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We present a thorough investigation of the conditions under which the perturbation theory of diffuse
RHEED [Phys. Rev. B48, 8345(1993] (diffuse scattering treated as the transition between states in the
periodic part of the potentiplcan be used for the evaluation of experimental diffuse scattering data from
occupational disordefe.g., steps Such an investigation is desirable because this method solves the configu-
ration problem, i.e., the presence of many statistically varying disorder configurations, within the scope of a
dynamical theory. We have carried out comparisons with rigorous supercell calculations for streak profiles due
to bilayer steps upon a @00 surface. The general trend of the results obtained is supported by some simple
analytical considerations. An analytical expression is derived that predicts the approximate error made in the
perturbation approach compared to an exact treatment. Besides general features, such as defect concentration
and the strength of the atomic potential, the important structural quantity that determines the quality of the
perturbation approach is the correlation length of the disorder along the incident beam azimuth. If this length
is sufficiently small, perturbation theory works well and is independent of the diffraction condition. Otherwise,
the applicability of perturbation theory depends on the diffraction condition. The physics behind conditions
suitable for perturbation theory to work, as well as their experimental realization, is discS€d®3-
182996)05427-9

[. INTRODUCTION scattering in RHEED within the scope of a dynamical dif-
fraction theory. One is adopted from the multislice method
The calculation of elastic reflection high-energy electronfor transmission electron diffraction and has been used to
diffraction (RHEED) from ordered surfaces can currently be calculate the scattering from a single steln the second
carried out routinely and accurately within the framework of method the disorder is simulated within a large surface unit
dynamical diffraction theories, i.e., theories where multiplecell (supercell, which is repeated periodicallyln this way
scattering is fully included. The application of RHEED the calculation can be carried out using established compu-
theory, used in conjunction with proper fitting procedures tation techniques that rely on periodicity parallel to the
enables crystallographic data for various surfaces to be olsurface®® This supercell approach has the advantage that the
tained by analysis of experimentally recorded rocking curvedgliffraction from the configuration created in this manner is
(e.g., Refs. 1-1 In spite of this progress, the question of treated in principle exactly. A theory for the simulation of
how to treat RHEED from surfaces that are not monatomi+eflection electron microscop§REM) images that uses the
cally flat has still not completely been answered, althougtsupercell technique has been developed recéntly.
the major application of RHEED concerns the control of In the case of both the supercell and the multislice ap-
epitaxial growth. Here, the surface is always in a more oiproaches the full dynamical calculation has to be carried out
less rough state such that the lateral translation symmetry dbr each new configuration considered. On the other hand,
the flat surface is broken, giving rise to diffuse scattering. Afor an analysis of experimental data from real surfaces, cal-
further interesting aspect of diffuse scattering in RHEEDculations for a large number of statistically varying configu-
concerns its high sensitivity with regard to surface disorderrations would be necessary. This configuration problem, in
Due to the grazing incidence scattering geometry at higttonjunction with the large computational effort required for
electron energy small lateral momentum transfer along theven a single structure, presents a problem for the interpre-
incident beam azimuth is connected with a large momentuntation of diffuse scattering data from real surfaces.
transfer normal to the surfacéhe latter being typically one Recently, a third approach and a corresponding computer
order of magnitude larger than the former prieor this rea- program based on perturbation theory have been
son the resolving power of RHEED with regard to the dis-introduced!® Here, the dynamical diffuse scattering is re-
tance over which deviations from the perfect periodicity cangarded as a transition between stdte®-dimensional Bloch
be detected is considerablsome 1000 A and usually waves in the periodic part of the scattering potential. The
higher than in the case of the complementary technique, lowaonperiodic part is treated as a perturbation. This formalism
energy electron diffractiofLEED). solves the configuration problem because the approach can
Besides treatments based on the kinematical thethrgre  be reduced to the use of conventional structure factors mul-
are at present three theoretical approaches that treat diffusiplied by “dynamical” form factors calculated with the per-
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turbation theory. With this theory of diffuse RHEED, the
problem of a surface with a single adsorbed atom could be
solved. Also experimentally observed thermal diffuse scat-
tering distribution”!? (Kikuchi scattering and streak pro-
files corresponding to antiphase domaittscould be repro-
duced rather well.

It was not evident until now whether such a formalism is
applicable to the general case of occupational disorder, forg L
example, surface steps and related defects. For instance, &
can be shown that for a stepped monolayer of half coverage
the sum of all the diffuse Fourier coefficients of the potential
is of the same order of magnitude as the coefficients due to ©
the periodic part of the potentigdee Sec. )l But at present
the perturbation scheme is the only approach within the ,
scope of a dynamical scattering theory that can handle the 0
configuration problem and is, thus, potentially applicable to lateral distance
the interpretation of experimental data in order to obtain sur-
face parameters characterizing the disorder such as typical FIG. 1. Typical form of the pair correlation function of a disor-
terrace widths and island sizes. It has also been pointed odgred layer in the case of occupational disorders the coverage
that it is probably only with such an approach that formal@ndL the typical correlation length involved in the disorder.
averaging over many configurations will be achievablé. . o i
is therefore important to determine the conditions undefotes the_ correlation over infinitely large dlstanc_es and thus
which perturbation theory can be used. This is the purpose diharacterizes the long-range order. The full width at half
the present work. maximum of the decrease with) along a particular azimuth

To that end we will carry out a comparison of diffuse ¢ can be identified with the typipal cprrelation length of the
scattering data from the perturbation approach and the supethort-range ordet , along that direction.
cell technique. Because the latter treats the scattering prob- Fourier transformation oP(r) shows that the pa® s
lem (for a given Structurb rigorous|y’ the Corresponding Of the pair CO!‘rela.tlon. function that |S.: responSIble for the
computations serve very well as reliable reference calculadiffuse scattering is given by subtraction of the long-range
tions. The model system we have chosen is tH&0® sur- order contribution from the total pair correlation function:
face with bilayer steps having their edges al¢®d 1]. As
the comparisons are mainly done for a special type of disor- Pairt(r)) = P(r)) = P(x). @)
der configuration, a simple analytical treatment of the prOdeiﬁ(r”) is proportional to the Fourier transform 8(s)|?

lem is given as well in order to enable a proper interpretationynq it follows thatS(s) obeys the sum rule
of the comparison and to transfer the results to realistic sur-

faces and other materials. o)
N4

bility

fBZdSIS(S”Z:Pdiff(O):0(1_0): ©)

Il. SOME INTRODUCTORY CONSIDERATIONS

) . ) . where the integral is over thé@wo-dimensional Brillouin
The structure factor associated with the diffuse scatteringne (BZ), N is the number of surface lattice sites of the

from a layer with occupational disorder is defined as system, and is the area of the surface unit cétiee also
Ref. 14. This result can also be obtained by direct integra-
_ _ tion of |S(s)|? as defined by Eq(1). The integral in Eq(3)
s) = e S-ry), S#0, 1 .
S ; XS o) g @ depends on the coverage only and suggests that, even if the

individual diffuse Fourier coefficients are small, the contri-
where ther,,; denote the atomic positions asdlenotes the bution of a whole Brillouin zone is not necessarily negli-
two-dimensional reciprocal vector of the nonperiodic part ofgible. For instance, if9=0.5, expression3) reaches its
the potential; i.e.s does not coincide with a reciprocal lattice maximum and has the same value as that which would be
vector g of the periodic surface lattice. The vectagsare  produced by the Fourier coefficients of a perfectly ordered
distributed continuously ik space and are responsible for layer of half scattering strength. This is not really small and

the diffuse scattering. it is therefore at first glance not obvious that the diffuse
The squared modulus of the structure factor is related tgcattering can be treated as a perturbation at all.
the Fourier transform of the pair correlation functibir ) In Fig. 2 we give a preview of some results of the numeri-

with respect to the surface coordinate P(r)) is the prob-  cal comparisor(see Sec. VI; the details of the model used
ability of finding two atoms separated by the real-space vecwill be given in Sec. IV. This demonstrates that the problem
tor r|. For occupational disorder, the pair correlation func-is somewhat complicated and the situation is generally not as
tion of a disordered layer with coveragehas the general pessimistic as suggested by E®). The figure compares
features sketched in Fig. P(0) is the probability of finding diffuse streak profiles for three different situations, calcu-
an atom in the disordered layer, therefoR(0)=46. For lated with the supercell and with the perturbation approach,
r;>0 the pair correlation function decreases with increasingespectively. In all cases the supercell consisted of 400 lattice
ry. The limiting value forrj—o is P(*)=#6%. P(») de- units. The stepped disordered layers were assumed to be of
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intensity (arb. units)

o1

method. In what follows, we will therefore describe briefly
the basic elements and assumptions employed in the pertur-
bation and the supercell programs. In order to elucidate the
differences between the two approaches, a common formu-
lation of the scattering problem is used. We note, however,
that the actual numerical solution is obtained in quite differ-
ent ways. For these details we refer to the corresponding
references, Ref. 1(perturbation and Refs. 7 and 1tuper-
cell).

We start with the usual two-dimensional Fourier expan-
sion of the scattering potentiai(r) and the wave function
(r).® The potential and the wave function are then split up
into their periodic ) and diffuse ¢l) parts. For the potential
we have

exit angle (mrad) exit angle (mrad)

V(r)=Vp(r)+Vq(r),

exit angle (mrad)

FIG. 2. Streak profiles normal to the shadow edge through the
zeroth Laue zone reflections (00) af@il) from rigorous supercell
(so calculations and perturbation theorp)(for Si(100 bilayer
steps and coverage 0.5. The electron energy is 15 keV and the
incident azimutt 011] is perpendicular to the step edgés. Regu-
lar step array with terrace length of 200 lattice units, incident angl

50 mrad. The curves sc apddo not agree(b) Random distribution . )
of step units and 50-mrad incident angle. sc pragree quite well. ponent of the real-space vectorand z is the coordinate

(©) As in (a) but for 60-mrad incident angle. sc apdagree quite normal to the surface. The discrete et denotes the recip-
well. rocal surface lattice vectors corresponding to the periodic

part of the potential of the surfacs.stands for the two-

half coverage(which is the most unfavorable case with re- dimensiqnal reciproqal vectors pf the nonperiodic potential
gard to the coverageThe incident azimuth is perpendicular part, Wh_'Ch are d'St”,bUted contlngously knspace and are
to the step edges and the lateral diffuse Fourier componenf§SPonsible for the diffuse scattering. _
are along this direction. The corresponding diffuse scattering '€ diffuse Fourier coefficientéy(s,z) can be written as
profiles are plots of the diffusely reflected intensity versus
the polar exit angle. In Fig.(2) a regular step array with a
terrace length of 200 lattice units and an incident angle ofvhere
50 mrad was used. The agreement between supercell and
perturbation calculation is indeed bad. The metric distance
[the measure used for the comparison, between two curves,
defined in Eq(11)] between perturbation and supercell pro-
files, averaged over thd00) and the (01) streak, is
D=0.84, V.Vh'Ch means virtually no corrglatlon between bothwith the diffuse potential part of the disordered layer.
profiles. Figure %) shows the comparison for exactly the Analogously, the decomposition of the wave function
same diffraction condition and the same coverage. Howeveg,ieIdS '
this time the step unitécorresponding to steps with terrace
lengths of one lattice unitwere randomly distributed within
the supercell. In this case, the perturbation approach repro-
duces the rigorous calculation very well. The corresponding
metric distance confirms excellent agreemént 0.16. Fi-
nally, Fig. 2c) compares profiles again from the regular step
array as used iffa), but at a slightly higher incident angle
(60 mrad. Again, the profile obtained from the perturbation Py(r)=expli KH'rH)f dsy(sz)explisry), (7)
calculation represents the exact one quite wBI0.17).
These results show that the appllcablllty of the perturbation,vhere K” is the para||e| component of the incident wave
approach, besides depending on the defect concentration g&ctor. ¢, consists of the strong waves scattered into direc-
suggested by Ed3), also strongly depends on the statisticstions corresponding to the reciprocal surface lattice vectors
of the disorder and the diffraction condition. g whereasyy consists of the diffusely scattered waves,
which are assumed to be weak.
The z-dependent Fourier coefficients of the diffuse waves
are given by the solution of the following set of coupled
Our investigation is essentially based on a comparison oflifferential equationgobtained by inserting E(7) into the
numerical data from the perturbation and the supercelSchralinger equatioh

Vp(r)z(ﬁZIZm)zg: Vp(g,2)exp(ig-ry),

Vd(r)=(ﬁ2/2m)f dsVg(s,z)explisr)). (4)

%—|ere,rH is the two-dimensiondlparallel to the surfagecom-

Vy(s,2)=(1/27)%v(s,2)S(9), (5)

v(s,z)=2m/h2f drVagonl ) eXp(—is-r)) (6)

is the (two-dimensiongl Fourier transform of the atomic po-
tential V4om and S(s) is the structure factofl) associated

P(r)= thp(r) + ha(r),

Uo(1)=exXpiK|-1) 2 W(g2)expligrr)),

IIl. PERTURBATION AND SUPERCELL APPROACH
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d? ) Ref. 16 with [(—#%2m)V?+V,(r)] as the unperturbed
G2V (82 +KY(52)~Sp(s2) ~Di(s2) = Cy(s,2)=0. Hamiltonian andV as the perturbation. In practice, the nu-

(8)  merical solution is obtained using the reflectivity matrix
, _ method’ adapted to diffuse scatterin§This method and its
Here, ks is the z component of the(diffuse) wave vector numerical aspects are described in detail in Ref. 10.

associated with the scattering vectorThe termsSy(s,z), The great advantage of the perturbation approach is that
D¢(s,z), andCy(s,z) describe the couplings of the wage for occupational disorder, where the sites of the atoms in the
with all other waves. In particular, these couplings are disordered layer only differ by parallel translation vectors
rn)» which are compatible with the periodicity &f,, the
SO(S,Z):(l/ZW)ZE v(s—9,2)S(s— g)W(g,2), formahsm c.a_n be redu_ced toa pseudokmem_atlcal scatter-
9 ing formula; i.e., the diffusely scattered amplitud¥s), of

each disordered layer can be expressed as a product of the
conventional structure factor with a “dynamical” form fac-

Df(s,z)=2g Vp(9,2)y(s—g,2), ©  tor:
Cats2)=(12m)? [ dsyo(s-5 DS(5-)y(5.2). PO~ Tan(92, exi—isty), s¥g. (10
Sy (source term denotes the coupling o with the set of The dynamical form factof 4(s) represents the scatter-

strong waves{g} via the nonperiodic part of the potential ing amplitude for a single atom, situated in the periodic po-
Vg4. In perturbation theory this term is responsible for thetential part and isndependenbf the detailed statistics in-
excitation of the diffuse waves by the field of the strongvolved in the disorder; i.e., independent of the concrete
wavesg and can be regarded as the source term for theonfiguration considered. The modulus 6f,, depends
diffuse scatteringD; (diffraction tern) is the contribution strongly on both azimuthal and polar exit angle. The corre-
arising from the interaction between the waand the dif- sponding modulations are due to the diffraction of the dif-
fuse set{s+g}, established by the periodic potenti], . fusely scattered waves by the periodic potential part.
D¢ describes the diffraction of the diffuse waves Wy. The information about the statistics is contained in the
C, (second-order coupling tepncontains the coupling a$  structure factor. Therefore, ondg(s) is known, the scat-
with the diffuse sef{s,,s,—s#g} via the nonperiodic poten- tering amplitude for an arbitrarily large number of different
tial V. configurations can be calculated simply by the use of struc-
An expression analogous to BE®) (without source terrn  ture factors. In particular, the effective methods of dealing
holds for the coefficients/(g,z) of the strong waves. In that with the configuration problem developed for the kinematical
case the second-order couplings describe the feedback of tiseattering theorye.g., Patterson analygisan be transferred.

diffuse waves into the strong waves. The cpu time for the calculation dfy,(s) for ones point is
approximately three times as high as the cpu time needed for
A. The perturbation approach one point of the rocking curve from the periodic part the

) same structure.
The computer program based on perturbation theory, de-

veloped at the University of Osnalmki employs approxima-
tions that enable a very effective handling of the scattering
problem for a large number of statistically varying configu- The computer program based on the supercell approach,
rations. However, certain dynamical wave couplings have taleveloped at the University of Leicester, does not neglect
be neglected in order to achieve this advantage. The periodipecific wave couplings and the scattering problem for a
party, of the wave function [see Eq(7)] corresponding to  given configuration is solved exactly. In the case of the su-
the strong waves$g} is calculated fully dynamically for the percell method the second-order couplii@sas well as the
periodic part of the potentia¥,,. In the case of the diffuse full couplings S, with the set{g} of strong waves are fully
wave functionygy the diffraction termDy, the couplings be- included. Generally, the diffuse potentid]; (and thus the
tween a diffuse waves and the set of diffuse waves diffuse wave function ;) has a continuous (two-
{s+g}, is included exactlyD; describes fully dynamically dimensiongl Fourier spectrum. In order to numerically
the propagation of the diffusely scattered waves in the perihandle a finite number of diffuse waves, a proper discretiza-
odic potentialV,. The contributions o, i.e., the interac- tion of the Fourier transform o¥, (and ¢4) into a Fourier
tions between the diffuse and the strong wagesare in-  series has to be carried out. Physically, this means that the
cluded to first order in perturbation theory with respect to theconsidered configuration is repeated periodically with a pe-
diffuse potential parl/y. This means that the diffuse wave riod corresponding to the degree of discretization. In this
function ¢4 is assumed to be excited by the strong waveway the diffuse scattering problem is reduced to the treat-
function ¢, while the second-order recoupling of the diffuse ment of a periodic surface but with a very large surface unit
waves to the strong ones is neglected. Finally, the couplingell (supercell. Therefore, the calculation can be undertaken
contributionC, is neglected as well because it is of secondusing techniques developed for periodic structfréas the
order with regard to the perturbatiowoupling to diffuse  computational effort is roughly proportional to the third
waves by thediffuse potentia). Formally, this approach is power of the number of waves included, the calculation time
equivalent to the distorted wave Born approximati@ng., for a reasonable degree of discretization is considerable. In

B. The supercell approach
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this work we used a (X 400) Superce" and a total of 405 consisted of the 5 integra'_order Wavesl"m(h :2_, . ,2)

waves. Use of a highly optimized program, based on thg, the zeroth Laue zone and the fractioreiffuse) waves
approach o_f Ref. 15 enable_d the calculations to be done Wlﬂ‘t-m/400,h) (m=240, .. . ,40m#0) such that a total of 405
out excessive use of cpu time. waves was included. It has been checked by the calculation
of rocking curves for the flat surface that inclusion of more
IV. SURFACE MODEL AND CALCULATIONAL DETAILS than 5 integral-order waves led to only small changes in the
ﬁhape of the curves. Memory constraints made the restriction
to 5 integral-order waves necessary. It has, however, been
checked that an increase in the number of fractional-order
introduced, consisting of bilayer terraces, with step edgewaves did not changg the results significantly. If we therefo_re
' A o ’ Tse the same set of integral-order waves for the perturbation
along[011]. The.ba5|c b|Iayer urylt. consists of .an upper calculation, comparability is guaranteed and also the conclu-
terrace of extension 1 LWUattice uniy in the[011] direction  gjons concerning the quality of the perturbation treatment
(1LU=a,/2=3.84A) and a height corresponding to 2 should hold generally. The consistency of the “Leicester”
ML (a,/2=2.715 A). The “dynamical” form factor for the ~ ang “Osnabrek” programs with regard to the periodic po-
perturbation. The configurations of the disordered bilayel,rves from the flat surface. The reflectadsolute intensi-
were always constructed of such units within a supercell ofjes produced by the two programs were found to agree
lengthL c=400 LU. Usually the configurations chosen for within 0.5%. The metric distandelefined below in Eq(11)]
the comparison were regular step arrays of various coveragggtween rocking curves from the two programs was
6. Such structures consist of one upper and one lower terragg = 005,
within the supercell. The length of the “up” terrace is then  Both the supercell and perturbation program profiles of
6L cen and the length of the “down” terrace is (16)Lcei-  the (00) and (01) streak were calculated for the 6 incident
The reason for this choice of these artificial configurationsang|es 34, 40, 45, 50, 55, and 60 mrad. The computations
is to keep the computational effort of the rigorous calculayere performed on a HP 735 workstation. In the case of the
tions within a tractable time scale. Simulation of realisticigorous supercell calculation the computation time needed
disorder would in principle require many statistically varying for one incident angle was about 1.5 h utilizing the mirror
configurations or at least a very large cell in order to imro'symmetry of the scattering probleth.The corresponding
duce statistics within the supercell. However, as will becgicylation time in the case of the perturbation program to
shown in Sec. V, the key structural parameters that influencgy|cylate the “dynamical” form factor was about 3 min
the quality of the perturbation approach are the covete®e  (without utilizing the symmetryon the same computer.
the disordered lay€s) and the correlation length involved In all the comparisons only the diffuse intensity of a pro-
step arrays now offer the unique advantage that a given cofntegral-order wave in the zeroth Laue zone was excluded.
relation length can be easily realized byiagle configura-  The results from both approaches were compared by means
tion. The correlation Iength_ of the disorder simulated in of the (root mean Squaréd‘netric distanceD (as used al-

that way is simply given by the length of the “up” terrace ready in earlier work to quantify the deviations between
for coverage®/<<0.5 and by the length of the “down” ter- calculated and experimental data:

race if 6=0.5.
We believe that a comparison of data from these configu- 1
rations provides a worst case estimation concerning the ap- D(f,g)=

The surface model used for the investigation is based o
the unreconstructed @00(1X 1) surface. On the ordered
surface a bilayer with disorder along th@11] direction was

112
11

plicability of perturbation theory. Although the surface is not J2
monatomically flat, these are nevertheless very regular struc-
tures(even within the supercelbuch that the possible can- The summations ovérare over the exit angles of the profiles
cellation of the disturbing multiple scattering processes dud andg. D(f,g)=0 if fecg whereadD(f,g)=1 for the case
to statistical variations in the disorder is excluded. For somehat f andg are completely uncorrelated. This measure con-
comparisons, random configurations within the supercelterns only the shape of the curves and not their absolute
were used as wellSec. VIQ. In all these cases the struc- intensities. This is on the one hand reasonable because in
tures consisted of the bilayer units described above. experiments usually only relative intensities are measured.
The calculations were carried out for a 15-keV electronOn the other hand, first-order perturbation theory itself tends
energy. For the atomic scattering potentials the original valto produce higher intensities than the rigorous theory. It can
ues from the tables of Doyle and Turffewithout any cor-  be shown that the effect of second-order pertubations on the
rections for the inner potential were used. It is important topropagation of the incoming and the diffusely scattered
use those corrections for the analysis of experimental data.waves is equivalent to the effect of an additiofialgeneral
They are, however, irrelevant with regard to the comparisomonloca) absorptive potentia?~2* For this reason, it is ex-
of the two approaches as long as in both cases the sanpected that prominent profile features that already arise from
potential is used. The crystal temperature was assumed to lfiest order diffuse scattering appear with reduced intensity in
300 K. The ratio of imaginary absorption potential to reala more rigorous treatment. Our numerical results have con-
potential was assumed to be 0.(k®e Ref. 2 firmed this trend. We have found discrepancies in absolute
The incident beam azimuth wf611], i.e., perpendicular intensity between about-520% for cases with the best
to the step edges. The wave set for the rigorous calculatiorsgreementas given by théd value up to an order of mag-

fi 0 2
z ([zif?]”z_[zig?]”z)
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nitude for the cases of worst agreement between the twpart and that the diffusely scattered waves propagate as in the
approaches. Moderate changes of the absorption potentishcuum. The latter behavior is due to the neglect of the dif-
have a strong influence upon absolute intensities but havieaction termD; and means in principle a quite drastic sim-
usually little influence upon the shape of curés., peak plification because the propagation does not contain any dif-
positions and their relative heightsHence, in the figures fraction by the strong periodic potenti],. The propagation
that illustrate the comparison between both kinds of calculawithin V,, leads, besides the general trends derived here, in-
tions, the curves are normalized to their maximum and plotdeed to important additional effects depending on the spe-

ted on a linear scale using arbitrary units. cific diffraction condition(see Sec. VIl Note that the actual
perturbation theory used for the calculations of course in-
V. ANALYTICAL CONSIDERATIONS cludes all the couplingB; . For the general estimation of the

. ) ) order of magnitude of the amplitude of the diffuse waves,
Before discussing the actual comparison between the Syrowever, the simplified expression should be sufficient be-
percell and perturbation approaches for the specific case @auseD; represents no source of diffuse scattering but rather
the S(100 bilayer system, we shall use some simple analyti-registributes among the diffuse waves that flux which is scat-
cal arguments to anticipate which physical quantities influtered into the diffuse waves. The simplified expression used
ence the quality of the perturbation approach. Although som@ere in particular retains the important property that states
strong simplifications will be used, the essential features iMmyith 10w lkd tend to be excited stronglie.g., for surface
portant for high-energy scattering frofdisorderedi surfaces  yegonancég), and it allows the existence of evanescent
will be retained. The analytical considerations will in par- \yaves. We note further that the simplified propagation does
ticular help us to clearly understand the numerical comparinot include absorption, which would lead in general to
son and _thus to transfer the .results, obtained mainly for sp&smaller values fory(s,z). In particular, the singularity at
cial configurations, to realistic surfaces. k=0 would disappear in that case so the expression ob-

In what follows an approximate error will be derived, {ained here tends to overestimate the magnitude of the dif-
which characterizes the strength of higher-order diffuse scafyse scattering.

tering processes and, thus, the quality of a perturbational e couplingsC,, which are neglected in the perturba-
treatment. tion scheme, are now estimated by insertior(18) into the
third equation of (9). Exploiting the fact that the two-
A. Derivation of the approximate error dimensional Fourier coefficieni®) of the atomic potential

For simplicity, we assume a monatomic material and &€ only slowly varying within a Brillouin zone, one obtains
single disordered top layer upon an otherwise perfect bulk.
All atoms in the disordered layer occupy lattice sites com- CZ(S,Z)ZE AC(s—g,2), (14)
patible with the structure of the ordered syst@uocupational ]
disordej. The origin of thez coordinate(normal to the sur-

. . such that each BZ that belongs to the reciprocal lattice vector
face is the center of the disordered layer. Furthermore, w 9 P

eg contributes to the second-order diffuse coupling with the

consider diffuse scattering from the surface Brillouin zones
! . amount
associated with the zeroth-order Laue zone.
In what follows we will estimate for the system of equa- 1 ds,
tions (8) the magnitude of the second-order coupling term AC(s—g,2)= (2—)20(3— g,z)f ik
C,, which is neglected in the perturbation treatment, com- ™ Bzg <'%s)

pared to the source ter8,. To that end we estimate first the
magnitude of the diffuse coefficientg(s,z). This is per- XS(s—)S(8) > 1(02.5,2).  (15)
formed by the integration of Eq8) retaining, of all the %
coupling terms, only the source tei§g (the couplings with — Here, the sung, is over the surface reciprocal lattice vectors
the strong waves By approximating the exact Green's func- gpq g, 4,ds, means integration over the BZ associated with
tion for Eq. (8) with the corresponding free-electron Green'’s 9.
function we obtain Analogously, for the source teri, (the coupling with
1 the strong waves each BZg contributes the amount
y =—5 I L), 12
y(s2) 2ikg (S)Eg (9s2) (12 C(s—g,2)=(1/2m)%v(s—9,2)S(9)W(g,2). (16
wherel(g,s,z) denotes the integral We now estimate the contributiodC(s—g,z) of the
second-order couplings compared to the first-order contribu-
1 i tion C(s—g,z). The evaluation is carried out for the center
1(g,52)= (27)2 dzpexp(ikdz—2,[)v(s~9,22)W(9,2,). of the disordered layerz& 0), the potential at this particular
(13 z coordinate being representative for the strength of the po-

tential.
Both equations hold for propagating.& kZ) as well as for Quantitative evaluation of Eq15) for arbitrarys and in
evanescent wavekd=i — ksz). particular the derivation of an approximate analytical expres-

Physically, the Green’s-function approximation used tosion is practically not possible. The reason for this is that the
obtain Eq.(12) means that the diffuse scattering is excited byproduct of the structure factoiS(s—s,) and S(s,) usually
the strong wave field associated with the periodic potentiabscillates strongly witls, and thus prevents a simple evalu-
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ation of the integral oves,. A further complication arises z componenk; of the diffuse wave vector corresponding to

from the fact that the second-order diffuse scattering contrithe lateral scattering vecta= (sy,sy), the relation

bution from single scattering on two different atoms does not

have the same dependence as the second-order contribu- k§=k3—s§—2Kosx (18

tion from double scattering on the same atom. Thus

C(s—g,2) is generally a complicated function of basrand  holds to a very good approximation for the RHEED case

6 but for practical purposes we would like to have an error(high electron energy, low glancing angles and strong for-

measure that is independent f ward scattering The indicesx andy refer to the vector
The problems addressed above can be avoided if weomponents alongx) and perpendiculary( to the incident

evaluateAC(s—g,z) at the center of the Brillouin zone as- beam azimuth, respectively, aig is the wave vector of the

sociated with the reciprocal surface vedtorin that case the incident electrons of energs= (%K o)%/2m. Within the BZ,

product of the structure factoB{s—s,) andS(s,) reduces to  Ks varies only slowly as a function @, but varies strongly

the positive expressiohS(s,)|?> and a comparably simple as a function of, because{, is large. The relevarg, are

discussion of the behavior of the BZ integral owgrin Eq.  roughly between—=/L and w/L whereL denotes the cor-

(15) is possible. In particular, an approximate explicit ex-relation length of the disorder along the incident azimuth.

pression with a physically sensible coverage dependence cdmerefore, the correlation lengthhas a strong influence on

be found. Strictly, howeverAC(h—g,z) refers to the ne- the magnitude of the integral in E¢L5) over the second-

glected second-order couplings for the integer wave fieldrder couplings. For sufficiently shdrt, the modulus of the

corresponding to the reciprocal lattice vectbrand not to  relevantks is typically between 0 and/A ~I=\27Kq/L.

the diffuse wave field® It is on the other hand physically We introducek;:\/KkS as a useful dimensionless quantity.

clear that this quantity can be used for our purposes becaus@e have found that the quantity,

it represents a measure for higher-order diffuse scattering,

which is generally neglected in the perturbation approach. A=L127K, (19

Further, we have found that the error measure based on this

approach gives a good description of our numerical resultsis an important parameter. Because the parallel component of
In order to define a relative error that compares the nethe electron momentum is largé,” " is approximately equal

glected diffuse couplings from BJ with the couplings in- to the change in the square of the perpendicular momentum,

cluded in perturbation theory, a suitable normalization ofthat isA ~*=k3—kZ, and in Sec. V B we will show that the

AC(h—g,2) has to be carried out. Among the various pos-corresponding energy,

sibilities for a normalization we have chosen a comparison of

AC(h—g,z) with the source term€(s—g,0) of the diffuse h? 1

scattering Eqg. (16)] and defined a relative error by AEL:mA ' (20)

_ 2 112 has a strong influence on the quality of the perturbation ap-

|AC(h—g,0)| (17  proach

2 2 :
(NQ/47%) [ 57 1ds|C(s~9,0)| The following further dimensionless quantitiéadicated
o ) by the prime symbglare introduced under the integral in Eq.
The normalization to the sum of all the source couplings in(15), s is normalized to reciprocal surface lattice units such
BZ h [i.e., the integral in the denominator of EQL7)] is  that ds'=Q/(4#?)ds. For the structure facto we write
necessary in order to account for the different scaling behavg' — g/ /Ng(1— 9) 6(1— ), which yields [g,ds'|S'|2=1 [Eq. (3)],
ior of AC(h—g,0) andC(s—g,0) with the number of avail- anq the atomic potential coefficients are normalized to

able sitesN. _ S v(s=0,z=0). Finally, we introducez’ =z/\/A. Now the
The dimensionless errory defined in this way has the q5tive error can be expressed as

advantage that it is related to the order of magnitude of the
metric distanceD [see Eq(11)] used to quantify the degree
) . h 1

of agreement between diffuse profiles calculated with the € =—
perturbation and supercell approaches. As can be seen from 9 V2
Eqg. (8) in its integrated form., is related to the relative
error in amplitudey2AA/A. The metric distanc® roughly %
measures the relative error in intensity/(1 y2), which is in
turn abouty2AA/A. This correspondence should, of course,
not be exaggerated particularly because the second-order
term in the numerator ofy refers to the neglected couplings \ith
affecting the integer instead of the diffuse waves. Neverthe-
less, as will be demonstrated in Sec. ¥},is able to predict
the results of the numerical comparison even semiquantita- I’(gé,S’,0)=f dz' exp(ik,|z'|)
tively quite well.

In order to elucidate which physical parameters essen- Xv'(s'—g5,2' \/K)W(gé,z’ \/X)_ (22)
tially influence the relative error, we estimate the typical or-
der of magnitudes of the quantities under the integral in th&/,(0) is the laterally averaged atomic potential zt 0.
expression for the second-order couplings, @¢). For the Because’ as a function of’ varies only slowly within the

=2

Zﬁ—TVa\/(O) JO(I=0)A

/

1 ds
—1s'(s)|?2, 1'(g5,8,0)|,
W(gyo)faz kg ISl gzé (% )

(21)
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BZ, the integration with regard t§f is essentially an integral €xplains the good agreement between rigorous and perturba-
over the product ofS'(s')|? and a function depending on tion calculation in the case of the random configuration in
ké,. Fig. 2(b). Besides the above rather formal arguments, this
The expressiori21) reveals that except for a dimension- behavior can also be physically rationalized. The scattering
less integral that depends in a complicated manner on th@t high electron energy and low glancing angles implies that
structure factor profile, the shape of the atomic potential angmall momentum transfelongthe incident azimuth is con-
of the exciting wave field, most generally, very low and verynected with a large momentum transfesrmal to the sur-
high coveraged lead to a small errog, because in both face. Therefore, most of the diffuse waves will have a com-
cases the concentration of defeégth regard to the peri- paratively large momentum component normal to the surface
odic potential part of the disordered layés very small. The and will be dynamically scattered in the ordered biikere
coverage dependence reaches a maximund$00.5, where the perturbation approach describes the multiple scattering of
the largest concentration of defects appears. A further genhe diffuse waves exactlyather than in the disordered layer.
eral feature is the importance of the strength of the atomign the case of the evanescent diffuse waves the large perpen-
potential in the disordered layaf,(0). These two depen- dicular (imaginary momentum leads to a rapid exponential
dences on the defect concentration and the potential are alaécay of the corresponding part of the wave function. This
physically evident as both determine most generally theyiso decreases the probability of multiple diffuse scattering
magnitude of the perturbation. of these waves within the disordered layer.

B. Discussion of limiting cases
g 2. The caseA >|kg| =2

As the magnitude of the integral in E(R1) can depend . 5
on A, the error is not generally proportional th as one If A is large e[k ), the structure factor related func-

might infer from the term in front of the modulus signs. 1N |S'(s')|? is sharply peaked around/the reciprocal surface
Actually, the kind of dependence ef, on A (which means lattice vectorg’ and thus the relevark,, will be of order

for fixed electron energy the dependence on the correlatiofAk,. In that case the integrdl will be proportional to
lengthL) depends on the magnitude Afcompared with the JFQ' Together with thek;, in the denominator of21) the
magnitude of the componenkg of the wave vector associ- whole expression between the modulus signs of(Eg). will

ated with the strong wave. be proportional toA ~* and thus cancel the factar on the
5 left-hand side of the modulus. Therefore, for larde the
1. The caseA <[k dependence of the error on this parameter disappears. More-

We first consider the case of small(<|kg| ~?). Then the ~ OVver, the range of relevari lies in a small region around
definition of ké, implies that for those’ Where|sr(sf)|2 is kg in that case and the erret therefore tends to increase

inversely to|ky|. (The simplified erroreq [Eq. (29) in Sec.

V C] is proportional tolky| 2 when k| is large. As in the

. , case of small correlation lengths, the error is then essentially
Weakly pnA. Also thez’ lntegrall depends only weakly on determined by the perturbation potential compared with the
A in this case: Therg varle.s.strongly ’over the relevant perpendicular energy of the diffuse wayeshis means that
rangeu’ of the potential coefficient”. If ky corresponds to  for very large correlation lengtl, approaches a singularity

a propagating wave the exponential has a large number gf k 0. Then, the neglected coupling contributions from
oscillations within the rangg.’ but if k), corresponds to an BZ g inevitably become very strong and perturbation theory
evanescent wave, the exponential decreases rapidly. In boihlikely to fail. Physically, such a situation means that all the
cases the magnitude bf is determined mainly by the mag- diffuse waves of the BZ move parallel to the disordered layer
nitude of k;, and to a lesser exent by thie-dependenju’. and can thus undergo a large number of multiple scattering
To summarize, for small correlation length the whole expres€vents by the nonperiodic potential part. These arguments
sion between the modulus signs is more or less independedfe slightly weakened for the real situation because absorp-
of A and the relative erroe, is thus essentially proportional tion (which was not taken into account for this analytical
to A. Alternatively, using definitiori20), one can say that in  €stimation will reduce the number of multiple scattering

strong,k;, always covers about the same rangle;,(s 1),

independent ofA. Hence, thes' integral only depends

this case the error follows the law events. In particular the singularity fdg,=0 would disap-
pear.
V,(0) On increasingk,| the errore, tends to decrease so that
€g*\VO(1-6) AE, (23 for sufficiently large|ky the perturbation approach tends to

become adequate again in spite of a large correlation length.
i.e., the error is proportional to the strength of the perturbaPhysically, the diffuse waves of the B¥are then traveling
tion potential compared with the energy parameteE, , more and more normally to the disordered layer. In that case
associated with the relevant diffuse waves. the multiple scattering of the diffuse waves is strongly re-
Consequently, a small generally leads to a small error duced in the defect layer and will essentially be due to the
such that for sufficiently short correlation length and/or highordered bulk underneath. The dynamical scattering within
electron energy perturbation theory can work even for highthe ordered layers, however, is treated rigorously in the per-
defect concentrations and strong scattering potentials. In thisirbation approach. This favorable situation can be ap-
case the strong forward scattering at high energies corrggroached experimentally for high glancing angles if the ma-
sponds to an averaging over the disorder. We note that thisrity of those integral-order waves that are important to
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describe the multiple scattering have emerged from the
shadow edge. ’ ' ) ' ) '

16 1

3. The caseA =|kg| =2 14t ]

We finally note that a particularly unfavorable situation S12} -

appears forA = A pa,=|ky 2 if €, is considered for fixed § N 1
material, coverage, and diffraction conditions as a function =~ i . ‘ +

of the correlation length.. According to Eq.(21) the con- §0~8 - ‘ 7

tribution of a waves to the error is weighted withkg 2, 206 — — —

which reflects the general fact that second-order scattering@z
events are more likely when the diffuse waves in the disor- =4
dered layer propagate parallel to it. With regard to this aspect 0.2
a profile|S'|? that is “smeared out” along the direction
(incident azimuth causes a larger error than a sharply 0 10
peaked one as long as the corresponding relevant diffuse

waves in the BZ are eithell propagatingor areall evanes-

cent The reason for this is thékd ~! is a concave function the order of itude of the diff inas from Bril
of s,. The most unfavorable situation appears if the diffuselme.""s'ures € order of magnitude otthe diffuse couplings from Bril-
ouin zoneg, which are neglected in perturbation theory. The ordi-

streak of BZg has either just completely emerged from the , . —
shadow edge or just completely vanished, i.e., fornate is normalized to the coveragedependent factox/(1— 6).

. The plot is for the Si100 surface and a 15-keV electron energy.
A max= K| 2. Therefore a decrease of the error with the cor- P §109 9y

¢ . i . The perpendicular wave vectdk,| of the integral-order wave is
2 g
relation length is to be expected A>|kg| “*. This may of 53 A1 Tpe insets sketch the extension of the diffuse profile

course be partly weakened for certain diffraction conditionggashed linpwith regard to the shadow edge and the position of the
by the structure of the exciting wave field and/or the specificsharp beantdot) for variousL.

potential shape. However, the above arguments hold quite
generally for scattering from surfaces at glancing angles angihether diffuse propagating and evanescent waves appear

the prEdiCtEd behavior will be confirmed by the numericalsimu|taneous|y within BZg or if 0n|y one wave type is
results in Sec. VI. present:

20 30 40 50 60
correlation length (LU)

FIG. 3. Plot of the relative errog, vs correlation lengtiL. e

U; if kgl 72<1

C. Simplified expression
U= U, otherwise. (25

In order to obtain a simple explicit expression fgythat
may be used as a “rule of thumb,” the magnitude of the . .
integral in Eq.(21) has to be evaluated. To that end a number1 @Pplies if in BZg both propagating and evanescent waves
of somewhat crude assumptions are employed where, hov@PPear. This means that only a part of the corresponding
ever, the relevant orders of magnitude are retained. The maffiffuse streak has emerged from the shadow edges used
assumptions are a rectangular structure factor profile, an eX- &ll diffuse waves are elthezr plrozpagatlng or evanescent.
ponentialz dependence-exp(—|/x) for the atomic poten- With the abbreviationgs = u"“(|kg|*+1), U; andU, are
tial coefficients, and the neglect of tzedependence for the 9given by
wave coefficientsv(g,z). This latter assumption appears, at \/—2
first glance, extremely crude. It can, however, be verified by U(B,.B )= 1+pB%
comparison of this assumption with the more realistic form R 1+|6_|
w(g,2) ~exp(*kyz) that due to the neglect of additional os- a
cillations (or an exponential decrease in the case of evanes-
cent wavep the simplification generally tends to overesti- 1
mate the magnitude of theintegral(22). Only if bothkgand  U,(B. ,B8_)=|(arctam, —arctapB_)?+ ~In?~——
ks correspond to propagating waves does the simplification 47 1+pB
lead to a significant underestimation in the regiQrKg. (27

The main steps of this somewhat lengthy evaluation can tq eypiicit result Eq(24) reveals the same features as

be found in the Appendix. The result for the eregyis already discussed qualitatively by means of the more general
expression(21). Figure 3 shows how, using Eq24), the
1 d 2m error €, depends on the correlation lendthof the disorder
€g=—=VO(1-6)— ?VOAU(ké o). (24)  along the incident azimuth fdky|=2.3 A~1. The other pa-
V2 M rameters are the same as used in the numerical investigation
[Si(100 surface,E=15 keV, d=1.36 A, V,=13.92 eV,
Here, 6 is the coverage of the disordered layer,s the w«=0.43 A (Ref. 27.] The ordinate is normalized to the
distance between neighboring layeys, the range of the coverage-dependent factg®(1— 6).
atomic potential, an&¥/, the mean potentidlaverage over a For smallL the error increases linearly with the correla-
corresponding bulk unit cellof the atoms in the disordered tion length and is independent &f. In that case Eq(24)
layer. The form of the functiotJ in Eq. (24) depends on can be simplified to

112
, (26

arctaf B, +In?

2
+

1/2
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FIG. 4. Profiles from rigorous supercéBc calculations and perturbation theorg)(for regular bilayer step arrays on(800. The
electron energy is 15 keV, the azimuth 311] and the incident angle is 50 mrad. The single point corresponding to the integral-order wave
in the zeroth Laue zone is excluddd) For coverage®#<0.5. (b) For coverage®>0.5. L denotes the corresponding correlation length of
the simulated disorder arid the metric distance between sc and p.

- d 2m portant physical quantities to be considered for possible
e=——=0(1—6)— ?VOA (28)  second-order corrections to types of approaches related to the
242 r distorted wave Born approximation, e.g., by simulating the

influence of the neglected couplings, through an addi-
Yonal part of the absorptive potential. Our result shows in
particular that for rough surfaces any realistic correction
should include, not only the potential strength and defect
concentration, but also the disorder correlation length along
the incident azimuth.

such that, for fixed coverage and material parameters, onl
A determines the quality of the perturbation approagf.
reaches a maximum for the unfavorable situation
A max= kgl ~? where the diffuse streak of Bg has either just
completely emerged from the shadow ede|ky|*>0) or
just vanished(if |kg|2<0). On increasing the correlation
length beyond the corresponding,,,, €4 decreases again
and reaches finally a constant value for-%. The limiting VI. NUMERICAL RESULTS

value for very large correlation lengths is . . . .
ylarg 9 In this section we will present the comparison between

the numerical results from the perturbation theory and super-
ex:i 91— 0)2 2_”;\/0%(|kg|2+u—z)—1/2 (29) cell approach for the £100) model surface described in Sec.
s 2 uh Kg ' V.

If the correlation length is large, the diffuse streak of BZ

shrinks to a small intensity region around the sharp principal A. Correlation length and defect concentration

beam associated with the reciprocal lattice vecftoin this In Fig. 4 profiles along the (00) and (01) streaks are
caseey depends essentially ng| and decreases monotoni- plotted for the (X 400) supercell with regular step arrays of
cally if this quantity is increased. various terrace width, obtained from the rigorous calculation

Besides giving a quality measure for the use of perturbaand the perturbation approach. The correlation lergtbf
tion theory, the above considerations further reveal the imthe simulated short-range order in the case of regular step
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FIG. 6. Metric distance between profiles from perturbation
o . . theory and the supercell approach, calculated for regular step ar-

FIG. 5. Metric distance between profiles from perturbation 5yq "5 correlation length. The metric distance is averaged over all
theory and supercell approach, calculated for regular step arrays, Ycigent angles used for the investigation. Dashed curve: coverage
coverage and correlation length. The incident angle is 50 mrad. T 8<0.5. Dotted curves=0.5. Solid curve: error from the analytical
correlation length axis has a logarithmic scale. Note the equivalenchpression. For further explanation, see text.

of the case99<0.5 and#>0.5.

arrays is directly related to the coverage and the lengtivas obtained for coverages=0.5 (L=Lce0); the dotted
L. Of the supercell. For fixed size of the supercell a givencurve holds for the cas@=0.5 [L=L(1—#6)]. Both
correlation length is realized by two different coverages,curves develop very similarly due to the equivalence of the
namely,L/L .oy and 1—L/L s . two coverage cases. The general increase of the metric dis-
The figure shows how the agreement between the tw#ance with the correlation length is clearly seen. Because
types of calculations changes with varying coverage and/ofegular step arrays were considered, a gitens always
correlation lengttL. L is given in lattice unit1 LU=3.84  connected with one of the two coverageésl ., and
A along the incident azimuth. All profiles correspond to thel—L/Lc (both coverages correspond to the same defect
same incident beam direction and were all obtained using goncentration with regard to the periodic potential part
50-mrad glancing angle. The cage<0.5 is shown in Fig. Therefore, the graph includes the influences of both the de-
4(a) and the cas®>0.5 in Fig. 4b). For small coverag® pendence on the correlation length as well as the dependence
the agreement is excellent but clearly decreases with increagn the defect concentration. A notable feature is that the
ing @ (increasing.). For coverage®>0.5 the quality of the general increase of the metric distance vitbeases at about
perturbation approach improves again whgincreases I( 20 LU and even becomes a slight decrease in spite of the
decreasesand virtually perfect agreement with the rigorous increase of the defect concentration. Above about 50 LU an
calculation is reached for very high coverages. This behavioincrease is seen again.
is illustrated in a more quantitative manner in Fig. 5. Here This apparently peculiar behavior can be easily rational-
the metric distanceD [see Eq.(11)], averaged over the ized in terms of the analytical considerations of Sec. V.
(00) and (01) profile, between both types of calculations forThere, we considered the erreg, which measures for the
the profiles of Fig. 4 is plotted versus coverage and the corsurface Brillouin Zoneg the influence of the neglect of the
responding correlation length. The symmetrical dependenceecond-order diffuse scattering processes in perturbation
of D on 6 about #=0.5 is due to the equivalence of the theory[Eq.(24)]. It was shown that the dependenceegion
coveraged /L. and 1-L/Ly. Both cases correspond to the correlation length has a maximum that is related to the
the same defect concentration with regard to the periodigave vecto, of the incident beam and to thzecomponent
potential part and to the same correlation length of the shortef ~ the wave vector associated withg by
range order. Lmax=27Ko/|kg/?. The typical magnitude of thékg| in-
Figure 6 illustrates the general trend for the agreemenvolved in the calculations is about 2.3 & (being the av-
between perturbation and supercell approaches versus tegage over allkg| corresponding to the 5 integral-order
correlation length_ for the regular step arrays. The degree ofwaves and 6 incident angles between 34 and 60 s
agreement is again expressed in terms of the metric distancegalue corresponds to dry,,, of 20 LU, which is identical to
this time averaged over the (00) and (01) diffuse profile andhe correlation length in Fig. 6 at which the increase of the
over all 6 incident angletsee Sec. Y used for the investi- metric distance with. discontinues. According to Fig. 3 the
gation. In this way possibly misleading effects due to par-dependence of the errey on the correlation length virtually
ticularly favorable or unfavorable diffraction conditions are disappears soon after, ., has been reached. This means that
largely avoided and thus the general trend should be reprén the case of the graph in Fig. 6, which represents the over-
sented quite well. The graph is the result of a comparison ofiew for the regular step arrays, the increase of the metric
a total of 192 different diffuse profiles. The dashed curvedistance withL beyond about 50 LU is essentially deter-



2132 KORTE, McCOY, MAKSYM, AND MEYER-EHMSEN 54

mined by the dependence on the coverége, the depen-

40 mrad 50 mrad
dence on the defect concentraon [ L
The solid line in Fig. 6 shows for the regular step array 0 @
case the relative errar; as a function ol for the average s s
value of|kj=2.3 A~ (see above This curve reproduces Fo Dbos
the general trend of the above results astonishingly well, g Fi s Yhaq D00
even in a semiquantitative sense. We note that the over op- > | ° “’\j é;j”ﬁ P 8 e P

timistic values from the analytical expression for low metric
distancesD <0.2) are not relevant because in this region the
agreement between perturbation and supercell approach can
be still considered as good. The expression predicts in par- -

|ntensity (arb.

o1 (01) 1)
sC sC SC
L

ticular the conditions in which problems with perturbation ] £ oor Y D003 YV peoss
theory are expected. This is a quite useful result because with |/ & o » | s 0 [ %y b
the simple expression E§24) for g it is now possible to e T el M e
assess the quality of the perturbation approach for a given 20 40 60 20 40 60 20 40 60 80
material and surface without carrying out time consuming (@ exit angfe (mrad) exit angle (mrad) exit angle (mrad)
reference calculations. Such a quantitative estimation of the
possible error is regarded as more appropriate than quoting a domrad L . L. —
fixed limiting condition since the accuracy desired for a (00> (00) (00)
theory normally depends on the application. For instance, in
cases where a more qualitative understanding of the diffuse —_l x
diffraction features is sufficient, the requirements concerning - ", D=004 ﬂ,m"ﬂ“ﬂsf:‘m“ﬁ % p=0.128
the accuracy are usually lower compared to the requirements £ A 4w B | omd T
for an exact calculation. g : o | o
B. The single defect case g’ on on on

Of particular interest is the comparison for the case of a < 5 o -

single defect because it is closely related to the scattering X & Fa %
. D=0. 03 i . D=0. 05 ¢ 3 D=0.07 ; \

problem of one atonor one moleculgsituated on a perfect \ } o | Y f4  ap
surface. For our (X400) supercell model, this corresponds “‘Eﬁasﬂm | “‘f‘ﬁ% REER T YN
to the coverages 1/400 and-11/400. In the first case only a G20 40 60 0 20 40 680 20 40 60 80
single bilayer unit within the supercell is situated on the (b) exit angle (mrad) exit angle (mrad) exit angle (mrad)

ordered substrate, whereas the latter coverage corresponds to
a single bilayer unit missing from the otherwise perfectly FIG. 7. Profiles from rigorous supercelio calculations and
ordered surface of the supercell. perturbation theoryp) related to the single defect case fof1%i0
Figure 7 illustrates the comparison for the single defecind various incident angles. The electron energy is 15 keV and the
case by means of a series of profiles at various inciderg@zimuth is[011]. (a) One bilayer unit(per supercellpresent upon
angles. The agreement between perturbation and supercé‘lp otherwise perfect surfacdn) One bilayer unit missing from the
approach is practically perfect. The metric distance, average%therw'se perfect surfac®. denotes the metric distance between sc
over all profiles and all incident angles, B=0.05. The andp.
worst distance obtained was orily=0.12[for the high cov-
erage, incident angle 60 mrad, (00) prdfilevhich still We attribute the remaining small differences in the results
means a very small discrepancy as is evident from the figureaf both approaches to the artificial periodicity caused by the
The excellent consistency for the single defect caseupercell. Although a length of 400 lattice units represents a
proves that here the perturbation approach contains all imguite large cell, there is still a small effect of the successive
portant multiple scattering events and can certainly be usethultiple scattering by the periodically arranged defects that
as a computational method for the quantitative analysis ofs not considered in the perturbation treatment. In particular
diffuse scattering data. It has already been shown, using thitie periodicity may enhance these effects due to a corre-
approach, that the diffuse scattering caused by an adatoaponding artificial coherence in the diffuse scattering. For
adsorbed on a surface depends strongly on the adsorptidhis reason the perturbation calculation is probably even
site, as well as on the height of the adsorbate above theore suitable for the description the diffuse scattering caused
topmost substrate layé?. Therefore, a quantitative structure by a single defect or statistically independent defects than the
analysis of randomly distributed adatonfsr moleculeg  supercell approach.
based on diffuse RHEED data should be possible. It is evi-
dent from the above that a reliable and efficient RHEED
theory for such purposes is available. This result should also
be of relevance for the simulation of corresponding high- In the foregoing section the potential of the perturbation
resolution REM images of single absorbed species on sumpproach to obtain structural data for adatoms by a quantita-
faces, however, note that the present investigation concerrive evaluation of the corresponding diffuse RHEED data
reflectedintensitieswhile in the REM case the phase of the was demonstrated. At low coverages an evaluation based on
reflected amplitude is also important. calculations for the single defect case should be realistic as

C. Random configuration at high coverages
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long as the adatoms are randomly distributiedt on equiva-

lent geometric sites In this case the experimental data can
be assumed to be the incoherent superposition of the diffuse
scattering caused by the individual adatoms such that the
shape of the diffuse scattering distribution is the same as for
a single atom situated on the periodic substrate. For higher
coverages, this is no longer valid for two reasons. Firstly, the 1074
distribution of the atoms on the surface would result in fur-
ther structure in the diffuse scattering because of long-range 10-6F
correlations between the adatoms. Secondly, at high cover-
ages there is increasing probability of successive multiple
scattering by the adatoms. The first of the two problems re-
sults effectively in an unknown structure factor. In analysis
of diffuse LEED data this factor is eliminated by evaluating
the logarithmic derivative of the intensities with respect of
the energy instead of the original d&faln RHEED, the
corresponding data manipulations would refer to the incident
glancing angle instead of the electron energy. In contrast to
the LEED case, the second problem of the multiple scatter-
ing by the adatoms is easily solved in RHEED as long as the
adatoms are randomly distributed, i.e., the correlation lengths
involved are small. As analytically discussed in Sec. V and 106
demonstrated numerically in Fig(l8 the second-order dif-

fuse scattering is then negligibleee also Eq(28)] and the

multiple diffuse scattering within the disordered layer is then
essentially determined only by its periodic potential part,

which is independent of the detailed distribution of the ada-

toms. The corresponding numerical treatment requires only

the inclusion of a furtheorderedlayer whose potential is
multiplied by the coveragéd. If 6 is unknown, it can easily
be treated as a fitting parameter and thus may even be m
sured.

It follows from the above argument that structure infor-
mation for a disordered adlayer can even be obtam#tbut
evaluating the diffuse scattering. If the multiple scattering
processes within the disordered layer are governed by its . . .
periodic potential part, then the rocking curves of the sharfcCurate rocking curve data can be obtained very easily. In
reflections on the Laue circle should be determined by thid2Ct: the experimental procedure is the same as for an or-
potential as well. We have checked this by calculating rockdered surface. It is flna}lly noted that these_ results are trans-
ing curves of the sharp reflections using the supercell proterable to me_lterlals with stronger scattering pqte_ntlals. In
gram and the same random configuration of half coverage &2NNection with a recent experimental work, a similar com-
in Fig. 2(b) where the bilayer units were distributed within parison between rocking curves from supercell calculations

the supercell by means of a random number generator. The d the periodic potential approxi_mation has been carried out
curves were compared with rocking curves calculated wit or the strong scatterer Bt There, it is demonstrated further-

the periodic potential part of this structure, i.e., the potentiaf0re that the periodic potential approximation even retains

of an ordered bilayer multiplied by the coverage 0.5. Thethe sensitivity of the curves with regard to small variations of

comparison of this periodic potential approximation with theSVUCtural parameters like relaxations of the top interlayer
supercell calculation is illustrated in Fig. 8 by means of thedistance.
rocking curves of the (00) and (01) reflection. The metric
distance between t_he curves from the two calculations is VIl. DIFFRACTION CONDITIONS

0.02 for both reflections. This degree of agreement has to be

regarded as excellent. Furthermore, the corresponding rock- For large correlation lengthis (and high defect concen-
ing curves for the monatomically flat surfadeoverage trationg perturbation theory cannot generally be expected to
1.0) are plotted as well. They differ substantially from the work properly and its applicability depends on the diffraction
curves for the disordered surface of coverage 0.5. This densondition. For the $iL00) step arrays considered here, this
onstrates clearly the sensitivity of the rocking curves withoccurs when the correlation length is greater than about 20
regard to the disordered layers. The above comparison shovs$) (see Fig. 3, the threshold value above which the depen-
that the scattering of such a complicated structure can bedence of the relative error oh disappears. Additional
described in an astonishingly simple way. This result is essupercell-perturbation calculations for incident angles up to
pecially important from the experimental point of view. 155 mrad have been carried out for a step array with
Compared to the accurate measurement of diffuse scattering=80 LU and coverag#=0.8. This length is, on the one

10-8}

intensity (arb. units)

10 20 30 40 50 60
incident angle (mrad)

FIG. 8. Rocking curves of the sharp reflections (00) and (01)
from rigorous supercellso calculations and periodic potential ap-
e%r_oximation(pp) in case of a random configuration of steps at cov-
erage 0.5 for $IL00) [same configuration as in Fig(l8]. The elec-
tron energy is 15 keV and the azimuth[i811]. D denotes the
metric distance between sc and pp. For the purpose of comparison
the curves for the perfect periodic surfadkat) are also plotted.
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FIG. 9. Dashed curve: Metric distance between profiles from exit angle (mrad) exit angle (mrad)
perturbation theory and supercell approach, calculated for a regular
step array with coveragé=0.8, vs incidence angle. Solid curve:  F|G. 10. Example for the correlation of the quality of perturba-

error from the analytical expression. The general trend of a decreasn theory with the overlap of the “dynamical” form factor and

of the metric distance with increasing angle is superimposed byhe structure factor. The illustration is for a regular bilayer step

strong fluctuations. For further explanation, see text. array on S{100) with the coverage 0.8 and an upper terrace length
of 80 lattice units. The (00) diffuse streak is shown. The electron

hand, large enough to lie beyond the above-threshold valu@ergy is 15 keV and the azimuth [911]. Left panel: For
and, on the other hand, still low enough to produce reascm&go-mrad incident angle the structure factor profg&ucture coin-

ably large diffuse profile widths (3—12 mrad, dependent Oncides with a minimum of the “dynamical” form factor profile

L o f h that th lap is low. Th t betw -
the incident angle for these additional calculatjons (form) such that the overlap is low. The agreement between super

. . cell (sg and perturbation calculatiorpf is only moderate. Right
Figure 9 shows how the metric distardg averaged over panel: For 80-mrad incident angle the structure factor profile coin-

the (00) and (01) profiles, between supercell and perturbasiges with a maximum of the “dynamical” form factor profile.
tion profiles, depends on the incident angle. Furthermore, theych that the overlap is high. Here, the agreement between supercell
angular dependence of the errgy from the analytical esti- and perturbation theory is very godd.denotes the metric distance
mation is plotted for the averagéq, involved. Except for  between sc ang.

strong fluctuationgsee belowthe metric distance, as well as

€4, decreases gradually with the incident angle. This general In Fig. 11 the metric distanc® and the inverse of the
trend is due to the fact that on increasing the incident angl@ormalized overlap integral

the waves involved propagate more and more obliquely to

the disordered layers, thus decreasing the probability of 5 )
second-order diffuse scattering within the disordered layers. Iov:f dSX|fdyn(sx)S(sx)| f d5x|fdyn(3x)| (30

The figure also shows that this general trend is superimposed

by strong fluctuations in the angular dependenc®ofin-  between the dynamical factor and the structure factor are
deed, within the whole angular range situations can be founglotted versus the incident angle for both the (00) and the
where the metric distance is very Id@ven at low anglesor ~ (01) profiles. The overlap,, defined in this way is nothing
very high. A close inspection of the dynamical form factor but the(normalized integrated profile from the perturbation
and the streak profildsee Eq(10)] revealed that these cases scheme. The metric distance and the inverse oveg\éms
follow systematic rules. The metric distance for a profilefunctions of the incident angles develop qualitatively in a
turned out to be low if the strong Fourier coefficients of thequite similar manner. Virtually all maximéminima) in the
corresponding structure fact& (kinematical profilg corre-  incident angle dependence of the overlap coincide with
spond to exit angles where the “dynamical” form factor maxima(minima) of D. Further examples for streak profiles

f 4yn €Xhibits @ maximum, i.e., if the overlap 6f,, andSis  under the present conditions can be found in Fig. 4. It is
strong. On the other hand, the agreement with the rigorousoted in particular that for the favorable situations, where the
approach was bad if the strong coefficients of the structurangular dependence of the metric distance has a minimum,
factor correspond to exit angles near a minimum or a steethe corresponding distances are very l@wound 0.15) such
shoulder off g, i.e., if the overlap off 4, and S is weak.  that perturbation theory works very well in those cases. It is
This is demonstrated in Fig. 10 for the (00) profile at 80- andtherefore desirable to understand the physics behind this re-
85-mrad incident angle, respectively. In the first case, thesult.

structure factor profile coincides with a minimum of the A large overlap appears under diffraction conditions at
“dynamical” form factor and the agreement with the super-which a large portion of the structure factor profile corre-
cell calculation is only moderateD(=0.52). For the angle sponds to exit angles where the dynamical fatgy is large

85 mrad, however, the overlap is strong and the agreement cmpared to the other exit angles. Physically, at such diffrac-
very good 0=0.09). tion conditions, the diffuse waves in the crystal correspond-
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20 60 80 100 120 140 Hence, it should be possible to identify regions of favorable
exit angles directly on the fluorescent RHEED screen and
thus to select the diffraction conditions at which an effective
evaluation can be carried out.

o8| " (00)-profile

metric distance

160 VIIl. CONCLUSION

120
In this work we have carried out a thorough investigation

of the conditions in which the perturbation theory of diffuse
RHEED (Ref. 10 can be applied to the evaluation of experi-
mental diffuse scattering data from occupational disorder
0 (e.g., steps The approach treats the diffuse scattering as a
transition between two-dimensional Bloch waves in the pe-
riodic part of the potential and can be reduced to the calcu-
lation of conventional structure factors, which are then mul-
tiplied by “dynamical” form factors. Such an investigation

is desirable because the perturbation method is at present the
only approach within the scope of a dynamical theory that

80

- (depono)

40

08 I metric distance

04 F

metric distance

02 F
4120

(overtapy! . i f:\ i3 180 § s_olyes the co_nfigu_ration probl_e(rhe presence of many sta-
A 4 VA LA [V AN 3 tistically varying disorder configurations
a S HE I R To this end a comparison between calculations based on
oL : ; . . o the perturbation approach and rigorous supercell calculations
40 60 80 100 120 140 was carried out for bilayer steps upon an unreconstructed
incident angle (mrad) Si(100) surface. The general validity of the results is sup-

ported by some analytical arguments. An analytical expres-
FIG. 11. Correlation of the quality of perturbation theory with sion[Eq.(24)] was found, which roughly predicts for a given
the overlap of “dynamical” form factor and structure factor. For material and structure the order of magnitude of the error
further explanation, see text. made in the perturbation approach compared to an exact
treatment. Most generally, the quality of the perturbation ap-
ing to the profile considered are excited strongly due to scatproach is determined by the strength of the atomic scattering
tering processes via the periodic part of the potentiapotential in the disordered layers and the concentration of
(couplingsDs) in Eqg. (8). These processes are, however,defects with regard to the periodic part of the potential.
included exactly in the perturbation approach. In other In addition, a key structural parameter that determines the
words, the profile tends to be dominated by the effect ofapplicability of the perturbation method is the correlation
those diffraction processes, which are described accuratelgngth describing the disorder along the incident beam azi-
by perturbation theory. These are therefore cases where tmeuth. If this length is sufficiently small, the perturbation
method works adequately. method works well and is independent of the diffraction con-
This can be also seen more formally from E8). Inte-  dition. For this case, it was further demonstrated by means of
gration of this equation yields an outgoing solution of thea random distribution of defects at half coverdgdere the
type defect concentration is particularly highhat, besides the
diffuse scattering, the rocking curves of integer beams from
1 both the supercell and the perturbation approach are very
y(s2)= Wf dz, explikdz—2,)) similar. Hence, structural information about the periodic part
S of a strongly disordered surfacean be extracted from rock-
X[So(S,25) +D¢(s,2,) +Co(S,25)]. (3D ing curves of the principal reflections using the same evalu-
ation methods as for ordered surfaces.
If faynis large at the exit angle belonging to the scattering For large correlation lengthé@nd non-negligible defect
vector s, the wave couplingss, and especially O via the  concentrationsthe applicability of perturbation theory de-
periodic potential parcontribute strongly to the correspond- pends on the diffraction condition. As a general trend the
ing amplitudey. Then, in the above sum of couplin@s is  applicability is favored if the polar exit angles of those
small compared to the other terms so the perturbation treatategral-order waves, which are strongly excited, are large.
ment works well. On the other hand,fif, is small,S, and  For these cases the corresponding diffuse waeescen-
D; contribute only weakly to the amplitude. In this unfavor- trated around the integral-order onésvel mainly obliquely
able case virtually the whole amplitude is determined by thdo the disordered layers thus decreasing the probability of
couplings neglected in perturbation theory. Consequentlysecond-order diffuse scattering, which is not included in the
this approach becomes unrealistic under such conditions. perturbation scheme. Moreover, diffraction conditions could
Fortunately, it should be possible to identify the favorablebe deduced at which perturbation theory produces reliable
diffraction conditions experimentally because the modula+tesults for large correlation lengths, even if the glancing
tions of the dynamical factor are by its definition related toangles involved are low. Under such conditions the diffuse
the modulations of the diffuse broad background observed iitensity of a profile is dominated by those scattering pro-
an experimental diffraction pattefisee also Refs. 10-12 cesses that are included exactly in the perturbation approach.
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It should be possible to identify the corresponding favorabldJK Engineering and Physical Sciences Research Council,
exit angles experimentally by means of the modulations ilNATO and the European Commission. U.K. thanks the Eu-
the diffuse background distribution. The above results showopean Commission for financial support.

that for a quite general range of disordered structures, con-

ditions can be found where perturbation theory can be ap- APPENDIX: DERIVATION OF THE RELATIVE ERROR

plied. Finally it is believed that our investigation will con- ) )

tribute to an effective dynamical evaluation of diffuse In order to obtain an estimate of the erigy, we need to

RHEED data in the future. evaluate the magnitude of the BZ integral,
dS, Ay ! [N
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Ly /Q if (Is;—gyl<\VQILy and |s,—g;|<QIL,)

. (A2)
0 otherwise .

|S'(s)|?=[S(sy.8))|?=

Here, the indicex andy refer to the vector components Insertion oflgz 4, obtained in this way, into the general
along () and perpendiculary) to the incident beam azi- expression21) yields for the relative erroeg:
muth, respectively(In the main text, is denoted simply as

L because the final result will not depend bj.) This ex- 2m .,
pression accounts for the fact that the strongest diffuse Fou- €9~ V26o(1- e)ﬁvav(o)AU(kg u')

rier coefficients are typically concentrated within regions of

size 2m/L; around the reciprocal lattice vectagsand it also % iz '(d'—d.0

obeys the conservation laghere in its normalized forin Wy v'(9'~0. )Wgé ’

given by Eq.(3). %

For thez’ integral1'(g;,5',0) [Eq. (22)] it is assumed \yhere

that the coefficientsv(gs,z) of the strong waves only vary

slowly with z=z' /A such that we considew(g,2) =wy, Uy if [kgl?<1

as constant. This means physically that the diffuse scattering U={ U, if k/2>1 (A5)

is mainly excited by waves with a smgkg| (which are 9

usually the strongektThis crude assumption tends to over-

an exponential decreagevanescentunder the integral and appearU, holds if all diffuse waves are propagatings if

thus contributes to a pessimistic estimation of the eegor 5| giffuse waves in the BZ are evanescent. It can be shown

Thez' dependence of the atomic potential coefficient is repynat for equal kg, the shapes afl, andU as a function of

resented by (s'—gj,2")=v'(s' ~gp,0)exp(|z|/u'). This A are very similar butU, is always slightly greater than

corresponds approximatelffor the zeroth coefficient ex- y,. For reasons of simplicity we therefore always usg

actly) to a screened Coulomb potential with the screeninggr the caseA>|kg|‘2 (i.e., the more “pessimistic” func-

length ’. These assumptions lead to tion). We proceed correspondingly in the caselbf. For

5 different signs oﬂ<§ and the samgky|, U, as a function of

1'(g},s',0) :Wgév(sl - 00— (A3) A2 has a similar form, with ;Iigh_tl_y greater values for thg case
p' kg kg>0. Hence, again for simplicity we always uk§>0 in

. . ) ) ) U, for a given|ky| such that eventually the expressid@2$)
It is now possible to easily estimate the BZ integral). and(27) are used in the final result.

BecaUSd(; as a function Oﬁy varies little within the BZ, we It follows from the genera] re|ati0"w|2g1 for the wave
neglect this dependence for the integration os{eland put  function that
ke (Sy,Sy) =k (S¢,9y). In the case of the integration over

sy the strong variation ok, with s; has to be fully included.

Depending on whether the nonzero diffuse Fourier coeffi-

cients within the BZ[see Eq.(A2)] correspond to evanes-

cent, propagating, or both types of waves, different forms ofWe now replace the sum if(A4) by 1; i.e., we assume that
(A3) have to be used under the integral. the right- and the left-hand sides GA6) are equal. This

(A4)

Us if —kj2>1.

> v’(g’—gg,O)wgé <1. (AB)

%
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overestimate of the left-hand sidehich would hold for the terms of the volume average potenti) of the material
case thatvg only is excited withjwy|=1) is compensated by (interlayer distancel) by V,(0)~(d/2u)V,. These substi-
using|wg/=1 in the denominator as well. Furthermore, thetutions into(A4) finally result in the estimate E¢24) for the

laterally averaged potentiaf,(0) atz=0 is expressed in error¢g.
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