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A self-consistent screened Hartree-Fock calculation, combined with the Landau quantization of in-plane
electron motion, is performed to find the eigenstates and eigenenergies of electrons in double quantum wells.
This theory is applicable to both the low and strong magnetic-field cases. The screened exchange interaction is
calculated by using a generalized Thomas-Fermi screening model. The approximately linear increase of the
tunneling gap at low magnetic fields (B,9 T! and the switching of the ground state between the tunneling-
split first Landau levels are seen and explained as a result of the increase of screening effects on the exchange
interaction when both tunneling-split first Landau levels are filled.@S0163-1829~96!00623-6#

There have long been both theoretical and experimental
interests in double-quantum-well structures in the presence
of an external magnetic field. The destruction of integer
quantum Hall states with odd filling factors in double-
quantum-well structures and in a single wide quantum well
was observed recently.1–3 Several theoretical explanations4–6

were given for these observations. Also, the collapse of the
fractional quantum Hall states in the single wide quantum
well7 and half integer fractional quantum Hall state in the
double-quantum-well structure8,9 was reported. The theoreti-
cal explanations to these experimental findings were
proposed10–12for both single wide quantum-well and double-
quantum-well structures. Some theoretical calculations on
the magnetoroton excitation spectrum13–15 and the suppres-
sion of the spin-density excitation16,17were shown. More re-
cently, the effect of an in-plane magnetic field on the elec-
tron tunneling was studied both experimentally18–22 and
theoretically.23,24

The electron tunneling behavior in the presence of a per-
pendicular magnetic field was also found very interesting
and nontrivial,25,26 where instead of aAB dependence an
approximately linearB dependence of the tunneling gap
from the dc measurement was observed. This behavior was
first explained by Yang and MacDonald as a result of the
‘‘Coulomb gap’’27 in the density of states when the filling
factor is less than unity. Unfortunately, this explanation only
produced aAB dependence on the tunneling gap, which is
not supported by a recent experiment.26 Besides, the screen-
ing effects on the exchange interaction is neglected in their
calculation.27 The magnetoplasmon excitation in the double-
quantum-well structure was also calculated.28 However, the
effect of the Landau quantization in the presence of a mag-
netic field was not included in the self-consistent Hartree
calculation of the eigenstates and eigenenergies in thez di-
rection. This limits the application of their theory most to the
very week magnetic-field case.

In this paper, we have performed a self-consistent
screened Hartree-Fock calculation combined with the Lan-
dau quantization of the in-plane electron motion to find the
eigenstates and eigenenergies of electrons in a double-
quantum-well structure. This theory is expected to be appli-

cable to both low (B,9 T! and strong magnetic-field
(B.9 T! cases. In our model, the screened exchange inter-
action is calculated using a generalized Thomas-Fermi
screening model. From our numerical computation, we find
the approximately linear increase of the tunneling gap at low
magnetic fields (B,9 T! and the switching of the ground
state between the tunneling-split Landau levels, which are
explained as a result of the increase of screening effects on
the exchange interaction when both the tunneling-split first
Landau levels are filled. In our calculation, we concentrate
on the strong-coupling region with thin barrier, which is out
of the Coulomb gap region with a thick barrier. The pre-
dicted switching of the ground state below 9 T in this paper
is different and, to our knowledge, the first reported in this
system that can be observed in the cyclotron resonance ex-
periment as an anticrossing of two resonance peaks.

The model we consider is a doped symmetric double-
quantum-well~DQW! structure that contains two wells sepa-
rated by a middle barrier. An external magnetic field is ap-
plied perpendicular to the planes of quantum wells. In the
self-consistent screened Hartree-Fock approximation, the
vertical electron motion in thez direction perpendicular to
the DQW is described by the Schro¨dinger equation contain-
ing both the DQW potentialVDQW(z) and the self-consistent
Hartree potentialsVH(z),
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where j51, 2, . . . is thesubband index andm* (z) is the
position-dependent effective mass of electrons that varies
from well to barrier materials. Meanwhile, the in-plane elec-
tron motion in each subband in the DQW is Landau quan-
tized in the presence of a magnetic fieldB perpendicular to
the DQW. In the Landau gauge, we can assign a plane wave
for the electron motion in they direction and the electron
motion in thex direction is determined from another Schro¨-
dinger equation11
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wheren51, 2, . . . is theLandau quantum number,mj* is
the electron effective mass in thej th subband, which will be
given below,vc j5eB/mj* is the cyclotron frequency in the
j th subband,X052kyl H

2 is the orbital guiding center in the
plane,ky is the electron wave number in they direction, and

l H5A\/eB is the magnetic length. In Eq.~1!, the shape of a
symmetric DQW potential is chosen as

VDQW~z!

5H 0, 2dW2dB/2,z,2dB/2 ordB/2,z,dB/21dW

V0 otherwise,
~3!

where dW is the individual well width,dB is the middle-
barrier width, andV0 is the middle-barrier height. The Har-
tree potential can be directly calculated from the Poisson
equation28
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In Eq. ~4!, eb(z) is the dielectric constant of the well or
barrier bulk materials, which varies withz. n(z) is the
electron-density function
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whereT is the electron temperature andmc is the chemical
potential at finiteT. Nim(z) is the donor doping density pro-
file

Nim~z!5Nim
3D~z!1(

i
Nim
2D~ i !d~z2zi !, ~6!

which includes both the selective doping andd-doping con-
tributions, whereNim

2D( i ) is the sheet density ford doping in
the i th layer atz5zi . Because the electron effective masses
in the well and barrier materials are different and by using
the first-order perturbation theory, we find the ‘‘average’’
effective mass, used in Eq.~1!, for the electrons in thej th
subband to be28
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which depends on the subband index. HeremW andmB are
the electron effective masses in the well and barrier materi-
als, respectively. In Eq.~7!, the electron quantum-well
dwelling probability is calculated as

Pj5E
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The charge neutrality condition for the completely ionized
donors leads us to

E
2`

1`

dz n~z!5n2D5E
2`

1`

dz Nim
3D~z!1(

i
Nim
2D~ i !, ~9!

wheren2D is the areal electron density. Equation~9! can be
used to determinemc in a self-consistent way. The total elec-
tron energy including both the in-plane and vertical electron
motions can be written as

Enj5~n2 1
2 !\vc j1Ej1Vnj

F , ~10!

whereVnj
F is the exchange energy and will be given below.

From the self-consistent equations~1!–~9!, we are able to
calculate the eigenstatef j (z) and total eigenenergyEnj in
each step. Consequently, the eigenstate in each step is found
to be
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whereHn(x) is thenth-order Hermite polynomial andLy is
the size of the sample in they direction.11

Based on the calculated self-consistent wave function
cn jky

(r ) and subband edgeEnj in each step, we can compute
the screened exchange energy that is needed to finish the
self-consistent Hartree-Fock calculation. A straightforward
calculation brings us to the result29
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where qxy5Aqx21qy
2 is the module of a two-dimensional

wave vectorqxy5(qx ,qy) and the form factor due to Landau
quantization is

uAn8n~qxy!u
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In Eq. ~13!, n,5min(n,n8), n.5max(n,n8), andLm(n)(z) is
the generalized Laguerre polynomial. By using a generalized
Thomas-Fermi screening model, we find
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whereeb is the average background dielectric constant and
« jm

21(qxy) is the inverse of the static dielectric-function
matrix30
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In Eq. ~15!, we have defined the notations
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and the inverse of the Thomas-Fermi screening length
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where we have assumed a Gaussian form of the Landau-level
broadening. The uniform broadening of Landau level super-
posed on thej th subband in Eq.~17! is taken as31
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t
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wheret is the relaxation time of electrons by scattering and
can be determined from the sample mobility. This is a result
of the Born approximation.

In our numerical calculation, we have chosen the well
material as GaAs and the barrier material as AlxGa12xAs.
The sample parameters are set asx50.3, T577 K,
dW5140 Å, dB530 Å, V050.83x, mW50.0665,
mB50.066510.0835x, n2D54.231011 cm22, eW512.02,
eB512.0222.925x, andt52.8310211 sec.

In Fig. 1 the calculated landau levelsEnj are shown as a
function of magnetic fieldB. The labelsn and j are for the
Landau quantum number and subband index, respectively.
The dashed line is for the chemical potentialmc from which
the population and depopulation of each Landau level can be
seen. Because the Landau-level broadening is proportional to
B, the density of states becomes nonzero far away from the
center of Landau level~inside the Landau gap! whenB.9
T. This makes the chemical potentialmc deviate downward
from E11. Similar reasoning can explain the deviation of
chemical potential upward fromE1,2 when B<9 T. As
B.9 T, both the tunneling (D j51,Dn50) and Landau
(Dn51,D j50) gaps are found to be almost constant. When
B<9 T, the tunneling gap is greatly reduced and the Landau
gap, on the other hand, shows only a slight change in the
figure.

Figure 2 displays the screened exchange energiesVnj
F in

the same magnetic-field region. The negative exchange en-
ergy first increases from high magnetic field down toB59
T, and then starts to decrease forB<9 T. The reason for this
change can be explained as follows. When the magnetic field
is reduced down toB59 T, one of the tunneling-split first
Landau levelsE11 becomes gradually populated. As a result,
the negative exchange interactionVnj

F increases with the
population of Landau levelE11, where the screening effects
on the exchange interaction play only a negligible role as
another tunneling-split first Landau level is depopulated.
However, as we further bring down the magnetic field, both
tunnel-split first Landau levelsE11 and E12 are filled as
shown in Fig. 1. In this case, the screening effects on the
exchange interaction becomes dominant. Therefore, the
negative exchange energiesVnj

F are all reduced. Furthermore,
we find that the reduction of the negative exchange energies
Vn1
F is larger than that ofVn2

F , as one can see from Fig. 2.
In Fig. 3 we present the calculated tunneling gap as a

function of the magnetic fieldB by takingD j51 for the first

FIG. 1. Landau levels as a function of the magnetic fieldB. The
Landau-level labelE(n, j ) corresponds to the notationEnj in the
text, wheren is the Landau label andj is the subband index. The
dashed line is for the chemical potentialmc .

FIG. 2. Exchange energies as a function of the magnetic field
B. The exchange-energy labelVF(n, j ) corresponds to the notation
Vnj
F in the text.
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(n51) and second (n52) Landau levels. We find that the
tunneling gaps for bothn51 and 2 remain constant for
B.9 T. Because the magnitude of the tunneling gap is
around;1 meV, which is on the same order of or even less
than the absolute values of the exchange energies, the strong
reduction of the negative exchange energiesVn1

F in compari-
son to that ofVn2

F for B<9 T brings down the tunneling gaps
for both n51 and 2. There is an approximately linearB
dependence for the tunneling gap in this region. Moreover,
the difference in the reduction of exchange energiesV11

F and
V12
F even exceeds the tunneling gap in the absence of the

exchange interaction. As a consequence, the tunneling-split
Landau levelE12 becomes lower thanE11, seen as a nega-
tive tunneling gap forn51 atB57 T, and then the ground
state is switched toE12. This tunneling-split Landau level
crossing should be observed in the cyclotron resonance as an
anticrossing feature when one reduces the magnetic field be-
low 9 T.

Figure 4 exhibits the Landau gaps as a function of the
magnetic fieldB by takingDn51 for both j51 symmetric
and j52 antisymmetric states. Since the Landau gaps;10
meV as shown in Fig. 1 are usually much larger than the
exchange energies as shown in Fig. 2, there is no discernible
difference between two Landau gaps in the figure when the

magnetic fieldB.9 T. WhenB<9 T, the Landau gap for
j51 is slightly lower compared to that forj52.
In order to support the explanation of the features ob-

served in the tunneling gaps shown in Fig. 3, we plot the
differences of the exchange energiesuVn1

F u2uVn2
F u as a func-

tion of the magnetic fieldB by takingD j51 for bothn51
and 2 as shown in Fig. 5. Clearly, very similar features occur
in both Figs. 3 and 5. The negative value of the differences at
B<8 T indicates that the reduction of the exchange energy
for j51 is larger than that ofj52. However, these differ-
ences become approximately independent ofB for B.9 T.

In Fig. 6 we present the differences of the exchange en-
ergiesuV1 j

F u2uV2 j
F u as a function of the magnetic fieldB by

takingDn51 for both j51 and 2. When the magnetic field
B.9 T, the difference forj51 is slightly larger than that of
j52 and their separation remains constant in this region. As
B is lowered fromB59 T, the reduction of the difference for
j51 is faster than that ofj52. As a result, the Landau gap
for j51 is slightly lower compared to that forj52, as seen
in Fig. 4. However, because these two differences are so
small compared to the Landau gaps in the absence of the

FIG. 3. Tunneling gapEn22En1 as a function of the magnetic
field B for the Landau levelsn51 and 2.

FIG. 4. Landau gapE2 j2E1 j as a function of the magnetic field
B for the subbandsj51 and 2.

FIG. 5. Difference in the exchange energiesuVn1
F u2uVn2

F u as a
function of the magnetic fieldB for the Landau levelsn51 and 2.

FIG. 6. Plot of the difference in the exchange energies
uV1 j

F u2uV2 j
F u as a function of the magnetic fieldB for the subbands

j51 and 2.
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exchange energies, we can observe only very little effects in
the Landau gaps, as shown in Fig. 4.

In conclusion, we have performed a self-consistent
screened Hartree-Fock calculation by including the Landau
quantization of electrons in the presence of the perpendicular
magnetic field in a double-quantum-well structure. There-
fore, the theory in Ref. 28 has been generalized. Our theory
should be applicable to both low (B,9 T! and strong
magnetic-field (B.9 T! cases. The generalized Thomas-
Fermi screening model has been used to include the effect of
a screened exchange interaction. This has generalized the
work of Ref. 27. We have found the features of the approxi-

mately linear increase of the tunneling gap at low magnetic
fields (B,9 T! and the switching of the ground state be-
tween two tunneling-split first Landau levels. We have ex-
plained these features as a consequence of the increase of
screening effects on the exchange interaction as both the
tunneling-split first Landau levels are filled. With a thick
barrier, the same model can be applied in the Coulomb gap
region, where we expect the exchange interaction to play an
even more important role in the tunneling gap.
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