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Polaritonic effects in superlattices
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We present a method to compute the optical functions of superlattices in the excitonic energy region
including the effect of the coherence between the electron-hole pair and the electromagnetic field. The
electron-hole screened Coulomb potential is adopted and the valence-band structure is taken into account in the
cylindrical approximation, thus separating light- and heavy-hole motions. The calculated optical functions have
poles in correspondence to the polariton eigenvalues for a multiplicity of excitonic states. We also calculate the
amplitudes of higher polariton branches and the line shapes of the optical functions. Numerical examples
appropriate to GaAs/Ga Al ,As superlattices are given and the effect of coherence is displayed in the line
shape of the excitation spectrup$0163-18206)09027-3

[. INTRODUCTION account the band structufen particular, the valence-band
degeneracy the Coulomb interaction between the electron
The band-edge optical properties of semiconductor quarand the hole, which implies higher polariton branches, and
tum wells and superlattice$SL’s) are dominated by the ex- also considers coherence between the electron-hole pair and
citonic behavior. Several approaches have been applied b€ radiation field. The ABC problem is completely avoided
compute the excitonic binding energies and the correct posin our approach. The method is applied to a GaAs/
tions of the excitonic transitions have been obtaihe@he  Gai—xAl ,As SL, where we obtain the dispersion rule for
above approaches are not sufficient for describing the opticdiolaritons and compute the optical functions.
functions of SL’s since they do not take into account the The paper is organized as follows. In Sec. Il we derive the
polaritonic aspect. A recent contribution by Andreani consid-basic equations for the density matrix approach adapted to
ers the polariton aspect in the framework of the nonlocathe case of superlattices. In Sec. Ill we give the scheme for
susceptibility and with the transfer-matrix approatin this ~ calculating SL optical functions in the case when the total
case, however, the spatial dispersion of the susceptibility ighickness of the SL is much greater than the excitonic Bohr
determined by the motion of the center of mass and the exadius. In Sec. IV we discuss results obtained for GaAs/
citon dipole is taken to be pointlike. This implies the intro- Ga; Al As SL’s. We present our conclusions in Sec. V.
duction ofadditional boundary condition§ABC's) for
computing the optical functions. The discussion of ABC and
ABC-free approaches has a long histdsge, for example,
Refs. 5-14. It has been shown that all types of ABC ap-
proaches have weak points, such as, for example, the ambi- Band-edge optical properties of superlattices can be dis-
guity of ABC’s (which becomes evident when higher exci- cussed by modeling the superlattice as an effective aniso-
tonic states are taken into accoyntfurthermore, the tropic medium in which the quasifree carriers propagate and
separation of the relative carrier motion from the center-ofinteract. In the low barrier limit the electron and hole motion
mass motion makes the use of a dead-layer necessary. in the confinement direction is determined by the superlattice
A more satisfactory approach, from anpriori point of  potential and is replaced by an effective-mass motion, with
view, was introduced by Stahl and Balsfewho extended to  the appropriate effective masses obtained from the miniband
crystals thecoherent densitynatrix approach Such a  dispersion relations? We neglect the possible formation of
point of view has been recently adopted by Mai¢ral.’>to  localized surface states in finite-size superlattices, which is
introduce effects of electron and hole coherence with theusually not relevant, contrary to the case of organic
electric field in the Bloch oscillations and Wannier-Stark lad-heterostructure€ The superlattice exciton can then be
der problem and by Glutsch and CheMiléo derive Bloch treated like an exciton in an effective anisotropic medium
equations in a magnetic field. and some previous results obtained for such a sy<tean
We have recently showhthat the polariton aspect can be be applied. More generally, the optical properties in such a
investigated using Stahl and Balslev's density-matrix ap-system will be treated analogously to the case of a two-band
proach, including electron-hole attraction and modeling thesemiconductor, with corresponding transition dipole density.
superlattice as an anisotropic medium characterized by effeGince SL excitons are of Wannier type, the transition dipole
tive masses parallel and perpendicular to the planes of theill have a spatial extension, characterizing the interaction of
layers. We now present a calculational scheme that takes int@diation with electrons and holes located at different sites.

II. DENSITY-MATRIX FORMULATION
FOR SUPERLATTICES
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This gives a spatial coherence between the electron-hole pair cogKL)=cogkyL)coshkgLg)
and the radiation field. In analogy to bulk semiconductor
excitons, SL excitons induced by an electromagnetic wave 1<1

i )sin(kWLW)sinI*(kBLB), (5

propagating through the SL will give rise to mixed modes 2
“SL polaritons.”

All the above ingredient§Wannier excitons, effective-
mass approximation, and exciton-polaritons with coherence PMuE(K)
justify the use of the so-called coherent wave approach of kw(K)= /V;/'L—Z’

Stahl and BalsleVto describe the optical properties of su-

where

perlattices. In what follows we adapt Stahl and Balslev's

method to the case of superlattices and show how to calcu- _[2mg[Vg—E(K)]
: : ke(K)=\——2—— (6)
late the optical functions. h
We consider a superlattice witth wells and barriers, both
of thicknessL/2, with the external surfaces located at the mwkg(K)
z=0 andNL planes. We assume that the conditions of small §(K)= Mekw(K)

barrier regime are satisfied. We discuss the linear response of ]
the slab to a normally incident electromagnetic wave, lin-In Egs.(5) and(6) the subscript$V andB denote the wells
early polarized in thex direction or barriers,L=Ly+Lg is the superlattice period, andy

and mg are the respective bulk effective masses. For the
in-plane effective masses we will take the values calculated

. . w
Ei(z,t) =Eioexplikoz—iwt), ko= - (1) in Ref. 19 by making use of the cylindrical approximation
In Stahl and Balslev’'s approach the linear response will be — Mo —— Mg @
described by a set of coupled equations: two constitutive L L PV

equations for the coherent amplitudeg,(r.,r,) and

Y (re,ry) for the heavy-hole excitonH) and the light-hole
exciton L) and a Maxwellian field equation. The constitu-
tive equations have the form

wheremy is the free-electron mass and,y, are the Lut-
tinger parameters witly;=0. The quantitiesv,,; and My
are the total heavy-hole excitonic masses in the growth di-
rection and parallel to the layers, respectively, and similarly
1 for the light-hole exciton masses.
HehHY12H=%[iMH(r)E(R)—FHleH], The potential term in Eq3) represents the Coulomb in-
. teraction in an anisotropic medirff

+
Y 14 7

e2

 Ameger[ pt ZZEH /e,

Ven= (8

i 1
I Yix + %HehLleL:gD M (NER)—T Y],

. . ~ where we have introduced the two effective dielectric con-
whereY 3, contains the dependence on the spatial coordinategant, ¢ and ¢, respectively, and defined,= \¢je,. The

of the hole and of the electrom=r.—ry is the relative  yatio of the effective dielectric constants is giver? by
electron-hole coordinate, aftlis the center-of-mass coordi-

nate. We have considered relaxation timi¢$§ as phenom- €, ew'Lwt ez 'Lg
enological quantities. The operatbf,,, is the SL heavy- =~ (ewbwt EBLB)W—. 9)
hole exciton effective mass Hamiltonian | wh "B

wheree,, and eg denote the isotropic dielectric constants in

HoE 2 2 2 V2 h? 2 72 2 each layer of the superlattice.
ehH™ SgH™ S\ 72 2Mpy Rl 2u0 % 2ppn ° The transition dipole deqanIW and its integrated
strengthMy,, , are defined &
+Veth (3)
e
where we have separated the center-of-mass coordRjate M, (1) =— ﬁf dijx(x)xww(rer), (10

from the relative coordinate on the planex-y; a similar
formula holds for the light-hole exciton Hamiltoniath,,,, . where\ indicates the valence subbands andhe conduc-
In the above formulas the reduced masses inztheection  tion subbands() is the volume of the unit cell, and,, and

are given by wc,, are the respective Wannier functions. Inserting the rela-
tion between Wannier functions and Bloch functions, in the
1 1 N 1 @ limit of an infinite crystal, we arrive at
m m
MzH ezH hzH M) et pm(k)exp(ik-r) K 1)
: . - . r=- ,
for the heavy-hole case, with a similar expression for the Ap img(27)3) sz Ecu(K)—Eyy(K)

light hole, where the electron and the hole effective masses

in the z direction follow from the miniband dispersion rela- whereE_ ,(k) are the energies of band electropg,, (k) is
tions (one for electrons and one fét andL holes, respec- the momentum matrix element between Bloch states, and the
tively) integration is extended over the first Brillouin zone. In the
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spirit of the effective medium approach to superlattices, the The coherent amplitudeg,,Y, , together with the tran-
SL periodicityL acts upon the envelope functions, so that thesition dipole densitie$/; | (r), give the total polarization of

SL Brillouin zoneis now extended to 2/L. Optical tran-

our effective anisotropic medium

sitions in the SL are governed by its specific selection rules,

which we consider to be knowr?? Here we assume that the

superlattice has a direct gap at the pdirt0, and expanding
the energy difference to second orderkinve obtain

eh
mo(27)°
exp(ik-r)ipy(Kk)
X 2 2
f fi
Egnt+ 5 s (K+ K2 + — k2
TN My (R TRy 2 Mz Kz

My (r)=—

dk,

(12

where we restrict ourselves to the most common case of
nondegenerate conduction band. The reduced masses to

inserted in Eq.(12) are known from(4) together with the
miniband dispersion relations. In type-l Sxg(k) is, to a
good approximation, independent df and equal to

p,(0).221n such a case, extending the limits of integration to
infinity, we obtain from(12), for the considered case of a SL

with heavy-hole(HH) and light-hole(LH) valence bands,

MH(T)Z /’L”HepH(o) e*r/TOH: MOHZ efr/rOH,
2imhrmgyay 4 ayl gur
(13
where
2
z
r=1\/x?+y o
(14
a’H:MHH/IU“ZH’

a totally analogous expression holding dr (r). The inte-
grated matrix elemeri¥y, (Mq.) is given by

_ fiepy(0)

OH

with an analogous expression for thecase, and g is the
so-called coherence radius

—1_ 2MHHEgH
rOH_ ﬁ—.

(16)

PUR) =2 | dr{My(NREY (1. R+ ML (NREYL (R
@

Equation(17), with the constitutive equation&), connects
the polarization with the electric field. Both the polarization
and the electric field must obey Maxwell's equations, which
must be solved to obtain the propagation modes. One advan-
tage of the procedure presented here with respect to other
approachés®*?2js that microscopic theory and macroscopic
theory are treated on the same footing and the problem of
ABC'’s finds a natural solution in the conditions that the ge-
gmetry of the problem imposes 0fj,y,Y;5 . They are ob-
?éned by requiring that the SL electron-hole pair functions
121, decay very rapidly outside the SL, so that we can
assume that

Yu(re,rn)=0, Y (re,ry)=0, (18

when the electron or the hole attains the SL external bound-
aries.

The above formulation contains all the ingredients for the
calculation of all SL optical functions. They are obtained, as
usual, by comparing the amplitudes of incident, reflected or
transmitted electric fields, and display a dependence on the
total SL thickness and on the coherence raglij| of physi-
cal significance. In particular, the coherence of the electric
field with the electron-hole pair is expected to give correc-
tions on the results obtained from simpler approaches and we
will display such effects.

[ll. OPTICAL FUNCTIONS OF SUPERLATTICES

The constitutive equation@) can be solved introducing
Green’s functionsgGy and G, , the coherent amplitudes at
the frequencyw of the electric field being

YH(1,2)=f f drodriGu(re,rairn.ry)
XMy(re—rr)E(R), (19
with an analogous expression f¥{ (1,2). This has the ad-

vantage that the boundary conditions can be imposed on the
Green functions and are automatically satisfied by the coher-

The above expression gives the coherence radius in terms eht amplitudes. However, Green functions for the Hamilto-
effective band parameters, but we find it convenient to treahians in Eqs(2) satisfying the boundary conditiori&8) are
the coherence radii as free parameters that can be detaret known in an analytical form. Such Green functions can

mined, for example, by fitting experimental spectra.
The coefficientd’ | in the constitutive equation(@) rep-

be found for the kinetic part of the Hamiltonians. Therefore
we separate the Hamiltonians of E@3) into a kinetic part

resent dissipative processes that, in general, are energy ahly;, and a potential ternv and obtain from(2)

temperature dependefitin superlattices the radiative life-
time is infinite becausé, is still a good quantum number,

contrary to the quantum-well case. As in bulk crysfilse

HyinY=ME—-VY, (20)

can expect a significant temperature-dependence of the Skhich gives the Lippmann-Schwinger equation, with the
spectra; microscopic analysis of damping parameters, whicereen functionG appropriate to the kinetic part
are the main temperature-dependent factors, requires future

studies and will not be explicitly considered in this paper.

Y=GME-GVY. (22)
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The Green functions of the kinetic term, which take intowith confinement functions

account the dependence kpandR|, are®
_nwz
v n(Z) = mSIﬂW (23
Gy

1 MezH = , . )
Tom A nzl Un(Zn)vn(2))9nn(Ze . Ze i pp ),(22) d
an

|
. MezH <) . I_( MezH > )
2 [ sml-(kan\/—MH zg |sinh Knxn \/ M”H(NL z;)

OnH= 72 o XdxJ(xp)Jo(Xp")

: (24)
. MezH
kansm?'( Knxn WN L)

wherez==min(zz'), z~=max@z2'), Jo(x) are Bessel func- problem in the regiorfii). Using a calculation scheme simi-

tions of zeroth order, and lar to that proposed in Refs. 27 and 28 we calculate the
values of all functiongfield and polarizatiopat a number of
2 points in the surface regions, while in the bulk region we
2 HH . HMiH | 2 . .
kanzﬁ(EgH—ﬁw—lFHH M—HHKH express the fields as a sumlfpropagating waves
M|H n’m? 2 < . < .
5+ X2, (25) E(Z)=2, Ejexplik,Z)+ 2, Ex:exflikyk+sZ),
Mpzn (NL) =1 s=1
(26)

An analogous expression holds for the light-hole function
G, . K K

The above equations, with the addition of Maxwell's P(Z)=E Pjexp(iksz)Jrz Py +seXP(iKz k+s2),
equations, give the solutions for the optical functions in =1 s=1

closed form. It can be shown that the poles of the functions (27)
Yy andY, , and consequently of the susceptibility, corre-which have to be counted twice because of the two directions
spond to the eigenvalues of the corresponding anisotropigf propagationk, k+j=—Kqj, 1,5=1,... K; wave vectors

Schralinger equation. When the superlattice thickness goeg_; follow from the bulk polariton dispersion relation derived
to infinity, we find the polariton modes. However, the solu-in Ref. 17. The number of polariton waves is related to the
tions of Eqgs(21), together with Eq(17) and the correspond- ymper n of excitonic states considered, so we have
ing Maxwell equations, represent a nontrivial computationalk = n+1. The values(0),E(Z,), . .. E(NL) and the am-
problem for realistic SL data. After exploiting the symmetry, plitudesE, ,P; of the bulk polariton modes are obtained by
we are left with a system of integral equations in a three'solving a set of equations that is given in the Appendix.
dimensional configurational space. We solved similar €qUaraying the fieldE(z) inside the SL and making use of the

tioqs in Refs.. 24 and 25, whgre a spec.ial choice of the intericident wave intensityE;,, we obtain the SL optical func-
action potential and of the dipole density was adopted. Hergons from the relations

we will compute the field&(Z) and polarization$(Z) with

the realistic electron-hole potenti@B) and for the dipole E(0) 2 E(NL)|2
density(13). =‘ e 1. = , A=1-R-T.
We consider a superlattice whels>1 so that the total 10 10 28)

SL thickness is much greater than the Bohr radius of the SL
exciton. In this case we distinguish a 3lulk, where the = The above-described method, by an adequate choice of band
polariton waves propagate, and near surface regions, wheggrameters(energy gaps, effective masses, and dielectric
SL excitons are created. Consequently, we divide the SL ofunction), can be used also for anisotropic semiconductor
thicknessNL into two parts in the following wayti) surface  slabs when the slab thicknesses are much greater than the
range 0<Z<Z, and NL—2Z,<Z=<NL; (ii) internal bulk  excitonic Bohr radii.

region Zo<Z<NL-Z2,, Z, being of the order of a few SL
excitonic Bohr radii. We do not consider the possibility of
two different transition layer thicknesses, because in our ap-
proach they represent the termination of the crystal and are We have computed the optical functions of the most regu-
larger than the SL period. The method consists of two stepdar GaAs/Ga _,Al ,As SL with a chosen total thickness of
In the first step we solve equatiof®l) in the surface regions 2000 A (20 periods in the belief that the total thickness is
(i) neglecting the effect of electron-hole interaction. The ne-sufficient to obtain results that are independent of the number
glected effects, which are essential for the formation ofof layers. The values of the relevant parameters are well
exciton-polaritons, are instead considered when solving thenown and are given in Table I. In our scheme the field and

IV. RESULTS FOR GaAs/Ga;_,Al ,As AND DISCUSSION
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TABLE |. Parameter values for a GaAs/GaAl ,As superlat-
tice (SL) with x=0.2 andL=100 A and for bulk GaAgbulk)

(data for bulk effective masses are from Ref. 19, energy is in units

of meV, and mass is img).

Quantity SL Bulk Quantity SL Bulk
me 0.13 0.0665 ay 0.336 0.75
M4 3.12 0.34 a 0.769 1.282
M,y 3.25 0.406 R} 3.64 3.64
Mp 2L 0.13 0.094 Ry 4.34 4.34
M, 0.2 0.161 1= 4.971 3.992
T 0.125 0.056  |Eq| 4.758 3.984
e 0.06 0.039 Egh 1596.8 1519.2
A 0.042 0.042 EqL 1612.15 1519.2
©L 0.05 0.050 A1y 0.08
€y 12.257 1253

the polarization in the surface regions are connected by
depth-dependent polarizatiofA1), which gives a depth-
dependent susceptibility(Z), whose shape is defined by
expression36) and is displayed in Fig. 1 for two values of
the coherence radiug . The field and the polarization in the
bulk region(ii) of the SL define the polariton modes, whose
dispersion follows from the relation

c2k?
2 =~ €p
+E YAYR LT
v EgntEnn—fio—iTy+(kaf)*(un /MR
+2 epALTiFnL
n EgL+EnL_ﬁw_iFL+(kzat)2(M\|L/MZL)Rt ,

(29

M TSR
0.0 0.5 1.0 15 2.0
Z/a0

FIG. 1. Depth-dependent susceptibilifyy(Z) for a GaAs/
Gag Al g ,As SL (continuous ling and bulk GaAsy(Z) (dotted
line) for two values of the coherence radipg=r,/a* and energy
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0

FIG. 2. Polariton dispersion relation fofa) a GaAs/
Ga; _,Al,As SL (N=20,L=100 A ,x=0.2 and (b) bulk GaAs.
We have used damping coefficiedtg=1"| =0.01 meV and coher-
ence radiipgy = po_=0.1 (other data are from Table.|

where the gap&y, and €y, ) refer to the superlattice and
are taken to be different for heavy-hole and light-hole exci-
tons, R | ,afy | are effective excitonic Rydbergs and Bohr
radii, respectively, and tyy, areL-T splittings. Oscillator
strengthsF,, . and excitonic binding energieg,y, E,_
have been calculated as shown in Ref. 17, and the effective
masses follow from the miniband dispersidrfaVe consider
the 1S and 2S excitonic states for both HH and LH excitons,
so that the number of polaritonic states considerel #s5
and an isotropic background dielectric constapt €)= ¢, .

The resulting polariton dispersion ik, is displayed in
Fig. 2 and can be compared with the dispersion of a bulk
GaAs layer of the same thickness, which is also shown in

near the lowest excitonic resonance. Curves are normalized to tHeig. 2. We can observe in the case of the bulk dispersion the

Z— value.

crossing of LH1 and HH2 polariton branches. This effect
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disappears in SL because of the great mass anisottbpy e —— g
total HH exciton mass is equal to 312§ for the case con- 0s |
sidered.

The next step in our procedure is the computation of the
electric fields of the different modes to obtain the optical ,
functions. We have determined the electric field at a number 04
of points in the surface region and ten field amplitudes in the I
inside region (i) E; (j=1,...,5 for theingoing and
j=6,...,10 for theoutgoing waveg solving equations
(A12) and (A19) and making use of the depth-dependent
susceptibility(A7).

The optical functions for a GaAs/Ga,Al ,As superlat- _
tice have been computed and can be compared with those of oz
a bulk GaAs slab. The results for the reflectaitare dis- ]
played in Fig. 3 for different values gfy=ry/a*. The ef-
fects of excitonic center-of-mass quantization appear as a
fine structure above the first peak of each transition in the
bulk, but only above the LH transition in the superlattice
because of the largeness of the HH total mislss, .

While the resonance energies do not depend particularly
on the coherence, it can be observed from the results of Fig.
3 that variations of the coherence radius change substantially S s B S A
the line shapes. The observed changes in the spectra are o6 - .
mostly due to the fact that an increasergfdiminishes the 1
oscillator strengths, as already apparent in the model dis-
cussed in Ref. 17. Though the available experiments do not
yet allow a sufficiently detailed comparison with the theo-
retical line shapes, we are confident that the coherence effect 05 ]
here described may be observed. I ]

Reflectance
=3
W

LH |
P
1612

0.1

T IR
1590 1592

R T TN R B
1504 1596 1606 1608 1610
Energy (meV)

V. CONCLUSION

Reflectance

We have developed a simple mathematical procedure to 04
calculate the optical functions of superlattices. The above i
model describes the propagation modes and the optical prop-
erties of a superlattice slab without the requirement of
ABC's, taking into account the Coulomb interaction between . | BULK
electrons and holes and the existence of higher excitonic '
states. Our treatment includes anisotropic dispersion, as the

1 L ' L 1 L L L 1 L L L |

. . . . |2|9'30 . 1512 1514 1516 1518
fractl_onal dimensionality approac but it als_o _ b Energy (meV)
takes into account coherence of the electron-hole pair with )
the radiation field. The present method has been used to in-
vestigate the optical functions of GaAs/GgAl ,As super- FIG. 3. (a) Reflectance of a GaAs/GaAl,As SL (N=20,
lattices for the case of radiation incidence parallel to thel =100 A ,x=0.2) for three values opo: pon= po. =0.1 (continu-
growth direction. ous ling, poy=po.=0.5 (dotted ling, and poy=po =1 (dashed

line), displayed for energies near Hit=1,2 and LHn=1,2 exci-

tonic states. We have used damping coefficiéhts-I", =0.2 meV

and a transition layer thicknes,=150 A . For comparison we
This research was based on work supported by Istitut@!so give(b) the reflectance of a 2000-A GaAs slatata are from

Nazionale per la Fisica della Materia and by Consiglio Na-Table ). We have used damping coefficierdts=1" =0.05 meV

zionale delle Ricerche. One of (6.C) wishes to acknowl- and coherence radio = po_ = 0.5.

edge NATO and CNR for financial support and the Scuola

Normale Superiore for the invitation and hospitality. replacing them with a set of algebraic equations.
In the first step we calculate a depth-dependent suscepti-

APPENDIX: CALCULATION bility that connects the polarization and the field in the sur-
OF SL OPTICAL EUNCTIONS face region(i). Making use of Eqs(17), we obtain

ACKNOWLEDGMENTS

We show how to compute the optical functions of a semi- P(Z)=P.4(2)+ Py (2) for 0<Z<Z,,
conductor SL using the calculational scheme described in
Sec. lll. In particular, we show that the solutions for the P —e (2)E(2)
electric field and the polarization through the slab can be 1H,L™ €0XHL ’
obtained solving a set of integral equations numerically, by (A1)
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P2(Z)=Pou(Z)+ Py (Z) for NL—Zy<Z<NL, where Ei@) is the exponential-integral, and
Pon L= €oxn L (NL=2)E(Z), 1(Z)= fxx dxt 2 ZSInH(XAZSInH(XBZ_ 1
0 k,sinhk,CZ Ry
where
e RAZsintk,BZ+ e~ RBZsintk, AZ
BnZ ByZ + e
)(H(Z)— pdp p "dp’ f dzf dz Rysintk,CZ
~AnZ e 2RAZ| o~ 2R,BZ K, .
xf d¢ d¢ Mu(r)Gy(r,r )My(r"), x Rysintk,CZ
0
(A2) — (e 2RAZ4 @7 2RB2) cosIk,CZ] } , (A8)

with a similar expression fox, (Z). We make use of the
dipole density(13). The Green function that we substitute Where we have omitted the indék and used the abbrevia-

into the above formula is proper to the kinetic part of theton

Hamiltonian(2) when neglecting the spatial dispersion term =7

proportional tog2 Re=\ro "7 (A9)

A totally analogous formula holds for the susceptibility
xL(2). Having the suceptibility and thus the polarization, we
solve the Maxwell equation for obtaining the electric field in
the surface regions.

GH(r.r)=Gu(z.2":p.p') = ”;‘,12 x dxhy(xp)Jo(xp")

sintk,(AuZ+27)sinkk,y(ByZ—2z7) The field and the polarization in the bulk regicin) are
Ky psink, ,CpZ superpositions of polariton waves with amplitudés and
(A3) wave vectors,;:
where 2
- ik,
E(Z)—JZl E;eki,
21 M
k2 =—7 (Equ—fiw—il + ki+x? (A4
=7 (Fan W A P(2)=Pyu(2)+PL(2), (A10)
and 10
PuL(Z)=€02, xju Ejee,
M M M H,L O,: jH,L=j
AH— /C(Hl ZH, BH: 01;1 ZH’ CH: /a_ﬁl ZH. =1
MhzH MezH MZ(HAS) where
An analogous expression holds for the light-hole function :2 €pALTHF nH
Gy . It can be proved that the Green functiok8) (and thus IH EgntEnn—fio—iTy+ (k@) 2(uyn /M) RY
the H-exciton amplitudeYy) satisfies the boundary condi- (A11)
tions (18), which in the relative and center-of-mass coordi- . ) L
nates have the form with an analogous expression fgy . Thus, taking into ac-
count HHn=1,2 and LHn=1,2 excitonic states and ex-
M,.Z M, Z ploiting the continuity ofP(Z), E(Z), anddP/dZ, we ob-
Gu=0 for z=— . Z= : (A6)  tain the following set of equations for determining the SL

m m : .
ezt hzH optical functions:

with similar relations forG, . Performing the integrations in

A2), we arrive at the following expression for the suscepti- kg z
é.l.)_"" v wing expressi USCPE 2y + 2| | Pduc(z,u)Py(u)
ility: €o€p| Jo
2 10
“ Moy f’\“-
Z)= lu(Z + duG(Z,u)P,(u) |+ EiF..(Z2)=E Z),
Xn(2) PPN W H(2) -z, JUCZWP(W) ,21 iFis(Z)=Ehon{2)
Al2
MHHMSH I'oH ( )
2mapeoh?ri(ro2—k2y) “lont - wheres=1 for 0<Z<Z, ands=2 for NL—Zy<Z=<NL,
—2AnZIr —2ByZIr k2 NL
X (e norie TEnTon) + ApZ . f duG(Z,, u)Pl(u)+f dUG(Zg,U)P,(u)
—40
><EI(—ZAHZ/YOH)+BHZEI(—ZBHZ/YOH)}, 10
A7) +j§1 Ej[F1(Zo) +€%2i%0] = Epon( Zo), (A13a)
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kt2> Zy NL A=H,L, and
e J duG(NL—ZO,u)Pl(u)+j duG(NL
0¢bL /0 NL=Zo O(Z—2")sink,(Z—2")
10 G(Z,Z’):Gl(Z,Z’)-F kb s
—Zy,u)Py(u) +j21 Ej[Fja(NL—Zg) +e*zN-=20)] (A17a)
=Enor( NL—Zp), Al13b [
hon o) (AL3D) G.(2,2")=—=——=f(2)f(NL-2'), (Al7b)
0 2k, W
XH(ZO)E(ZO)_ZlXjHEjeiijzozoa (Al4a) _ Ko—Ko .
= f(Z)=e *oZ4 2 CeknZ, (A17¢)
. 1 ky+ Ko
[XH(Z)E(Z)] _2 XHElk .eiijZO=0 5
dz z-7, 1=1 S ’ W= e KeNL_ w elkpNL (A170d)
(A14b) kp+ ko ’
ZVE(Z _io E iijZO—O Al4d E m(Z)—E W (Al?e)
XU(ZOE(Zo) = 2, xiEje'e0=0,  (Al4q) om0 (ky ko)W
10 —
d[XL(j)z—E(Z)] — > xiEjikye20=0, o= Vepole, AL
z=z, 171 where ®(Z) is the Heaviside function. The notations

(A14d)  follow those of Ref. 27. EquationéA12) to (A15) corre-

and four additional equations obtained from Egal4) SPond to a set of @+10 algebraic equations forp2- 10
when replacing unknowns  E(Zy), ... E(Z)) (0<Zi,....Z,=Z),

E(Zp+1), PP ,E(Zzp) fOI’ Zp+1:NL_Zo,Zp+2, ey

Zy by NL-Z,, (A15)  Z,,<NL, and ten amplitudeg,, ... ,Eq. Having E(Z)
wher andP(Z), we calculate the electric field on both sides of the
ere SL:
Fi,=— M C(H)g—ikpNL 4 @C(ﬂeikbm 1 kﬁ 2
TR 26w [T KpFko ™ E<0>=Ehom<0>——[ f duG(0,u)Py(u)
(A16a) €0€b| Jo
ko (Z)x ko —k NL 3
=S DD AN () gmikpNL . TP 20 () ikNL +f duG(0,u)P,(u)|— >, EiF;1(0),
== 3 LR oy 00 gy } 5, BUC0WPAw) |~ (0
_ (A18)
+ 3 0 gz gk (A16h)
X 26 ' ' K2 [ (2o
_ _ E(NL):EhOm(NL)——b“ duG(NL,u)P;(u)
CH)_eX[{l(ijJrkb)(NL—ZO)]—exp[l(kzj-l—kb)Zo] €0€p| Jo
b Kzj+ Kb , NL 10
(A160) +f duG(NL,u)Py(u) |- X, EjFj2(NL)
NL—2Z, =1
C(_):exni'(kzj_kb)(NL_ZO)]_eXFi'(kzj_kb)zo], (AL9)
J kzj_kb

(Aled) and thus the optical functions by relatio(&8).
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