional atomic-
scale friction. The difference between the constant-height
mode and constant-force mode is also an important issue for
a quantitative study. Further, the influences of the multiple-
atom tip and flake tip on the atomic-scale friction are very
interesting. These problems should be further clarified in our
future works.
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