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We present a method to compute the optical functions of superlattices in the excitonic energy region
including the effect of the coherence between the electron-hole pair and the electromagnetic field. The
electron-hole screened Coulomb potential is adopted and the valence-band structure is taken into account in the
cylindrical approximation, thus separating light- and heavy-hole motions. The calculated optical functions have
poles in correspondence to the polariton eigenvalues for a multiplicity of excitonic states. We also calculate the
amplitudes of higher polariton branches and the line shapes of the optical functions. Numerical examples
appropriate to GaAs/Ga12xAl xAs superlattices are given and the effect of coherence is displayed in the line
shape of the excitation spectrum.@S0163-1829~96!09027-3#

I. INTRODUCTION

The band-edge optical properties of semiconductor quan-
tum wells and superlattices~SL’s! are dominated by the ex-
citonic behavior. Several approaches have been applied to
compute the excitonic binding energies and the correct posi-
tions of the excitonic transitions have been obtained.1,2 The
above approaches are not sufficient for describing the optical
functions of SL’s since they do not take into account the
polaritonic aspect. A recent contribution by Andreani consid-
ers the polariton aspect in the framework of the nonlocal
susceptibility3 and with the transfer-matrix approach.4 In this
case, however, the spatial dispersion of the susceptibility is
determined by the motion of the center of mass and the ex-
citon dipole is taken to be pointlike. This implies the intro-
duction ofadditional boundary conditions~ABC’s! for
computing the optical functions. The discussion of ABC and
ABC-free approaches has a long history~see, for example,
Refs. 5–14!. It has been shown that all types of ABC ap-
proaches have weak points, such as, for example, the ambi-
guity of ABC’s ~which becomes evident when higher exci-
tonic states are taken into account!; furthermore, the
separation of the relative carrier motion from the center-of-
mass motion makes the use of a dead-layer necessary.

A more satisfactory approach, from ana priori point of
view, was introduced by Stahl and Balslev,5 who extended to
crystals thecoherent density-matrix approach. Such a
point of view has been recently adopted by Meieret al.15 to
introduce effects of electron and hole coherence with the
electric field in the Bloch oscillations and Wannier-Stark lad-
der problem and by Glutsch and Chemla16 to derive Bloch
equations in a magnetic field.

We have recently shown17 that the polariton aspect can be
investigated using Stahl and Balslev’s density-matrix ap-
proach, including electron-hole attraction and modeling the
superlattice as an anisotropic medium characterized by effec-
tive masses parallel and perpendicular to the planes of the
layers. We now present a calculational scheme that takes into

account the band structure~in particular, the valence-band
degeneracy!, the Coulomb interaction between the electron
and the hole, which implies higher polariton branches, and
also considers coherence between the electron-hole pair and
the radiation field. The ABC problem is completely avoided
in our approach. The method is applied to a GaAs/
Ga12xAl xAs SL, where we obtain the dispersion rule for
polaritons and compute the optical functions.

The paper is organized as follows. In Sec. II we derive the
basic equations for the density matrix approach adapted to
the case of superlattices. In Sec. III we give the scheme for
calculating SL optical functions in the case when the total
thickness of the SL is much greater than the excitonic Bohr
radius. In Sec. IV we discuss results obtained for GaAs/
Ga12xAl xAs SL’s. We present our conclusions in Sec. V.

II. DENSITY-MATRIX FORMULATION
FOR SUPERLATTICES

Band-edge optical properties of superlattices can be dis-
cussed by modeling the superlattice as an effective aniso-
tropic medium in which the quasifree carriers propagate and
interact. In the low barrier limit the electron and hole motion
in the confinement direction is determined by the superlattice
potential and is replaced by an effective-mass motion, with
the appropriate effective masses obtained from the miniband
dispersion relations.1,2 We neglect the possible formation of
localized surface states in finite-size superlattices, which is
usually not relevant, contrary to the case of organic
heterostructures.18 The superlattice exciton can then be
treated like an exciton in an effective anisotropic medium
and some previous results obtained for such a system17 can
be applied. More generally, the optical properties in such a
system will be treated analogously to the case of a two-band
semiconductor, with corresponding transition dipole density.
Since SL excitons are of Wannier type, the transition dipole
will have a spatial extension, characterizing the interaction of
radiation with electrons and holes located at different sites.
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This gives a spatial coherence between the electron-hole pair
and the radiation field. In analogy to bulk semiconductor
excitons, SL excitons induced by an electromagnetic wave
propagating through the SL will give rise to mixed modes
‘‘SL polaritons. ’’

All the above ingredients~Wannier excitons, effective-
mass approximation, and exciton-polaritons with coherence!
justify the use of the so-called coherent wave approach of
Stahl and Balslev5 to describe the optical properties of su-
perlattices. In what follows we adapt Stahl and Balslev’s
method to the case of superlattices and show how to calcu-
late the optical functions.

We consider a superlattice withN wells and barriers, both
of thicknessL/2, with the external surfaces located at the
z50 andNL planes. We assume that the conditions of small
barrier regime are satisfied. We discuss the linear response of
the slab to a normally incident electromagnetic wave, lin-
early polarized in thex direction

Ei~z,t !5Ei0exp~ ik0z2 ivt !, k05
v

c
. ~1!

In Stahl and Balslev’s approach the linear response will be
described by a set of coupled equations: two constitutive
equations for the coherent amplitudesYH(re ,rh) and
YL(re ,rh) for the heavy-hole exciton (H) and the light-hole
exciton (L) and a Maxwellian field equation. The constitu-
tive equations have the form

] tY12H1
i

\
HehHY12H5

1

\
@ iMH~r !E~R!2GHY12H#,

~2!

] tY12L1
i

\
HehLY12L5

1

\
@ iML~r !E~R!2GLY12L#,

whereY12 contains the dependence on the spatial coordinates
of the hole and of the electron,r5re2rh is the relative
electron-hole coordinate, andR is the center-of-mass coordi-
nate. We have considered relaxation times\/G as phenom-
enological quantities. The operatorHehH is the SL heavy-
hole exciton effective mass Hamiltonian

HehH5EgH2
\2

2MzH
]Z
22
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1VehH , ~3!

where we have separated the center-of-mass coordinateRi
from the relative coordinater on the planex-y; a similar
formula holds for the light-hole exciton HamiltonianHehL .
In the above formulas the reduced masses in thez direction
are given by

1

mzH
5

1

mezH
1

1

mhzH
~4!

for the heavy-hole case, with a similar expression for the
light hole, where the electron and the hole effective masses
in the z direction follow from the miniband dispersion rela-
tions ~one for electrons and one forH andL holes, respec-
tively!

cos~KL !5cos~kWLW!cosh~kBLB!

2
1

2 S 1j 2j D sin~kWLW!sinh~kBLB!, ~5!

where

kW~K !5A2mWE~K !

\2 ,

kB~K !5A2mB@VB2E~K !#

\2 , ~6!

j~K !5
mWkB~K !

mBkW~K !
.

In Eqs.~5! and ~6! the subscriptsW andB denote the wells
or barriers,L5LW1LB is the superlattice period, andmW
and mB are the respective bulk effective masses. For the
in-plane effective masses we will take the values calculated
in Ref. 19 by making use of the cylindrical approximation

mhiH5
m0

g11g2
, mhiL5

m0

g12g2
, ~7!

wherem0 is the free-electron mass andg1,g2 are the Lut-
tinger parameters withg350. The quantitiesMzH andM iH
are the total heavy-hole excitonic masses in the growth di-
rection and parallel to the layers, respectively, and similarly
for the light-hole exciton masses.

The potential term in Eq.~3! represents the Coulomb in-
teraction in an anisotropic medium2,20

Veh52
e2

4pe0eb@r21z2e i /ez#
1/2, ~8!

where we have introduced the two effective dielectric con-
stant,e i and ez , respectively, and definedeb5Ae iez. The
ratio of the effective dielectric constants is given by2

ez
e i

5~eWLW1eBLB!
eW

21LW1eB
21LB

~LW1LB!2
, ~9!

whereeW andeB denote the isotropic dielectric constants in
each layer of the superlattice.

The transition dipole densityMlm and its integrated
strengthM0lm are defined as5,21

Mlm~r !52
e

VE dxwvl* ~x!xwcm~r1x!, ~10!

wherel indicates the valence subbands andm the conduc-
tion subbands,V is the volume of the unit cell, andwvl and
wcm are the respective Wannier functions. Inserting the rela-
tion between Wannier functions and Bloch functions, in the
limit of an infinite crystal, we arrive at

Mlm~r !5
e\

im0~2p!3
E
BZ

plm~k!exp~ ik•r !

Ecm~k!2Evl~k!
d3k, ~11!

whereEc,v(k) are the energies of band electrons,plm(k) is
the momentum matrix element between Bloch states, and the
integration is extended over the first Brillouin zone. In the

2036 54CZAJKOWSKI, BASSANI, AND TREDICUCCI



spirit of the effective medium approach to superlattices, the
SL periodicityL acts upon the envelope functions, so that the
SL Bril louin zone is now extended to 2p/L. Optical tran-
sitions in the SL are governed by its specific selection rules,
which we consider to be known.1,22Here we assume that the
superlattice has a direct gap at the pointk50, and expanding
the energy difference to second order ink we obtain

Ml~r !52
e\

m0~2p!3

3E exp~ ik•r !ipl~k!

Egl1
\2

2
m il

21~kx
21ky

2!1
\2

2
mzl

21kz
2

dk,

~12!

where we restrict ourselves to the most common case of a
nondegenerate conduction band. The reduced masses to be
inserted in Eq.~12! are known from~4! together with the
miniband dispersion relations. In type-I SL’spl(k) is, to a
good approximation, independent ofk and equal to
pl(0).

22 In such a case, extending the limits of integration to
infinity, we obtain from~12!, for the considered case of a SL
with heavy-hole~HH! and light-hole~LH! valence bands,

MH~r !5
m iHepH~0!

2ip\rm0AaH

e2r /r0H5
M0H

4pAaHr 0H
2 r

e2r /r0H,

~13!

where

r5Ax21y21
z2

aH
,

~14!

aH5m iH /mzH ,

a totally analogous expression holding forML(r ). The inte-
grated matrix elementM0H (M0L) is given by

M0H5
\epH~0!

im0EgH
, ~15!

with an analogous expression for theL case, andr 0H is the
so-called coherence radius

r 0H
215A2m iHEgH

\2 . ~16!

The above expression gives the coherence radius in terms of
effective band parameters, but we find it convenient to treat
the coherence radii as free parameters that can be deter-
mined, for example, by fitting experimental spectra.

The coefficientsGH,L in the constitutive equations~2! rep-
resent dissipative processes that, in general, are energy and
temperature dependent.23 In superlattices the radiative life-
time is infinite becausekz is still a good quantum number,
contrary to the quantum-well case. As in bulk crystals,24 we
can expect a significant temperature-dependence of the SL
spectra; microscopic analysis of damping parameters, which
are the main temperature-dependent factors, requires future
studies and will not be explicitly considered in this paper.

The coherent amplitudesYH ,YL , together with the tran-
sition dipole densitiesMH,L(r ), give the total polarization of
our effective anisotropic medium

P~R!52E dr $MH~r !Re@YH~r ,R!#1ML~r !Re@YL~r ,R!#%.

~17!

Equation~17!, with the constitutive equations~2!, connects
the polarization with the electric field. Both the polarization
and the electric field must obey Maxwell’s equations, which
must be solved to obtain the propagation modes. One advan-
tage of the procedure presented here with respect to other
approaches1,3,4,22is that microscopic theory and macroscopic
theory are treated on the same footing and the problem of
ABC’s finds a natural solution in the conditions that the ge-
ometry of the problem imposes onY12H ,Y12L . They are ob-
tained by requiring that the SL electron-hole pair functions
Y12H,L decay very rapidly outside the SL, so that we can
assume that

YH~re ,rh!50, YL~re ,rh!50, ~18!

when the electron or the hole attains the SL external bound-
aries.

The above formulation contains all the ingredients for the
calculation of all SL optical functions. They are obtained, as
usual, by comparing the amplitudes of incident, reflected or
transmitted electric fields, and display a dependence on the
total SL thickness and on the coherence radiir 0H,L of physi-
cal significance. In particular, the coherence of the electric
field with the electron-hole pair is expected to give correc-
tions on the results obtained from simpler approaches and we
will display such effects.

III. OPTICAL FUNCTIONS OF SUPERLATTICES

The constitutive equations~2! can be solved introducing
Green’s functionsGH andGL , the coherent amplitudes at
the frequencyv of the electric field being

YH~1,2!5E E dre8drh8GH~re ,re8;rh ,rh8!

3MH~re82rh8!E~R8!, ~19!

with an analogous expression forYL(1,2). This has the ad-
vantage that the boundary conditions can be imposed on the
Green functions and are automatically satisfied by the coher-
ent amplitudes. However, Green functions for the Hamilto-
nians in Eqs.~2! satisfying the boundary conditions~18! are
not known in an analytical form. Such Green functions can
be found for the kinetic part of the Hamiltonians. Therefore
we separate the Hamiltonians of Eqs.~3! into a kinetic part
Hkin and a potential termV and obtain from~2!

HkinY5ME2VY, ~20!

which gives the Lippmann-Schwinger equation, with the
Green functionG appropriate to the kinetic part

Y5GME2GVY. ~21!
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The Green functions of the kinetic term, which take into
account the dependence onki andRi , are

25

GH5
1

2p
AmezH

m iH
(
n51

`

vn~zh!vn~zh8!gnH~ze ,ze8 ;r,r8!,

~22!

with confinement functions

vn~z!5A 2
NLsin

npz
NL ~23!

and

gnH5
2m iH

\2 E
0

`

xdxJ0~xr!J0~xr8!
sinhS knxHAmezH

m iH
ze

, DsinhS knxHAmezH

m iH
~NL2ze

.! D
knxHsinhS knxHAmezH

m iH
NLD , ~24!

wherez,5min(z,z8), z.5max(z,z8), J0(x) are Bessel func-
tions of zeroth order, and

knxH
2 5

2m iH

\2 ~EgH2\v2 iGH!1
m iH

M iH
ki
2

1
m iH

mhzH

n2p2

~NL!2
1x2. ~25!

An analogous expression holds for the light-hole function
GL .

The above equations, with the addition of Maxwell’s
equations, give the solutions for the optical functions in
closed form. It can be shown that the poles of the functions
YH and YL , and consequently of the susceptibility, corre-
spond to the eigenvalues of the corresponding anisotropic
Schrödinger equation. When the superlattice thickness goes
to infinity, we find the polariton modes. However, the solu-
tions of Eqs.~21!, together with Eq.~17! and the correspond-
ing Maxwell equations, represent a nontrivial computational
problem for realistic SL data. After exploiting the symmetry,
we are left with a system of integral equations in a three-
dimensional configurational space. We solved similar equa-
tions in Refs. 24 and 25, where a special choice of the inter-
action potential and of the dipole density was adopted. Here
we will compute the fieldsE(Z) and polarizationsP(Z) with
the realistic electron-hole potential~8! and for the dipole
density~13!.

We consider a superlattice whereN@1 so that the total
SL thickness is much greater than the Bohr radius of the SL
exciton. In this case we distinguish a SLbulk, where the
polariton waves propagate, and near surface regions, where
SL excitons are created. Consequently, we divide the SL of
thicknessNL into two parts in the following way:~i! surface
range, 0<Z<Z0 and NL2Z0<Z<NL; ~ii ! internal bulk
region, Z0<Z<NL2Z0 , Z0 being of the order of a few SL
excitonic Bohr radii. We do not consider the possibility of
two different transition layer thicknesses, because in our ap-
proach they represent the termination of the crystal and are
larger than the SL period. The method consists of two steps.
In the first step we solve equations~21! in the surface regions
~i! neglecting the effect of electron-hole interaction. The ne-
glected effects, which are essential for the formation of
exciton-polaritons, are instead considered when solving the

problem in the region~ii !. Using a calculation scheme simi-
lar to that proposed in Refs. 27 and 28 we calculate the
values of all functions~field and polarization! at a number of
points in the surface regions, while in the bulk region we
express the fields as a sum ofK propagating waves

E~Z!5(
j51

K

Ejexp~ ikz jZ!1(
s51

K

EK1sexp~ ikz,K1sZ!,

~26!

P~Z!5(
j51

K

Pjexp~ ikz jZ!1(
s51

K

PK1sexp~ ikz,K1sZ!,

~27!

which have to be counted twice because of the two directions
of propagation:kz,K1 j52kz j , j ,s51, . . . ,K; wave vectors
kz j follow from the bulk polariton dispersion relation derived
in Ref. 17. The number of polariton waves is related to the
number n of excitonic states considered, so we have
K5n11. The valuesE(0),E(Z1), . . . ,E(NL) and the am-
plitudesEj ,Pj of the bulk polariton modes are obtained by
solving a set of equations that is given in the Appendix.
Having the fieldE(z) inside the SL and making use of the
incident wave intensityEi0 , we obtain the SL optical func-
tions from the relations

R5U E~0!

Ei0
21U2, T5U E~NL!

Ei0
U2, A512R2T.

~28!

The above-described method, by an adequate choice of band
parameters~energy gaps, effective masses, and dielectric
function!, can be used also for anisotropic semiconductor
slabs when the slab thicknesses are much greater than the
excitonic Bohr radii.

IV. RESULTS FOR GaAs/Ga12xAl xAs AND DISCUSSION

We have computed the optical functions of the most regu-
lar GaAs/Ga12xAl xAs SL with a chosen total thickness of
2000 Å ~20 periods! in the belief that the total thickness is
sufficient to obtain results that are independent of the number
of layers. The values of the relevant parameters are well
known and are given in Table I. In our scheme the field and
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the polarization in the surface regions are connected by a
depth-dependent polarization~A1!, which gives a depth-
dependent susceptibilityx(Z), whose shape is defined by
expression~36! and is displayed in Fig. 1 for two values of
the coherence radiusr 0 . The field and the polarization in the
bulk region~ii ! of the SL define the polariton modes, whose
dispersion follows from the relation

c2kz
2

v2 5eb

1(
n

ebDLTHFnH

EgH1EnH2\v2 iGH1~kzaH* !2~m iH /MzH!RH*

1(
n

ebDLTLFnL

EgL1EnL2\v2 iGL1~kzaL* !2~m iL /MzL!RL*
,

~29!

where the gapsEgH and (EgL) refer to the superlattice and
are taken to be different for heavy-hole and light-hole exci-
tons,RH,L* ,aH,L* are effective excitonic Rydbergs and Bohr
radii, respectively, andDLTH,L areL-T splittings. Oscillator
strengthsFnH,L and excitonic binding energiesEnH , EnL
have been calculated as shown in Ref. 17, and the effective
masses follow from the miniband dispersions.1,2We consider
the 1S and 2S excitonic states for both HH and LH excitons,
so that the number of polaritonic states considered isK55
and an isotropic background dielectric constantez5e i5eb .

The resulting polariton dispersion inkz is displayed in
Fig. 2 and can be compared with the dispersion of a bulk
GaAs layer of the same thickness, which is also shown in
Fig. 2. We can observe in the case of the bulk dispersion the
crossing of LH1 and HH2 polariton branches. This effect

TABLE I. Parameter values for a GaAs/Ga12xAl xAs superlat-
tice ~SL! with x50.2 andL5100 Å and for bulk GaAs~bulk!
~data for bulk effective masses are from Ref. 19, energy is in units
of meV, and mass is inm0).

Quantity SL Bulk Quantity SL Bulk

me 0.13 0.0665 aH 0.336 0.75
mhzH 3.12 0.34 aL 0.769 1.282
MzH 3.25 0.406 RH* 3.64 3.64
mhzL 0.13 0.094 RL* 4.34 4.34
MzL 0.2 0.161 uE1Hu 4.971 3.992
mzH 0.125 0.056 uE1Lu 4.758 3.984
mzL 0.06 0.039 EgH 1596.8 1519.2
m iH 0.042 0.042 EgL 1612.15 1519.2
m iL 0.05 0.050 DLTH 0.08
eb 12.257 12.53

FIG. 1. Depth-dependent susceptibilityxH(Z) for a GaAs/
Ga0.8Al 0.2As SL ~continuous line! and bulk GaAsx(Z) ~dotted
line! for two values of the coherence radiusr05r 0 /a* and energy
near the lowest excitonic resonance. Curves are normalized to the
Z→` value.

FIG. 2. Polariton dispersion relation for~a! a GaAs/
Ga12xAl xAs SL (N520, L5100 Å , x50.2! and ~b! bulk GaAs.
We have used damping coefficientsGH5GL50.01 meV and coher-
ence radiir0H5r0L50.1 ~other data are from Table I!.
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disappears in SL because of the great mass anisotropy~the
total HH exciton mass is equal to 3.25m0 for the case con-
sidered!.

The next step in our procedure is the computation of the
electric fields of the different modes to obtain the optical
functions. We have determined the electric field at a number
of points in the surface region and ten field amplitudes in the
inside region ~ii ! Ej ( j51, . . . ,5 for the ingoing and
j56, . . . ,10 for theoutgoing waves!, solving equations
~A12! and ~A19! and making use of the depth-dependent
susceptibility~A7!.

The optical functions for a GaAs/Ga12xAl xAs superlat-
tice have been computed and can be compared with those of
a bulk GaAs slab. The results for the reflectanceR are dis-
played in Fig. 3 for different values ofr05r 0 /a* . The ef-
fects of excitonic center-of-mass quantization appear as a
fine structure above the first peak of each transition in the
bulk, but only above the LH transition in the superlattice
because of the largeness of the HH total massMzH .

While the resonance energies do not depend particularly
on the coherence, it can be observed from the results of Fig.
3 that variations of the coherence radius change substantially
the line shapes. The observed changes in the spectra are
mostly due to the fact that an increase ofr 0 diminishes the
oscillator strengths, as already apparent in the model dis-
cussed in Ref. 17. Though the available experiments do not
yet allow a sufficiently detailed comparison with the theo-
retical line shapes, we are confident that the coherence effect
here described may be observed.

V. CONCLUSION

We have developed a simple mathematical procedure to
calculate the optical functions of superlattices. The above
model describes the propagation modes and the optical prop-
erties of a superlattice slab without the requirement of
ABC’s, taking into account the Coulomb interaction between
electrons and holes and the existence of higher excitonic
states. Our treatment includes anisotropic dispersion, as the
f ractional dimensionality approach,29,30 but it also
takes into account coherence of the electron-hole pair with
the radiation field. The present method has been used to in-
vestigate the optical functions of GaAs/Ga12xAl xAs super-
lattices for the case of radiation incidence parallel to the
growth direction.
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APPENDIX: CALCULATION
OF SL OPTICAL FUNCTIONS

We show how to compute the optical functions of a semi-
conductor SL using the calculational scheme described in
Sec. III. In particular, we show that the solutions for the
electric field and the polarization through the slab can be
obtained solving a set of integral equations numerically, by

replacing them with a set of algebraic equations.
In the first step we calculate a depth-dependent suscepti-

bility that connects the polarization and the field in the sur-
face region~i!. Making use of Eqs.~17!, we obtain

P1~Z!5P1H~Z!1P1L~Z! for 0<Z<Z0 ,

P1H,L5e0xH,L~Z!E~Z!,

~A1!

FIG. 3. ~a! Reflectance of a GaAs/Ga12xAl xAs SL (N520,
L5100 Å , x50.2! for three values ofr0: r0H5r0L50.1 ~continu-
ous line!, r0H5r0L50.5 ~dotted line!, and r0H5r0L51 ~dashed
line!, displayed for energies near HHn51,2 and LHn51,2 exci-
tonic states. We have used damping coefficientsGH5GL50.2 meV
and a transition layer thicknessZ05150 Å . For comparison we
also give~b! the reflectance of a 2000-Å GaAs slab~data are from
Table I!. We have used damping coefficientsGH5GL50.05 meV
and coherence radiir0H5r0L50.5.
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P2~Z!5P2H~Z!1P2L~Z! for NL2Z0<Z<NL,

P2H,L5e0xH,L~NL2Z!E~Z!,

where

xH~Z!5
2AaH

e0
E
0

`

rdrE
0

`

r8dr8E
2AHZ

BHZ

dzE
2AHZ

BHZ

dz8

3E
0

2p

dfE
0

2p

df8MH~r !GH~r ,r 8!MH~r 8!,

~A2!

with a similar expression forxL(Z). We make use of the
dipole density~13!. The Green function that we substitute
into the above formula is proper to the kinetic part of the
Hamiltonian~2! when neglecting the spatial dispersion term
proportional to]Z

2

GH~r ,r 8!5GH~z,z8;r,r8!5
m iH

p\2E
0

`

x dxJ0~xr!J0~xr8!

3
sinhkxH~AHZ1z,!sinhkxH~BHZ2z.!

kxHsinhkxHCHZ
,

~A3!

where

kxH
2 5

2m iH

\2 ~EgH2\v2 iGH!1
m iH

M iH
ki
21x2 ~A4!

and

AH5AaH
21MzH

mhzH
, BH5AaH

21MzH

mezH
, CH5AaH

21MzH

mzH
.

~A5!

An analogous expression holds for the light-hole function
GL . It can be proved that the Green function~A3! ~and thus
the H-exciton amplitudeYH) satisfies the boundary condi-
tions ~18!, which in the relative and center-of-mass coordi-
nates have the form

GH50 for z52
MzHZ

mezH
, z5

MzHZ

mhzH
, ~A6!

with similar relations forGL . Performing the integrations in
~A2!, we arrive at the following expression for the suscepti-
bility:

xH~Z!5
m iHM0H

2

2pAaHe0\
2r 0H

4 ~r 0H
222k0H

2 !2
I H~Z!

1
m iHM0H

2

2pAaHe0\
2r 0H

4 ~r 0H
222k0H

2 !
F2r 0H1

r 0H
2

3~e22AHZ/r0H1e22BHZ/r0H!1AHZ

3Ei~22AHZ/r 0H!1BHZEi~22BHZ/r 0H!G ,
~A7!

where Ei(Z) is the exponential-integral, and

I ~Z!5E
0

`

x dxH 2S 2sinhkxAZsinhkxBZkxsinhkxCZ
2

1

Rx
D

14
e2RxAZsinhkxBZ1e2RxBZsinhkxAZ

RxsinhkxCZ

2
e22RxAZ1e22RxBZ

Rx
1

kx
Rx
2sinhkxCZ

@2e2RxCZ

2~e22RxAZ1e22RxBZ!coshkxCZ#J , ~A8!

where we have omitted the indexH and used the abbrevia-
tion

Rx5Ar 0221x2. ~A9!

A totally analogous formula holds for the susceptibility
xL(Z). Having the suceptibility and thus the polarization, we
solve the Maxwell equation for obtaining the electric field in
the surface regions.

The field and the polarization in the bulk region~ii ! are
superpositions of polariton waves with amplitudesEj and
wave vectorskz j :

E~Z!5(
j51

10

Eje
ikz jZ,

P~Z!5PH~Z!1PL~Z!, ~A10!

PH,L~Z!5e0(
j51

10

x jH ,LEje
ikz jZ,

where

x jH5(
n

ebDLTHFnH

EgH1EnH2\v2 iGH1~kz jaH* !2~m iH /MzH!RH*
,

~A11!

with an analogous expression forx jL . Thus, taking into ac-
count HH n51,2 and LHn51,2 excitonic states and ex-
ploiting the continuity ofP(Z), E(Z), anddP/dZ, we ob-
tain the following set of equations for determining the SL
optical functions:

E~Z!1
kb
2

e0eb
F E

0

Z0
duG~Z,u!P1~u!

1E
NL2Z0

NL

duG~Z,u!P2~u!G1(
j51

10

EjF js~Z!5Ehom~Z!,

~A12!

wheres51 for 0<Z<Z0 ands52 for NL2Z0<Z<NL,

kb
2

e0eb
F E

0

Z0
duG~Z0 ,u!P1~u!1E

NL2Z0

NL

duG~Z0 ,u!P2~u!G
1(

j51

10

Ej@F j1~Z0!1eikz jZ0#5Ehom~Z0!, ~A13a!
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kb
2

e0eb
F E

0

Z0
duG~NL2Z0 ,u!P1~u!1E

NL2Z0

NL

duG~NL

2Z0 ,u!P2~u!G1(
j51

10

Ej@F j2~NL2Z0!1eikz j~NL2Z0!#

5Ehom~NL2Z0!, ~A13b!

xH~Z0!E~Z0!2(
j51

10

x jHEje
ikz jZ050, ~A14a!

d@xH~Z!E~Z!#

dZ U
Z5Z0

2(
j51

10

x jHEj ikz je
ikz jZ050,

~A14b!

xL~Z0!E~Z0!2(
j51

10

x jLEje
ikz jZ050, ~A14c!

d@xL~Z!E~Z!#

dZ U
Z5Z0

2(
j51

10

x jLEj ikz je
ikz jZ050,

~A14d!

and four additional equations obtained from Eqs.~A14!
when replacing

Z0 by NL2Z0, ~A15!

where

F j152(
l

kbf ~Z!x jl

2ebW
FCj

~1 !e2 ikbNL1
kb2k0
kb1k0

Cj
~2 !eikbNLG ,

~A16a!

F j252(
l

kbf ~Z!x jl

2ebW
FCj

~1 !e2 ikbNL1
kb2k0
kb1k0

Cj
~2 !eikbNLG

1(
l

kbx jl

2eb
@Cj

~1 !e2 ikbZ2Cj
~2 !eikbZ#, ~A16b!

Cj
~1 !5

exp@ i ~kz j1kb!~NL2Z0!#2exp@ i ~kz j1kb!Z0#

kz j1kb
,

~A16c!

Cj
~2 !5

exp@ i ~kz j2kb!~NL2Z0!#2exp@ i ~kz j2kb!Z0#

kz j2kb
,

~A16d!

l5H,L, and

G~Z,Z8!5G1~Z,Z8!1
Q~Z2Z8!sinkb~Z2Z8!

kb
,

~A17a!

G1~Z,Z8!52
i

2kbW
f ~Z! f ~NL2Z8!, ~A17b!

f ~Z!5e2 ikbZ1
kb2k0
kb1k0

eikbZ, ~A17c!

W5e2 ikbNL2S kb2k0
kb1k0

D 2eikbNL, ~A17d!

Ehom~Z!5Ei0

2k0f ~NL2Z!

~kb1k0!W
, ~A17e!

kb5Aebv/c, ~A17f!

where Q(Z) is the Heaviside function. The notations
follow those of Ref. 27. Equations~A12! to ~A15! corre-
spond to a set of 2p110 algebraic equations for 2p110
unknowns E(Z1), . . . ,E(Zp) (0,Z1 , . . . ,Zp5Z0),
E(Zp11), . . . ,E(Z2p) for Zp115NL2Z0 ,Zp12 , . . . ,
Z2p,NL, and ten amplitudesE1 , . . . ,E10. Having E(Z)
andP(Z), we calculate the electric field on both sides of the
SL:

E~0!5Ehom~0!2
kb
2

e0eb
F E

0

Z0
duG~0,u!P1~u!

1E
NL2Z0

NL

duG~0,u!P2~u!G2(
j51

10

EjF j1~0!,

~A18!

E~NL!5Ehom~NL!2
kb
2

e0eb
F E

0

Z0
duG~NL,u!P1~u!

1E
NL2Z0

NL

duG~NL,u!P2~u!G2(
j51

10

EjF j2~NL!

~A19!

and thus the optical functions by relations~28!.
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