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We present a thorough investigation of the conditions under which the perturbation theory of diffuse
RHEED @Phys. Rev. B48, 8345 ~1993!# ~diffuse scattering treated as the transition between states in the
periodic part of the potential! can be used for the evaluation of experimental diffuse scattering data from
occupational disorder~e.g., steps!. Such an investigation is desirable because this method solves the configu-
ration problem, i.e., the presence of many statistically varying disorder configurations, within the scope of a
dynamical theory. We have carried out comparisons with rigorous supercell calculations for streak profiles due
to bilayer steps upon a Si~100! surface. The general trend of the results obtained is supported by some simple
analytical considerations. An analytical expression is derived that predicts the approximate error made in the
perturbation approach compared to an exact treatment. Besides general features, such as defect concentration
and the strength of the atomic potential, the important structural quantity that determines the quality of the
perturbation approach is the correlation length of the disorder along the incident beam azimuth. If this length
is sufficiently small, perturbation theory works well and is independent of the diffraction condition. Otherwise,
the applicability of perturbation theory depends on the diffraction condition. The physics behind conditions
suitable for perturbation theory to work, as well as their experimental realization, is discussed.@S0163-
1829~96!05427-6#

I. INTRODUCTION

The calculation of elastic reflection high-energy electron
diffraction ~RHEED! from ordered surfaces can currently be
carried out routinely and accurately within the framework of
dynamical diffraction theories, i.e., theories where multiple
scattering is fully included. The application of RHEED
theory, used in conjunction with proper fitting procedures,
enables crystallographic data for various surfaces to be ob-
tained by analysis of experimentally recorded rocking curves
~e.g., Refs. 1–4!. In spite of this progress, the question of
how to treat RHEED from surfaces that are not monatomi-
cally flat has still not completely been answered, although
the major application of RHEED concerns the control of
epitaxial growth. Here, the surface is always in a more or
less rough state such that the lateral translation symmetry of
the flat surface is broken, giving rise to diffuse scattering. A
further interesting aspect of diffuse scattering in RHEED
concerns its high sensitivity with regard to surface disorder.
Due to the grazing incidence scattering geometry at high
electron energy small lateral momentum transfer along the
incident beam azimuth is connected with a large momentum
transfer normal to the surface~the latter being typically one
order of magnitude larger than the former one!. For this rea-
son the resolving power of RHEED with regard to the dis-
tance over which deviations from the perfect periodicity can
be detected is considerable~some 1000 Å! and usually
higher than in the case of the complementary technique, low-
energy electron diffraction~LEED!.

Besides treatments based on the kinematical theory,5 there
are at present three theoretical approaches that treat diffuse

scattering in RHEED within the scope of a dynamical dif-
fraction theory. One is adopted from the multislice method
for transmission electron diffraction and has been used to
calculate the scattering from a single step.6 In the second
method the disorder is simulated within a large surface unit
cell ~supercell!, which is repeated periodically.7 In this way
the calculation can be carried out using established compu-
tation techniques that rely on periodicity parallel to the
surface.8,9 This supercell approach has the advantage that the
diffraction from the configuration created in this manner is
treated in principle exactly. A theory for the simulation of
reflection electron microscopy~REM! images that uses the
supercell technique has been developed recently.7

In the case of both the supercell and the multislice ap-
proaches the full dynamical calculation has to be carried out
for each new configuration considered. On the other hand,
for an analysis of experimental data from real surfaces, cal-
culations for a large number of statistically varying configu-
rations would be necessary. This configuration problem, in
conjunction with the large computational effort required for
even a single structure, presents a problem for the interpre-
tation of diffuse scattering data from real surfaces.

Recently, a third approach and a corresponding computer
program based on perturbation theory have been
introduced.10 Here, the dynamical diffuse scattering is re-
garded as a transition between states~two-dimensional Bloch
waves! in the periodic part of the scattering potential. The
nonperiodic part is treated as a perturbation. This formalism
solves the configuration problem because the approach can
be reduced to the use of conventional structure factors mul-
tiplied by ‘‘dynamical’’ form factors calculated with the per-
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turbation theory. With this theory of diffuse RHEED, the
problem of a surface with a single adsorbed atom could be
solved. Also experimentally observed thermal diffuse scat-
tering distributions10,11 ~Kikuchi scattering! and streak pro-
files corresponding to antiphase domains2,12 could be repro-
duced rather well.

It was not evident until now whether such a formalism is
applicable to the general case of occupational disorder, for
example, surface steps and related defects. For instance, it
can be shown that for a stepped monolayer of half coverage
the sum of all the diffuse Fourier coefficients of the potential
is of the same order of magnitude as the coefficients due to
the periodic part of the potential~see Sec. II!. But at present
the perturbation scheme is the only approach within the
scope of a dynamical scattering theory that can handle the
configuration problem and is, thus, potentially applicable to
the interpretation of experimental data in order to obtain sur-
face parameters characterizing the disorder such as typical
terrace widths and island sizes. It has also been pointed out
that it is probably only with such an approach that formal
averaging over many configurations will be achievable.13 It
is therefore important to determine the conditions under
which perturbation theory can be used. This is the purpose of
the present work.

To that end we will carry out a comparison of diffuse
scattering data from the perturbation approach and the super-
cell technique. Because the latter treats the scattering prob-
lem ~for a given structure! rigorously, the corresponding
computations serve very well as reliable reference calcula-
tions. The model system we have chosen is the Si~100! sur-
face with bilayer steps having their edges along@011#. As
the comparisons are mainly done for a special type of disor-
der configuration, a simple analytical treatment of the prob-
lem is given as well in order to enable a proper interpretation
of the comparison and to transfer the results to realistic sur-
faces and other materials.

II. SOME INTRODUCTORY CONSIDERATIONS

The structure factor associated with the diffuse scattering
from a layer with occupational disorder is defined as

S~s!5(
n

exp~2 is•rni!, sÞg, ~1!

where therni denote the atomic positions ands denotes the
two-dimensional reciprocal vector of the nonperiodic part of
the potential; i.e.,sdoes not coincide with a reciprocal lattice
vector g of the periodic surface lattice. The vectorss are
distributed continuously ink space and are responsible for
the diffuse scattering.

The squared modulus of the structure factor is related to
the Fourier transform of the pair correlation functionP(r i)
with respect to the surface coordinater i . P(r i) is the prob-
ability of finding two atoms separated by the real-space vec-
tor r i . For occupational disorder, the pair correlation func-
tion of a disordered layer with coverageu has the general
features sketched in Fig. 1.P(0) is the probability of finding
an atom in the disordered layer, therefore,P(0)5u. For
r i.0 the pair correlation function decreases with increasing
r i . The limiting value forr i→` is P(`)5u2. P(`) de-

notes the correlation over infinitely large distances and thus
characterizes the long-range order. The full width at half
maximum of the decrease withr i along a particular azimuth
f can be identified with the typical correlation length of the
short-range orderLf along that direction.

Fourier transformation ofP(r i) shows that the partPdiff
of the pair correlation function that is responsible for the
diffuse scattering is given by subtraction of the long-range
order contribution from the total pair correlation function:

Pdiff~r i!5P~r i!2P~`!. ~2!

Pdiff(r i) is proportional to the Fourier transform ofuS(s)u2
and it follows thatS(s) obeys the sum rule

V

N4p2E
BZ
dsuS~s!u25Pdiff~0!5u~12u!, ~3!

where the integral is over the~two-dimensional! Brillouin
zone ~BZ!, N is the number of surface lattice sites of the
system, andV is the area of the surface unit cell~see also
Ref. 14!. This result can also be obtained by direct integra-
tion of uS(s)u2 as defined by Eq.~1!. The integral in Eq.~3!
depends on the coverage only and suggests that, even if the
individual diffuse Fourier coefficients are small, the contri-
bution of a whole Brillouin zone is not necessarily negli-
gible. For instance, ifu50.5, expression~3! reaches its
maximum and has the same value as that which would be
produced by the Fourier coefficients of a perfectly ordered
layer of half scattering strength. This is not really small and
it is therefore at first glance not obvious that the diffuse
scattering can be treated as a perturbation at all.

In Fig. 2 we give a preview of some results of the numeri-
cal comparison~see Sec. VI; the details of the model used
will be given in Sec. IV!. This demonstrates that the problem
is somewhat complicated and the situation is generally not as
pessimistic as suggested by Eq.~3!. The figure compares
diffuse streak profiles for three different situations, calcu-
lated with the supercell and with the perturbation approach,
respectively. In all cases the supercell consisted of 400 lattice
units. The stepped disordered layers were assumed to be of

FIG. 1. Typical form of the pair correlation function of a disor-
dered layer in the case of occupational disorder.u is the coverage
andL the typical correlation length involved in the disorder.
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half coverage~which is the most unfavorable case with re-
gard to the coverage!. The incident azimuth is perpendicular
to the step edges and the lateral diffuse Fourier components
are along this direction. The corresponding diffuse scattering
profiles are plots of the diffusely reflected intensity versus
the polar exit angle. In Fig. 2~a! a regular step array with a
terrace length of 200 lattice units and an incident angle of
50 mrad was used. The agreement between supercell and
perturbation calculation is indeed bad. The metric distance
@the measure used for the comparison, between two curves,
defined in Eq.~11!# between perturbation and supercell pro-
files, averaged over the~00! and the ~01! streak, is
D50.84, which means virtually no correlation between both
profiles. Figure 2~b! shows the comparison for exactly the
same diffraction condition and the same coverage. However,
this time the step units~corresponding to steps with terrace
lengths of one lattice unit! were randomly distributed within
the supercell. In this case, the perturbation approach repro-
duces the rigorous calculation very well. The corresponding
metric distance confirms excellent agreement,D50.16. Fi-
nally, Fig. 2~c! compares profiles again from the regular step
array as used in~a!, but at a slightly higher incident angle
(60 mrad!. Again, the profile obtained from the perturbation
calculation represents the exact one quite well (D50.17).
These results show that the applicability of the perturbation
approach, besides depending on the defect concentration as
suggested by Eq.~3!, also strongly depends on the statistics
of the disorder and the diffraction condition.

III. PERTURBATION AND SUPERCELL APPROACH

Our investigation is essentially based on a comparison of
numerical data from the perturbation and the supercell

method. In what follows, we will therefore describe briefly
the basic elements and assumptions employed in the pertur-
bation and the supercell programs. In order to elucidate the
differences between the two approaches, a common formu-
lation of the scattering problem is used. We note, however,
that the actual numerical solution is obtained in quite differ-
ent ways. For these details we refer to the corresponding
references, Ref. 10~perturbation! and Refs. 7 and 15~super-
cell!.

We start with the usual two-dimensional Fourier expan-
sion of the scattering potentialV(r ) and the wave function
c(r ).8 The potential and the wave function are then split up
into their periodic (p) and diffuse (d) parts. For the potential
we have

V~r !5Vp~r !1Vd~r !,

Vp~r !5~\2/2m!(
g
Vp~g,z!exp~ ig–r i!,

Vd~r !5~\2/2m!E dsVd~s,z!exp~ is–r i!. ~4!

Here,r i is the two-dimensional~parallel to the surface! com-
ponent of the real-space vectorr and z is the coordinate
normal to the surface. The discrete set$g% denotes the recip-
rocal surface lattice vectors corresponding to the periodic
part of the potential of the surface.s stands for the two-
dimensional reciprocal vectors of the nonperiodic potential
part, which are distributed continuously ink space and are
responsible for the diffuse scattering.

The diffuse Fourier coefficientsVd(s,z) can be written as

Vd~s,z!5~1/2p!2v~s,z!S~s!, ~5!

where

v~s,z!52m/\2E dr iVatom~r !exp~2 is•r i! ~6!

is the~two-dimensional! Fourier transform of the atomic po-
tential Vatom andS(s) is the structure factor~1! associated
with the diffuse potential part of the disordered layer.

Analogously, the decomposition of the wave function
yields

c~r !5cp~r !1cd~r !,

cp~r !5exp~ iK i•r i!(
g
w~g,z!exp~ ig–r i!,

cd~r !5exp~ iK i•r i!E ds y~s,z!exp~ is–r i!, ~7!

where K i is the parallel component of the incident wave
vector.cp consists of the strong waves scattered into direc-
tions corresponding to the reciprocal surface lattice vectors
g whereascd consists of the diffusely scattered waves,
which are assumed to be weak.

Thez-dependent Fourier coefficients of the diffuse waves
are given by the solution of the following set of coupled
differential equations@obtained by inserting Eq.~7! into the
Schrödinger equation#:

FIG. 2. Streak profiles normal to the shadow edge through the
zeroth Laue zone reflections (00) and~01! from rigorous supercell
~sc! calculations and perturbation theory (p) for Si~100! bilayer
steps and coverage 0.5. The electron energy is 15 keV and the
incident azimuth@011̄# is perpendicular to the step edges.~a! Regu-
lar step array with terrace length of 200 lattice units, incident angle
50 mrad. The curves sc andp do not agree.~b! Random distribution
of step units and 50-mrad incident angle. sc andp agree quite well.
~c! As in ~a! but for 60-mrad incident angle. sc andp agree quite
well.
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d2

dz2
y~s,z!1ks

2y~s,z!2S0~s,z!2Df~s,z!2C2~s,z!50.

~8!

Here, ks is the z component of the~diffuse! wave vector
associated with the scattering vectors. The termsS0(s,z),
Df(s,z), andC2(s,z) describe the couplings of the waves
with all other waves. In particular, these couplings are

S0~s,z!5~1/2p!2(
g
v~s2g,z!S~s2g!w~g,z!,

Df~s,z!5(
g
Vp~g,z!y~s2g,z!, ~9!

C2~s,z!5~1/2p!2E ds2v~s2s2 ,z!S~s2s2!y~s2 ,z!.

S0 ~source term! denotes the coupling ofs with the set of
strong waves$g% via the nonperiodic part of the potential
Vd . In perturbation theory this term is responsible for the
excitation of the diffuse waves by the field of the strong
wavesg and can be regarded as the source term for the
diffuse scattering.Df ~diffraction term! is the contribution
arising from the interaction between the waves and the dif-
fuse set$s1g%, established by the periodic potentialVp .
Df describes the diffraction of the diffuse waves byVp .
C2 ~second-order coupling term! contains the coupling ofs
with the diffuse set$s2 ,s22sÞg% via the nonperiodic poten-
tial Vd .

An expression analogous to Eq.~9! ~without source term!
holds for the coefficientsw(g,z) of the strong waves. In that
case the second-order couplings describe the feedback of the
diffuse waves into the strong waves.

A. The perturbation approach

The computer program based on perturbation theory, de-
veloped at the University of Osnabru¨ck, employs approxima-
tions that enable a very effective handling of the scattering
problem for a large number of statistically varying configu-
rations. However, certain dynamical wave couplings have to
be neglected in order to achieve this advantage. The periodic
partcp of the wave functionc @see Eq.~7!# corresponding to
the strong waves$g% is calculated fully dynamically for the
periodic part of the potentialVp . In the case of the diffuse
wave functioncd the diffraction termDf , the couplings be-
tween a diffuse waves and the set of diffuse waves
$s1g%, is included exactly.Df describes fully dynamically
the propagation of the diffusely scattered waves in the peri-
odic potentialVp . The contributions ofS0 , i.e., the interac-
tions between the diffuse and the strong wavesg, are in-
cluded to first order in perturbation theory with respect to the
diffuse potential partVd . This means that the diffuse wave
function cd is assumed to be excited by the strong wave
functioncp while the second-order recoupling of the diffuse
waves to the strong ones is neglected. Finally, the coupling
contributionC2 is neglected as well because it is of second
order with regard to the perturbation~coupling to diffuse
waves by thediffusepotential!. Formally, this approach is
equivalent to the distorted wave Born approximation~e.g.,

Ref. 16! with @(2\2/2m)¹21Vp(r )# as the unperturbed
Hamiltonian andVd as the perturbation. In practice, the nu-
merical solution is obtained using the reflectivity matrix
method17 adapted to diffuse scattering.10 This method and its
numerical aspects are described in detail in Ref. 10.

The great advantage of the perturbation approach is that
for occupational disorder, where the sites of the atoms in the
disordered layer only differ by parallel translation vectors
rni , which are compatible with the periodicity ofVp , the
formalism can be reduced to a ‘‘pseudokinematical’’ scatter-
ing formula; i.e., the diffusely scattered amplitude,F(s), of
each disordered layer can be expressed as a product of the
conventional structure factor with a ‘‘dynamical’’ form fac-
tor:

F~s!5 f dyn~s!(
n

exp~2 is–rni!, sÞg. ~10!

The dynamical form factorf dyn(s… represents the scatter-
ing amplitude for a single atom, situated in the periodic po-
tential part and isindependentof the detailed statistics in-
volved in the disorder; i.e., independent of the concrete
configuration considered. The modulus off dyn depends
strongly on both azimuthal and polar exit angle. The corre-
sponding modulations are due to the diffraction of the dif-
fusely scattered waves by the periodic potential part.

The information about the statistics is contained in the
structure factor. Therefore, oncef dyn(s) is known, the scat-
tering amplitude for an arbitrarily large number of different
configurations can be calculated simply by the use of struc-
ture factors. In particular, the effective methods of dealing
with the configuration problem developed for the kinematical
scattering theory~e.g., Patterson analysis! can be transferred.
The cpu time for the calculation off dyn(s) for ones point is
approximately three times as high as the cpu time needed for
one point of the rocking curve from the periodic part the
same structure.

B. The supercell approach

The computer program based on the supercell approach,
developed at the University of Leicester, does not neglect
specific wave couplings and the scattering problem for a
given configuration is solved exactly. In the case of the su-
percell method the second-order couplingsC2 as well as the
full couplingsS0 with the set$g% of strong waves are fully
included. Generally, the diffuse potentialVd ~and thus the
diffuse wave function cd) has a continuous~two-
dimensional! Fourier spectrum. In order to numerically
handle a finite number of diffuse waves, a proper discretiza-
tion of the Fourier transform ofVd ~andcd) into a Fourier
series has to be carried out. Physically, this means that the
considered configuration is repeated periodically with a pe-
riod corresponding to the degree of discretization. In this
way the diffuse scattering problem is reduced to the treat-
ment of a periodic surface but with a very large surface unit
cell ~supercell!. Therefore, the calculation can be undertaken
using techniques developed for periodic structures.8,9 As the
computational effort is roughly proportional to the third
power of the number of waves included, the calculation time
for a reasonable degree of discretization is considerable. In
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this work we used a (13400) supercell and a total of 405
waves. Use of a highly optimized program, based on the
approach of Ref. 15 enabled the calculations to be done with-
out excessive use of cpu time.

IV. SURFACE MODEL AND CALCULATIONAL DETAILS

The surface model used for the investigation is based on
the unreconstructed Si~100!(131) surface. On the ordered
surface a bilayer with disorder along the@011̄# direction was
introduced, consisting of bilayer terraces, with step edges
along @011#. The basic ‘‘bilayer unit’’ consists of an upper
terrace of extension 1 LU~lattice unit! in the @011̄# direction
(1LU5a0 /A253.84 Å ) and a height corresponding to 2
ML ( a0/252.715 Å ). The ‘‘dynamical’’ form factor for the
perturbation treatment is then obtained using such a unit as
perturbation. The configurations of the disordered bilayer
were always constructed of such units within a supercell of
lengthLcell5400 LU. Usually the configurations chosen for
the comparison were regular step arrays of various coverages
u. Such structures consist of one upper and one lower terrace
within the supercell. The length of the ‘‘up’’ terrace is then
uLcell and the length of the ‘‘down’’ terrace is (12u)Lcell .

The reason for this choice of these artificial configurations
is to keep the computational effort of the rigorous calcula-
tions within a tractable time scale. Simulation of realistic
disorder would in principle require many statistically varying
configurations or at least a very large cell in order to intro-
duce statistics within the supercell. However, as will be
shown in Sec. V, the key structural parameters that influence
the quality of the perturbation approach are the coverageu of
the disordered layer~s! and the correlation lengthL involved
in the disorder along the incident beam azimuth. Regular
step arrays now offer the unique advantage that a given cor-
relation length can be easily realized by asingle configura-
tion. The correlation lengthL of the disorder simulated in
that way is simply given by the length of the ‘‘up’’ terrace
for coveragesu,0.5 and by the length of the ‘‘down’’ ter-
race if u>0.5.

We believe that a comparison of data from these configu-
rations provides a worst case estimation concerning the ap-
plicability of perturbation theory. Although the surface is not
monatomically flat, these are nevertheless very regular struc-
tures~even within the supercell! such that the possible can-
cellation of the disturbing multiple scattering processes due
to statistical variations in the disorder is excluded. For some
comparisons, random configurations within the supercell
were used as well~Sec. VIC!. In all these cases the struc-
tures consisted of the bilayer units described above.

The calculations were carried out for a 15-keV electron
energy. For the atomic scattering potentials the original val-
ues from the tables of Doyle and Turner18 without any cor-
rections for the inner potential were used. It is important to
use those corrections for the analysis of experimental data.19

They are, however, irrelevant with regard to the comparison
of the two approaches as long as in both cases the same
potential is used. The crystal temperature was assumed to be
300 K. The ratio of imaginary absorption potential to real
potential was assumed to be 0.19~see Ref. 20!.

The incident beam azimuth was@011̄#, i.e., perpendicular
to the step edges. The wave set for the rigorous calculations

consisted of the 5 integral-order waves (0,h) (h52̄, . . . ,2)
in the zeroth Laue zone and the fractional~diffuse! waves
(m/400,h) (m540, . . . ,40,mÞ0) such that a total of 405
waves was included. It has been checked by the calculation
of rocking curves for the flat surface that inclusion of more
than 5 integral-order waves led to only small changes in the
shape of the curves. Memory constraints made the restriction
to 5 integral-order waves necessary. It has, however, been
checked that an increase in the number of fractional-order
waves did not change the results significantly. If we therefore
use the same set of integral-order waves for the perturbation
calculation, comparability is guaranteed and also the conclu-
sions concerning the quality of the perturbation treatment
should hold generally. The consistency of the ‘‘Leicester’’
and ‘‘Osnabru¨ck’’ programs with regard to the periodic po-
tential part was checked by the comparison of the rocking
curves from the flat surface. The reflectedabsolute intensi-
ties produced by the two programs were found to agree
within 0.5%. The metric distance@defined below in Eq.~11!#
between rocking curves from the two programs was
D50.005.

Both the supercell and perturbation program profiles of
the (00) and (01) streak were calculated for the 6 incident
angles 34, 40, 45, 50, 55, and 60 mrad. The computations
were performed on a HP 735 workstation. In the case of the
rigorous supercell calculation the computation time needed
for one incident angle was about 1.5 h utilizing the mirror
symmetry of the scattering problem.21 The corresponding
calculation time in the case of the perturbation program to
calculate the ‘‘dynamical’’ form factor was about 3 min
~without utilizing the symmetry! on the same computer.

In all the comparisons only the diffuse intensity of a pro-
file was used; i.e., the single point corresponding to the
integral-order wave in the zeroth Laue zone was excluded.
The results from both approaches were compared by means
of the ~root mean squared! metric distanceD ~as used al-
ready in earlier work2! to quantify the deviations between
calculated and experimental data:

D~ f ,g!5
1

A2 F(
i

S f i
@( i f i

2#1/2
2

gi
@( igi

2#1/2D 2G1/2. ~11!

The summations overi are over the exit angles of the profiles
f andg. D( f ,g)50 if f}g whereasD( f ,g)51 for the case
that f andg are completely uncorrelated. This measure con-
cerns only the shape of the curves and not their absolute
intensities. This is on the one hand reasonable because in
experiments usually only relative intensities are measured.
On the other hand, first-order perturbation theory itself tends
to produce higher intensities than the rigorous theory. It can
be shown that the effect of second-order pertubations on the
propagation of the incoming and the diffusely scattered
waves is equivalent to the effect of an additional~in general
nonlocal! absorptive potential.22–24 For this reason, it is ex-
pected that prominent profile features that already arise from
first order diffuse scattering appear with reduced intensity in
a more rigorous treatment. Our numerical results have con-
firmed this trend. We have found discrepancies in absolute
intensity between about 5220% for cases with the best
agreement~as given by theD value! up to an order of mag-
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nitude for the cases of worst agreement between the two
approaches. Moderate changes of the absorption potential
have a strong influence upon absolute intensities but have
usually little influence upon the shape of curves~i.e., peak
positions and their relative heights!. Hence, in the figures
that illustrate the comparison between both kinds of calcula-
tions, the curves are normalized to their maximum and plot-
ted on a linear scale using arbitrary units.

V. ANALYTICAL CONSIDERATIONS

Before discussing the actual comparison between the su-
percell and perturbation approaches for the specific case of
the Si~100! bilayer system, we shall use some simple analyti-
cal arguments to anticipate which physical quantities influ-
ence the quality of the perturbation approach. Although some
strong simplifications will be used, the essential features im-
portant for high-energy scattering from~disordered! surfaces
will be retained. The analytical considerations will in par-
ticular help us to clearly understand the numerical compari-
son and thus to transfer the results, obtained mainly for spe-
cial configurations, to realistic surfaces.

In what follows an approximate error will be derived,
which characterizes the strength of higher-order diffuse scat-
tering processes and, thus, the quality of a perturbational
treatment.

A. Derivation of the approximate error

For simplicity, we assume a monatomic material and a
single disordered top layer upon an otherwise perfect bulk.
All atoms in the disordered layer occupy lattice sites com-
patible with the structure of the ordered system~occupational
disorder!. The origin of thez coordinate~normal to the sur-
face! is the center of the disordered layer. Furthermore, we
consider diffuse scattering from the surface Brillouin zones
associated with the zeroth-order Laue zone.

In what follows we will estimate for the system of equa-
tions ~8! the magnitude of the second-order coupling term
C2 , which is neglected in the perturbation treatment, com-
pared to the source termS0 . To that end we estimate first the
magnitude of the diffuse coefficientsy(s,z). This is per-
formed by the integration of Eq.~8! retaining, of all the
coupling terms, only the source termS0 ~the couplings with
the strong waves!. By approximating the exact Green’s func-
tion for Eq.~8! with the corresponding free-electron Green’s
function we obtain

y~s,z!5
1

2iks
S~s!(

g
I ~g,s,z!, ~12!

whereI (g,s,z) denotes the integral

I ~g,s,z!5
1

~2p!2
E dz2exp~ iksuz2z2u!v~s2g,z2!w~g,z2!.

~13!

Both equations hold for propagating (ks5Aks2) as well as for
evanescent waves (ks5 iA2ks

2).
Physically, the Green’s-function approximation used to

obtain Eq.~12! means that the diffuse scattering is excited by
the strong wave field associated with the periodic potential

part and that the diffusely scattered waves propagate as in the
vacuum. The latter behavior is due to the neglect of the dif-
fraction termDf and means in principle a quite drastic sim-
plification because the propagation does not contain any dif-
fraction by the strong periodic potentialVp . The propagation
within Vp leads, besides the general trends derived here, in-
deed to important additional effects depending on the spe-
cific diffraction condition~see Sec. VII!. Note that the actual
perturbation theory used for the calculations of course in-
cludes all the couplingsDf . For the general estimation of the
order of magnitude of the amplitude of the diffuse waves,
however, the simplified expression should be sufficient be-
causeDf represents no source of diffuse scattering but rather
redistributes among the diffuse waves that flux which is scat-
tered into the diffuse waves. The simplified expression used
here in particular retains the important property that states
with low uksu tend to be excited strongly~e.g., for surface
resonances25!, and it allows the existence of evanescent
waves. We note further that the simplified propagation does
not include absorption, which would lead in general to
smaller values fory(s,z). In particular, the singularity at
ks50 would disappear in that case so the expression ob-
tained here tends to overestimate the magnitude of the dif-
fuse scattering.

The couplingsC2 , which are neglected in the perturba-
tion scheme, are now estimated by insertion of~12! into the
third equation of ~9!. Exploiting the fact that the two-
dimensional Fourier coefficients~6! of the atomic potential
are only slowly varying within a Brillouin zone, one obtains

C2~s,z!5(
g

DC~s2g,z!, ~14!

such that each BZ that belongs to the reciprocal lattice vector
g contributes to the second-order diffuse coupling with the
amount

DC~s2g,z!5
1

~2p!2
v~s2g,z!E

BZg

ds2
2iks2

3S~s2s2!S~s2!(
g2

I ~g2 ,s2 ,z!. ~15!

Here, the sumg2 is over the surface reciprocal lattice vectors
and*BZ gds2 means integration over the BZ associated with
g.

Analogously, for the source termS0 ~the coupling with
the strong waves!, each BZg contributes the amount

C~s2g,z!5~1/2p!2v~s2g,z!S~s!w~g,z!. ~16!

We now estimate the contributionDC(s2g,z) of the
second-order couplings compared to the first-order contribu-
tion C(s2g,z). The evaluation is carried out for the center
of the disordered layer (z50), the potential at this particular
z coordinate being representative for the strength of the po-
tential.

Quantitative evaluation of Eq.~15! for arbitrarys and in
particular the derivation of an approximate analytical expres-
sion is practically not possible. The reason for this is that the
product of the structure factorsS(s2s2) andS(s2) usually
oscillates strongly withs2 and thus prevents a simple evalu-
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ation of the integral overs2 . A further complication arises
from the fact that the second-order diffuse scattering contri-
bution from single scattering on two different atoms does not
have the sameu dependence as the second-order contribu-
tion from double scattering on the same atom. Thus
C(s2g,z) is generally a complicated function of boths and
u but for practical purposes we would like to have an error
measure that is independent ofs.

The problems addressed above can be avoided if we
evaluateDC(s2g,z) at the center of the Brillouin zone as-
sociated with the reciprocal surface vectorh. In that case the
product of the structure factorsS(s2s2) andS(s2) reduces to
the positive expressionuS(s2)u2 and a comparably simple
discussion of the behavior of the BZ integral overs2 in Eq.
~15! is possible. In particular, an approximate explicit ex-
pression with a physically sensible coverage dependence can
be found. Strictly, however,DC(h2g,z) refers to the ne-
glected second-order couplings for the integer wave field
corresponding to the reciprocal lattice vectorsh and not to
the diffuse wave field.26 It is on the other hand physically
clear that this quantity can be used for our purposes because
it represents a measure for higher-order diffuse scattering,
which is generally neglected in the perturbation approach.
Further, we have found that the error measure based on this
approach gives a good description of our numerical results.

In order to define a relative error that compares the ne-
glected diffuse couplings from BZg with the couplings in-
cluded in perturbation theory, a suitable normalization of
DC(h2g,z) has to be carried out. Among the various pos-
sibilities for a normalization we have chosen a comparison of
DC(h2g,z) with the source termsC(s2g,0) of the diffuse
scattering@Eq. ~16!# and defined a relative error by

eg5A2F uDC~h2g,0!u2

~NV/4p2!*BZ hdsuC~s2g,0!u2G
1/2

. ~17!

The normalization to the sum of all the source couplings in
BZ h @i.e., the integral in the denominator of Eq.~17!# is
necessary in order to account for the different scaling behav-
ior of DC(h2g,0) andC(s2g,0) with the number of avail-
able sitesN.

The dimensionless erroreg defined in this way has the
advantage that it is related to the order of magnitude of the
metric distanceD @see Eq.~11!# used to quantify the degree
of agreement between diffuse profiles calculated with the
perturbation and supercell approaches. As can be seen from
Eq. ~8! in its integrated form,eg is related to the relative
error in amplitudeA2DA/A. The metric distanceD roughly
measures the relative error in intensityDI /(IA2), which is in
turn aboutA2DA/A. This correspondence should, of course,
not be exaggerated particularly because the second-order
term in the numerator ofeg refers to the neglected couplings
affecting the integer instead of the diffuse waves. Neverthe-
less, as will be demonstrated in Sec. VI,eg is able to predict
the results of the numerical comparison even semiquantita-
tively quite well.

In order to elucidate which physical parameters essen-
tially influence the relative error, we estimate the typical or-
der of magnitudes of the quantities under the integral in the
expression for the second-order couplings, Eq.~15!. For the

z componentks of the diffuse wave vector corresponding to
the lateral scattering vectors5(sx ,sy), the relation

ks
25k0

22sy
222K0sx ~18!

holds to a very good approximation for the RHEED case
~high electron energy, low glancing angles and strong for-
ward scattering!. The indicesx and y refer to the vector
components along (x) and perpendicular (y) to the incident
beam azimuth, respectively, andK0 is the wave vector of the
incident electrons of energyE5(\K0)

2/2m. Within the BZ,
ks varies only slowly as a function ofsy , but varies strongly
as a function ofsx becauseK0 is large. The relevantsx are
roughly between2p/L andp/L whereL denotes the cor-
relation length of the disorder along the incident azimuth.
Therefore, the correlation lengthL has a strong influence on
the magnitude of the integral in Eq.~15! over the second-
order couplings. For sufficiently shortL, the modulus of the
relevantks is typically between 0 andAL215A2pK0 /L.
We introduceks85ALks as a useful dimensionless quantity.
We have found that the quantity,

L5L/2pK0 ~19!

is an important parameter. Because the parallel component of
the electron momentum is large,L21 is approximately equal
to the change in the square of the perpendicular momentum,
that isL21.k0

22ks
2 , and in Sec. V B we will show that the

corresponding energy,

DE'5
\2

2m
L21, ~20!

has a strong influence on the quality of the perturbation ap-
proach.

The following further dimensionless quantities~indicated
by the prime symbol! are introduced under the integral in Eq.
~15!. s is normalized to reciprocal surface lattice units such
that ds85V/(4p2)ds. For the structure factorS we write
S85S/ANu(12u), which yields*BZds8uS8u251 @Eq. ~3!#,
and the atomic potential coefficientsv are normalized to
v(s50,z50). Finally, we introducez85z/AL. Now the
relative error can be expressed as

eg5
1

A2
2m

\2 Vav~0!Au~12u!L

3U 1

w~g,0!
E
BZ g

ds8

ks8
8

uS8~s8!u2(
g28

I 8~g28 ,s8,0!U ,
~21!

with

I 8~g28 ,s8,0!5E dz8 exp~ iks8
8 uz8u!

3v8~s82g28 ,z8AL!w~g28 ,z8AL!. ~22!

Vav(0) is the laterally averaged atomic potential atz50.
Becausev8 as a function ofs8 varies only slowly within the
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BZ, the integration with regard tos8 is essentially an integral
over the product ofuS8(s8)u2 and a function depending on
ks8
8 .
The expression~21! reveals that except for a dimension-

less integral that depends in a complicated manner on the
structure factor profile, the shape of the atomic potential and
of the exciting wave field, most generally, very low and very
high coveragesu lead to a small erroreg because in both
cases the concentration of defects~with regard to the peri-
odic potential part of the disordered layer! is very small. The
coverage dependence reaches a maximum foru50.5, where
the largest concentration of defects appears. A further gen-
eral feature is the importance of the strength of the atomic
potential in the disordered layerVav(0). These two depen-
dences on the defect concentration and the potential are also
physically evident as both determine most generally the
magnitude of the perturbation.

B. Discussion of limiting cases

As the magnitude of the integral in Eq.~21! can depend
on L, the error is not generally proportional toL as one
might infer from the term in front of the modulus signs.
Actually, the kind of dependence ofeg on L ~which means
for fixed electron energy the dependence on the correlation
lengthL) depends on the magnitude ofL compared with the
magnitude of thez componentkg of the wave vector associ-
ated with the strong waveg.

1. The caseL!zkgz22

We first consider the case of smallL (!ukgu22). Then the
definition of ks8

8 implies that for thoses8 whereuS8(s8)u2 is
strong,ks8

8 always covers about the same range (uks88 u<1),
independent ofL. Hence, thes8 integral only depends
weakly onL. Also thez8 integralI 8 depends only weakly on
L in this case: Thenz8 varies strongly over the relevant
rangem8 of the potential coefficientv8. If ks8

8 corresponds to
a propagating wave the exponential has a large number of
oscillations within the rangem8 but if ks8

8 corresponds to an
evanescent wave, the exponential decreases rapidly. In both
cases the magnitude ofI 8 is determined mainly by the mag-
nitude ofks8

8 and to a lesser exent by theL-dependentm8.
To summarize, for small correlation length the whole expres-
sion between the modulus signs is more or less independent
of L and the relative erroreg is thus essentially proportional
to L. Alternatively, using definition~20!, one can say that in
this case the error follows the law

eg}Au~12u!
Vav~0!

DE'

; ~23!

i.e., the error is proportional to the strength of the perturba-
tion potential compared with the energy parameter,DE' ,
associated with the relevant diffuse waves.

Consequently, a smallL generally leads to a small error
such that for sufficiently short correlation length and/or high
electron energy perturbation theory can work even for high
defect concentrations and strong scattering potentials. In this
case the strong forward scattering at high energies corre-
sponds to an averaging over the disorder. We note that this

explains the good agreement between rigorous and perturba-
tion calculation in the case of the random configuration in
Fig. 2~b!. Besides the above rather formal arguments, this
behavior can also be physically rationalized. The scattering
at high electron energy and low glancing angles implies that
small momentum transferalong the incident azimuth is con-
nected with a large momentum transfernormal to the sur-
face. Therefore, most of the diffuse waves will have a com-
paratively large momentum component normal to the surface
and will be dynamically scattered in the ordered bulk~where
the perturbation approach describes the multiple scattering of
the diffuse waves exactly! rather than in the disordered layer.
In the case of the evanescent diffuse waves the large perpen-
dicular ~imaginary! momentum leads to a rapid exponential
decay of the corresponding part of the wave function. This
also decreases the probability of multiple diffuse scattering
of these waves within the disordered layer.

2. The caseL@zkgz22

If L is large (@ukgu22), the structure factor related func-
tion uS8(s8)u2 is sharply peaked around the reciprocal surface
lattice vectorg8 and thus the relevantks8

8 will be of order
ALkg . In that case the integralI 8 will be proportional to
AL21. Together with theks8

8 in the denominator of~21! the
whole expression between the modulus signs of Eq.~21! will
be proportional toL21 and thus cancel the factorL on the
left-hand side of the modulus. Therefore, for largeL, the
dependence of the error on this parameter disappears. More-
over, the range of relevantks lies in a small region around
kg in that case and the erroreg therefore tends to increase
inversely toukgu. „The simplified erroreg @Eq. ~29! in Sec.
V C# is proportional toukgu22 when ukgu is large. As in the
case of small correlation lengths, the error is then essentially
determined by the perturbation potential compared with the
perpendicular energy of the diffuse waves.… This means that
for very large correlation lengtheg approaches a singularity
if kg→0. Then, the neglected coupling contributions from
BZ g inevitably become very strong and perturbation theory
is likely to fail. Physically, such a situation means that all the
diffuse waves of the BZ move parallel to the disordered layer
and can thus undergo a large number of multiple scattering
events by the nonperiodic potential part. These arguments
are slightly weakened for the real situation because absorp-
tion ~which was not taken into account for this analytical
estimation! will reduce the number of multiple scattering
events. In particular the singularity forkg50 would disap-
pear.

On increasingukgu the erroreg tends to decrease so that
for sufficiently largeukgu the perturbation approach tends to
become adequate again in spite of a large correlation length.
Physically, the diffuse waves of the BZg are then traveling
more and more normally to the disordered layer. In that case
the multiple scattering of the diffuse waves is strongly re-
duced in the defect layer and will essentially be due to the
ordered bulk underneath. The dynamical scattering within
the ordered layers, however, is treated rigorously in the per-
turbation approach. This favorable situation can be ap-
proached experimentally for high glancing angles if the ma-
jority of those integral-order waves that are important to
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describe the multiple scattering have emerged from the
shadow edge.

3. The caseL5zkgz22

We finally note that a particularly unfavorable situation
appears forL5Lmax5ukgu22 if eg is considered for fixed
material, coverage, and diffraction conditions as a function
of the correlation lengthL. According to Eq.~21! the con-
tribution of a waves to the error is weighted withuksu21,
which reflects the general fact that second-order scattering
events are more likely when the diffuse waves in the disor-
dered layer propagate parallel to it. With regard to this aspect
a profile uS8u2 that is ‘‘smeared out’’ along thex direction
~incident azimuth! causes a larger error than a sharply
peaked one as long as the corresponding relevant diffuse
waves in the BZ are eitherall propagatingor areall evanes-
cent. The reason for this is thatuksu21 is a concave function
of sx . The most unfavorable situation appears if the diffuse
streak of BZg has either just completely emerged from the
shadow edge or just completely vanished, i.e., for
Lmax5ukgu22. Therefore a decrease of the error with the cor-
relation length is to be expected ifL.ukgu22. This may of
course be partly weakened for certain diffraction conditions
by the structure of the exciting wave field and/or the specific
potential shape. However, the above arguments hold quite
generally for scattering from surfaces at glancing angles and
the predicted behavior will be confirmed by the numerical
results in Sec. VI.

C. Simplified expression

In order to obtain a simple explicit expression foreg that
may be used as a ‘‘rule of thumb,’’ the magnitude of the
integral in Eq.~21! has to be evaluated. To that end a number
of somewhat crude assumptions are employed where, how-
ever, the relevant orders of magnitude are retained. The main
assumptions are a rectangular structure factor profile, an ex-
ponentialz dependence;exp(2uzu/m) for the atomic poten-
tial coefficients, and the neglect of thez dependence for the
wave coefficientsw(g,z). This latter assumption appears, at
first glance, extremely crude. It can, however, be verified by
comparison of this assumption with the more realistic form
w(g,z);exp(6kgz) that due to the neglect of additional os-
cillations ~or an exponential decrease in the case of evanes-
cent waves! the simplification generally tends to overesti-
mate the magnitude of thez integral~22!. Only if bothkg and
ks correspond to propagating waves does the simplification
lead to a significant underestimation in the regionks'kg .

The main steps of this somewhat lengthy evaluation can
be found in the Appendix. The result for the erroreg is

eg5
1

A2
Au~12u!

d

m

2m

\2 V0LU~kg8 ,m8!. ~24!

Here, u is the coverage of the disordered layer,d is the
distance between neighboring layers,m the range of the
atomic potential, andV0 the mean potential~average over a
corresponding bulk unit cell! of the atoms in the disordered
layer. The form of the functionU in Eq. ~24! depends on

whether diffuse propagating and evanescent waves appear
simultaneously within BZg or if only one wave type is
present:

U5H U1 if ukg8u
22<1

U2 otherwise. ~25!

U1 applies if in BZg both propagating and evanescent waves
appear. This means that only a part of the corresponding
diffuse streak has emerged from the shadow edge.U2 is used
if all diffuse waves are either propagating or evanescent.
With the abbreviationsb6

2 5m82(ukg8u
261), U1 andU2 are

given by

U1~b1 ,b2!5Farctan2b11 ln2
A11b1

2

11ub2u G
1/2

, ~26!

and

U2~b1 ,b2!5F ~arctanb12arctanb2!21
1

4
ln2

11b1
2

11b2
2 G1/2.

~27!

The explicit result Eq.~24! reveals the same features as
already discussed qualitatively by means of the more general
expression~21!. Figure 3 shows how, using Eq.~24!, the
error eg depends on the correlation lengthL of the disorder
along the incident azimuth forukgu52.3 Å21. The other pa-
rameters are the same as used in the numerical investigation
@Si~100! surface,E515 keV, d51.36 Å , V0513.92 eV,
m50.43 Å ~Ref. 27!.# The ordinate is normalized to the
coverage-dependent factorAu(12u).

For smallL the error increases linearly with the correla-
tion length and is independent ofkg . In that case Eq.~24!
can be simplified to

FIG. 3. Plot of the relative erroreg vs correlation lengthL. eg
measures the order of magnitude of the diffuse couplings from Bril-
louin zoneg, which are neglected in perturbation theory. The ordi-
nate is normalized to the coverageu-dependent factorAu(12u).
The plot is for the Si~100! surface and a 15-keV electron energy.
The perpendicular wave vectorukgu of the integral-order wave is
2.3 Å21. The insets sketch the extension of the diffuse profile
~dashed line! with regard to the shadow edge and the position of the
sharp beam~dot! for variousL.
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e5
p

2A2
Au~12u!

d

m

2m

\2 V0L ~28!

such that, for fixed coverage and material parameters, only
L determines the quality of the perturbation approach.eg
reaches a maximum for the unfavorable situation
Lmax5ukgu22 where the diffuse streak of BZg has either just
completely emerged from the shadow edge~if ukgu2.0) or
just vanished~if ukgu2,0). On increasing the correlation
length beyond the correspondingLmax, eg decreases again
and reaches finally a constant value forL→`. The limiting
value for very large correlation lengths is

eg
`5

1

A2
Au~12u!

d

m

2m

\2 V0

1

ukgu
~ ukgu21m22!21/2. ~29!

If the correlation length is large, the diffuse streak of BZg
shrinks to a small intensity region around the sharp principal
beam associated with the reciprocal lattice vectorg. In this
caseeg depends essentially onukgu and decreases monotoni-
cally if this quantity is increased.

Besides giving a quality measure for the use of perturba-
tion theory, the above considerations further reveal the im-

portant physical quantities to be considered for possible
second-order corrections to types of approaches related to the
distorted wave Born approximation, e.g., by simulating the
influence of the neglected couplingsC2 through an addi-
tional part of the absorptive potential. Our result shows in
particular that for rough surfaces any realistic correction
should include, not only the potential strength and defect
concentration, but also the disorder correlation length along
the incident azimuth.

VI. NUMERICAL RESULTS

In this section we will present the comparison between
the numerical results from the perturbation theory and super-
cell approach for the Si~100! model surface described in Sec.
IV.

A. Correlation length and defect concentration

In Fig. 4 profiles along the (00) and (01) streaks are
plotted for the (13400) supercell with regular step arrays of
various terrace width, obtained from the rigorous calculation
and the perturbation approach. The correlation lengthL of
the simulated short-range order in the case of regular step

FIG. 4. Profiles from rigorous supercell~sc! calculations and perturbation theory (p) for regular bilayer step arrays on Si~100!. The
electron energy is 15 keV, the azimuth is@011̄# and the incident angle is 50 mrad. The single point corresponding to the integral-order wave
in the zeroth Laue zone is excluded.~a! For coveragesu,0.5. ~b! For coveragesu.0.5. L denotes the corresponding correlation length of
the simulated disorder andD the metric distance between sc and p.
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arrays is directly related to the coverage and the length
Lcell of the supercell. For fixed size of the supercell a given
correlation length is realized by two different coverages,
namely,L/Lcell and 12L/Lcell .

The figure shows how the agreement between the two
types of calculations changes with varying coverage and/or
correlation lengthL. L is given in lattice units~1 LU53.84
Å ) along the incident azimuth. All profiles correspond to the
same incident beam direction and were all obtained using a
50-mrad glancing angle. The caseu,0.5 is shown in Fig.
4~a! and the caseu.0.5 in Fig. 4~b!. For small coverageu
the agreement is excellent but clearly decreases with increas-
ing u ~increasingL). For coveragesu.0.5 the quality of the
perturbation approach improves again whenu increases (L
decreases! and virtually perfect agreement with the rigorous
calculation is reached for very high coverages. This behavior
is illustrated in a more quantitative manner in Fig. 5. Here
the metric distanceD @see Eq.~11!#, averaged over the
(00) and (01) profile, between both types of calculations for
the profiles of Fig. 4 is plotted versus coverage and the cor-
responding correlation length. The symmetrical dependence
of D on u about u50.5 is due to the equivalence of the
coveragesL/Lcell and 12L/Lcell . Both cases correspond to
the same defect concentration with regard to the periodic
potential part and to the same correlation length of the short-
range order.

Figure 6 illustrates the general trend for the agreement
between perturbation and supercell approaches versus the
correlation lengthL for the regular step arrays. The degree of
agreement is again expressed in terms of the metric distance,
this time averaged over the (00) and (01) diffuse profile and
over all 6 incident angles~see Sec. IV! used for the investi-
gation. In this way possibly misleading effects due to par-
ticularly favorable or unfavorable diffraction conditions are
largely avoided and thus the general trend should be repre-
sented quite well. The graph is the result of a comparison of
a total of 192 different diffuse profiles. The dashed curve

was obtained for coveragesu<0.5 (L5Lcellu); the dotted
curve holds for the caseu>0.5 @L5Lcell(12u)#. Both
curves develop very similarly due to the equivalence of the
two coverage cases. The general increase of the metric dis-
tance with the correlation lengthL is clearly seen. Because
regular step arrays were considered, a givenL is always
connected with one of the two coveragesL/L cell and
12L/Lcell ~both coverages correspond to the same defect
concentration with regard to the periodic potential part!.
Therefore, the graph includes the influences of both the de-
pendence on the correlation length as well as the dependence
on the defect concentration. A notable feature is that the
general increase of the metric distance withL ceases at about
20 LU and even becomes a slight decrease in spite of the
increase of the defect concentration. Above about 50 LU an
increase is seen again.

This apparently peculiar behavior can be easily rational-
ized in terms of the analytical considerations of Sec. V.
There, we considered the erroreg , which measures for the
surface Brillouin Zoneg the influence of the neglect of the
second-order diffuse scattering processes in perturbation
theory@Eq. ~24!#. It was shown that the dependence ofeg on
the correlation lengthL has a maximum that is related to the
wave vectorK0 of the incident beam and to thez component
of the wave vector associated with g by
Lmax52pK0 /ukgu2. The typical magnitude of theukgu in-
volved in the calculations is about 2.3 Å21 ~being the av-
erage over allukgu corresponding to the 5 integral-order
waves and 6 incident angles between 34 and 60 mrad!. This
value corresponds to anLmax of 20 LU, which is identical to
the correlation length in Fig. 6 at which the increase of the
metric distance withL discontinues. According to Fig. 3 the
dependence of the erroreg on the correlation length virtually
disappears soon afterLmax has been reached. This means that
in the case of the graph in Fig. 6, which represents the over-
view for the regular step arrays, the increase of the metric
distance withL beyond about 50 LU is essentially deter-

FIG. 5. Metric distance between profiles from perturbation
theory and supercell approach, calculated for regular step arrays, vs
coverage and correlation length. The incident angle is 50 mrad. The
correlation length axis has a logarithmic scale. Note the equivalence
of the casesu,0.5 andu.0.5.

FIG. 6. Metric distance between profiles from perturbation
theory and the supercell approach, calculated for regular step ar-
rays, vs correlation length. The metric distance is averaged over all
incident angles used for the investigation. Dashed curve: coverage
u<0.5. Dotted curve:u>0.5. Solid curve: error from the analytical
expression. For further explanation, see text.

54 2131PERTURBATION THEORY OF DIFFUSE RHEED . . .



mined by the dependence on the coverage~i.e., the depen-
dence on the defect concentration!.

The solid line in Fig. 6 shows for the regular step array
case the relative erroreg as a function ofL for the average
value of ukgu52.3 Å21 ~see above!. This curve reproduces
the general trend of the above results astonishingly well,
even in a semiquantitative sense. We note that the over op-
timistic values from the analytical expression for low metric
distances (D,0.2) are not relevant because in this region the
agreement between perturbation and supercell approach can
be still considered as good. The expression predicts in par-
ticular the conditions in which problems with perturbation
theory are expected. This is a quite useful result because with
the simple expression Eq.~24! for eg it is now possible to
assess the quality of the perturbation approach for a given
material and surface without carrying out time consuming
reference calculations. Such a quantitative estimation of the
possible error is regarded as more appropriate than quoting a
fixed limiting condition since the accuracy desired for a
theory normally depends on the application. For instance, in
cases where a more qualitative understanding of the diffuse
diffraction features is sufficient, the requirements concerning
the accuracy are usually lower compared to the requirements
for an exact calculation.

B. The single defect case

Of particular interest is the comparison for the case of a
single defect because it is closely related to the scattering
problem of one atom~or one molecule! situated on a perfect
surface. For our (13400) supercell model, this corresponds
to the coverages 1/400 and 121/400. In the first case only a
single bilayer unit within the supercell is situated on the
ordered substrate, whereas the latter coverage corresponds to
a single bilayer unit missing from the otherwise perfectly
ordered surface of the supercell.

Figure 7 illustrates the comparison for the single defect
case by means of a series of profiles at various incident
angles. The agreement between perturbation and supercell
approach is practically perfect. The metric distance, averaged
over all profiles and all incident angles, isD50.05. The
worst distance obtained was onlyD50.12@for the high cov-
erage, incident angle 60 mrad, (00) profile#, which still
means a very small discrepancy as is evident from the figure.

The excellent consistency for the single defect case
proves that here the perturbation approach contains all im-
portant multiple scattering events and can certainly be used
as a computational method for the quantitative analysis of
diffuse scattering data. It has already been shown, using this
approach, that the diffuse scattering caused by an adatom
adsorbed on a surface depends strongly on the adsorption
site, as well as on the height of the adsorbate above the
topmost substrate layer.10 Therefore, a quantitative structure
analysis of randomly distributed adatoms~or molecules!
based on diffuse RHEED data should be possible. It is evi-
dent from the above that a reliable and efficient RHEED
theory for such purposes is available. This result should also
be of relevance for the simulation of corresponding high-
resolution REM images of single absorbed species on sur-
faces, however, note that the present investigation concerns
reflectedintensitieswhile in the REM case the phase of the
reflected amplitude is also important.

We attribute the remaining small differences in the results
of both approaches to the artificial periodicity caused by the
supercell. Although a length of 400 lattice units represents a
quite large cell, there is still a small effect of the successive
multiple scattering by the periodically arranged defects that
is not considered in the perturbation treatment. In particular
the periodicity may enhance these effects due to a corre-
sponding artificial coherence in the diffuse scattering. For
this reason the perturbation calculation is probably even
more suitable for the description the diffuse scattering caused
by a single defect or statistically independent defects than the
supercell approach.

C. Random configuration at high coverages

In the foregoing section the potential of the perturbation
approach to obtain structural data for adatoms by a quantita-
tive evaluation of the corresponding diffuse RHEED data
was demonstrated. At low coverages an evaluation based on
calculations for the single defect case should be realistic as

FIG. 7. Profiles from rigorous supercell~sc! calculations and
perturbation theory~p! related to the single defect case for Si~100!
and various incident angles. The electron energy is 15 keV and the
azimuth is@011̄#. ~a! One bilayer unit~per supercell! present upon
the otherwise perfect surface.~b! One bilayer unit missing from the
otherwise perfect surface.D denotes the metric distance between sc
andp.
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long as the adatoms are randomly distributed~but on equiva-
lent geometric sites!. In this case the experimental data can
be assumed to be the incoherent superposition of the diffuse
scattering caused by the individual adatoms such that the
shape of the diffuse scattering distribution is the same as for
a single atom situated on the periodic substrate. For higher
coverages, this is no longer valid for two reasons. Firstly, the
distribution of the atoms on the surface would result in fur-
ther structure in the diffuse scattering because of long-range
correlations between the adatoms. Secondly, at high cover-
ages there is increasing probability of successive multiple
scattering by the adatoms. The first of the two problems re-
sults effectively in an unknown structure factor. In analysis
of diffuse LEED data this factor is eliminated by evaluating
the logarithmic derivative of the intensities with respect of
the energy instead of the original data.28 In RHEED, the
corresponding data manipulations would refer to the incident
glancing angle instead of the electron energy. In contrast to
the LEED case, the second problem of the multiple scatter-
ing by the adatoms is easily solved in RHEED as long as the
adatoms are randomly distributed, i.e., the correlation lengths
involved are small. As analytically discussed in Sec. V and
demonstrated numerically in Fig. 2~b! the second-order dif-
fuse scattering is then negligible@see also Eq.~28!# and the
multiple diffuse scattering within the disordered layer is then
essentially determined only by its periodic potential part,
which is independent of the detailed distribution of the ada-
toms. The corresponding numerical treatment requires only
the inclusion of a furtherordered layer whose potential is
multiplied by the coverageu. If u is unknown, it can easily
be treated as a fitting parameter and thus may even be mea-
sured.

It follows from the above argument that structure infor-
mation for a disordered adlayer can even be obtainedwithout
evaluating the diffuse scattering. If the multiple scattering
processes within the disordered layer are governed by its
periodic potential part, then the rocking curves of the sharp
reflections on the Laue circle should be determined by this
potential as well. We have checked this by calculating rock-
ing curves of the sharp reflections using the supercell pro-
gram and the same random configuration of half coverage as
in Fig. 2~b! where the bilayer units were distributed within
the supercell by means of a random number generator. These
curves were compared with rocking curves calculated with
the periodic potential part of this structure, i.e., the potential
of an ordered bilayer multiplied by the coverage 0.5. The
comparison of this periodic potential approximation with the
supercell calculation is illustrated in Fig. 8 by means of the
rocking curves of the (00) and (01) reflection. The metric
distance between the curves from the two calculations is
0.02 for both reflections. This degree of agreement has to be
regarded as excellent. Furthermore, the corresponding rock-
ing curves for the monatomically flat surface~coverage
1.0) are plotted as well. They differ substantially from the
curves for the disordered surface of coverage 0.5. This dem-
onstrates clearly the sensitivity of the rocking curves with
regard to the disordered layers. The above comparison shows
that the scattering of such a complicated structure can be
described in an astonishingly simple way. This result is es-
pecially important from the experimental point of view.
Compared to the accurate measurement of diffuse scattering,

accurate rocking curve data can be obtained very easily. In
fact, the experimental procedure is the same as for an or-
dered surface. It is finally noted that these results are trans-
ferable to materials with stronger scattering potentials. In
connection with a recent experimental work, a similar com-
parison between rocking curves from supercell calculations
and the periodic potential approximation has been carried out
for the strong scatterer Pt.29 There, it is demonstrated further-
more that the periodic potential approximation even retains
the sensitivity of the curves with regard to small variations of
structural parameters like relaxations of the top interlayer
distance.

VII. DIFFRACTION CONDITIONS

For large correlation lengthsL ~and high defect concen-
trations! perturbation theory cannot generally be expected to
work properly and its applicability depends on the diffraction
condition. For the Si~100! step arrays considered here, this
occurs when the correlation length is greater than about 20
LU ~see Fig. 3!, the threshold value above which the depen-
dence of the relative error onL disappears. Additional
supercell-perturbation calculations for incident angles up to
155 mrad have been carried out for a step array with
L580 LU and coverageu50.8. This length is, on the one

FIG. 8. Rocking curves of the sharp reflections (00) and (01)
from rigorous supercell~sc! calculations and periodic potential ap-
proximation~pp! in case of a random configuration of steps at cov-
erage 0.5 for Si~100! @same configuration as in Fig. 2~b!#. The elec-
tron energy is 15 keV and the azimuth is@011̄#. D denotes the
metric distance between sc and pp. For the purpose of comparison
the curves for the perfect periodic surface~flat! are also plotted.
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hand, large enough to lie beyond the above-threshold value
and, on the other hand, still low enough to produce reason-
ably large diffuse profile widths (3–12 mrad, dependent on
the incident angle for these additional calculations!.

Figure 9 shows how the metric distanceD, averaged over
the (00) and (01) profiles, between supercell and perturba-
tion profiles, depends on the incident angle. Furthermore, the
angular dependence of the erroreg from the analytical esti-
mation is plotted for the averagedkg involved. Except for
strong fluctuations~see below! the metric distance, as well as
eg , decreases gradually with the incident angle. This general
trend is due to the fact that on increasing the incident angle
the waves involved propagate more and more obliquely to
the disordered layers, thus decreasing the probability of
second-order diffuse scattering within the disordered layers.
The figure also shows that this general trend is superimposed
by strong fluctuations in the angular dependence ofD. In-
deed, within the whole angular range situations can be found
where the metric distance is very low~even at low angles! or
very high. A close inspection of the dynamical form factor
and the streak profiles@see Eq.~10!# revealed that these cases
follow systematic rules. The metric distance for a profile
turned out to be low if the strong Fourier coefficients of the
corresponding structure factorS ~kinematical profile! corre-
spond to exit angles where the ‘‘dynamical’’ form factor
f dyn exhibits a maximum, i.e., if the overlap off dyn andS is
strong. On the other hand, the agreement with the rigorous
approach was bad if the strong coefficients of the structure
factor correspond to exit angles near a minimum or a steep
shoulder off dyn, i.e., if the overlap off dyn andS is weak.
This is demonstrated in Fig. 10 for the (00) profile at 80- and
85-mrad incident angle, respectively. In the first case, the
structure factor profile coincides with a minimum of the
‘‘dynamical’’ form factor and the agreement with the super-
cell calculation is only moderate (D50.52). For the angle
85 mrad, however, the overlap is strong and the agreement is
very good (D50.09).

In Fig. 11 the metric distanceD and the inverse of the
normalized overlap integral

I ov5E dsxu f dyn~sx!S~sx!u2 YE dsxu f dyn~sx!u2 ~30!

between the dynamical factor and the structure factor are
plotted versus the incident angle for both the (00) and the
(01) profiles. The overlapI ov defined in this way is nothing
but the~normalized! integrated profile from the perturbation
scheme. The metric distance and the inverse overlapI ov

21 as
functions of the incident angles develop qualitatively in a
quite similar manner. Virtually all maxima~minima! in the
incident angle dependence of the overlap coincide with
maxima~minima! of D. Further examples for streak profiles
under the present conditions can be found in Fig. 4. It is
noted in particular that for the favorable situations, where the
angular dependence of the metric distance has a minimum,
the corresponding distances are very low~around 0.15) such
that perturbation theory works very well in those cases. It is
therefore desirable to understand the physics behind this re-
sult.

A large overlap appears under diffraction conditions at
which a large portion of the structure factor profile corre-
sponds to exit angles where the dynamical factorf dyn is large
compared to the other exit angles. Physically, at such diffrac-
tion conditions, the diffuse waves in the crystal correspond-

FIG. 9. Dashed curve: Metric distance between profiles from
perturbation theory and supercell approach, calculated for a regular
step array with coverageu50.8, vs incidence angle. Solid curve:
error from the analytical expression. The general trend of a decrease
of the metric distance with increasing angle is superimposed by
strong fluctuations. For further explanation, see text.

FIG. 10. Example for the correlation of the quality of perturba-
tion theory with the overlap of the ‘‘dynamical’’ form factor and
the structure factor. The illustration is for a regular bilayer step
array on Si~100! with the coverage 0.8 and an upper terrace length
of 80 lattice units. The (00) diffuse streak is shown. The electron
energy is 15 keV and the azimuth is@011̄#. Left panel: For
80-mrad incident angle the structure factor profile~structure! coin-
cides with a minimum of the ‘‘dynamical’’ form factor profile
~form! such that the overlap is low. The agreement between super-
cell ~sc! and perturbation calculation (p) is only moderate. Right
panel: For 80-mrad incident angle the structure factor profile coin-
cides with a maximum of the ‘‘dynamical’’ form factor profile.
such that the overlap is high. Here, the agreement between supercell
and perturbation theory is very good.D denotes the metric distance
between sc andp.
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ing to the profile considered are excited strongly due to scat-
tering processes via the periodic part of the potential
~couplingsDf) in Eq. ~8!. These processes are, however,
included exactly in the perturbation approach. In other
words, the profile tends to be dominated by the effect of
those diffraction processes, which are described accurately
by perturbation theory. These are therefore cases where the
method works adequately.

This can be also seen more formally from Eq.~8!. Inte-
gration of this equation yields an outgoing solution of the
type

y~s,z!5
1

2iks
E dz2 exp~ iksuz2z2u!

3@S0~s,z2!1Df~s,z2!1C2~s,z2!#. ~31!

If f dyn is large at the exit angle belonging to the scattering
vector s, the wave couplingsS0 and especially Df via the
periodic potential partcontribute strongly to the correspond-
ing amplitudey. Then, in the above sum of couplingsC2 is
small compared to the other terms so the perturbation treat-
ment works well. On the other hand, iff dyn is small,S0 and
Df contribute only weakly to the amplitude. In this unfavor-
able case virtually the whole amplitude is determined by the
couplings neglected in perturbation theory. Consequently,
this approach becomes unrealistic under such conditions.

Fortunately, it should be possible to identify the favorable
diffraction conditions experimentally because the modula-
tions of the dynamical factor are by its definition related to
the modulations of the diffuse broad background observed in
an experimental diffraction pattern@see also Refs. 10–12#.

Hence, it should be possible to identify regions of favorable
exit angles directly on the fluorescent RHEED screen and
thus to select the diffraction conditions at which an effective
evaluation can be carried out.

VIII. CONCLUSION

In this work we have carried out a thorough investigation
of the conditions in which the perturbation theory of diffuse
RHEED ~Ref. 10! can be applied to the evaluation of experi-
mental diffuse scattering data from occupational disorder
~e.g., steps!. The approach treats the diffuse scattering as a
transition between two-dimensional Bloch waves in the pe-
riodic part of the potential and can be reduced to the calcu-
lation of conventional structure factors, which are then mul-
tiplied by ‘‘dynamical’’ form factors. Such an investigation
is desirable because the perturbation method is at present the
only approach within the scope of a dynamical theory that
solves the configuration problem~the presence of many sta-
tistically varying disorder configurations!.

To this end a comparison between calculations based on
the perturbation approach and rigorous supercell calculations
was carried out for bilayer steps upon an unreconstructed
Si~100! surface. The general validity of the results is sup-
ported by some analytical arguments. An analytical expres-
sion@Eq. ~24!# was found, which roughly predicts for a given
material and structure the order of magnitude of the error
made in the perturbation approach compared to an exact
treatment. Most generally, the quality of the perturbation ap-
proach is determined by the strength of the atomic scattering
potential in the disordered layers and the concentration of
defects with regard to the periodic part of the potential.

In addition, a key structural parameter that determines the
applicability of the perturbation method is the correlation
length describing the disorder along the incident beam azi-
muth. If this length is sufficiently small, the perturbation
method works well and is independent of the diffraction con-
dition. For this case, it was further demonstrated by means of
a random distribution of defects at half coverage~where the
defect concentration is particularly high! that, besides the
diffuse scattering, the rocking curves of integer beams from
both the supercell and the perturbation approach are very
similar. Hence, structural information about the periodic part
of a strongly disordered surfacecan be extracted from rock-
ing curves of the principal reflections using the same evalu-
ation methods as for ordered surfaces.

For large correlation lengths~and non-negligible defect
concentrations! the applicability of perturbation theory de-
pends on the diffraction condition. As a general trend the
applicability is favored if the polar exit angles of those
integral-order waves, which are strongly excited, are large.
For these cases the corresponding diffuse waves~concen-
trated around the integral-order ones! travel mainly obliquely
to the disordered layers thus decreasing the probability of
second-order diffuse scattering, which is not included in the
perturbation scheme. Moreover, diffraction conditions could
be deduced at which perturbation theory produces reliable
results for large correlation lengths, even if the glancing
angles involved are low. Under such conditions the diffuse
intensity of a profile is dominated by those scattering pro-
cesses that are included exactly in the perturbation approach.

FIG. 11. Correlation of the quality of perturbation theory with
the overlap of ‘‘dynamical’’ form factor and structure factor. For
further explanation, see text.
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It should be possible to identify the corresponding favorable
exit angles experimentally by means of the modulations in
the diffuse background distribution. The above results show
that for a quite general range of disordered structures, con-
ditions can be found where perturbation theory can be ap-
plied. Finally it is believed that our investigation will con-
tribute to an effective dynamical evaluation of diffuse
RHEED data in the future.
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APPENDIX: DERIVATION OF THE RELATIVE ERROR

In order to obtain an estimate of the erroreg , we need to
evaluate the magnitude of the BZ integral,

IBZ g5E
BZ g

ds8

ks8
8

uS8~s8!u2(
g28

I 8~g28 ,s8,0! ~A1!

in Eq. ~21!.
For uS8(s8)u2 we assume the following simplified expres-

sion within the Brillouin zone BZg:

uS8~s8!u25uS~sx8 ,sy8!u25H LxLy /V if ~ usx82gx8u,AV/Lx and usy82gy8u,AV/Ly!

0 otherwise .
~A2!

Here, the indicesx and y refer to the vector components
along (x) and perpendicular (y) to the incident beam azi-
muth, respectively.~In the main textLx is denoted simply as
L because the final result will not depend onLy .) This ex-
pression accounts for the fact that the strongest diffuse Fou-
rier coefficients are typically concentrated within regions of
size 2p/Li around the reciprocal lattice vectorsg and it also
obeys the conservation law~here in its normalized form!
given by Eq.~3!.

For the z8 integral I 8(g28 ,s8,0) @Eq. ~22!# it is assumed
that the coefficientsw(g28 ,z) of the strong waves only vary
slowly with z5z8AL such that we considerw(g28 ,z)5wg

28

as constant. This means physically that the diffuse scattering
is mainly excited by waves with a smallukg2u ~which are
usually the strongest!. This crude assumption tends to over-
estimateI 8 due to the neglect of oscillations~propagating! or
an exponential decrease~evanescent! under the integral and
thus contributes to a pessimistic estimation of the erroreg .
Thez8 dependence of the atomic potential coefficient is rep-
resented byv(s82g28 ,z8)5v8(s82g28,0)exp(2uz8u/m8). This
corresponds approximately~for the zeroth coefficient ex-
actly! to a screened Coulomb potential with the screening
lengthm8. These assumptions lead to

I 8~g28 ,s8,0!5wg
28
v~s82g28,0!

2

m8212 iks8
8
. ~A3!

It is now possible to easily estimate the BZ integral~A1!.
Becauseks8

8 as a function ofsy varies little within the BZ, we
neglect this dependence for the integration oversy8 and put
ks8
8 (sx8 ,sy8)5ks8

8 (sx8 ,gy8). In the case of the integration over
sx8 the strong variation ofks8

8 with sx8 has to be fully included.
Depending on whether the nonzero diffuse Fourier coeffi-
cients within the BZ@see Eq.~A2!# correspond to evanes-
cent, propagating, or both types of waves, different forms of
~A3! have to be used under the integral.

Insertion ofIBZ g , obtained in this way, into the general
expression~21! yields for the relative erroreg :

eg5A2Au~12u!
2m

\2 Vav~0!LU~kg8 ,m8!

3U 1

wg
(
g28

v8~g82g28,0!wg
28U , ~A4!

where

U5H U1 if ukg8u
2<1

U2 if kg8
2.1

U3 if 2kg8
2.1.

~A5!

U1 applies if in BZg both propagating and evanescent waves
appear.U2 holds if all diffuse waves are propagating;U3 if
all diffuse waves in the BZ are evanescent. It can be shown
that for equalukgu, the shapes ofU2 andU3 as a function of
L are very similar butU2 is always slightly greater than
U3 . For reasons of simplicity we therefore always useU2
for the caseL.ukgu22 ~i.e., the more ‘‘pessimistic’’ func-
tion!. We proceed correspondingly in the case ofU1 . For
different signs ofkg

2 and the sameukgu, U1 as a function of
L has a similar form, with slightly greater values for the case
kg
2.0. Hence, again for simplicity we always usekg

2.0 in
U1 for a givenukgu such that eventually the expressions~26!
and ~27! are used in the final result.

It follows from the general relationucu2<1 for the wave
function that

U(
g28

v8~g82g28,0!wg
28U<1. ~A6!

We now replace the sum in~A4! by 1; i.e., we assume that
the right- and the left-hand sides of~A6! are equal. This
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overestimate of the left-hand side~which would hold for the
case thatwg only is excited withuwgu51) is compensated by
using uwgu51 in the denominator as well. Furthermore, the
laterally averaged potentialVav(0) at z50 is expressed in

terms of the volume average potentialV0 of the material
~interlayer distanced) by Vav(0)'(d/2m)V0 . These substi-
tutions into~A4! finally result in the estimate Eq.~24! for the
error eg .
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