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We have developed a boundary-element method to treat the single-particle electronic properties of semicon-
ductor nanostructures that consist of piecewise homogeneous materials of arbitrary shapes. Green’s-function
techniques are used to derive integral equations that determine these electronic properties. These equations
involve integrals over the boundaries between the homogeneous regions, and they are discretized and solved
numerically. In effect, this approach changes a partial differential equation with boundary conditions ind
independent variables into an integral equation ind21 independent variables, which leads to its efficiency. For
bound states these methods are used to calculate eigenenergies, for scattering states to calculate differential
cross sections, and for both bound and scattering states to calculate spectral density functions and wave
functions. For such systems, we show that this method generally provides improved calculational efficiency as
compared to alternative approaches such as plane-wave expansions, finite-difference methods, or finite-element
methods and that it is more effective in treating highly excited states than are these methods. Illustrative
examples are given here for several systems whose potentials are functions of two variables, such as quantum
wires or patterned two-dimensional electron gases.@S0163-1829~96!09227-2#

I. INTRODUCTION

Quantum wires, quantum dots, and other more complex
structures that involve confinement in more than one dimen-
sion are of considerable current interest. Such structures are
being produced in a variety of ways including growth as
microcrystals, in nonequilibrium growth such as molecular-
beam epitaxy, formation by lithography and etching, and by
the use of chemical and biological templates and processes.
Perhaps the most intensely investigated materials involve
semiconductors, but other materials including insulators and
metals are also being studied. These systems permit the in-
vestigation of different physical phenomena in effectively
one and zero dimensions. From a technological point of
view, such structures are of interest because of their potential
for future advanced technologies such as highly integrated
electronic and optical systems.

In order to obtain a full understanding of these systems
and to provide a detailed interpretation of experimental re-
sults for realistic systems it is necessary to have quantitative
results for the single-particle electronic states of such struc-
tures. In the case of quantum wells and superlattices, Schro¨-
dinger’s equation generally separates, and such results can
readily be obtained from one-dimensional calculations. For
lower-dimensional structures Schro¨dinger’s equation gener-
ally does not separate; to date either simple approximations
or numerically extensive methods have been used. In the
present work we present a numerical approach for calculat-
ing quantitatively the single electronic properties of low-
dimensional structures of general shape that is relatively ef-
ficient and conveniently gives results for high-lying and for
continuum states.

For a few examples of highly symmetrical structures such

as cylindrical wires or spherical dots, Schro¨dinger’s equation
is separable, meaning that any wave functionc(r ) can be
written in the formc(r )5 f (h)g(z)h(j), where (h,z,j) are
some appropriate set of curvilinear coordinates, and
E5Ei

(h)1Ej
(z)1Ek

(j) , where the three terms on the right-
hand side are eigenenergies associated with the motion along
the individual spatial coordinates. However, most realistic
systems of physical interest are not of such simple shapes,
and their wave functions and energies are nonseparable.
Physically, the reasons that such equations are not in general
separable are that~i! the potential in Schro¨dinger’s equation
may not be written as a simple sum of potentials each de-
pendent on a single variable, or~ii ! the boundary conditions
on the wave functions in lower-dimensional systems involve
more than one of the variables. Thus numerical techniques
must be used to study the properties of such realistic struc-
tures.

Some numerical techniques which are used for studying
such semiconductor nanostructures include plane-wave
expansions,1 finite-difference methods,2 and finite-element
methods.3 Plane-wave expansions are found to converge
relatively slowly in the vicinity of the interfaces of nano-
structures where the potentials change rapidly. Finite-
difference methods involve discretizing Schro¨dinger’s equa-
tion in the two~or more! variables that do not separate. The
resulting matrix to be diagonalized then increases roughly
with the product of the numbers of points chosen in each
direction and can involve relatively large matrices. Finite-
element methods bear a resemblance to finite-difference
methods. Each of these methods has difficulties in treating
highly excited or continuum states, for which the wave func-
tions vary rapidly over the nanostructure.

Here we present an alternative method that is efficient and
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straightforward for the calculation of the wave functions,
eigenenergies, scattering cross sections, and spectral density
functions of electrons in arbitrarily shaped nanostructures
composed of different uniform regions. It is called the
‘‘boundary-element method’’ and we show that it provides
advantages, including improved numerical efficiency, over
alternate approaches. In previous work we have used a simi-
lar method to treat the LO phonons of quantum wire4 and
quantum dot5 structures and we have also developed such
methods to treat photons6 and acoustic phonons7 in hetero-
structures. Here we develop and discuss this method for elec-
trons in such systems. For the present purpose we use the
effective-mass approximation for the electrons. In general,
electron, phonon, or photon states are determined by a partial
differential equation, whose solution satisfies certain bound-
ary conditions. For the cases of a wave confined to or ex-
cluded from a region of finite spatial extent it is known8 that
by using Green’s-function techniques one may transform the
system of a differential equation and boundary conditions
into an integral equation over only the internal interface~s! of
the system; these equations can then be discretized and
solved numerically.9 Here we extend this technique to inho-
mogeneous systems such as semiconductor heterostructures,
which involve the quantum-mechanical motion of an elec-
tron from one homogeneous region to another.

The formalism that we will present is valid in nanostruc-
ture systems that have quasi-two-dimensional geometry such
as quantum wells or superlattices, quasi-one-dimensional ge-
ometry such as quantum wires, or quasi-zero-dimensional
geometry such as quantum dots. For the sake of illustration,
we will limit our examples to cases of systems that have
potential variations in two dimensions in order to demon-
strate most simply the effects of nonseparability and nonin-
tegrability. Such results can be considered to apply to at least
two otherwise dissimilar classes of nanostructures:~i! quan-
tum wires, which have translational symmetry in the one
direction, and~ii ! heterojunctions or quantum wells that have
been laterally patterned to create quantum dots whose verti-
cal extent is so much smaller than its lateral extent that the
vertical motion essentially decouples from the in-plane mo-
tion.

In Sec. II the basic equations used for the subsequent
development are written down. In Secs. III–V we use these
equations to develop the boundary-element method for the
electronic states in various parts of the energy spectrum. In
Sec. III we do this for the discrete part of the spectrum and

we give results for the energies and wave functions of the
bound states. In Sec. IV we treat the continuum portion of
the spectrum, calculating differential scattering cross sec-
tions for the case of incident plane waves. In Sec. V we
calculate spectral density functions, which offer a unified
representation of electronic states in all portions of the spec-
trum, both discrete and continuum. In Sec. VI we will give
examples of all of these physical quantities for several
shapes and systems which depend on two variables.

II. FORMALISM

Within the effective-mass approximation10 Schrödinger’s
equation can be written in the form

F2
\2

2
“•m~r !21

“1V~r !2EGc~r !50, ~1!

where the carrier massm(r ) and the band offsetV(r ) are
piecewise uniform, i.e., are constants in the several regions
of the nanostructure.11 Across an interface separating two
different regions, both the wave functionc and its inverse-
mass weighted normal derivative are continuous. If there is
no magnetic field, the Hamiltonian is time reversible and the
wave functions can be expressed as real quantities. Within a
particular regionV of the nanostructure through whichm
andV are uniform, the equation governing the Green’s func-
tion is

F2¹21
2m

\2 ~V2E!GG~r,r 8;E!5d~r2r 8!, ~2!

whereE is complex~usually with only a small imaginary
component!. Following the usual convention, the particular
~and unique! form chosen for G satisfies
limur2r8u→`G(r,r 8;E)50 if Im(E).0. For uniform regions
@where m(r ) and V(r ) are constants# the results for the
Green’s function are listed in Table I for various geometries.

In Table I and in the following development we find it
convenient to discuss issues in terms of the number of inde-
pendent variables that need to be treated numerically in the
problem under consideration. Typically this number is that of
the largest set of variables that do not separate from one
another in the problem. For example, in the case of a quan-
tum well, the motion along the growth direction separates
from the motion in the plane of the well and this latter two-
dimensional motion separates into independent one-
dimensional motions owing to translational symmetry. The

TABLE I. Green’s functions for uniform regions having one, two, or three independent variables, where
H0
(1) is the zeroth-order Hankel function of the first kind andK0 is a zeroth-order modified Bessel function.

In the classically allowed regionsk2[2m(E2V)/\ and in the classically forbidden regions
g2[2m(V2E)/\.

Number of independent Classically allowed Classically forbidden Form of small-r
variables (E.V) (E,V) divergence

1 ieikuxu

2k
e2guxu

2g
none

2 iH 0
(1)(kr)

4

K0(gr )
2p

2
lnr
2p

3 eikr

4pr

e2gr

4pr

1
4pr

54 1881BOUNDARY-ELEMENT METHOD FOR THE CALCULATION . . .



variable of interest here is usually along the growth direc-
tion. In the case of quantum wire the motion along the wire
axis separates from the motion in the transverse directions
and 2 is the number of independent variables that do not
separate. In the case of patterned two-dimensional systems,
whose lateral extent typically greatly exceeds their vertical
extent @5O~5 nm!#, the mismatch of the sizes ensures that
the motion in the growth direction separates from that in the
transverse directions owing to the symmetry-breaking in-
duced by the patterning process. The motion in the two trans-
verse directions generally do not separate from one another,
leading also to 2 as the number of independent variables that
are not separable. For a quantum dot that has no symmetry
axis and for which all three orthogonal spatial lengths are of
the same order of magnitude, 3 is the number of independent
variables that must be treated simultaneously. Correspond-
ingly, in Table I the Green’s functions for the number of
independent Cartesian variables involved are listed. These
Green’s functions correspond essentially to free motion in
one-, two-, or three-dimensional space.

III. E<0: BOUND-STATE ENERGIES
AND WAVE FUNCTIONS

We begin by multiplying Eq.~1! by 2mG(r,r 8;E)/\2 and
subtracting the resulting equation from Eq.~2! multiplied by
c(r ), where r and r 8 are within V, a particular region
throughout which the material properties are uniform. Inte-
grating the resulting equation overr through the volumeV
and using Green’s theorem, we obtain

E
S
dA@mf~A!G~A,r 8;E!2c~A!]AG~r,r 8;E!#5c~r 8!,

~3!

whereS is the surface boundingV, A indicates a pointrA
located onS, f(A)[m21]Ac(r ), ]A[n̂A• ]/]r uA , and
n̂A is the normal vector that pointsout of the regionV at the
pointA. Note that the reason for them21 factor in our defi-
nition for f is so thatf is single valued, modulo a minus
sign, at the interface. It is seen from Eq.~3! that if one has
values for~i! the Green’s function everywhere withinV, ~ii !
the wave function at all pointsA on the surfaceS, and~iii !
the ~inner! normal derivative of the wave function for allA
PS, then one can calculatec everywhere withinV. In order
to calculatec(A) andf(A) we evaluate Eq.~3! at a point
r 8 that is withinV but arbitrarily close toS and we inter-
changeA andA8 to obtain the homogeneous integral equa-
tion

E
S
dA8@B~A,A8!f~A8!1C~A,A8!c~A8!#50 ~4!

where the kernels are given byB(A,A8)[2mG(A,A8;E)
andC(A,A8)[22]A8G(r 8,A;E)2d(A2A8). It should be
noted that for the piecewise uniform nanostructures consid-
ered here the Green’s functions involved in Eqs.~3! and ~4!
are known straightforwardly and are given in Table I.

If the composite system consists ofN different homoge-
neous regions, then such an integral equation can be derived
for each of theN regions, including both classically allowed
and classically forbidden regions, as well as regions of either

finite or infinite spatial extent. BecauseG(r,r 8;E) vanishes
as eitherr or r 8 goes to infinity, the ‘‘surface’’ at infinity
does not appear in any of these equations. The entire linear
system of integral equations can then be represented as

F 00A
0

G5F B1 C1

B2 C2

A A

BN CN

G Ff

c G[M Ff

c G , ~5!

whereBI andCI represent theI th region’s integral operators,
which depend parametrically on the energyE. The lower
half of the~symbolic! column vector@c

f# contains the values
of the wave function on all interfaces, and the upper half
contains the values of the normal derivatives of the wave
function divided by the effective massm. If the particle’s
motion is classically forbidden in all regions of infinite spa-
tial extent and is classically allowed in at least one of the
finite regions, then the energy spectrum contains a bound
portion. The energies of these bound states are determined
by finding the nontrivial solutions of Eq.~5!, which occur for
certain discretely spaced~real! values ofE.

A number of ways exist to solve Eq.~5! numerically. We
choose to do this by using what is known as the boundary-
element method~BEM!. To implement this approach we dis-
cretize the integral in Eq.~4!, thus approximating it as a sum
of n terms, to obtain

(
j51

n

~Bi jf j1Ci jc j !50, ~6!

where Bi j[* jdA8B(A i ,A8), Ci j[* jdA8C(A i ,A8),
f j[f(A j ), c j[f(A j ), and * j represents the integration
over a small boundary elementSj , where( j51

n Sj5S, and
n is the number of boundary elements onS. The entire set of
homogeneous integral equations then is approximated by a
homogeneous equation represented again by Eq.~5!, but for
which BI and CI are nI3N matrices ~instead of integral
operators!, M is a 2N32N matrix ~instead of an integral
operator!, f and c areN-component column vectors~in-

stead of functions!, andN[ 1
2 ( I51

N nI , wherenI is the num-
ber of boundary elements onSI , the surface of theI th re-
gion. The divisor of 2 in the definition ofN originates from
the fact that each boundary element serves two different re-
gions.

The discretized version of Eq.~5! will have a nontrivial
solution only if the determinant of the complex-valued ma-
trix M vanishes. For the bound states, this determinant van-
ishes for values ofE that are discretely spaced in the com-
plex plane. We usually find these energies to be slightly
removed from the real axis owing to the approximation as-
sociated with discretizing the integral equation. This proce-
dure yields accurate results for the energies of those bound
states for which the wave functions, or, more precisely, the
wave functions and their normal derivatives evaluated along
the boundaryS, vary slowly on the scale of a typical bound-
ary element. In order accurately to determine highly excited
states the grid of boundary elements needs to be sufficiently
fine.
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A few technical points about the implementation of the
BEM are worth mentioning. For the case of three indepen-
dent variables the singularity in the Green’s function causes
the kernels B(A,A8) and C(A,A8) to diverge as
urA2rA8u

21. For the case of two independent variables,B
diverges logarithmically asA→A8 andC approaches a num-
ber proportional to the local radius of curvature. For smooth
surfaces these singularities are integrable in the sense that
limd→B*ddAuA2A8u21→0, even if A8Pd,S. For non-
smooth surfaces~i.e., those having cusps, corners, or edges!
these singularities are nonintegrable. For the case of an elec-
tron completely confined to or excluded from a region, this
nonintegrability leads to divergent values off(A) near the
nonsmooth singularity,12 and for the case of interface
optical-phonon modes near such singularities, a similar non-
integrability causes qualitative changes in the frequency
spectrum.4,5 For the case considered here, namely, that of
electrons that are allowed to tunnel into classically forbidden
regions, no such qualitative difficulties are encountered.

After calculating a particular eigenenergyEp by standard
rootfinding methods, the column-vector componentsf j and
c j are determined by finding the null eigenvector of the
square matrix. The~unnormalized! wave function is then cal-
culated by discretizing Eq.~3! to obtain

c~r 8!5(
j

Fmf jE
j
dAG~A,r 8;Ep!

2c jE
j
dA]AG~r ,r 8;Ep!G . ~7!

We conclude this section by mentioning how the equa-
tions derived in it are modified to treat the special case stud-
ied in earlier work of a wave that is completely confined to a
nanostructure. In this case, the boundary condition satisfied
by the wave function is thatc(A) vanishes. Hence Eq.~3! is
modified by settingc(A) to vanish, Eq.~4! by setting
c(A8) to vanish, and Eqs.~6! and~7! by settingc j to vanish.
Equation~5! is replaced by the integral equationBf50.

IV. E>0: SCATTERING CROSS SECTION

Consider a nanostructure that consists of several regions,
only one~theNth! of which extends to infinity. IfV50 in
this region, thenE.0 represents the continuous portion of
the energy spectrum, which corresponds to delocalized
states. For these states one is often interested in the differen-
tial scattering cross section. If an incoming electron having
momentum\k impinges upon the nanostructure, the wave
scatters elastically into other plane-wave states. In theNth
region, asymptotically far from the other regions, the wave
function will have the forms

c55
eikx1Re2 ikx, one dimension, x,0

Teikx, one dimension, x.0

ei k̄ i• r̄ 1 f ~u, k̄ i !
eikr

Ar
, two dimensions

eiki•r1 f ~ k̂ f ,k i !
eikr

r
, three dimensions,

~8!

where f (u, k̄ i) and f ( k̂ f ,k i) are the angle-dependent differ-
ential amplitudes for elastic scattering in two- and three-
dimensions,R andT are the reflection and transmission co-
efficients for scattering in one dimension,k̄ i andk i are the
electron’s initial wave vector in two and three dimensions,
k f is the electron’s final vector in three dimensions,u is the
angle of the electron’s final motion in the two-dimensional
case, andk[uk i u5uk f u5u k̄ i u5u k̄ f u. In two and three dimen-
sions the differential scattering cross section isu f u2. For a
wire geometry,u f u2 is the differential scattering cross section
per unit length of the wire.

For all regions except for theNth one, Eqs.~3! and~4! are
valid. In the Nth region we have a formula that differs
slightly from Eq.~3!:

c~r 8!5eik–r81E
SN

dA@m@f~A!2f0~A!#G~A,r 8;E!

2@c~A!2c0~A!#]AG~r,r 8;E!#, ~9!

whereSN consists of the finite surface separatingVN from
the other (N21) regions, but does not include the surface at
infinity,

c0~A![eik–rAH 1, APSN

0, A¹SN ~10!

and

f0~A![
eik–rA

m H ik–n̂A, APSN

0, A¹SN .
~11!

When the limit is taken asr 8→A8 in Eq. ~9!, an inhomo-
geneous integral equation forf(A) andc(A) is obtained:

E
SN

dA8@B~A,A8!f~A8!1C~A,A8!c~A8!#

5E
SN

dA8@B~A,A8!f0~A8!1C~A,A8!c0~A8!#,

~12!

where the kernelsB andC are the same as defined in Sec.
III. When this is combined with the other (N21) regions’
homogeneous integral equations, which are of the same form
as Eq.~4!, the resulting inhomogeneous system of equations
governing@c

f# is

M Ff

c G5M0Ff0

c0
G , ~13!

where the integral operatorM is the same as that appearing
in Eq. ~5!, and

M0[F 0 0

A A

0 0

BN CN

G . ~14!

Unlike Eq. ~5!, Eq. ~13! is inhomogeneous.
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We solve Eq.~13! numerically in the same way as for Eq.
~5!, by discretizing and using the BEM. The discretized form
of Eq. ~12! is

(
j51

n

~Bi jf j1Ci jc j !5(
j51

n

~Bi jf j
~0!1Ci jc j

~0!!, ~15!

c j
(0)[c0(A j ), f j

(0)[f0(A j ), and whereBi j , Ci j , f j , and
c j are the same as those defined in Sec. III. Hence the entire
set of integral equations is then approximated by an inhomo-
geneous equation represented by Eq.~13!, but for whichM
andM0 are 2N32N matrices and@c0

f0# is a 2N-component
column vector. This equation is then solved by matrix inver-
sion:

Ff

c G5M21M0Ff0

c0
G . ~16!

In three dimensions the differential scattering amplitude is
obtained by equating Eq.~8! with the large-r 8 form of Eq.
~9! to obtain

f ~ k̂ f ,k i !5
1

4pESNdAe2 ik f•rA$m@f~A!2f0~A!#

1 ik f•n̂A@c~A!2c0~A!#%. ~17!

In two dimensions this formula is unchanged, except that the
1/4p prefactor is replaced by 11 i /4Apk owing to the as-
ymptotic behavior of the Bessel function and that the integral
over the closed surfaceSN is replaced by an integral over a
closed contour. In one dimension, the reflection (R) and
transmission (T) coefficients are trivially related to the val-
ues of the wave functionc evaluated at the left and right
boundaries of the nanostructure.

Now we describe how the equations derived in this sec-
tion are modified to treat the special case studied in previous
work of a wave that is completely excluded from a nano-
structure, for which the boundary condition satisfied by the
wave function is thatc(A) vanishes. Hence Eqs.~9! and
~17! are modified by settingc(A) to vanish, Eq.~12! by
settingc(A8) to vanish, and Eq.~15! by settingc j to vanish.
Equations~13!, ~14!, and ~16! are replaced by the single
integral equationBf5Bf01Cc0 . Equations~8!, ~10!, and
~11! are not modified at all.

V. E<0 OR E>0: SPECTRAL DENSITY FUNCTION

A very useful way to present results for the discrete and
continuous portions of the spectrum in a unified way is
through the use of the spectral density function
(ncn(r )cn(r 8)* d(E2En), where all states of the system
are included in the sum overn, in whichEn andcn are the
energy and normalized wave function of thenth state. In
cases where there is no magnetic field, the Hamiltonian is
time reversible and the wave functionscn(r ) can be ex-
pressed as purely real quantities. The spectral density func-
tion is a purely real quantity that is symmetric inr and r 8.
For r5r 8 the spectral density function is useful in providing
a picture of the spatial dependence of the density of states,
including both the discrete and continuous portions of the

spectrum. In addition, this representation eliminates ambigu-
ities associated with degeneracies. In the continuum, for in-
stance, the states are usually infinitely degenerate and then it
is more relevant when discussing physical quantities to con-
sider the spectral density at a particular energy rather than
one of the degenerate wave functions at that energy. In pre-
vious work13 we have found the corresponding spectral den-
sities for optical phonons to be useful in picturing the vibra-
tional amplitudes’ spatial dependence and in representing the
results of electron-phonon scattering.13

Often it is convenient to represent the spectral density
function as p21limIm(E)→01Im@r(r ,r 8;E#, where the
complex-valued spectral density functionr(r,r 8;E) is de-
fined by

r~r,r 8;E!5(
n

cn~r !cn* ~r 8!

En2E
. ~18!

It is straightforward to verify that the complex-valued spec-
tral density functionr satisfies the equation

F2
\2

2
“•m~r !21

“1V~r !2EGr~r,r 8;E!5d~r2r 8!.

~19!

For smallur2r 8u, for largeE, or for a homogeneous system,
the spectral densityr equals 2mG(r,r 8;E)/\2.

In the following we will not explicitly indicate theE de-
pendence of the spectral density and of the Green’s function.
We multiply Eq. ~19! evaluated at (r,r 9) by 2mG(r,r 8)/\2

and subtract the resulting equation from Eq.~2! multiplied
by r(r,r 9), where the pointsr, r 8, and r 9 are in the region
V. Then we integrate the resulting equation overr over the
volumeV and use Green’s theorem to obtain

E
S
dA@G~A,r 8!]Ar~r,r 9!2r~A,r 9!]AG~r,r 8!#

5r~r 8,r9!22mG~r 9,r8!/\2. ~20!

Thus having values for]Ar(r,r 9) andr(A,r 9) enables one
to calculater(r 8,r9) for all r 8 within V. To calculate the
former two quantities, we carefully take the limit as
r 9→A9 in Eq. ~20!, which yields

E
S
dA@G~A,r 8!mP~A,A9!2r~A,A9!]AG~r,r 8!#

5r~r 8,A9!2mG~A9,r 8!/\2, ~21!

whereP(A,A9)[m21]Ar(r ,A9). Thus having values for
r(A,A9) andP(A,A9) enables one to calculater(r 8,A9) for
all r 8 within V.

To calculater(A,A8) andP(A,A8) we evaluate Eq.~21!
at a pointr 8 that is withinV but very close toS. This yields
the integral equation

E
S
dA8@B~A,A8!P~A8,A9!1C~A,A8!r~A8,A9!#

522mG~A,A9!/\2, ~22!

where for convenience we have made the interchange of
variable r 8↔r . Performing the above procedure in allN
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regions of the nanostructure yields the inhomogeneous sys-
tem of linear integral equations

M FP

r
G52\22F B1

B2

A

BN

G , ~23!

where the integral operatorM is the same as that appearing
in Eqs.~5! and ~13!. Unlike Eqs.~5! and ~13!, in which the
upper and lower halves of the column vector@c

f# are func-
tions of one variable (A), the upper and lower halves of the
column vector@r

p# in Eq. ~23! are functions of two variables
(A,A8). Unlike Eq. ~5! and like Eq.~13!, Eq. ~23! is inho-
mogeneous.

We solve Eq.~23! numerically in the same way as for
Eqs. ~5! and ~13!, using the BEM. The discretized form of
Eq. ~22! is

(
j51

n

~Bi jP jk1Ci jr jk!52Bik /\
2, ~24!

whereP i j[* jdA8P(A i ,A8), r i j[* jdA8r(A i ,A8), andn
again is the number of boundary elements on the surface
S. The linear system of inhomogeneous integral equations
then is approximated by

M FP

r
G52\22F B1

B2

A

BN

G[Y, ~25!

whereM is a 2N32N matrix ~as opposed to an integral
operator!, P andr areN3N matrices~as opposed to func-
tions of two variables!, BI are nI3N matrices~instead of
functions of two variables!, mI is the effective mass in the
I th region, andY is a 2N3N matrix. Equation~25! is solved
by matrix inversion

FP

r
G5M21Y. ~26!

When Im(E)→0 andE is in the bound portion of the spec-
trum, @r

P# diverges when det(M ) vanishes~i.e., for E5En)
and @r

P# is purely real when det(M ) does not vanish. Away
from the bound portion of the spectrum, the imaginary part
of the spectral density is a continuous nonzero function of
E. WhenE is analytically continued into the complex plane
near the bound portion of the spectrum, this gives rise to
Lorentzians in the spectral density whose width inE is pro-
portional to Im(E).

For each value ofE, the column vector@r
P# contains

2N2 numbers. Instead of using Eqs.~20! and~21! to generate
r(r,r 8;E) from r(A,A8;E) and P(A,A8;E), it is usually
convenient for purposes of display and of analysis to con-
dense these data by looking at a function of the single vari-
able E. One possible function to look at is
*S*SdAdA8g(A,A8)Im@r(A,A8;E)#, whereg(A,A8) is an
arbitrary weighting function, which we usually choose to
equald(A2A8). This provides a picture of the density of

states in the vicinity of the nanostructure. For a homoge-
neous material or for largeE, this yields a function propor-
tional toEd/221, owing to the density of states of an electron
in d-dimensional free space. Because of degeneracy-induced
ambiguities discussed earlier regarding continuum states,
there is some flexibility involved in the construction of a
wave function for a fixed value ofE (.0). The most general
form for the r dependence of a~unnormalized! wave func-
tion of such a state at energyE is given by

E
S
dA9 f ~A9!ImF E

S
dA8@G~r ,A8;E!P~A8,A9;E!

2r~A8,A9;E!]A8G~r,r 8;E!#1G~A9,r ;E!/2G ,
~27!

where f (A) is another arbitrary weighting function, which
we usually choose to be a constant.

VI. EXAMPLES

In this section we give results of calculations of the elec-
tronic properties of several model systems using the BEM
discussed above. For the purpose of verifying the correctness
and accuracy of the present method, we have studied a num-
ber of separable systems such as circular quantum dots, and
in the large-N limit we have found complete agreement be-
tween BEM results and those obtained by analytical meth-
ods. Rather than produce the details of those studies here, we
present instead results for nonseparable systems that illus-
trate the kinds of results obtainable and the characteristics of
the calculations. The systems chosen are also typical of prob-
lems of current physical interest. For simplicity, we choose
these systems to be characterized by two nonseparable vari-
ables as described in connection with Table I.

A. Stadium

In Table II and Figs. 1–3 we give results for a ‘‘stadium’’
shape of size 253 50 nm2 sketched in Figs. 1 and 2. The
stadium’s perimeter consists of two straight line segments
and two semicircles. This shape has been studied
theoretically14,15and experimentally15–17 for the special case
in which the wave function is completely confined to the
structure’s interior. Current experiments of interest on these

TABLE II. Convergence of the BEM-calculated energies of the
ground (E0) and first excited (E1) states of a 253 50 nm2

stadium-shaped dot for whichm15m250.0665 and the band offset
is 10 meV as a function ofN, the number of boundary elements in
the irreducible surface.

N E0 E1

4 4.882320.1200i 8.701920.0373i
8 4.809510.0008i 8.661420.0223i
16 4.804210.0006i 8.640320.0076i
32 4.802810.0002i 8.633420.0022i
64 4.802410.0001i 8.631220.0005i
128 4.802310.0000i 8.630820.0002i
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shapes have involved electrons on metal surfaces16 or micro-
waves in thin cavities.15,17 In the case of a thin microwave
cavity surrounded by metal, a one-to-one correspondence
can be drawn between Maxwell’s equations and Schro¨d-
inger’s equation,17–19 so the eigenfrequencies derived from
microwave experiments are simply related to the electronic
energies of a two-dimensional quantum dot having the same
shape and infinite barriers. The vertical component of the
electric field~the square of which can be measured readily!
in a microwave cavity is the analog of the wave function in
Schrödinger’s equation.

It is well known that the states of the stadium structure are
nonseparable, and accordingly this shape is of current inter-
est in the study of the onset of chaos and related topics.14,15It
is worth noting that all previous calculations for this system
treated the particle as being completely confined to the inte-
rior, whereas in order to study electrons in semiconductor
nanostructures we need to allow the particle to tunnel into
the classically forbidden~barrier! region. Our ability to
implement the BEM for the stadium is an indication of the
flexibility of this method. For the purposes of the present
discussion, this shape represents either the cross section of a

quantum wire or the perimeter of a quantum dot with a
growth axis perpendicular to it. These structures are moti-
vated by GaAs nanostructures and we take the electron mass
to be 0.0665 in both materials. Table II and Figs. 1 and 3 are
motivated by quantum dots that exist within quantum wells.
These dots are formed by slight variations in the well
width,20 giving rise to a small potential offset, which we take
here to be 10 meV. This choice of band offset results in a
structure having only two bound states. The fact that the
wave function of the first excited state, plotted in Fig. 1, is
only weakly bound to the well region would require a large
unit cell if a finite-difference or finite-element method were
used to calculate this state, owing to the fact that these latter
methods require the wave function to be completely con-
tained within an artificial two-dimensional box.

In Table II the convergence of the energies of the two
bound states of this stadium structure with a 10-meV poten-
tial offset are given. The energy of each of these states is an
appreciable fraction of the potential offset of 10 meV and as
a result these bound states have a spatial extent well beyond
the nanostructure, as seen in Fig. 1 for the first excited state.
From the results in Table II it can be seen that the energies of
these states converge well with a modest number of bound-
ary elementsN contained in the irreducible surface, which
for this system is one-quarter of the perimeter. In fact, it is
seen that the relative error of the calculated energy is
O(N22).

In Fig. 3 the spectral density of the system with a 10-meV
barrier offset is given. Note the two peaks for the two bound
states near 4.8 and 8.6 meV. For purposes of presentation we
have set Im(E)' 0.1 meV and therefore the bound states
have corresponding widths. For energies above 10 meV the
onset of a continuum of states is seen.

In Fig. 2 the same stadium shape is considered with a
larger potential offset of 190 meV, which is motivated by a
quantum wire of GaAs embedded in AlxGa12xAs. An ex-
ample of a highly excited bound state that has an energy
slightly below this threshold is shown there. This state ex-

FIG. 1. Contour plot of the first excited bound electronic state of
a stadium-shaped structure whose shape is shown by the dashed
line. The potential offset is taken to be 10 meV here. Note that this
wave function is antisymmetric with respect to reflection through
the x50 plane.

FIG. 2. Contour plot of an excited electronic state of a stadium-
shaped structure~dashed line! whose potential offset we take here
to be 190 meV. The energy of the bound state is 184.4 meV.

FIG. 3. Spectral density of a 253 50 nm2 stadium-shaped
structure whose potential offset is taken here to be 10 meV. The
peaks give the positions of the two bound states and the continuum
begins at 10 meV. The bound-state energies of this system are
tabulated in Table II, and the wave function of the first excited state
is given in Fig. 1. For purposes of presentation we have set
Im(E)' 0.1 meV.
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hibits a considerable number of nodes. The numerical calcu-
lation of this state, however, requires only approximately
N550 boundary elements in the irreducible perimeter. This
example shows that the BEM is efficient and effective in
treating highly excited bound states of nanostructures. By
comparison, calculations for such a state using a finite-
difference method would requireO(N2)5O(2500) mesh
points.

B. Rectangle

In this subsection we consider a rectangular shape whose
area is the same as that considered for the stadium in the
preceding subsection and whose band offset is taken to equal
50 meV. Although states completely confined within a rect-
angular shape are separable, states that are partially confined
to a rectangle or completely or partially excluded from a
rectangle arenot separable. The nonseparability of this sys-
tem can be understood most easily by using Cartesian coor-
dinates, in which case Schro¨dinger’s equation separates, but
the boundary conditions do not. Hence the states not com-
pletely confined to a rectangle cannot be characterized by an
ordered pair of quantum numbers, one for the confinement
number (nx) in the x direction and one for the confinement
number (ny) in the y direction. As an illustration of the
qualitative importance of this nonseparability, the energies of
two bound states of a rectangle having a fixed area but a
varying aspect ratio~ratio of length to width! are shown in
Fig. 4. If a separable approximation is made for these states’
wave functions, then the (nx ,ny)5(1,2) state and the
(nx ,ny)5(3,0) state are accidentally degenerate when the
aspect ratio equals approximately 1.25. However, when the
energies are calculated exactly using the BEM, they are seen
to exhibit an avoided crossing instead. The extent of the
deviations from a simple separable approximation are seen in
Fig. 4.

Results for the scattering of an electron from such a rect-
angle, whose dimensions are 243 48 nm2, are shown in
Figs. 5 and 6. The differential scattering cross sections for a
5-meV electron that impinges upon the rectangle from two

different angles are shown in Fig. 5. The energy dependence
of the total scattering cross sections for an electron that
travels initially parallel to the long axis of the rectangle is
shown in Fig. 6. The result for the Born approximation,
which can be calculated for this geometry and equals the
exact result for highE, as expected, is also displayed in this
figure. As a check of the correctness of our calculation of the
total cross sections @[*duu f (u)u2#, we also calculated this
quantity using the optical theorem, which relatess to the
forward-scattering amplitude. In two dimensions, the optical

theorem says thats52Ap/ki Im@(12 i ) f (u50,k̄ i)#. We
have used the BEM to calculate each side of this equation
independently and the agreement is perfect in the limit of
largeN.

FIG. 4. Plot of the shape dependence of the energies of a rect-
angular quantum dot for the two particular electronic states dis-
cussed in the text. The band offset is here taken to be 50 meV and
the dot area to be 1150 nm2. The dashed lines indicate the energies
calculated assuming a separable form for the wave functions and
the solid lines are our exact results. The aspect ratio is the ratio of
the rectangle’s length to its width.

FIG. 5. Results for the scattering of an electron from a rectan-
gular quantum dot having dimensions of 243 48 nm2 and a band
offset of 50 meV. Plot of the angle dependence of the differential
cross sectionu f (u)u2 for an electron scattering from a rectangular
quantum dot, for an incident electron that moves parallel to the
rectangle’s long axis~solid curve! or along its diagonal~dashed
curve!. The electron energy is taken here to be 5 meV.

FIG. 6. Results for the scattering of an electron from a rectan-
gular quantum dot having dimensions of 243 48 nm2 and a band
offset of 50 meV. Plot of the energy dependence of the total scat-
tering cross section for an electron that moves initially parallel to
the rectangle’s long axis, calculated using the exact formulation
presented in this paper~solid line! and using the Born approxima-
tion ~dashed curve!.
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C. Isospectral shapes

The extent to which knowledge of the size and shape of a
nanostructure can be obtained from spectroscopic results
such as photoluminescence data is of fundamental interest.
This question is related to a mathematical problem of current
interest, which is paraphrased by the question, ‘‘Can one
hear the shape of a drum?’’21 That is, can one determine the
shape of a drumhead from a knowledge of all of its eigen-
frequencies? In recent mathematical22 and experimental19

studies of a particular set of shapes known as ‘‘isospectral
shapes’’ this question has been answered in the negative.
The experiments, however, were done in thin metal micro-
wave cavities. The analogous case for nanostructures in-
volves electrons that are forbidden from tunneling out of the
structures’ interiors.

In the present work we are interested in this example as it
relates to the question of determining shapes and sizes of
realistic nanostructures from spectroscopic data. An example
of one pair of such isospectral shapes is shown by the dashed
lines in Figs. 7~a!–7~d!. Each one of the pair is composed of
seven isosceles right triangles. The shapes have equal areas
and equal circumferences. For comparison, we choose the
areas of these shapes to equal those of the others studied in
Secs. VI A and VI B. The electronic ground-state wave func-
tions for the case of no tunneling into the barriers are shown
in Figs. 7~a! and 7~b!.23 Although the wave functions differ
for the two structures the energies are identical, which is
consistent with the results noted above.19,22For many realis-
tic nanostructures, however, carrier tunneling must be in-
cluded. Results for a finite potential barrier equaling 20 meV
are shown in Figs. 7~c! and 7~d!. Tunneling into the barriers
is found to decrease the energies, of course. More impor-
tantly, the eigenenergies of the two structures are no longer
identical in the presence of tunneling. The band-offset de-
pendence of the three lowest energies of the two structures

are shown in Fig. 8. It is worth noting that the differences
between the energies for the two structures are small even
when the eigenenergy is a substantial fraction of the band
offset. This suggests that it will be difficult to extract infor-
mation about the size and shape of realistic nanostructures
based solely on spectroscopic data.

D. Lithographically formed structures

In Figs. 9–11 we show examples of the results of calcu-
lations of localized and extended states using the BEM that
have helped to elucidate experimental results for two litho-
graphically formed quantum-wire structures of current inter-
est. We have studied in Ref. 24 the optical properties in
modulated barrier quantum wires formed by selectively etch-
ing an overlayer of wider-band-gap material from a quantum
well. In Fig. 9 the ground-state wave function of a GaAs/
In0.10Ga0.90/GaAs modulated barrier quantum wire is shown.
That this structure is a nonseparable system can be seen, for
example, by noting the extent to which the wave function
moves more deeply into the GaAs substrate for narrower
wires. The relatively large penetration of the wave function
into the GaAs substrate on the side away from the vacuum
regions is especially significant and we have found it to be

FIG. 7. Results for the ground electronic states of isospectral
cavities. The electron mass is taken to be 0.0665. Contour plots of
the wave functions of cavities 1 and 2 are respectively shown in~a!
and ~b! for the case of an infinite band offset. The cavity outlines
are indicated by dashed lines. Contour plots of the same states, but
for the band offsets having the finite value of 20 meV, are shown in
~c! and ~d!.

FIG. 8. Results for the lowest three electronic states of isospec-
tral cavities. The electron mass is taken to be 0.0665. The band-
offset dependence of the energies of the ground, first excited, and
second excited states are shown for cavity 1~solid line! and cavity
2 ~dashed line!. The energies of these three states for the case of
infinite offset are 18.3, 26.3, and 37.2 meV.

FIG. 9. Contour plot of the ground-state wave function of an
electron in a GaAs/In0.10Ga0.90As/GaAs modulated barrier quantum
wire corresponding to those discussed in Ref. 24.
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important in understanding quantitatively the wire width de-
pendence of the energies of the bound states.24

In the work in Ref. 25 the photoluminescence rise time of
deep-etched InP/In0.53Ga0.47As/InP quantum-wire structures
was observed to exhibit what appeared to be a barrier for the
transport of carriers from the InP substrate into the
In xGa12xAs wire even though no physical barrier was
present. In Fig. 10 the spectral density of a system consisting
of the InP substrate plus the InP material below a 34-nm
In xGa12xAs wire is shown. It should be noted that the
narrower-gap InxGa12xAs quantum wire is located near the
top of the pedestal-like InP structure in Fig. 11. The spectral
density is evaluated in the narrow region leading to the
In xGa12xAs wire. It is seen that there is a nonzero spectral
density for all energies down to zero, but that there is a fairly
abrupt increase of the spectral density for energies increasing
above the energy corresponding roughly to the lowest bound
state of the vacuum/InP/vacuum quantum-well system. This
increase in the spectral density accounts for the appearance
of an effective barrier observed in the experiments for
temperature-dependent transport from the substrate.25 Typi-
cal wave functions for energies below and above this thresh-
hold are shown respectively in Figs. 11~a! and 11~b!. There it
is seen that the latter has more amplitude in the region near
the wire. Note that both of these wave functions are parts of
the continuum that extends throughout the substrate region.

E. Arrays of antidots

In Figs. 12 and 13 we illustrate calculations for a model of
a system of four antidots. A single antidot has a repulsive
potential that binds no states, but arrays of antidots can give
rise to interesting dynamical behavior owing to successive
collisions between the electron and neighboring antidots.
The electronic properties of such systems have been of par-
ticular interest in interpreting quantum beats in magne-
totransport and related phenomena.26 For an array of four
antidots, this interesting behavior amounts to an electron’s
being resonantly localized by the combination of four repul-
sive potentials.

Here we will use the BEM to illustrate results for the
states of such systems, which form a continuum. We con-
sider a system in which electrons move effectively in a two-
dimensional plane in the presence of four antidots as shown
in Figs. 12~a! and 12~b!. The antidots are taken to circular
disks of 100 nm diameter, centered on the corners of a square
of 150 nm sidelength, with a potential barrier of 10 meV for
electron penetration into the antidots, and the electron mass
is taken to be 0.0665. Note that the area of the region en-
circled by the antidots is larger than, but on the same order
as, the area of the shapes considered in Secs. VI A–VI C.

Figure 13 shows the spectral density of this system. All of
the states of this system are part of a continuum. Most of
these are states in which the carriers can be thought of as
scattering from the group of four antidots, which gives the
continuous spectral density. In addition, however, there are
peaks at approximately 0.6, 1.3, and 3.2 meV, which corre-
spond to resonance states in which the carrier exists prefer-
entially within the region of the four antidots. For the case of
no tunneling into the antidots, such resonances have been
interpreted as quantum-mechanical ‘‘scars’’ of unstable clas-
sical orbits.27 The inverse of the peak width provides a mea-
sure of the lifetime of localized states, when viewed in the
time domain. In Fig. 12~a! we show the wave function of the
0.6-meV resonance. There it is seen that, although the state
exists in the continuum, its wave function is preferentially
located in the region of the four antidots. Note that this
lowest-energy resonance is symmetric about four antidots, as
expected. The peak at 3.2 meV corresponds to a state that is

FIG. 10. Results for InP/In0.53Ga0.47As/InP deep-etched quan-
tum wires corresponding to those discussed in Ref. 25. The
weighted spectral density as a function of energy is given for a
66-nm-wide wire~solid line! and for a 34-nm-wide wire~dashed
line!.

FIG. 11. Results for a 34-nm InP/In0.53Ga0.47As/InP deep-etched
quantum wire corresponding to those discussed in Ref. 25. Contour
plot of an electronic wave function for~a! E52 meV and ~b!
E55 meV.
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antisymmetric with respect to reflection through either the
x axis or they axis. The peak at 1.3 meV consists of two
degenerate resonances, the wave function for each of which
is antisymmetric with respect to reflection in one direction
and symmetric with respect to reflection in the orthogonal
one. In Fig. 12~b! a wave function of a 0.7-meV state is
shown. This state is nonresonant and has the appearance of
being scattered by the group of four antidots.

VII. SUMMARY

In the present work we have developed a boundary-
element method for calculating the electronic properties of
nanostructure systems of arbitrary geometries and effective
dimensionalities. Green’s function techniques have been
used to develop the formalism, and the resulting integral

equations are discretized and solved by matrix techniques.
Results are given for bound and continuum states, for the
wave functions, for the spectral density functions, and for
scattering cross sections. In effect, this integral equation ap-
proach reduces a problem involving a differential equation
and boundary conditions ind independent variables to an
integral equation ind21 independent variables, which leads
to its efficiency. A number of illustrative examples taken
from nanostructural systems of current interest are given
here. It should be noted that this approach is especially ef-
fective for calculating the properties of highly excited states
with numerous nodes and also for handling geometries with
sharp corners and unusual shapes, for which other methods
often have difficulties.
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