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An envelope-function model is derived for electrons in abrupt semiconductor heterostructures. It uses
material-dependent basis functions that diagonalize the bulk zone-center Hamiltonian in each unit cell of the
crystal. The initial formalism is exactly equivalent to the one-electron Slthger equation; approximations
suitable for abrupt junctions are then developed. The abrupt change in microscopic potential at an ideal
interface is shown to introduce no new interband coupling; all such coupling arises from the kinetic energy,
specifically from a momentumlike matrix element containing the gradient of the basis functions with respect to
changes in material composition. This generates interface effects not included in conventional envelope-
function theories, such as zone-center coupling between heavy and light holes. An effective-mass equation is
derived for the conduction band of a layered zinc-blende structure; it exhibits both envelope discontinuities and
&function potentials, in agreement with the transfer matrices derived from other microscopic theories.
[S0163-182696)10027-9

[. INTRODUCTION treatment of nonparabolic effects. In this paper a hybrid basis
is chosen in which localized Wannier functions are defined
The envelope-function method, by virtue of its simplicity not in terms ofk-dependent Bloch waves, but in terms of
and ease of interpretation, is by far the most popular metho@one-center Luttinger-Kohn functions. This material-
for calculating the properties of electrons in semiconductoflependent basis is defined so that the bulk zone-center
heterostructures. The standard model used for suchi@miltonian is diagonal in each unit cell of the crystal.
problemé~2 is based on bulk-p theory” and neglects the An effgctlve technigue for approximating the he.terostruc—
change in band-edge Bloch functions at an interface, charaddreé matrix elements may be developed by assuming that the
terizing the heterostructure in terms of its bulk propertiesSnVelopes of the wave function and material properties are
alone. However, it is now recognized that such a treatment igmall in the c_)utcla,r.half of theéBSHIIoum zone, i.e., that th_ey are
not always adequate; for example, in the valence bands %fslowly varying” in k space.” Such ak-space approxima-

zincblende structures, microscopic calculatfon show a acl:))?u rt?mi?]'?ss \g'ed ?gg%e\g/qﬁg ;Sriset Jil;r;gtr:?iﬂiiti%gaggee
significant heavy-hole-light-hole(HH-LH) coupling at Pty pace, p P

ki=0. which i t included in the standard | not too close together. This technique therefore permits the
|=% WRICh 1S Not Included n the standard envelope-yq yment of problems that cannot be handled using the con-
function theory. Possible experimental evidence for this ef

14 . . ‘ventional assumption that the envelopes vary slowlyr in
fect has also been fourtd* To describe such coupling, one space.

mus'g include propgrties of tr_]e interface its_elf, which are de- " ynder these conditions, it is shown that the envelope-
termined by the difference in Bloch functions between thefnction equations take the form of local, spatially varying
two media. A number of envelope-function models incorpo-k.p equations, but with additional terms describing the ex-
rating this difference have been proposed in recenpiicit effects of the interface. The fundamental parameter
years?"15"%put most of these require extensive micro- characterizing the interface properties is a momentumlike
scopic calculations. What has been missing is a straightformatrix element that depends on the gradient of the band-edge
ward analytical derivation of an envelope-function modelBloch functions with respect to changesrimaterial compo-
that offers a clear, simple, yet complete description of howsition (rather than the ordinary spatial gradient in the bulk
the material dependence of the basis functions alters the imnnomentum matrix This term has aslike character at an
terface connection rules. The object of this paper is taabrupt interface and, in tandem with the bulk momentum
present such a derivation, starting from the one-electromatrix, gives rise to adfunction potential coupling the
Schralinger equation for a lattice-matched system withoutheavy- and light-hole bands. Such a matrix element was first
spin. derived by Karavaev and Tikhode€8vfor heterostructures
The two key steps in the derivation are the choice of basisvith slow spatial variations. The present work extends their
functions and the choice of approximation technique. An in-theory to structures containing abrupt discontinuities.
tuitive description of position-dependent material properties A single-band effective-mass equation is derived from the
is most easily obtained from a localized basis such as thk-p formalism by using Ledin perturbation theofy to
Wannier functiong’ However, there are also distinct advan- eliminate the interband coupling. The resulting equation has
tages to using a Luttinger-Kohn badsuch as the simplic- all the features of more complex microscopic theofies.,
ity of the equations for degenerate bands and the naturanvelope-function discontinuities ar&function potentialg
appearance of energy-dependent effective masses for tlamd it offers a clearly understandable explanation of how
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these effects arise. It therefore justifies the phenomenologicauce such localizatiofY, consider the following unit-celbs
technique of using effective-mass equations at an abrupt irfunction, which is simply a superposition of all plane waves
terface by providing an unambiguous prescription for thein the first Brillouin zone(BZ):
form of such a Hamiltonian. As a consequence, the present
theory affords a conceptual unification of the microscopic _ -3 ik-rq3
and phenomenological approaches to heterostructure %8(1)=(2) f B(kje™ d%, 23
envelope-function theory, approaches that were viewed inhere
the past as fundamentally different in principfebut are
now seen to be equivalefif formulated correctly. 1, keBZ

The derivation begins in Sec. Il, where an envelope- B(k)=[0 k¢ BZ 2.4
function formalism with material-dependent basis functions ’ '
is developed in a form exactly equivalent to the Scimger ~ The functiondg(r) has unit area and a spatial extent roughly
equation. To simplify the exact theory, an approximationequal to the volume of a primitive unit cell; its properties
technique is proposed in Sec. Il and applied to the Hamil-are discussed further in Appendix B. At the lattice sites, this
tonian in Sec. IV. The approximate model is used to derive dunction satisfies
single-band effective-mass equation and interface connection , 1
rules in Sec. V. A comparison of the model with other S8(R-R)=v "rp- (2.9

envelope-function theories is presented in Sec. VI, and thehijs equation is valid regardless of the shape of the’Bsh
main results of the paper are reviewed and discussed in Sefe can choose a shape different from the conventional
VIL. Wigner-Seitz cell if desiredOther choices are often conve-
nient for treating surface and interface probleffs.
Il. MATERIAL-DEPENDENT BASIS FUNCTIONS We can define a localized basis similar to the familiar
. Wannier function&*° by taking the product of this unit-cell

In this section, an exact envelope-function formalism is : ; o : S
n ) . ¢ function with the periodic Luttinger-Kohn functions:
developed by defining a material-dependent basis set that P g

diagonalizes the bulk zone-center I-!am_iltonian in each unit Wy (r,R)=0v8g(r—R)u,(r,R). (2.6)
cell of the crystal. The starting point is the one-electron B ) ) .
Schralinger equation: These modified Wannier functions may be completely differ-
ent in adjacent unit cells, but they still form a complete or-
p? . d thonormal basis:
2m+V(r,t) Y(rt)=inh ot P(r,t), (2.2
* ! — !

where p=—i%V, m is the free-electron mass, and is a %;‘e Wa(r R)W, (17, R)=8(r —r"),
nonperiodic microscopic potential. This potential describes 2.7
the intrinsic properties of the heterostructure, along with any
space charges or external fields. J Wi (1, R)Wo/ (r,R)d3r = 8y SR g/

To construct appropriate basis functions for this Hamil-
tonian, it will be assumed that we have complete informatioras shown in Appendix A. Since the ba$6) is complete,
about the bulk media making up the structure. That is, fowe can use it to represent any wave functi@n):
every unit cellR (whereR is the position of a Bravais lattice

site)y we know the bulk potential(or pseudopotential =123 f (R R

V,(r,R) for the medium occupying that cell. This potential is wn=v ;R n(R)Wn(r,R),

by definition periodic inr [i.e., Vy(r,R)=V,(r+R’,R)], so (2.9
we can solve the corresponding Sdfirger equation by _

standard method®:3! fa(R)=v UZJ wi (1, R)g(r)d’r,

wheref,(R) is a discrete envelope function for energy band
Yok(1,R)=Ep(R)ni(r,R), (2.2 n and unit cellR. In terms of these envelope functions, the

2m Schralinger equatior(2.1) takes the form

2
[p—+vo(r,R)

where ¢, (r,R) is a Bloch function satisfyingi,.(r

Jr.R’,R)ze""R z,//nk_(r,R), gnd En(R) is _the associated > Hon (RR) (R =i i f(R), (2.9

eigenenergy. In this equatioR, should be viewed as merely n' R’ gt

an index labeling the different possible bulk solutions that here th local matrix el ts of the Hamiltoni

occur at different locations in the heterostructure. where the nonlocal matrix elements of the Hamillohian are
Following Luttinger and Kohi®3® we will now focus D

attention on thek=0 solutions u,(r,R)=¢,(r,R) and Hnn,(R,R’)=jw;‘(r,R) ﬁ+V(r)}wn,(r,R’)d3r.

E,(R)=E,o(R). The functionsu,(r,R) are periodic inr, (2.10

and at anyR they provide a complete orthonormal basis for '

the expansion of any cell-periodic functideee Appendix In the above equations, the time dependence of the various

A). Although these functions are material dependent, theyunctions {/,,f,)) has been suppressed for brevity.

are not localized, so they do not offer the most natural de- As yet the envelopef, are defined only at the lattice sites

scription of spatially varying material properties. To intro- R. To interpolate these functions between the lattice sites, we

2
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can apply the sampling theorethwhich gives a unique in- fa(r)=f(r), 3.3

terpolationf ,(r) as follows34~3’

and we need not bother with the details of the inte¢Bal).
_ This approximation is at the very heart of bulk effective-
f = fh(R)og(r—R). 21 . . L .
(1) v; n(R)35(r —R) 219 mass theory/?®and is also widely used in similar theories
_ S _ _ for slowly graded inhomogeneous media**46
_Th_ls de_f|n|t|on is unique because its Fourier transfdjtk) This r-space technique is very useful, but it also leads
is identically zero outside the BZ:**'°First-zone functions  jmmediately to several further questions. How rapidly can
such as(2.11) are called “quasicontinuum” functioriSbe- ¢ (r) vary before the approximatiof8.3) breaks down? What
cause the discrete and continuum representations are Co¥ysrrections to3.3) should be included in the next order of

pletely interchangeable. One could also define quasiconspproximation? These issues are of only minor interest in the
tinuum Wannier functions, but the discrete bags6) is  pyk theory, but they become critically important at an
simpler for most calculations, so this topic will not be pur- aprupt junction.

sued here. . . A precise answer to these questions may be found by
Equations(2.9)—(2.11) provide a concise, exact envelope- ransforming Eq.(3.1) to k space, which yields the well-

function representation of the one-electron Sdimger  known identity’ that a convolution irr space is simply a
equation. However, in order to extract useful results fromproqyct ink space:

these equations, we need to invoke some form of approxima-
tion. The most frequently used approximation in this context
is the slowly varyi?]g amyplitude ;ppproximatiﬁ?\‘,“si.e., the fa(k)=B(k)f (k). 34
a_lssumption that the_ material properties and .envelope funerhis means thatg(k) is the same a§(k) inside the BZ, but
tions do not vary rapidly on the scale of the unit cell. Such ang jgentically zero outside. Hence for quasicontinuum func-
approximation is totally inapplicable at an abrupt junction,jons such ag2.11), which are already zero outside the BZ,
where the amplitudes of these functions change by a Iarggq. (3.3 is not just a good approximation, it is exact. This

amount in a single monolayer. Nonetheless, by defining Qonclusion, although rudimentary, has profound implica-

slowly varying amplitude ink spacé®4%4° rather thanr : ) : S )
space, we can develop an extremely useful approximatiob'ons' Adlscr'ete functiori(R) can changarbitrarily _rap@ly
rom one unit cell to the next, and yet the quasicontinuum

that is valid even in cases of abrupt discontinuity. interpolationf () satisfies(3.3) exactly

In general, of course, we are interested in evaluatt@
for functions other than quasicontinuum functions, for which
the truncation(3.4) may have a non-negligible effect. The
A detailed treatment of the Hamiltonia.10 is rather ~ case of primary interest is the produ¢t)=f,(r)f,(r), where
complex algebraicallysee Appendixes C and)DHowever, f; andf, are both quasicontinuum functioissually one is
the following simple example suffices to illustrate all of the an envelope function and the other is a material propelty
basic features of thie-space approximation technique and its this casef (k) is nonzero outside the BZ, so the integyed.
advantages over-space methods. Consider the convolution(C8) and (D8)]
integral

lll. GLOBALLY SLOWLY VARYING AMPLITUDE
APPROXIMATION

fB(r):f5B(r_r/)f(rr)d3rr’ (31) f 5B(r_r’)fl(r’)f2(r’)d3r’

in which f(r) is an arbitrary function, limited only by the 4 ) er .
assumption that it can be represented in the Fourier integral =(27) f f B(k+k")fy(k)e™ fa(k’)e™ Tdk d>k
form (3.5

is not generally equal té,(r)f,(r). However, iff; andf, are
zero in the outer half of the BA4.e., those wave vectoksfor
(3.2  which X is outside the BZ thenk+k’ always lies inside
) the BZ, and(3.5) is exactly equal td ;(r)f,(r).
f(k)=(277)73/2f f(rye ' rd. Hence we have the following simple criterion for whether
(3.3 is a valid approximation: The function§; and f,
Integrals similar to(3.1) are ubiquitous in effective-mass should be concentrated relatively close to the zone center,
theories(see, e.g., Wannier and Sldteor Luttinger and  with a negligible spectrum in the outer half of the BZ. This
Kohr?®), and the question that arises is as follows: Underforms the basis of what will be called the globally slowly
what conditions is it permissible to replace the intedgdl)  varying amplitude approximatio(GSVAA). The wordglo-
with the original functionf (r)? bal is used to emphasize that tHisspace restriction makes
The standard approach to this probfé?is based on the no referenceo whetherf, andf, are slowly varying at any
observation that(r) is a &like function localized about a individual point. To require that these functions doeally
unit cell. Therefore, iff (r) varies slowly over distances com- slowly varying at each and every pointiinspace is a much
parable to the lattice spacing, we can trésltr) as a Diracd  more stringent condition, and goes far beyond what is actu-
function, so to the lowest order of approximation ally needed. As shown below, ttkespace definitiolf of the

f(r)=(2ﬂ-)‘3/2J f(k)e'k" d3k,
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GSVAA is broad enough to encompass even functions with
large local discontinuities, provided these discontinuities are
not too close together.

To see this, suppose we start by looking at the material
(R) dependence of the basis functiongr,R) in a layered
structure grown along th®01] axis of a zinc-blende crystal.
For a single heterojunction at=0, the material properties
are proportional to the discrete step function

0, n<o0 0.00 025 0.50 0.75 1.00
O5(z0)=11 =0 (3.9 kalm

wherez,=(n+3)a is the location of theath monolayer and _ _
a is the monolayer thicknede.g.,a=2.83 Ain GaAs. The I||:IGd %1 Fourier spectrunilg(k) for three different quantum-
quasicontinuum function corresponding(®6) is well widths.

©

the basis functions,(r,R) can be treated as GSV functions
s(z)=a>, Sp(z—2,), (3.7 of R even in the limit of a single-monolayer quantum well.

n=o Much the same conclusions are reached by examining the

where 63(z) =sin(wz/a)/ 7z is the one-dimensional analog Pproperties of the envelope functions. A sample envelope in a

of (2.3 [see alsdB1)]. The Fourier transform of3.7) is 10-ML quantum well is shown in Fig. 2, along with its Fou-
rier transform. This function is clearly slowly varying by the

B(k) al? k-space criterion, despite the 2:1 amplitude discontinuity at

(k)= —=—= | mo(k)+ Tsinkai2) |’ (3.8 the interface. Of course, even in a wide quantum well, rap-

e idly varying envelopes can always be generated at suffi-

whereB(k) =1 for |k|<=/a and zero otherwise. ciently high quantum numbers. One should always check

The first term in(3.8) is proportional tod(k); it describes _after a given calculation that t_he envelopes are indeed small
the average value of the step functigi and is not of inter-  in the outer half of the Brillouin zone.
est at the moment. The second term is more significant, since | & very thin(single monolayerquantum well, the enve-
it describes the change in amplitude across the interface. Agpes will usually be GSV unless the change in basis func-
k—0, this term diverges as !, which means thadg(k) is  toOns is Iarge, since in the single-monolayer I|m|t the enve-
highly concentrated near the zone center. Indeed, even withQP€S consist a{limost entirely of long exponential tails in the
out the 8(k) term, the area unddigg(k)| within the inner barrle_r regionsg? The_ only structure Wher_e the GSVAA is
half of the BZ (k| < r/2a) is still infinitely larger than thatin ~duestionable even in the ground state is a superlattice in
the outer half. Thus according to thespace definition, a
step function is perhaps the ultimate slowly varying function

aside from a constant. 1.0 —
The GSVAA begins to break down only when two inter-
faces are brought into close proximity. As an example, con- 0.8 1 (@)
sider anN-monolayer quantum well centered ar0. The 0.6 —
material properties in this case are proportional to Q
0.4 —
I15(z)= 0g(z+Na/2)— 6g(z—Na/2), (3.9 02
which has the Fourier transform 0.0 : | | |
. -10 -5 0 5 10
(k)= a B(k sin(kNa/2) 31 Zla
The magnitude of this function is plotted in Fig. 1 for quan- 0.8 (b)
tum wells of 4, 8, and 16 Mli.e., well widths of 11.3, 22.6,  __ (¢ |
and 45.2 A in GaAs Even forN=4 it is clear that the ™
dominant part of the spectrum lies within the inner half of = 044
the BZ. AsN increases, the accuracy of the approximation 02
improves. )
In the most general case of two media with greatly differ- 0.0 — T T T T T
ent basis functions, the GSVAA will break down filr<<4. 00 01 02 03 04 05 06 07 08 09 1.0
However, in most heterostructures of common interest, the kalm

change in basis functions at an interface is stalay

10%), so in addition to the spatially varying part described F|G. 2. (a) One-dimensional example of an envelog®t a
above, there is a large constant term whose contribution teolution to any equation in the téxith a 2:1 amplitude disconti-
the Fourier spectrum is proportional &k). In such cases, nuity in a 10-ML quantum well(b) Fourier transform ofa).
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which both the wells and barriers are very thin. In this caseperturbation, nor is it rapidly varying iR (at least not in the

there will be largek components in both the material prop- global sense In a material-dependent basis, it is only natural

erties and the envelope functions, so the magnitude of thegbhat the potential which generates the basis functions should

terms should be examined critically before the results of @ave simple matrix elements.

GSV calculation are accepted. The same procedure can be used to calculate the matrix
We thus have a clear, simple criterion for establishingelements ofb(r). If ®(k) meets the slowly varying criterion,

which terms in the Hamiltoniat®2.10 are physically signifi- then these reduce to

cant. Section IV begins by considering the potential energy.
®h (RR)=P(R)Sppr SR R (4.9

IV. ENVELOPE-FUNCTION HAMILTONIAN which is the same as the well-known result from bulk
effective-mass theory.
o ) _ ) Therefore, if the microscopic potential can be separated
To simplify the analysis, the potential energyr) willbe  nto flat-band and slowly varying components, the potential-
separated into two parts: a “flat-band” terifg(r), which  energy matrix element is no different from the bulk. Such a
describes how the bulk potential varies with material com-separation is not always possible, since in general there will
position, and an additional terrb(r) representing space- exist rapidly varying interface terms that cannot be expressed
charge effects and externally applied fields: as a flat-band potentidf. These terms give rise to additional
interband couplings not included here. However, the flat-
V(r)=Veg(r) +&(r). 4D pand potentialpis gby far the dominant effect of the abrupt
The external potentiab(r) is usually assumed to be slowly transition between two media, so no corrections to this ap-
varying, but the flat-band potential is certainly not. It will be Proximation will be considered herg¢Many microscopic

represented here by an expansion similar to that used for tﬁgeoriesg, lgspecially those based on the pseudopotential
envelopeg2.11): method; < also make use of this assumptipn.

Since the potential energy has such a simple structure, the
true interface effects must arise from the kinetic energy.

A. Potential energy

vFB(r)=u§R) Vo(r,R) 8g(r—R), (4.2)

B. Kinetic energy

whereV(r,R) is the bulk potential of the medium in the unit
cell at R. Becausedz(r —R) is not strictly zero outside the

unit cell atR, Eq.(4.2) generates a small overlap of the bulk

potentials at an interface. This is physically reasonable since

The kinetic-energy part of the Hamiltoni&®.10 is given
by

1
some overlap always occurs, although it may not be pre- To(R,R)=-— f wi (r,R)p?w, (r,R")d%. (4.7)
cisely of the form(4.2). Any deviations can be taken up in 2m
the potentiakb(r). This can be rewritten using the completeness condit®on

The flat-band part of the potential-energy operator in thegg
Hamiltonian(2.10 is
1

Ton(RR) = om

2 p;n”(R'R”) : pn"n’(R”a R’),

vﬁﬁ,(R,R’)=Jw:(r,R)vFB(r)wn,(r,R')d3r. 4.3 'R
(4.8
It is shown in Appendix C that for GSV envelopes and ma-in which
terial properties, this matrix element reduces to the simple
expression
pnnr(R,R’)=fWZ(F,R)anr(r,R’)d3r (4.9
Vi (RR)=V[ (R) S a4 N . .
is the (Hermitian) momentum matrix in the Wannier basis. It
where is shown in Appendix D that this matrix takes the following
form within the GSVAA:
0 _ * 3
Ven (= | RV R (R (@5 P (RR) =80 P+ Poy (RS (410
is the bulk matrix element for the medium Bt Equation HereP=—i7Vp is the discrete momentum operaférand
(4.4) is the same as the usual result for locally slowly vary-Pan’ is defined by
ing functions, but we see here that it is valid at abrupt junc-
tions as well. Hence, contrary to popular opinion, there is no P (R) =P (R)+ Py (R). (4.13)
need to fear that the abrupt change in microscopic potentiafhe first term inP,,, is just the bulk momentum matrix
at an ideal interface will lead to gross deviations from bulk
envelope-function theory. This fear arises from the assump- . 3
tion that the flat-band potential must be treated within the pnn’(R):f up (r,R)puy(r,R)d°r, (4.12
confines of traditional effective-mass thedffei.e., as an ’
arbitrary rapidly varying perturbation. However, the flat- but the second is an interface term that is not included in
band potential is not arbitrary, nor is it treated here as aonventional envelope-function theories:
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tions at the interface, namel,,/, K.y, andQ,,’. These
Pan (R)= fvuﬁ(r,R)Pun,(r,R)d3r. (413  |ast two terms are defined as follows:

This matrix describes the strength of the interband cou- K ,:i S (Purr- P+ P Prrey)
pling induced by the change in basis functions at an inter- e ogm 4 N T
face; it was first derived by Karavaev and Tikhod@ein a (4.16
slightly different form appropriate for slowly varying func- 1
tions). The main difference betwed®,,, andp,,, is the fact Qnnr =om 2 Pon Porn -

nH

thatP operates only oR, not onr. Thus, when we are in the
bulk regions of a heterostructure away from any interface
the basis states,(r,R) are independent d®, andP,,, van-
ishes. Near an interface, however, the basis states have

step-function dependence, &, behaves likeds in this (such as those directly above tlhg conduction bandvia

region. This generates intert_)and mixing across thg junCtior}hatrix elements of the typ(axlpylz”>' the interface matrix
henceP,,, may lead to qualitative changes in the mterfacepn”n/ then couples back to thE,; valence bands through

connection rulegwhich will be discussed further belgw terms such a¢z’|P,|z'). SinceP,, behaves likes, at an

Although the bulk matrixp,, is strictly Hermitian, the abrupt interfaceK .y andQ,, have this character as well.

interface matrixP,, is only approximately so. It is shown in ;
Appendix E thatP,, is not Hermitian in general, but be- sH;r\rgvr?\\gr@an , unlike Kqy, couples only bands of the same

comes Hermitian when the GSVAA is invoked. The remain- The Hamiltonian4.15) is exactly the same as that derived

der of this paper considers only GSV functions, so any de; . -~ )
viations frorFr)1 aermiticity will beyignored in what follows)./ b_y Karavaev and Tikhode&vunder more restr|<_:t|ve condi-
Because the operatdt does not act om, P, couples tions, namely, envelopes and mater.|al properties that are _Io—
only bands of the same symmetry. In gene?gl it will haVecally s!ovyly varying. The above derivation shows that their
) . C analysis is actually valid for a much broader range of prob-
diagonal matrix elements, but for some important cases thesigms, and that no corrections to their Hamiltonian are re-

terms vanish. Fpr exa”?p'e' at thepoint of a zinc-blende quired until the Fourier spectrum becomes significant in the
crystal, the basis functiong,, can always be chosen real outer half of the BZ

f time-reversal symmetrywhich means th ; . .
because o e-reversal symmetrwhic eans thab, The equations presented here involve sums over an infi-

I(?/vifhl:;etlﬁe”gg%gﬂ)y'itflgicae Ot:; erIT(]aﬁrg;]tlssn?lljss(t) bl;ezrgwrglan nite number of bands, which obviously cannot be imple-
' 9 " mented in practical calculations. The following section there-

. o fore considers how we may reduce the number of bands
C. Approximate Hamiltonian using perturbation theorf,
The above results for the GSV kinetic and potential en-
ergy operators may now be inserted into the Hamiltonian V. SINGLE-BAND EFFECTIVE-MASS MODEL
(2.10 and written in continuum form using2.11). This

leads to the approximate envelope-function equations This section focuses primarily on deriving an effective-
mass Hamiltonian and boundary conditions for the nonde-

. generatel’; conduction band of a zinc-blende heterostruc-
Z Han (1) (D) =if = Fa(r), (419 ture, although some general results for degenerate bands are
" also presented. The derivation initially follows that given by
where Karavaev and Tikhodeed, but extends their results by de-
veloping explicit interface connection rules for the envelopes
p? at an abrupt junction. It will be assumed that we are consid-
Hon (1P)=| 5+ En(1)+ @(1) | Snny ering a systente.qg., GaAs/A} :Ga, -As) in which, for ener-
gies close to the conduction-band edggr), the dominant

The matrixK,,, is responsible for the zone-center HH-LH
coupling in zinc-blende structures. The bulk momentum ma-
ik P, couples thel';s valence bands to othdr;; bands

1 envelope function throughout the structure is the conduction-
+ 5 [P (1) p+p- P (1) ] band envelopé 4(r). All other bandsE;(r) are sufficiently
remote in energy that the corresponding enveldpés are
+Konr (1) + Qe (1). (419  small compared td((r); they will thus be treated as first-

order perturbations.
We are interested here in calculating the energy eigen-
' functions of(4.14), which are the solutions to

This Hamiltonian is very similar in appearance to the bulk
k-p Hamiltonian® The three diagonal terms, in particular
are exactly the same, except that the band-edge emgrgy
now spatially varying. The terms linear nare also spatially
varying, and the explicit symmetry of these terms ensures z Hon (r,p) frr (1) =Ef (). (5.2
their Hermiticity. This symmetry came directly from the mi- n’
croscopic Schidinger equatiorfand the approximate Hermi-
ticity of P,,/); it was not artificially imposed, as is frequently
done in phenomenological theorie$>®

The primary difference from bulk-p theory lies in those
terms which depend explicitly on the change in basis func- fi=Gi[7 (V-DjstPjs' V) +Kjsl fs, (5.2

The equation for the remote band-j can be used to find a
first-order solution forf; as a function off ;:#2°
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where G;=(E—E;—®) % and P,y ={#/im)p,, is the Qed2)=Q3a(2), Ksj(2)=Kg;35(2),
Kane matrlx6 wh|ch is real and antisymmetric. Sinseis a
I'; band, symmetry consideratichsshow that(5.2) will be IP%(2)=AP%58(2), (5.7

nonzero only ifj is al';5 band. Substitution of5.2) into
(5.1) with nn’ =sj yields a single-band effective-mass equa-Wheredg(2) =sin(rz/a)/wz, Q3= [ Qs{(2)dz, andAp ; is

tion of the form the change |rpsj(z) across the interface. Then in the abrupt
limt of (5.5 we have simply dz(z2)—46(z) and
H(rp.E)f(r)=Ef(r) (5.3 63(z)—a '8(z). The abrupt approximation t¢5.5) can
hl ' therefore be written as
in which f(r)=f(r) and ﬁZ
H=E{(2)+®(2)—V- 2 (2) V+TI'6(z)
72 I'1s m*(z)
H=Egt @+ Qe 5 VA4 20 [3(V Byt By V) +Ky) 12C(2)
o +4, 4 2m* (2) 8(2) 1, (5.9
XGj[2(V-pjstpjs- V) +Kjs]. 5.4 .
in which
Consider now the special case of a layered medium grown Iys2)
along the[001] crystal axis, and letb be a function ofz 0 4 a1 ' 0 _1ATZ)\2
alone. Then5.4) reduces t& I'=Qssta 2 Gi(0)(Ksj=24P5)) .9
2 collects all of thesfunction coefficients, and
H=E4(2)+®(z2)—-V-  (z )V+Q542 (2 I'e2)
Fo C=—77— 2 B4DG(2(K-3AP5).
+ 2 Gi[Ksj= 3(9,5%)]? (5.10
) In (5.8 the functionsE,(z), m*(z), and C(z) have step
= ~, Ly discontinuities at the interfadéut no s functions. Again, in
+ ; ﬁz{pstj[Ksj— 2(0zp 1} 59 the last termg, acts only on the function in brackets, not on
the envelopd .
in which We are now in a position to derive boundary conditions
from the effective-mass equatiofs.3). Since the Hamil-
Iy42) , ) tonian (5.8) has translational invariance in the plane, we
m E > |psi(2)l (5.6 can choose the envelopes to be of the forffr)
m*(z,E) m 7 E-Ej(2)-®(2) =f(z)e'i T, wherek =xk,+yk, . The boundary conditions

will be sought in the form of a connection rule between the
is the energy-dependent effective mass, andunctionsf(z) andg(z)=f'(z)/m*(z) on opposite sides of
p:j(2)=(s|p,lj), wherej is restricted to stateg) that are of the interface. If we definé.. to be the value of just to the
I';s symmetry. In both sums i(6.5), the operatop, acts only  right (left) of the interface, then the connection rule can be
on the function immediately to its right; it does not act uponexpressed in terms of the transfer malftix
the envelopd .

The most interesting terms (8.5 areQ(z) and the two

sums, since it is these terms that represent the deviation from g+ g9-
conventional theory. It is tempting at this stage to apprOX|

mate the material parameters as abruptly varying, in wh|chn order to conserve current density across the interface, the
— .. . . determinant ofT must be 1(to within an overall complex
casepg; is a Heaviside step function ari; is a Dirac é

J . ; . ._phase factor'®?°In the conventional effective-mass theory,
function. However, this causes immediate problems, sinc

the penultimate term i5.5) is then the square of & func- ur:st fr?ant(rjiglO\?VésvsiﬁtgégaggIg\r/]vptcr)\z(??h?sy igmzc:imgc?nbegggral
tion, i.e., aéd function of infinite weight. The interface is ) 9 ’

hence an impenetrable barrier, and the only solutior(s.g) The Hamiltonian(5.8) is valid for all z, so the desired
. ) . . . boundary conditions can be obtained by integrating the
are those in whiclf vanishes at the interface. This is obvi-
effective-mass equation across the interfc¥.This yields
ously not a physically reasonable model for a heterostruc;

ture. The problem is that the true material properties are noTthe transfer matrixsee Appendix F

= 5.1
T Ta (.13

mathematically abrupt; all functions it6.5) are smoothly 1+Cy/2

varying and finite, due to the quasicontinuum restriction on Tii=——= T,,=0,

allowed wave vectors. Therefore, if we wish to approximate 1-Col2

the junction as mathematically abrupt, we must multiply the 2r 1-Cy/2
quasicontinuum functions 6.5 beforetaking the abrupt TZl:ﬁz(l—C§/4) T22:1+C0/2’ (5.12
limit.> '

Let us take the interface to beat0, and assume that the in which C,=C(z=0). This matrix obviously conserves
material parameters are of the form current density, but it differs from the unit matrix in two
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significant ways. First, the paramet@g generates a discon- is not always negligible, since it can lead to qualitative dif-
tinuity in the envelope function, which comes from the ferences such as the HH-LH coupling discussed above.
sfunction derivative in(5.8). If Cg is small, then the con- The present theory is very similar to the exact envelope-
nection rule reduces tb, =(1+C,)f_, henceC, gives the  function theory of Burt® which uses a material-independent
approximate fractional change fnat the interface. Second, Luttinger-Kohn basisU,(r) to represent the entire hetero-
the &function coefficienl” modifies the connection rule for structure. This basis is related to the modified Wannier basis

the slope of the envelope. (2.6) by the unitary transformation
This agrees with the I_Jé[rz%nsfer matrices calculated from
other microscopic modef$;*® but here the origin of these
. ’ . . . r,R = A ’ R U (r),
terms is clear. They come from the change in basis functions Un(sR) nE n'n(R)Un:(1)

across the interface, which appear®jp, and in the spatial
dependence op,,,. Note that the off-diagonal elemert, *
vanishes, as suggested by Laikhtm3iThis term is treated Un(r)=2 Ann (R)Up (1,R), (6.2)
as generally nonzero in the theory of Andbpal. 6 but their "
numerical calculations show that it is always negligible un-in which [cf. (C3)]
lessT is used to connect two bands of different symmetry
(e.g.,I" and X). This is not the case treated here, (5012 Ann’(R):f U* (nug(r,R)d%. 6.2
agrees with their results. v

The specific formalism used by Andet al® has been
criticized by Cuypers and van Haeringrbecause it is
based on a current conservation law that assumes paraboﬁ)cY
bands, which the latter authors have shown to be invalid in
real semiconductors. For example, in a GaAgR4, _,As fo(R)=2 A% (RF(R),
structure, thelcompleX dispersion of AlGa, _,As may be n’
significantly nonparabolic at the band edge of GaAs. The
same point was raised by the present author in connection Fn(R)ZE A (R (R). (6.3
with the envelope-function theory of optical phondhst is n’

therefore important to include the energy dependence of gy, ¢an in fact derive the Burt formalism from the present

effective masg5.6) in most calculations. theory without resorting to such mathematics, sibicgr) is
The above derivation was limited to a single nondegener:

: merely the special case in whiah,(r,R) is chosen to be
ate band. It can, however, easily be extended to dege”eraﬁ%ependent oR. The bulk momentum matrig,,. is thus a
or quasidegenerate bands. Consider a model in which a fin nn

Itnstant, while the interface matricés,’, Knn, and Qp,y
. . . ] ’ nn nn
set of bands is treated directly, with the effects of other ,.o ;o1 This enormously simplifies the description of the

remote bgnds; mcIuded_ as second-order perturbations. Theinterface. HoweverlJ,(r) no longer diagonalizes the bulk
perturbations renormalize E(.19 as follows: Hamiltonian, so in4.15 the diagonal matri,(r)&,, must
be replaced by a nondiagonal matr/,, (r); the off-
diagonal terms are responsible for the differences between
the Burt theory and conventional theory. Their effect may be
1 seen by replacind,,; in (5.13 with W,;; this generates
>m (p.pjn,+pjn,.p)+an,}_ (5.13 I_—|H—LH couplmg as before,'but now as.tnulk effect due }o
lineark terms in the bulk dispersiofas in the perturbation

This generates effects similar to those found in the nondetheory of Smith and Mailhidh. These linear terms cannot be

generate cas@viz., discontinuities and functiong, but the ~ Neglected in general because their coefficients are not the
. . . - . ! H 6,54

main qualitative differences from conventional theory areSame as those in the standarg theory ™" Hence a treat-

those interface effects already included4nl5), such as the ment of such effects in the Burt formalism requires one to

discussion of5.13 will be presented elsewhere. ity of the interface is achieved at the cost of added complex-

ity in the bulk. The present theory has the opposite effect.
Which model is chosen to describe a given problem is thus
primarily a matter of aesthetics.

If the zone-center Bloch functions are the same on both As mentioned in Sec. IV, the approximate Hamiltonian
sides of a heterojunction, all of the interface effects describe@.15 is identical to one derived previously by Karavaev and
in the previous section vanish. The transfer matfx12 Tikhodeev?® The unitary transformatior(6.1) shows the
consequently reduces to the unit matrix, and the model dezonnection between the two theories. Karavaev and
rived above reduces to the conventional envelope-functioikhodeev derived their model from just such a transforma-
model proposed by Bastdrénd others on the grounds of tion, but one that was continuous rather than discrete. As a
current conservation. The present derivation therefore suponsequence, their formalism was not unique, and to main-
ports the use of this model in situations where the differencéain the uniqueness of their model they were forced to limit
in basis functions is small enough to be neglected—providethe analysis to cases in which the material properties and
one maintains the correct operator orderifygiven by  envelope functions were slowly varying in space. The
(5.13. Note, however, that a small change in basis functionpresent formalism, by starting from an exact representation,

The Burt envelope§ , are therefore given in terms of ttig

1
ﬁ (p'pnj+pnj'p)+Knj

ﬁnn':Hnn'_F;

X G;

VI. COMPARISON WITH OTHER MODELS
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is able to demonstrate explicitly what corrections to this VIl. SUMMARY AND CONCLUSIONS
model are needed and when they arise, thus proving that
their approximations remain valid even at abrupt interfaces. This paper has presented an envelope-function model that
Questions of uniqueness aside, their derivation offers #&akes explicit account of the change in band-edge Bloch
quick, easily understandable route to the Hamiltor{iaid5), functions at an interface between two semiconductors. The
and the author highly recommends a perusal of this paperformalism was derived by choosing a set of material-
for an alternative view of the problem. dependent, spatially localized basis functions that diagonal-
Indeed, the discussion of the GSVAA in Sec. Il opens upize the bulk zone-center Hamiltonian in each unit cell of the
the possibility that other effective-mass derivations in thecrystal. This modified Wannier basis is complete and ortho-
literature, which were previously thought to apply only to normal, thus providing an exact envelope-function represen-
smoothly graded media, may in fact be valid for abrupt hettation of the Schrdinger equation. An approximate model
erostructures as well. Most such derivatidh&~**%*how-  was developed by assuming that all terms arising exclusively
ever, cannot be generalized in this manner, because they ifrom wave vectors in the outer half of the Brillouin zone
voke further approximations that do not correctly account forcould be neglected; this approximation was shown to be
the spatial variation of the material properties. Two notableyalid even for highly discontinuous functions. Differences
exceptions are the theories of Leilffeand Yound'® both of  from conventional envelope-function theory appeared in the
whom obtained effective-mass equations similar(505). _kinetic energy(but not the potential energjywhere the ma-

Leibler used a material-independent Luttinger-Kohn basigeria| dependence of the basis functions led to new interband
and treated thé-p interaction and the inhomogeneous PO- mixings, such as zone-center HH-LH coupling.

Lta_nt!al as perttérbatlokr;s, much t_hz iame as S?'th andb Mail-" perturbation theory was used to derive a single-band
lot’s approach to abrupt junctiorisyoung used perturba- o ctive-mass equation. This equation contained kinetic-

tion theory in a material-independent Wannier basis, arrivinganergy terms proportiondin the abrupt limit to a Dirac &
at ess%ntlally the sa|1ne res.uItLas'bII_elykﬂe/rtr minor differ- function and its derivative. Connection rules were derived
ences Rl,Je toa Zml\? error 'ﬁ% eld Er '5553;) ul)lon' deri for the envelope function, showing that theterm gives rise
von Roos and MavromafiSand El¢™ have given deri- y, an amplitude discontinuity, while théterm modifies the
vations almost identical to Leibler's, but they incorrectly o,nnection rule for the slope. These results were shown to be
concluded that the effec_t|ve mass 1S mdependent of POSItioN, 4ccord with the transfer matrix obtained by other methods.
because they failed to include the third-order perturbations  +n qerivation presented in this paper has the advantage
necessary to describe its pos'“"’? d_ependence_ Thl(§fsh0wing clearly the underlying unity of the subject matter.
highlights a common feature of all derivations that treat theAIthough the interface effects described here are well
material dependenc_e of the basis funct|_ons asa pe_rturbatlo'gnown, they could not previously be included in a rigorous
namely, that they yield only an approximati¢good if ap- envelope-function model without intensive numerical calcu-

H ,18 : 4.5 H Al . . . o )
plied correctly;® poor if nof** to the true spatial varia- |tions The present theory offers a simple intuitive descrip-

tion of the matgrial properties. In c_ontrast, the rn""teri"’“'tion of how such effects arise, and it can be used to predict
dependent basis functions used in the present pap

%he behavior of the envelopes in general qualitative terms
reproduce the corregt-p equations in every bulk medium in P d g

he h dl fh h the mi without resorting to microscopic calculations. Furthermore,
the heterostructure, regardless of how much the mICroscopi¢ yemonstrates conclusively that envelope-function tech-
potential changes between media.

. : . iques are indeed valid at an abrupt interface. Thus the phe-
Material-dependent Wannier functions have been use 9 P P

) . ) omenological approach of including the interface region in
previously in several envelope-function models based on thg{n effective-mass equatittis fully justified, and the strong
tight-binding method®~*" However, the complexity of this

" 1 _ criticism™ leveled at such theorig@s unjustifiable in prin-
approach normally limits its application to nearest-neighbor

dels with I f basis f X d | ciple) now seems overly pessimistic. If the interface is
models with a small set of basis functions, and completenesge 510 g correctly, the interface effective-mass equation is

and orthogonallty issues are not usually addressed. As c_j'%'ompletely equivalent to the transfer-matrix approach, so
cussed in Sec. V, the present theory reproduces all quamefhere is no reason to favor one technigue over the other.
tive features of the interface connection rules derived from

such models, but it substantially improves upon these results
by providing a straightforward extension to a complete or-
thonormal basis set.

The most rigorous envelope-function connection rules . i , )
thus far have been those derived from large-basis pseudopo- | Wish to thank Mike Burt for valuable discussions and
tential calculation€ 2! This technique, although highly ac- advice. This material is based upon work supported by the
curate, requires specific knowledge of the microscopic basidorth Atlantic Treaty Organization under a grant awarded in
functions throughout the calculation, and it is rather difficult 1995.
to glean much intuitive information from such an approach.

In contrast, the present theory condenses all microscopic in-

formation into the interface matriP,,. The envelope- APPENDIX A: COMPLETENESS AND ORTHOGONALITY
function equations can thus be manipulated analytically, and

the qualitative effects of the change in basis functions at an Consider first the Luttinger-Kohn functions,(r,R). Be-
interface can be determined without the need for extensiveause these functions are periodiajnwve can expand them
numerical work. in a Fourier series:

ACKNOWLEDGMENTS
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. r=23;x;a andk=3,k;b;, where lattice sites occur at integer
Un(r,R) =0 Y2 ung(R)ECT, values ofx; and k;. Then the simplest possible Brillouin
¢ zone is the parallelepipefk;| <3, which yields for &5 the
three-dimensional sinc function
unG(R)=v’1’2f un(r,R)e™'C " dr, (A1) N

v sin(arx;

. . . se(n==11 rma), (B1)
where the sum is over all reciprocal lattice vect@rsand the viZ1 X
integral is over any primitive cell volume. The Fourier
coefficientsu,g (R) are complete and orthonorm&f® with
respect to the plane wavet® "

Other choices of B4such as the conventional Wigner-Seitz
cell) will lead to a more complicated functional form for
8s(r), but Eq.(2.5 will be satisfied at the lattice sites for any
such choice.

2 UnG(R)UzGr(R): 8,6

" APPENDIX C: POTENTIAL ENERGY

* _ In this appendix, Eq(4.4) is derived by applying the GS-
% Una(R)Un'6(R) = (A2) VAA to the flat-band matrix element
These equations are independenRofand are equivalent to B .
the following relations fou,(r,R): Vnn/(R,R’)=v2 wy (r,R) 8g(r—R”)
RII
> u(rRIUE(r , R)=p 1D, € X Vo(r,R" )Wy (r,R")dr. (C1)
n G

The first step is to move the right-hand basis function to the
locationR" by applying the transformation

=2 a(r-r'=R'),
RV
un/(r,R’):E Anmnr(R”,R’)Unm(r,RH), (CZ)

o

fvu:(r,R)un,(r,R)d3r:5nn,. (A3 ere

The former equation, which is to be integrated over any cell ) . 3

v, expresses the completeness of the bagis,R) with re- Ann(R,R ):J Un (r,R)un (r,R")d>r (C3

spect to cell-periodic functiongThis was first noted by Lut- ’

tinger and Kohrf®) The latter specifies the normalization is a unitary matrix describing the degree of orthogonality of

convention used in this paper. the basis functions in different unit cell€f. (A3)]. The
The completeness and orthogonality of the modified Wantransformation (C2) leaves wus with a product

nier basisw,(r,R) may be proved easily from the above Vy(r,R")u,(r,R"). Since this is a periodic function of we

relations. One simply inserts the definiti@6) into the left- can expand it in terms of the complete periodic basis

hand side of(2.7) and expands the function§(r—R) and  u,(r,R"), namely, as

u,(r,R) in Fourier space using2.3) and (Al). The right-

hand side 0f2.7) then follows directly from Eqs(A2) upon

n "y O n n
use of the identitie¥ Vo(r,R")upn(r,R F% V(R Up(r,R"),  (C4)

R (2m)° where the expansion coefficients are the bulk matrix ele-
; e = % (k—G) (A4)  ments(4.5). The flat-band operator is therefore of the form
and Vam(RR)=2 3 Am(RR'.R")
B(k)B(k+G)=B(K) 5g.0. (A5) mnt R

0 n n !
Note that the above proof of.7) is not limited to basis XV (R Ao (RY,RY), (CH)

functions taken from the center of the Brillouin zone. A where the only quantity not yet defined is the integral
trivial extension is to replaceu,(r,R) in (2.6) with

unko(r,R), wherek, is an arbitrary function oR. One could
also replacal,(r,R) with i, (r,R), but then(2.7) is valid
only if ky is independent oR.

Ann,,(R,R’,R"):uJ W (r,R)8g(r—R" )W (r,R")d>r.
(C6)

This gives us an expression fM’;E,(R,R’) in terms of
Vgn,(R), but it is in general very complex, with many non-

The behavior of&z(r) is easiest to see from a specific local and interband couplings. Let us see if we can simplify
example. Let the primitive translations in the direct and re-t by invoking the GSVAA. We can start by inserting into
ciprocal lattices be denoted ey andb; , respectively, with  (C6) the Fourier expansion@.3) and (Al). Upon perform-
a-b;=2m4;, and let the coordinate systems be defined bying the integral over, one finds

APPENDIX B: é5(r)
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1)2
Annn(R,R’,R”)=WJd3kJ d3k’ pnn,(R,R’)=vfW:(r,R)éB(r—R’)pun,(r,R’)d3r

xf d3k” D) uAs(R)Uprar(R") +vfw:(r,R)unr(r,R’)pég(r—R’)d3r-

G,GH
X 8(k+k'—K"+G—G")B(k)B(k")

(C7)

(D2)

< B(K" ek Raik’ -R’ g ik -R" In the first term, the functiopu,(r,R’") is periodic inr, so it
(k")e™ e € ' can be expanded over the complete periodic badisR) as
Integrating ovelk”, this becomes

pu, (r,R)= > P (RU(T,R), (D3)
n//

vZ
Ann"(R,R’,R”)=W J d3kJ d3k’ D) uAs(R)Upyrgr
G,G”

X(R")B(K)B(k")B(k+k'+G—G")

in which p,,(R) is the bulk matrix element4.12. In the
second term, we can use the quasicontinuum envelope defi-
nition (2.11) to obtain the expansion

« k- (R=R")gik’-(R"=R"). (9

pSg(r—R")=2>, 85(r—R")P"Spr g - (D4)

Now if k andk’ were limited to the inner half of the BZ, the v
third B function would be nonzero only faB=G". Let us
assume that this remains true for lalandk’. Then(C8) can
be evaluated immediately usirt§2) and(2.3); the result is

To put the results back into Wannier-function form, we can
use the unitary transformatiofC2). The integrals in(D2)
can then be performed using the orthogonality rela{iid),

Annn( R, R’ ,R/,) = 5nn”5R,R”5R’ R - Wlth the reSU|t

(C9
pnn’(RaR’):pnn’(R)aR,R'_FAnn’(RvR,)P&R,R’ .

Upon inserting this i(C5) and usingAp»,'(R",R")= 8 05)
D5

[from (C3) and (A3)], the flat-band operator reduces to the
strikingly simple expressiofé.4). Hence all of the compli-
cations in(C5) drop out, and we are left with nothing but the ~ The next step is to work the second term(i5) into a
local bulk matrix element. more convenient form. To see more clearly which terms can
The justification for the above steps is as follows. In gen-be neglected under the GSVAA, it helps to couple this op-
eral we must allow folG#G" in (C8), and there will conse- erator directly to an envelope functigof. (2.9)]:
guently be corrections taC9) arising from integrals over the
regions where&k+k' is out of the BZ. However, if we insert
(C5 and(C7) into the variational expression for the energy
[cf. (2.9]

c(R)= 2 [Awm(R,R)PSRrIfn(R). (D6

n’,R’

We can use Fourier transforms to rewrite this function as

cn(R>=(2”T)6n§R,”fB<k)B(k'>

X B(kr/)ﬁklleik”-Rei(k+k’ -k")-R’

E=v> X f*(R)Hu(RR)f(R), (C10

nn RR’

then it becomes clear that these corrections will be negligible
if the functions ofR and R’ which couple to thee'*'R and

e’k 'R" terms in(C7) are GSV. The relevant function & is
fX(R)uis(R), while that of R" is Ay (R",R)f,/(R").

X Aq (RK) 0 (k')d3k d3k’ d3k”. (D7)

Thus the solutiori4.4) is valid if the envelopes and material The sum oveR’ can be performed using the identityd):

properties are small in the outer half of the BZ.

APPENDIX D: MOMENTUM MATRIX

The momentum matrix4.9) can be represented exactly in

the form
pnn’(RaR’) :[5nn’P+Pnn’(R)]5R,R’ + Dnn’(RyR,)-
(D1)

This differs from(4.10 only in the extra ternD,,,(R,R’"),
which is negligible within the GSVAA. To derivéD1), we

can start by inserting the definitiof2.6) of the right-hand

Wannier function inta(4.9):

then integrating ovek”, this becomes

c(R)=(2m) 2 ”B(k)B(k')

XAi[k+k'+G(k+k')Je'k k)R

X Ann (R K) s (k") d3k ok, (D8)

whereG(k+k') is the reciprocal lattice vector that brings the

sumk+k’+G into the first BZ. The terms iD8) propor-

tional tok andk’ are easily identifiable as spatial derivatives

of A, andf,.. We can therefore transfor(8) back toR
space and find
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(R =2 Pow(R)fn(R)+PF(R)

+ X Do (RR)f1(R'),

n'R’

(D9)

which completes the derivation @D1). The nonlocal opera-
tor D, (R,R’) is defined by the integral

Dnn,(R,R'):Wffhe(mk')

X Anyr (R, K)ek Relk (R=RG3Y 37
(D10)
which can be calculated explicitly:

Dnn’(RaR,) = [Ann’(RaR,) - é\nn’]p5R,R’ - Pnn’(R)5R,R’ :
(D11)
This operator satisfies

> Dpn(R,R")=0, (D12)
R/

so it will couple weakly to slowly varying envelopé$®
Indeed, since&s(k+k’) is nonzero only wheré&+k’ is out-
side the BZ, it is clear frontD8) thatD,,,» can be discarded
if A,y andf, are GSV. Hence Ed4.10 will be an excel-
lent approximation tgD1) under most circumstances.
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Inn,(r)=J uX(r',nun(r',rddr’. (E2)
v
At the lattice sites =R, we have
lnn(R)= 6 » (E3)

which follows from the orthogonalitfA3) of the discrete
basis functions. However, for#R, the quasicontinuum
functions(E1) are not orthogonal:

Lo (N =02 2 8g(r—=R)A.(R",R")85(R"—T),
R!‘R/l
(E4)

whereA,,,, is the unitary matriXC3). This lack of orthogo-
nality means thaP,,/(R) is not generally Hermitian. If we
take the gradient of EqE2), multiply by #/i, and evaluate
the resulting function at a lattice site, we find the relation

Pnn’(R)_P:'n(R):[plnn’(r)“r:Rr

which does not vanish in general. However, if the basis func-
tionsu,(r,R) are GSV—that is, ilu,(r k) is negligible in the
outer half of the BZ—then,,/(r) is a quasicontinuum func-
tion, which implies that ,,/(r)=4,, everywhere see(EJ)
and(2.11)], and the right-hand side ¢E5) vanishes. There-
fore, even thougl®,, ' (R) is not strictly Hermitian, it may be
treated as such within the context of the GSVAA.

(E9

This result can be used to derive a simple expression for
the probability current density. The microscopic current den-

sity is defined by

1
3(r)= = Re y* (DPy(1)]. (D13

Upon expanding/(r) in the modified Wannier basis and ap-

plying the GSVAA, one finds that the first-zone partXf)
is approximately

1
Ja(r)= o 2 R[FH (N[ 8o P+ Py (N]f0r (1)},
" (D14)
whereJg(r) is defined in(3.1).

APPENDIX E: HERMITICITY
OF THE INTERFACE MATRIX

To establish whetheP,,/(R) is Hermitian, we must be
able to calculate discrete derivati#@sf the basis functions

APPENDIX F: INTERFACE TRANSFER MATRIX

Multiplying (5.3) by 2/4? and integrating fronz,<0 to z,
one finds

"Rz)dz + =2

" (2) f(2)6(z)

2
02)-9z0)= 77 |

20
—Co006(2), (FD

in which 6(z) is the Heaviside step functiogy=g(z=0)=
2g++9), and

R(z):[Es(z)+<I>(z)+F5(z)+ﬁ2kf/2m*(z)—E]f(z).
(F2)

If we now multiply (F1) by m*(z), integrate betweenr-¢
ande, and lete—0, the result is

fi—f_=Cofo, (F3)

us(r,R). The first step is to define the quasicontinuum basigvhich specifiesT;; and T, in (5.12. The boundary condi-

functions][cf. (2.11)]

un(r,r’)=v§R: uy(r,R)Sg(R—r"). (ED)

Now consider the integral

tion ong is obtained fromF1) by settingzo=—¢, z=¢, and
taking the limite—0, which yields

9+—9g-=(2h*)Tf—Cogo.

This givesT,; andT,, after a rearrangement of terms.

(F4)
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