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An envelope-function model is derived for electrons in abrupt semiconductor heterostructures. It uses
material-dependent basis functions that diagonalize the bulk zone-center Hamiltonian in each unit cell of the
crystal. The initial formalism is exactly equivalent to the one-electron Schro¨dinger equation; approximations
suitable for abrupt junctions are then developed. The abrupt change in microscopic potential at an ideal
interface is shown to introduce no new interband coupling; all such coupling arises from the kinetic energy,
specifically from a momentumlike matrix element containing the gradient of the basis functions with respect to
changes in material composition. This generates interface effects not included in conventional envelope-
function theories, such as zone-center coupling between heavy and light holes. An effective-mass equation is
derived for the conduction band of a layered zinc-blende structure; it exhibits both envelope discontinuities and
d-function potentials, in agreement with the transfer matrices derived from other microscopic theories.
@S0163-1829~96!10027-8#

I. INTRODUCTION

The envelope-function method, by virtue of its simplicity
and ease of interpretation, is by far the most popular method
for calculating the properties of electrons in semiconductor
heterostructures. The standard model used for such
problems1–5 is based on bulkk•p theory6,7 and neglects the
change in band-edge Bloch functions at an interface, charac-
terizing the heterostructure in terms of its bulk properties
alone. However, it is now recognized that such a treatment is
not always adequate; for example, in the valence bands of
zincblende structures, microscopic calculations8–12 show a
significant heavy-hole–light-hole~HH-LH! coupling at
ki50, which is not included in the standard envelope-
function theory. Possible experimental evidence for this ef-
fect has also been found.13,14To describe such coupling, one
must include properties of the interface itself, which are de-
termined by the difference in Bloch functions between the
two media. A number of envelope-function models incorpo-
rating this difference have been proposed in recent
years,9–11,15–26but most of these require extensive micro-
scopic calculations. What has been missing is a straightfor-
ward analytical derivation of an envelope-function model
that offers a clear, simple, yet complete description of how
the material dependence of the basis functions alters the in-
terface connection rules. The object of this paper is to
present such a derivation, starting from the one-electron
Schrödinger equation for a lattice-matched system without
spin.

The two key steps in the derivation are the choice of basis
functions and the choice of approximation technique. An in-
tuitive description of position-dependent material properties
is most easily obtained from a localized basis such as the
Wannier functions.27 However, there are also distinct advan-
tages to using a Luttinger-Kohn basis,28 such as the simplic-
ity of the equations for degenerate bands and the natural
appearance of energy-dependent effective masses for the

treatment of nonparabolic effects. In this paper a hybrid basis
is chosen in which localized Wannier functions are defined
not in terms ofk-dependent Bloch waves, but in terms of
zone-center Luttinger-Kohn functions. This material-
dependent basis is defined so that the bulk zone-center
Hamiltonian is diagonal in each unit cell of the crystal.

An effective technique for approximating the heterostruc-
ture matrix elements may be developed by assuming that the
envelopes of the wave function and material properties are
small in the outer half of the Brillouin zone, i.e., that they are
‘‘slowly varying’’ in k space.18 Such ak-space approxima-
tion remains valid even when these functions change
abruptly in r space, provided the abrupt discontinuities are
not too close together. This technique therefore permits the
treatment of problems that cannot be handled using the con-
ventional assumption that the envelopes vary slowly inr
space.

Under these conditions, it is shown that the envelope-
function equations take the form of local, spatially varying
k•p equations, but with additional terms describing the ex-
plicit effects of the interface. The fundamental parameter
characterizing the interface properties is a momentumlike
matrix element that depends on the gradient of the band-edge
Bloch functions with respect to changes inmaterial compo-
sition ~rather than the ordinary spatial gradient in the bulk
momentum matrix!. This term has ad-like character at an
abrupt interface and, in tandem with the bulk momentum
matrix, gives rise to ad-function potential coupling the
heavy- and light-hole bands. Such a matrix element was first
derived by Karavaev and Tikhodeev20 for heterostructures
with slow spatial variations. The present work extends their
theory to structures containing abrupt discontinuities.

A single-band effective-mass equation is derived from the
k•p formalism by using Lo¨wdin perturbation theory29 to
eliminate the interband coupling. The resulting equation has
all the features of more complex microscopic theories~i.e.,
envelope-function discontinuities andd-function potentials!,
and it offers a clearly understandable explanation of how
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these effects arise. It therefore justifies the phenomenological
technique of using effective-mass equations at an abrupt in-
terface by providing an unambiguous prescription for the
form of such a Hamiltonian. As a consequence, the present
theory affords a conceptual unification of the microscopic
and phenomenological approaches to heterostructure
envelope-function theory, approaches that were viewed in
the past as fundamentally different in principle,19 but are
now seen to be equivalent~if formulated correctly!.

The derivation begins in Sec. II, where an envelope-
function formalism with material-dependent basis functions
is developed in a form exactly equivalent to the Schro¨dinger
equation. To simplify the exact theory, an approximation
technique is proposed in Sec. III and applied to the Hamil-
tonian in Sec. IV. The approximate model is used to derive a
single-band effective-mass equation and interface connection
rules in Sec. V. A comparison of the model with other
envelope-function theories is presented in Sec. VI, and the
main results of the paper are reviewed and discussed in Sec.
VII.

II. MATERIAL-DEPENDENT BASIS FUNCTIONS

In this section, an exact envelope-function formalism is
developed by defining a material-dependent basis set that
diagonalizes the bulk zone-center Hamiltonian in each unit
cell of the crystal. The starting point is the one-electron
Schrödinger equation:

F p22m1V~r ,t !Gc~r ,t !5 i\
]

]t
c~r ,t !, ~2.1!

where p52i\¹, m is the free-electron mass, andV is a
nonperiodic microscopic potential. This potential describes
the intrinsic properties of the heterostructure, along with any
space charges or external fields.

To construct appropriate basis functions for this Hamil-
tonian, it will be assumed that we have complete information
about the bulk media making up the structure. That is, for
every unit cellR ~whereR is the position of a Bravais lattice
site!, we know the bulk potential~or pseudopotential!
V0~r ,R! for the medium occupying that cell. This potential is
by definition periodic inr @i.e., V0~r ,R!5V0~r1R8,R!#, so
we can solve the corresponding Schro¨dinger equation by
standard methods:30,31

F p22m1V0~r ,R!Gcnk~r ,R!5Enk~R!cnk~r ,R!, ~2.2!

where cnk(r ,R) is a Bloch function satisfyingcnk(r
1R8,R)5eik•R8cnk(r ,R), and Enk(R) is the associated
eigenenergy. In this equation,R should be viewed as merely
an index labeling the different possible bulk solutions that
occur at different locations in the heterostructure.

Following Luttinger and Kohn,28,30 we will now focus
attention on thek50 solutions un(r ,R)[cn0(r ,R) and
En(R)[En0(R). The functionsun~r ,R! are periodic inr ,
and at anyR they provide a complete orthonormal basis for
the expansion of any cell-periodic function~see Appendix
A!. Although these functions are material dependent, they
are not localized, so they do not offer the most natural de-
scription of spatially varying material properties. To intro-

duce such localization,27 consider the following unit-celld
function, which is simply a superposition of all plane waves
in the first Brillouin zone~BZ!:

dB~r !5~2p!23E B~k!eik•rd3k, ~2.3!

where

B~k!5 H1,0, kPBZ
k¹BZ . ~2.4!

The functiondB~r ! has unit area and a spatial extent roughly
equal to the volumev of a primitive unit cell; its properties
are discussed further in Appendix B. At the lattice sites, this
function satisfies

dB~R2R8!5v21dR,R8 . ~2.5!

This equation is valid regardless of the shape of the BZ,31 so
we can choose a shape different from the conventional
Wigner-Seitz cell if desired.~Other choices are often conve-
nient for treating surface and interface problems.32!

We can define a localized basis similar to the familiar
Wannier functions27,30by taking the product of this unit-cell
d function with the periodic Luttinger-Kohn functions:

wn~r ,R![vdB~r2R!un~r ,R!. ~2.6!

These modified Wannier functions may be completely differ-
ent in adjacent unit cells, but they still form a complete or-
thonormal basis:

(
n,R

wn~r ,R!wn* ~r 8,R!5d~r2r 8!,

~2.7!

E wn* ~r ,R!wn8~r ,R8!d3r5dnn8dR,R8 ,

as shown in Appendix A. Since the basis~2.6! is complete,
we can use it to represent any wave functionc~r !:

c~r !5v1/2(
n,R

f n~R!wn~r ,R!,

~2.8!

f n~R!5v21/2E wn* ~r ,R!c~r !d3r ,

where f n~R! is a discrete envelope function for energy band
n and unit cellR. In terms of these envelope functions, the
Schrödinger equation~2.1! takes the form

(
n8,R8

Hnn8~R,R8! f n8~R8!5 i\
]

]t
f n~R!, ~2.9!

where the nonlocal matrix elements of the Hamiltonian are

Hnn8~R,R8!5E wn* ~r ,R!F p22m1V~r !Gwn8~r ,R8!d3r .

~2.10!

In the above equations, the time dependence of the various
functions (V,c, f n) has been suppressed for brevity.

As yet the envelopesf n are defined only at the lattice sites
R. To interpolate these functions between the lattice sites, we
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can apply the sampling theorem,33 which gives a unique in-
terpolationf n~r ! as follows:

34–37

f n~r !5v(
R

f n~R!dB~r2R!. ~2.11!

This definition is unique because its Fourier transformf n~k!
is identically zero outside the BZ.28,38,18First-zone functions
such as~2.11! are called ‘‘quasicontinuum’’ functions35 be-
cause the discrete and continuum representations are com-
pletely interchangeable. One could also define quasicon-
tinuum Wannier functions, but the discrete basis~2.6! is
simpler for most calculations, so this topic will not be pur-
sued here.

Equations~2.9!–~2.11! provide a concise, exact envelope-
function representation of the one-electron Schro¨dinger
equation. However, in order to extract useful results from
these equations, we need to invoke some form of approxima-
tion. The most frequently used approximation in this context
is the slowly varying amplitude approximation,39–46 i.e., the
assumption that the material properties and envelope func-
tions do not vary rapidly on the scale of the unit cell. Such an
approximation is totally inapplicable at an abrupt junction,
where the amplitudes of these functions change by a large
amount in a single monolayer. Nonetheless, by defining a
slowly varying amplitude ink space18,40,45 rather thanr
space, we can develop an extremely useful approximation
that is valid even in cases of abrupt discontinuity.

III. GLOBALLY SLOWLY VARYING AMPLITUDE
APPROXIMATION

A detailed treatment of the Hamiltonian~2.10! is rather
complex algebraically~see Appendixes C and D!. However,
the following simple example suffices to illustrate all of the
basic features of thek-space approximation technique and its
advantages overr -space methods. Consider the convolution
integral

f B~r !5E dB~r2r 8! f ~r 8!d3r 8, ~3.1!

in which f ~r ! is an arbitrary function, limited only by the
assumption that it can be represented in the Fourier integral
form

f ~r !5~2p!23/2E f ~k!eik•r d3k,

~3.2!

f ~k!5~2p!23/2E f ~r !e2 ik•r d3r .

Integrals similar to~3.1! are ubiquitous in effective-mass
theories ~see, e.g., Wannier and Slater27 or Luttinger and
Kohn28!, and the question that arises is as follows: Under
what conditions is it permissible to replace the integralf B~r !
with the original functionf ~r !?

The standard approach to this problem27,28 is based on the
observation thatdB~r ! is a d-like function localized about a
unit cell. Therefore, iff ~r ! varies slowly over distances com-
parable to the lattice spacing, we can treatdB~r ! as a Diracd
function, so to the lowest order of approximation

f B~r !' f ~r !, ~3.3!

and we need not bother with the details of the integral~3.1!.
This approximation is at the very heart of bulk effective-
mass theory,27,28 and is also widely used in similar theories
for slowly graded inhomogeneous media.39–44,46

This r -space technique is very useful, but it also leads
immediately to several further questions. How rapidly can
f ~r ! vary before the approximation~3.3! breaks down? What
corrections to~3.3! should be included in the next order of
approximation? These issues are of only minor interest in the
bulk theory, but they become critically important at an
abrupt junction.

A precise answer to these questions may be found by
transforming Eq.~3.1! to k space, which yields the well-
known identity47 that a convolution inr space is simply a
product ink space:

f B~k!5B~k! f ~k!. ~3.4!

This means thatf B~k! is the same asf ~k! inside the BZ, but
is identically zero outside. Hence for quasicontinuum func-
tions such as~2.11!, which are already zero outside the BZ,
Eq. ~3.3! is not just a good approximation, it is exact. This
conclusion, although rudimentary, has profound implica-
tions. A discrete functionf ~R! can changearbitrarily rapidly
from one unit cell to the next, and yet the quasicontinuum
interpolationf ~r ! satisfies~3.3! exactly.

In general, of course, we are interested in evaluating~3.1!
for functions other than quasicontinuum functions, for which
the truncation~3.4! may have a non-negligible effect. The
case of primary interest is the productf ~r !5f 1~r !f 2~r !, where
f 1 and f 2 are both quasicontinuum functions~usually one is
an envelope function and the other is a material property!. In
this casef ~k! is nonzero outside the BZ, so the integral@cf.
~C8! and ~D8!#

E dB~r2r 8! f 1~r 8! f 2~r 8!d3r 8

5~2p!23E E B~k1k8! f 1~k!eik•r f 2~k8!eik8•rd3k d3k8

~3.5!

is not generally equal tof 1~r !f 2~r !. However, if f 1 and f 2 are
zero in the outer half of the BZ~i.e., those wave vectorsk for
which 2k is outside the BZ!, thenk1k8 always lies inside
the BZ, and~3.5! is exactly equal tof 1~r !f 2~r !.

Hence we have the following simple criterion for whether
~3.3! is a valid approximation: The functionsf 1 and f 2
should be concentrated relatively close to the zone center,
with a negligible spectrum in the outer half of the BZ. This
forms the basis of what will be called the globally slowly
varying amplitude approximation~GSVAA!. The wordglo-
bal is used to emphasize that thisk-space restriction makes
no referenceto whetherf 1 and f 2 are slowly varying at any
individual point. To require that these functions arelocally
slowly varying at each and every point inr space is a much
more stringent condition, and goes far beyond what is actu-
ally needed. As shown below, thek-space definition18 of the
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GSVAA is broad enough to encompass even functions with
large local discontinuities, provided these discontinuities are
not too close together.

To see this, suppose we start by looking at the material
~R! dependence of the basis functionsun~r ,R! in a layered
structure grown along the@001# axis of a zinc-blende crystal.
For a single heterojunction atz50, the material properties
are proportional to the discrete step function

uB~zn!5 H0,1, n,0
n>0, ~3.6!

wherezn5(n1 1
2 )a is the location of thenth monolayer and

a is the monolayer thickness~e.g.,a52.83 Å in GaAs!. The
quasicontinuum function corresponding to~3.6! is

uB~z!5a(
n50

`

dB~z2zn!, ~3.7!

wheredB(z)5sin(pz/a)/pz is the one-dimensional analog
of ~2.3! @see also~B1!#. The Fourier transform of~3.7! is

uB~k!5
B~k!

A2p
Fpd~k!1

a/2

i sin~ka/2!G , ~3.8!

whereB(k)51 for uku,p/a and zero otherwise.
The first term in~3.8! is proportional tod(k); it describes

the average value of the step function~ 12! and is not of inter-
est at the moment. The second term is more significant, since
it describes the change in amplitude across the interface. As
k→0, this term diverges ask21, which means thatuB(k) is
highly concentrated near the zone center. Indeed, even with-
out thed(k) term, the area underuuB(k)u within the inner
half of the BZ (uku,p/2a) is still infinitely larger than that in
the outer half. Thus according to thek-space definition, a
step function is perhaps the ultimate slowly varying function
aside from a constant.

The GSVAA begins to break down only when two inter-
faces are brought into close proximity. As an example, con-
sider anN-monolayer quantum well centered onz50. The
material properties in this case are proportional to

PB~z!5uB~z1Na/2!2uB~z2Na/2!, ~3.9!

which has the Fourier transform

PB~k!5
a

A2p
B~k!

sin~kNa/2!

sin~ka/2!
. ~3.10!

The magnitude of this function is plotted in Fig. 1 for quan-
tum wells of 4, 8, and 16 ML~i.e., well widths of 11.3, 22.6,
and 45.2 Å in GaAs!. Even for N54 it is clear that the
dominant part of the spectrum lies within the inner half of
the BZ. AsN increases, the accuracy of the approximation
improves.

In the most general case of two media with greatly differ-
ent basis functions, the GSVAA will break down forN,4.
However, in most heterostructures of common interest, the
change in basis functions at an interface is small48 ~say
10%!, so in addition to the spatially varying part described
above, there is a large constant term whose contribution to
the Fourier spectrum is proportional tod~k!. In such cases,

the basis functionsun~r ,R! can be treated as GSV functions
of R even in the limit of a single-monolayer quantum well.

Much the same conclusions are reached by examining the
properties of the envelope functions. A sample envelope in a
10-ML quantum well is shown in Fig. 2, along with its Fou-
rier transform. This function is clearly slowly varying by the
k-space criterion, despite the 2:1 amplitude discontinuity at
the interface. Of course, even in a wide quantum well, rap-
idly varying envelopes can always be generated at suffi-
ciently high quantum numbers. One should always check
after a given calculation that the envelopes are indeed small
in the outer half of the Brillouin zone.

In a very thin~single monolayer! quantum well, the enve-
lopes will usually be GSV unless the change in basis func-
tions is large, since in the single-monolayer limit the enve-
lopes consist almost entirely of long exponential tails in the
barrier regions.18 The only structure where the GSVAA is
questionable even in the ground state is a superlattice in

FIG. 1. Fourier spectrumPB(k) for three different quantum-
well widths.

FIG. 2. ~a! One-dimensional example of an envelope~not a
solution to any equation in the text! with a 2:1 amplitude disconti-
nuity in a 10-ML quantum well.~b! Fourier transform of~a!.
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which both the wells and barriers are very thin. In this case
there will be large-k components in both the material prop-
erties and the envelope functions, so the magnitude of these
terms should be examined critically before the results of a
GSV calculation are accepted.

We thus have a clear, simple criterion for establishing
which terms in the Hamiltonian~2.10! are physically signifi-
cant. Section IV begins by considering the potential energy.

IV. ENVELOPE-FUNCTION HAMILTONIAN

A. Potential energy

To simplify the analysis, the potential energyV~r ! will be
separated into two parts: a ‘‘flat-band’’ termVFB~r !, which
describes how the bulk potential varies with material com-
position, and an additional termF~r ! representing space-
charge effects and externally applied fields:

V~r !5VFB~r !1F~r !. ~4.1!

The external potentialF~r ! is usually assumed to be slowly
varying, but the flat-band potential is certainly not. It will be
represented here by an expansion similar to that used for the
envelopes~2.11!:

VFB~r !5v(
R

V0~r ,R!dB~r2R!, ~4.2!

whereV0~r ,R! is the bulk potential of the medium in the unit
cell at R. BecausedB~r2R! is not strictly zero outside the
unit cell atR, Eq. ~4.2! generates a small overlap of the bulk
potentials at an interface. This is physically reasonable since
some overlap always occurs, although it may not be pre-
cisely of the form~4.2!. Any deviations can be taken up in
the potentialF~r !.

The flat-band part of the potential-energy operator in the
Hamiltonian~2.10! is

Vnn8
FB

~R,R8!5E wn* ~r ,R!VFB~r !wn8~r ,R8!d3r . ~4.3!

It is shown in Appendix C that for GSV envelopes and ma-
terial properties, this matrix element reduces to the simple
expression

Vnn8
FB

~R,R8!5Vnn8
0

~R!dR,R8 , ~4.4!

where

Vnn8
0

~R!5E
v
un* ~r ,R!V0~r ,R!un8~r ,R!d3r ~4.5!

is the bulk matrix element for the medium atR. Equation
~4.4! is the same as the usual result for locally slowly vary-
ing functions, but we see here that it is valid at abrupt junc-
tions as well. Hence, contrary to popular opinion, there is no
need to fear that the abrupt change in microscopic potential
at an ideal interface will lead to gross deviations from bulk
envelope-function theory. This fear arises from the assump-
tion that the flat-band potential must be treated within the
confines of traditional effective-mass theory,27,28 i.e., as an
arbitrary rapidly varying perturbation. However, the flat-
band potential is not arbitrary, nor is it treated here as a

perturbation, nor is it rapidly varying inR ~at least not in the
global sense!. In a material-dependent basis, it is only natural
that the potential which generates the basis functions should
have simple matrix elements.

The same procedure can be used to calculate the matrix
elements ofF~r !. If F~k! meets the slowly varying criterion,
then these reduce to

Fnn8~R,R8!5F~R!dnn8dR,R8 , ~4.6!

which is the same as the well-known result from bulk
effective-mass theory.

Therefore, if the microscopic potential can be separated
into flat-band and slowly varying components, the potential-
energy matrix element is no different from the bulk. Such a
separation is not always possible, since in general there will
exist rapidly varying interface terms that cannot be expressed
as a flat-band potential.10 These terms give rise to additional
interband couplings not included here. However, the flat-
band potential is by far the dominant effect of the abrupt
transition between two media, so no corrections to this ap-
proximation will be considered here.~Many microscopic
theories, especially those based on the pseudopotential
method,9–12 also make use of this assumption.!

Since the potential energy has such a simple structure, the
true interface effects must arise from the kinetic energy.

B. Kinetic energy

The kinetic-energy part of the Hamiltonian~2.10! is given
by

Tnn8~R,R8!5
1

2m E wn* ~r ,R!p2wn8~r ,R8!d3r . ~4.7!

This can be rewritten using the completeness condition~2.7!
as

Tnn8~R,R8!5
1

2m (
n9,R9

pnn9
†

~R,R9!•pn9n8~R9,R8!,

~4.8!

in which

pnn8~R,R8!5E wn* ~r ,R!pwn8~r ,R8!d3r ~4.9!

is the~Hermitian! momentum matrix in the Wannier basis. It
is shown in Appendix D that this matrix takes the following
form within the GSVAA:

pnn8~R,R8!5@dnn8P1Pnn8~R!#dR,R8 . ~4.10!

HereP52i\¹R is the discrete momentum operator,49 and
Pnn8 is defined by

Pnn8~R!5pnn8~R!1Pnn8~R!. ~4.11!

The first term inPnn8 is just the bulk momentum matrix

pnn8~R!5E
v
un* ~r ,R!pun8~r ,R!d3r , ~4.12!

but the second is an interface term that is not included in
conventional envelope-function theories:
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Pnn8~R!5E
v
un* ~r ,R!Pun8~r ,R!d3r . ~4.13!

This matrix describes the strength of the interband cou-
pling induced by the change in basis functions at an inter-
face; it was first derived by Karavaev and Tikhodeev20 ~in a
slightly different form appropriate for slowly varying func-
tions!. The main difference betweenPnn8 andpnn8 is the fact
thatP operates only onR, not onr . Thus, when we are in the
bulk regions of a heterostructure away from any interface,
the basis statesun~r ,R! are independent ofR, andPnn8 van-
ishes. Near an interface, however, the basis states have a
step-function dependence, soPnn8 behaves likedB in this
region. This generates interband mixing across the junction,
hencePnn8 may lead to qualitative changes in the interface
connection rules~which will be discussed further below!.

Although the bulk matrixpnn8 is strictly Hermitian, the
interface matrixPnn8 is only approximately so. It is shown in
Appendix E thatPnn8 is not Hermitian in general, but be-
comes Hermitian when the GSVAA is invoked. The remain-
der of this paper considers only GSV functions, so any de-
viations from Hermiticity will be ignored in what follows.

Because the operatorP does not act onr , Pnn8 couples
only bands of the same symmetry. In general it will have
diagonal matrix elements, but for some important cases these
terms vanish. For example, at theG point of a zinc-blende
crystal, the basis functionsun can always be chosen real
because of time-reversal symmetry,6 which means thatPnn8
is purely imaginary. Since this matrix is also Hermitian
~within the GSVAA!, its diagonal elements must be zero.

C. Approximate Hamiltonian

The above results for the GSV kinetic and potential en-
ergy operators may now be inserted into the Hamiltonian
~2.10! and written in continuum form using~2.11!. This
leads to the approximate envelope-function equations

(
n8

Hnn8~r ,p! f n8~r !5 i\
]

]t
f n~r !, ~4.14!

where

Hnn8~r ,p!5F p22m1En~r !1F~r !Gdnn8
1

1

2m
@Pnn8~r !•p1p•Pnn8~r !#

1Knn8~r !1Qnn8~r !. ~4.15!

This Hamiltonian is very similar in appearance to the bulk
k•p Hamiltonian.6 The three diagonal terms, in particular,
are exactly the same, except that the band-edge energyEn is
now spatially varying. The terms linear inp are also spatially
varying, and the explicit symmetry of these terms ensures
their Hermiticity. This symmetry came directly from the mi-
croscopic Schro¨dinger equation~and the approximate Hermi-
ticity of Pnn8!; it was not artificially imposed, as is frequently
done in phenomenological theories.2,3,50

The primary difference from bulkk•p theory lies in those
terms which depend explicitly on the change in basis func-

tions at the interface, namely,Pnn8, Knn8, andQnn8. These
last two terms are defined as follows:

Knn85
1

2m (
n9

~pnn9•Pn9n81Pnn9•pn9n8!,

~4.16!

Qnn85
1

2m (
n9

Pnn9•Pn9n8 .

The matrixKnn8 is responsible for the zone-center HH-LH
coupling in zinc-blende structures. The bulk momentum ma-
trix pnn9 couples theG15 valence bands to otherG15 bands
~such as those directly above theG1 conduction band! via
matrix elements of the typêxupyuz9&; the interface matrix
Pn9n8 then couples back to theG15 valence bands through
terms such aŝz9uPzuz8&. SincePn9n8 behaves likedB at an
abrupt interface,Knn8 andQnn8 have this character as well.
However,Qnn8, unlikeKnn8, couples only bands of the same
symmetry.

The Hamiltonian~4.15! is exactly the same as that derived
by Karavaev and Tikhodeev20 under more restrictive condi-
tions, namely, envelopes and material properties that are lo-
cally slowly varying. The above derivation shows that their
analysis is actually valid for a much broader range of prob-
lems, and that no corrections to their Hamiltonian are re-
quired until the Fourier spectrum becomes significant in the
outer half of the BZ.

The equations presented here involve sums over an infi-
nite number of bands, which obviously cannot be imple-
mented in practical calculations. The following section there-
fore considers how we may reduce the number of bands
using perturbation theory.29

V. SINGLE-BAND EFFECTIVE-MASS MODEL

This section focuses primarily on deriving an effective-
mass Hamiltonian and boundary conditions for the nonde-
generateG1 conduction band of a zinc-blende heterostruc-
ture, although some general results for degenerate bands are
also presented. The derivation initially follows that given by
Karavaev and Tikhodeev,20 but extends their results by de-
veloping explicit interface connection rules for the envelopes
at an abrupt junction. It will be assumed that we are consid-
ering a system~e.g., GaAs/Al0.3Ga0.7As! in which, for ener-
gies close to the conduction-band edgeEs~r !, the dominant
envelope function throughout the structure is the conduction-
band envelopef s~r !. All other bandsEj ~r ! are sufficiently
remote in energy that the corresponding envelopesf j ~r ! are
small compared tof s~r !; they will thus be treated as first-
order perturbations.

We are interested here in calculating the energy eigen-
functions of~4.14!, which are the solutions to

(
n8

Hnn8~r ,p! f n8~r !5Efn~r !. ~5.1!

The equation for the remote bandn5 j can be used to find a
first-order solution forf j as a function off s :

18,20

f j5Gj@
1
2 ~“•p̃js1p̃js•“ !1Kjs# f s, ~5.2!
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where Gj5(E2Ej2F)21, and p̃nn85~\/im!pnn8 is the
Kane matrix,6 which is real and antisymmetric. Sinces is a
G1 band, symmetry considerations

51 show that~5.2! will be
nonzero only if j is a G15 band. Substitution of~5.2! into
~5.1! with nn85s j yields a single-band effective-mass equa-
tion of the form

H~r ,p,E! f ~r !5Ef~r !, ~5.3!

in which f ~r ![f s~r ! and

H5Es1F1Qss2
\2

2m
¹21(

j

G15

@ 1
2 ~“•p̃s j1p̃s j•“ !1Ksj#

3Gj@
1
2 ~“•p̃js1p̃js•“ !1Kjs#. ~5.4!

Consider now the special case of a layered medium grown
along the@001# crystal axis, and letF be a function ofz
alone. Then~5.4! reduces to20

H5Es~z!1F~z!2¹•
\2

2m* ~z!
¹1Qss~z!

1 (
j

G15~z!

Gj@Ksj2
1
2 ~]zp̃ s j

z !#2

1 (
j

G15~z!

]z$ p̃ s j
z Gj@Ksj2

1
2 ~]zp̃ s j

z !#%, ~5.5!

in which

m

m* ~z,E!
511

2

m (
j

G15~z! ups j
z ~z!u2

E2Ej~z!2F~z!
~5.6!

is the energy-dependent effective mass, and
p s j
z (z)5^supzu j &, wherej is restricted to statesuz& that are of

G15 symmetry. In both sums in~5.5!, the operator]z acts only
on the function immediately to its right; it does not act upon
the envelopef .

The most interesting terms in~5.5! areQss(z) and the two
sums, since it is these terms that represent the deviation from
conventional theory. It is tempting at this stage to approxi-
mate the material parameters as abruptly varying, in which
casep̃ s j

z is a Heaviside step function andKsj is a Diracd
function. However, this causes immediate problems, since
the penultimate term in~5.5! is then the square of ad func-
tion, i.e., ad function of infinite weight. The interface is
hence an impenetrable barrier, and the only solutions to~5.3!
are those in whichf vanishes at the interface. This is obvi-
ously not a physically reasonable model for a heterostruc-
ture. The problem is that the true material properties are not
mathematically abrupt; all functions in~5.5! are smoothly
varying and finite, due to the quasicontinuum restriction on
allowed wave vectors. Therefore, if we wish to approximate
the junction as mathematically abrupt, we must multiply the
quasicontinuum functions in~5.5! before taking the abrupt
limit.52

Let us take the interface to be atz50, and assume that the
material parameters are of the form

Qss~z!5Qss
0 dB~z!, Ksj~z!5Ksj

0 dB~z!,

]zp̃ s j
z ~z!5D p̃ s j

z dB~z!, ~5.7!

wheredB(z)5sin(pz/a)/pz, Qss
0 5*Qss(z)dz, andD p̃ s j

z is
the change inp̃ s j

z (z) across the interface. Then in the abrupt
limit of ~5.5! we have simply dB(z)→d(z) and
d B
2(z)→a21d(z). The abrupt approximation to~5.5! can

therefore be written as

H5Es~z!1F~z!2¹•
\2

2m* ~z!
¹1Gd~z!

1]zF \2C~z!

2m* ~z!
d~z!G , ~5.8!

in which

G5Qss
0 1a21 (

j

G15~z!

Gj~0!~Ksj
0 2 1

2D p̃ s j
z !2 ~5.9!

collects all of thed-function coefficients, and

C~z!5
2m* ~z!

\2 (
j

G15~z!

p̃ s j
z ~z!Gj~z!~Ksj

0 2 1
2D p̃ s j

z !.

~5.10!

In ~5.8! the functionsEs(z), m* (z), and C(z) have step
discontinuities at the interface~but nod functions!. Again, in
the last term,]z acts only on the function in brackets, not on
the envelopef .

We are now in a position to derive boundary conditions
from the effective-mass equation~5.3!. Since the Hamil-
tonian ~5.8! has translational invariance in thexy plane, we
can choose the envelopes to be of the formf (r )
5 f (z)eiki•r, whereki5x̂kx1ŷky . The boundary conditions
will be sought in the form of a connection rule between the
functions f (z) andg(z)[ f 8(z)/m* (z) on opposite sides of
the interface. If we definef6 to be the value off just to the
right ~left! of the interface, then the connection rule can be
expressed in terms of the transfer matrix16

F f1

g1
G5FT11T21

T12
T22

GF f2

g2
G . ~5.11!

In order to conserve current density across the interface, the
determinant ofT must be 1~to within an overall complex
phase factor!.16,25 In the conventional effective-mass theory,
this condition is externally imposed by choosingT to be the
unit matrix. We will see below that this is not true in general.

The Hamiltonian~5.8! is valid for all z, so the desired
boundary conditions can be obtained by integrating the
effective-mass equation across the interface.50,53 This yields
the transfer matrix~see Appendix F!

T115
11C0/2

12C0/2
T1250,

T215
2G

\2~12C0
2/4!,

T225
12C0/2

11C0/2
, ~5.12!

in which C05C(z50). This matrix obviously conserves
current density, but it differs from the unit matrix in two
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significant ways. First, the parameterC0 generates a discon-
tinuity in the envelope function, which comes from the
d-function derivative in~5.8!. If C0 is small, then the con-
nection rule reduces tof1>(11C0) f2 , henceC0 gives the
approximate fractional change inf at the interface. Second,
the d-function coefficientG modifies the connection rule for
the slope of the envelope.

This agrees with the transfer matrices calculated from
other microscopic models,10,16 but here the origin of these
terms is clear. They come from the change in basis functions
across the interface, which appears inPnn8 and in the spatial
dependence ofpnn8. Note that the off-diagonal elementT12
vanishes, as suggested by Laikhtman.21 This term is treated
as generally nonzero in the theory of Andoet al.,16 but their
numerical calculations show that it is always negligible un-
lessT is used to connect two bands of different symmetry
~e.g.,G andX!. This is not the case treated here, so~5.12!
agrees with their results.

The specific formalism used by Andoet al.16 has been
criticized by Cuypers and van Haeringen10 because it is
based on a current conservation law that assumes parabolic
bands, which the latter authors have shown to be invalid in
real semiconductors. For example, in a GaAs/AlxGa12xAs
structure, the~complex! dispersion of AlxGa12xAs may be
significantly nonparabolic at the band edge of GaAs. The
same point was raised by the present author in connection
with the envelope-function theory of optical phonons.37 It is
therefore important to include the energy dependence of the
effective mass~5.6! in most calculations.

The above derivation was limited to a single nondegener-
ate band. It can, however, easily be extended to degenerate
or quasidegenerate bands. Consider a model in which a finite
set of bandsn is treated directly, with the effects of other
remote bandsj included as second-order perturbations. The
perturbations renormalize Eq.~4.15! as follows:

H̃nn85Hnn81(
j

F 1

2m
~p•pn j1pn j•p!1KnjG

3GjF 1

2m
~p•pjn81pjn8•p!1Kjn8G . ~5.13!

This generates effects similar to those found in the nonde-
generate case~viz., discontinuities andd functions!, but the
main qualitative differences from conventional theory are
those interface effects already included in~4.15!, such as the
HH-LH coupling due toKnn8. A more detailed analysis and
discussion of~5.13! will be presented elsewhere.

VI. COMPARISON WITH OTHER MODELS

If the zone-center Bloch functions are the same on both
sides of a heterojunction, all of the interface effects described
in the previous section vanish. The transfer matrix~5.12!
consequently reduces to the unit matrix, and the model de-
rived above reduces to the conventional envelope-function
model proposed by Bastard4 and others on the grounds of
current conservation. The present derivation therefore sup-
ports the use of this model in situations where the difference
in basis functions is small enough to be neglected—provided
one maintains the correct operator ordering5,18 given by
~5.13!. Note, however, that a small change in basis functions

is not always negligible, since it can lead to qualitative dif-
ferences such as the HH-LH coupling discussed above.

The present theory is very similar to the exact envelope-
function theory of Burt,18 which uses a material-independent
Luttinger-Kohn basisUn~r ! to represent the entire hetero-
structure. This basis is related to the modified Wannier basis
~2.6! by the unitary transformation

un~r ,R!5(
n8

An8n~R!Un8~r !,

Un~r !5(
n8

Ann8
* ~R!un8~r ,R!, ~6.1!

in which @cf. ~C3!#

Ann8~R!5E
v
Un* ~r !un8~r ,R!d3r . ~6.2!

The Burt envelopesFn are therefore given in terms of thef n
by

f n~R!5(
n8

An8n
* ~R!Fn8~R!,

Fn~R!5(
n8

Ann8~R! f n8~R!. ~6.3!

One can in fact derive the Burt formalism from the present
theory without resorting to such mathematics, sinceUn~r ! is
merely the special case in whichun~r ,R! is chosen to be
independent ofR. The bulk momentum matrixpnn8 is thus a
constant, while the interface matrices6nn8, Knn8, andQnn8
are zero. This enormously simplifies the description of the
interface. However,Un~r ! no longer diagonalizes the bulk
Hamiltonian, so in~4.15! the diagonal matrixEn~r !dnn8 must
be replaced by a nondiagonal matrixWnn8~r !; the off-
diagonal terms are responsible for the differences between
the Burt theory and conventional theory. Their effect may be
seen by replacingKnj in ~5.13! with Wnj ; this generates
HH-LH coupling as before, but now as abulk effect due to
linear-k terms in the bulk dispersion~as in the perturbation
theory of Smith and Mailhiot9!. These linear terms cannot be
neglected in general because their coefficients are not the
same as those in the standardk•p theory.6,54 Hence a treat-
ment of such effects in the Burt formalism requires one to
tamper with the form of the bulk dispersion, and the simplic-
ity of the interface is achieved at the cost of added complex-
ity in the bulk. The present theory has the opposite effect.
Which model is chosen to describe a given problem is thus
primarily a matter of aesthetics.

As mentioned in Sec. IV, the approximate Hamiltonian
~4.15! is identical to one derived previously by Karavaev and
Tikhodeev.20 The unitary transformation~6.1! shows the
connection between the two theories. Karavaev and
Tikhodeev derived their model from just such a transforma-
tion, but one that was continuous rather than discrete. As a
consequence, their formalism was not unique, and to main-
tain the uniqueness of their model they were forced to limit
the analysis to cases in which the material properties and
envelope functions were slowly varying inr space. The
present formalism, by starting from an exact representation,
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is able to demonstrate explicitly what corrections to this
model are needed and when they arise, thus proving that
their approximations remain valid even at abrupt interfaces.
Questions of uniqueness aside, their derivation offers a
quick, easily understandable route to the Hamiltonian~4.15!,
and the author highly recommends a perusal of this paper20

for an alternative view of the problem.
Indeed, the discussion of the GSVAA in Sec. III opens up

the possibility that other effective-mass derivations in the
literature, which were previously thought to apply only to
smoothly graded media, may in fact be valid for abrupt het-
erostructures as well. Most such derivations,39,41–44,46how-
ever, cannot be generalized in this manner, because they in-
voke further approximations that do not correctly account for
the spatial variation of the material properties. Two notable
exceptions are the theories of Leibler40 and Young,45 both of
whom obtained effective-mass equations similar to~5.5!.
Leibler used a material-independent Luttinger-Kohn basis
and treated thek•p interaction and the inhomogeneous po-
tential as perturbations, much the same as Smith and Mail-
hiot’s approach to abrupt junctions.9 Young used perturba-
tion theory in a material-independent Wannier basis, arriving
at essentially the same result as Leibler~with minor differ-
ences due to a small error in Leibler’s solution!.

von Roos and Mavromatis44 and Elçi55 have given deri-
vations almost identical to Leibler’s, but they incorrectly
concluded that the effective mass is independent of position,
because they failed to include the third-order perturbations
necessary to describe its position dependence. This
highlights a common feature of all derivations that treat the
material dependence of the basis functions as a perturbation,
namely, that they yield only an approximation~good if ap-
plied correctly,9,18 poor if not44,55! to the true spatial varia-
tion of the material properties. In contrast, the material-
dependent basis functions used in the present paper
reproduce the correctk•p equations in every bulk medium in
the heterostructure, regardless of how much the microscopic
potential changes between media.

Material-dependent Wannier functions have been used
previously in several envelope-function models based on the
tight-binding method.15–17 However, the complexity of this
approach normally limits its application to nearest-neighbor
models with a small set of basis functions, and completeness
and orthogonality issues are not usually addressed. As dis-
cussed in Sec. V, the present theory reproduces all qualita-
tive features of the interface connection rules derived from
such models, but it substantially improves upon these results
by providing a straightforward extension to a complete or-
thonormal basis set.

The most rigorous envelope-function connection rules
thus far have been those derived from large-basis pseudopo-
tential calculations.9–11 This technique, although highly ac-
curate, requires specific knowledge of the microscopic basis
functions throughout the calculation, and it is rather difficult
to glean much intuitive information from such an approach.
In contrast, the present theory condenses all microscopic in-
formation into the interface matrixPnn8. The envelope-
function equations can thus be manipulated analytically, and
the qualitative effects of the change in basis functions at an
interface can be determined without the need for extensive
numerical work.

VII. SUMMARY AND CONCLUSIONS

This paper has presented an envelope-function model that
takes explicit account of the change in band-edge Bloch
functions at an interface between two semiconductors. The
formalism was derived by choosing a set of material-
dependent, spatially localized basis functions that diagonal-
ize the bulk zone-center Hamiltonian in each unit cell of the
crystal. This modified Wannier basis is complete and ortho-
normal, thus providing an exact envelope-function represen-
tation of the Schro¨dinger equation. An approximate model
was developed by assuming that all terms arising exclusively
from wave vectors in the outer half of the Brillouin zone
could be neglected; this approximation was shown to be
valid even for highly discontinuous functions. Differences
from conventional envelope-function theory appeared in the
kinetic energy~but not the potential energy!, where the ma-
terial dependence of the basis functions led to new interband
mixings, such as zone-center HH-LH coupling.

Perturbation theory was used to derive a single-band
effective-mass equation. This equation contained kinetic-
energy terms proportional~in the abrupt limit! to a Diracd
function and its derivative. Connection rules were derived
for the envelope function, showing that thed8 term gives rise
to an amplitude discontinuity, while thed term modifies the
connection rule for the slope. These results were shown to be
in accord with the transfer matrix obtained by other methods.

The derivation presented in this paper has the advantage
of showing clearly the underlying unity of the subject matter.
Although the interface effects described here are well
known, they could not previously be included in a rigorous
envelope-function model without intensive numerical calcu-
lations. The present theory offers a simple intuitive descrip-
tion of how such effects arise, and it can be used to predict
the behavior of the envelopes in general qualitative terms
without resorting to microscopic calculations. Furthermore,
it demonstrates conclusively that envelope-function tech-
niques are indeed valid at an abrupt interface. Thus the phe-
nomenological approach of including the interface region in
an effective-mass equation50 is fully justified, and the strong
criticism19 leveled at such theories~as unjustifiable in prin-
ciple! now seems overly pessimistic. If the interface is
treated correctly, the interface effective-mass equation is
completely equivalent to the transfer-matrix approach, so
there is no reason to favor one technique over the other.
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APPENDIX A: COMPLETENESS AND ORTHOGONALITY

Consider first the Luttinger-Kohn functionsun~r ,R!. Be-
cause these functions are periodic inr , we can expand them
in a Fourier series:
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un~r ,R!5v21/2(
G

unG~R!eiG•r,

unG~R!5v21/2E
v
un~r ,R!e2 iG•r d3r , ~A1!

where the sum is over all reciprocal lattice vectorsG, and the
integral is over any primitive cell volumev. The Fourier
coefficientsunG (R) are complete and orthonormal18,30 with
respect to the plane waveseiG•r:

(
n

unG~R!unG8
* ~R!5dG,G8 ,

(
G

unG* ~R!un8G~R!5dnn8 . ~A2!

These equations are independent ofR, and are equivalent to
the following relations forun~r ,R!:

(
n

un~r ,R!un* ~r 8,R!5v21(
G

eiG•~r2r8!

5(
R8

d~r2r 82R8!,

E
v
un* ~r ,R!un8~r ,R!d3r5dnn8 . ~A3!

The former equation, which is to be integrated over any cell
v, expresses the completeness of the basisun~r ,R! with re-
spect to cell-periodic functions.~This was first noted by Lut-
tinger and Kohn.28! The latter specifies the normalization
convention used in this paper.

The completeness and orthogonality of the modified Wan-
nier basiswn~r ,R! may be proved easily from the above
relations. One simply inserts the definition~2.6! into the left-
hand side of~2.7! and expands the functionsdB~r2R! and
un~r ,R! in Fourier space using~2.3! and ~A1!. The right-
hand side of~2.7! then follows directly from Eqs.~A2! upon
use of the identities30

(
R

eik•R5
~2p!3

v (
G

d~k2G! ~A4!

and

B~k!B~k1G!5B~k!dG,0 . ~A5!

Note that the above proof of~2.7! is not limited to basis
functions taken from the center of the Brillouin zone. A
trivial extension is to replaceun~r ,R! in ~2.6! with
unk0(r ,R), wherek0 is an arbitrary function ofR. One could
also replaceun~r ,R! with cnk0

(r ,R), but then~2.7! is valid
only if k0 is independent ofR.

APPENDIX B: dB„r …

The behavior ofdB~r ! is easiest to see from a specific
example. Let the primitive translations in the direct and re-
ciprocal lattices be denoted byai andbi , respectively, with
ai•bj52pdi j , and let the coordinate systems be defined by

r5Sixiai andk5Sikibi , where lattice sites occur at integer
values ofxi and ki . Then the simplest possible Brillouin
zone is the parallelepipeduki u,

1
2, which yields fordB the

three-dimensional sinc function

dB~r !5
1

v )
i51

3
sin~pxi !

pxi
. ~B1!

Other choices of BZ~such as the conventional Wigner-Seitz
cell! will lead to a more complicated functional form for
dB~r !, but Eq.~2.5! will be satisfied at the lattice sites for any
such choice.

APPENDIX C: POTENTIAL ENERGY

In this appendix, Eq.~4.4! is derived by applying the GS-
VAA to the flat-band matrix element

Vnn8
FB

~R,R8!5v(
R9

E wn* ~r ,R!dB~r2R9!

3V0~r ,R9!wn8~r ,R8!d3r . ~C1!

The first step is to move the right-hand basis function to the
locationR9 by applying the transformation

un8~r ,R8!5(
n-

An-n8~R9,R8!un-~r ,R9!, ~C2!

where

Ann8~R,R8!5E
v
un* ~r ,R!un8~r ,R8!d3r ~C3!

is a unitary matrix describing the degree of orthogonality of
the basis functions in different unit cells@cf. ~A3!#. The
transformation ~C2! leaves us with a product
V0~r ,R9!un-~r ,R9!. Since this is a periodic function ofr , we
can expand it in terms of the complete periodic basis
un~r ,R9!, namely, as

V0~r ,R9!un-~r ,R9!5(
n9

Vn9n-
0

~R9!un9~r ,R9!, ~C4!

where the expansion coefficients are the bulk matrix ele-
ments~4.5!. The flat-band operator is therefore of the form

Vnn8
FB

~R,R8!5 (
n9n-

(
R9

Dnn9~R,R8,R9!

3Vn9n-
0

~R9!An-n8~R9,R8!, ~C5!

where the only quantity not yet defined is the integral

Dnn9~R,R8,R9!5vE wn* ~r ,R!dB~r2R8!wn9~r ,R9!d3r .

~C6!

This gives us an expression forVnn8
FB (R,R8) in terms of

Vnn8
0 (R), but it is in general very complex, with many non-

local and interband couplings. Let us see if we can simplify
it by invoking the GSVAA. We can start by inserting into
~C6! the Fourier expansions~2.3! and ~A1!. Upon perform-
ing the integral overr , one finds
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Dnn9~R,R8,R9!5
v2

~2p!6
E d3kE d3k8

3E d3k9 (
G,G9

unG* ~R!un9G9~R9!

3d~k1k82k91G2G9!B~k!B~k8!

3B~k9!eik•Reik8•R8e2 ik9•R9. ~C7!

Integrating overk9, this becomes

Dnn9~R,R8,R9!5
v2

~2p!6
E d3kE d3k8 (

G,G9
unG* ~R!un9G9

3~R9!B~k!B~k8!B~k1k81G2G9!

3eik•~R2R9!eik8•~R82R9!. ~C8!

Now if k andk8 were limited to the inner half of the BZ, the
third B function would be nonzero only forG5G9. Let us
assume that this remains true for allk andk8. Then~C8! can
be evaluated immediately using~A2! and ~2.3!; the result is

Dnn9~R,R8,R9!5dnn9dR,R9dR8,R9 . ~C9!

Upon inserting this in~C5! and usingAn-n8~R8,R8!5dn-n8
@from ~C3! and ~A3!#, the flat-band operator reduces to the
strikingly simple expression~4.4!. Hence all of the compli-
cations in~C5! drop out, and we are left with nothing but the
local bulk matrix element.

The justification for the above steps is as follows. In gen-
eral we must allow forGÞG9 in ~C8!, and there will conse-
quently be corrections to~C9! arising from integrals over the
regions wherek1k8 is out of the BZ. However, if we insert
~C5! and ~C7! into the variational expression for the energy
@cf. ~2.9!#

E5v(
n,n8

(
R,R8

f n* ~R!Hnn8~R,R8! f n8~R8!, ~C10!

then it becomes clear that these corrections will be negligible
if the functions ofR andR8 which couple to theeik•R and
eik8•R8 terms in~C7! are GSV. The relevant function ofR is
f n* (R)unG* (R), while that of R8 is An-n8~R9,R8!f n8~R8!.
Thus the solution~4.4! is valid if the envelopes and material
properties are small in the outer half of the BZ.

APPENDIX D: MOMENTUM MATRIX

The momentum matrix~4.9! can be represented exactly in
the form

pnn8~R,R8!5@dnn8P1Pnn8~R!#dR,R81Dnn8~R,R8!.
~D1!

This differs from~4.10! only in the extra termDnn8~R,R8!,
which is negligible within the GSVAA. To derive~D1!, we
can start by inserting the definition~2.6! of the right-hand
Wannier function into~4.9!:

pnn8~R,R8!5vE wn* ~r ,R!dB~r2R8!pun8~r ,R8!d3r

1vE wn* ~r ,R!un8~r ,R8!pdB~r2R8!d3r .

~D2!

In the first term, the functionpun8~r ,R8! is periodic inr , so it
can be expanded over the complete periodic basisun~r ,R! as

pun8~r ,R8!5(
n9

pn9n8~R8!un9~r ,R8!, ~D3!

in which pnn8~R! is the bulk matrix element~4.12!. In the
second term, we can use the quasicontinuum envelope defi-
nition ~2.11! to obtain the expansion

pdB~r2R8!5(
R9

dB~r2R9!P9dR9,R8 . ~D4!

To put the results back into Wannier-function form, we can
use the unitary transformation~C2!. The integrals in~D2!
can then be performed using the orthogonality relation~2.7!,
with the result

pnn8~R,R8!5pnn8~R!dR,R81Ann8~R,R8!PdR,R8 .
~D5!

The next step is to work the second term in~D5! into a
more convenient form. To see more clearly which terms can
be neglected under the GSVAA, it helps to couple this op-
erator directly to an envelope function@cf. ~2.9!#:

cn~R!5 (
n8,R8

@Ann8~R,R8!PdR,R8# f n8~R8!. ~D6!

We can use Fourier transforms to rewrite this function as

cn~R!5
v

~2p!6 (
n8,R8

E E E B~k!B~k8!

3B~k9!\k9eik9•Rei ~k1k82k9!•R8

3Ann8~R,k! f n8~k8!d3k d3k8 d3k9. ~D7!

The sum overR8 can be performed using the identity~A4!;
then integrating overk9, this becomes

cn~R!5~2p!23(
n8

E E B~k!B~k8!

3\@k1k81G~k1k8!#ei ~k1k8!•R

3Ann8~R,k! f n8~k8!d3k d3k8, ~D8!

whereG~k1k8! is the reciprocal lattice vector that brings the
sumk1k81G into the first BZ. The terms in~D8! propor-
tional tok andk8 are easily identifiable as spatial derivatives
of Ann8 and f n8. We can therefore transform~D8! back toR
space and find
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cn~R!5(
n8

Pnn8~R! f n8~R!1Pf n~R!

1 (
n8R8

Dnn8~R,R8! f n8~R8!, ~D9!

which completes the derivation of~D1!. The nonlocal opera-
tor Dnn8~R,R8! is defined by the integral

Dnn8~R,R8!5
v

~2p!9/2
E E \G~k1k8!

3Ann8~R,k!eik•Reik8•~R2R8!d3k d3k8,

~D10!

which can be calculated explicitly:

Dnn8~R,R8!5@Ann8~R,R8!2dnn8#PdR,R82Pnn8~R!dR,R8 .

~D11!
This operator satisfies

(
R8

Dnn8~R,R8!50, ~D12!

so it will couple weakly to slowly varying envelopes.18,35

Indeed, sinceG~k1k8! is nonzero only wherek1k8 is out-
side the BZ, it is clear from~D8! thatDnn8 can be discarded
if Ann8 and f n8 are GSV. Hence Eq.~4.10! will be an excel-
lent approximation to~D1! under most circumstances.

This result can be used to derive a simple expression for
the probability current density. The microscopic current den-
sity is defined by

J~r !5
1

m
Re@c* ~r !pc~r !#. ~D13!

Upon expandingc~r ! in the modified Wannier basis and ap-
plying the GSVAA, one finds that the first-zone part ofJ~r !
is approximately

JB~r !5
1

m (
nn8

Re$ f n* ~r !@dnn8p1Pnn8~r !# f n8~r !%,

~D14!

whereJB~r ! is defined in~3.1!.

APPENDIX E: HERMITICITY
OF THE INTERFACE MATRIX

To establish whetherPnn8~R! is Hermitian, we must be
able to calculate discrete derivatives49 of the basis functions
un~r ,R!. The first step is to define the quasicontinuum basis
functions@cf. ~2.11!#

un~r ,r 8!5v(
R

un~r ,R!dB~R2r 8!. ~E1!

Now consider the integral

I nn8~r !5E
v
un* ~r 8,r !un8~r 8,r !d

3r 8. ~E2!

At the lattice sitesr5R, we have

I nn8~R!5dnn8 , ~E3!

which follows from the orthogonality~A3! of the discrete
basis functions. However, forrÞR, the quasicontinuum
functions~E1! are not orthogonal:

I nn8~r !5v2 (
R8,R9

dB~r2R8!Ann8~R8,R9!dB~R92r !,

~E4!

whereAnn8 is the unitary matrix~C3!. This lack of orthogo-
nality means thatPnn8~R! is not generally Hermitian. If we
take the gradient of Eq.~E2!, multiply by \/i , and evaluate
the resulting function at a lattice site, we find the relation

Pnn8~R!2Pn8n
* ~R!5@pI nn8~r !#ur5R , ~E5!

which does not vanish in general. However, if the basis func-
tionsun~r ,R! are GSV—that is, ifun~r ,k! is negligible in the
outer half of the BZ—thenI nn8~r ! is a quasicontinuum func-
tion, which implies thatI nn8~r !5dnn8 everywhere@see~E3!
and~2.11!#, and the right-hand side of~E5! vanishes. There-
fore, even thoughPnn8~R! is not strictly Hermitian, it may be
treated as such within the context of the GSVAA.

APPENDIX F: INTERFACE TRANSFER MATRIX

Multiplying ~5.3! by 2/\2 and integrating fromz0,0 to z,
one finds

g~z!2g~z0!5
2

\2 E
z0

z

R~z8!dz81
C~z!

m* ~z!
f ~z!d~z!

2C0g0u~z!, ~F1!

in which u(z) is the Heaviside step function,g05g(z50)5
1
2(g11g2), and

R~z!5@Es~z!1F~z!1Gd~z!1\2ki
2/2m* ~z!2E# f ~z!.

~F2!

If we now multiply ~F1! by m* (z), integrate between2«
and«, and let«→0, the result is

f12 f25C0f 0 , ~F3!

which specifiesT11 andT12 in ~5.12!. The boundary condi-
tion ong is obtained from~F1! by settingz052«, z5«, and
taking the limit«→0, which yields

g12g25~2/\2!G f 02C0g0 . ~F4!

This givesT21 andT22 after a rearrangement of terms.
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