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We have developed a boundary-element method to treat the single-particle electronic properties of semicon-
ductor nanostructures that consist of piecewise homogeneous materials of arbitrary shapes. Green’s-function
techniques are used to derive integral equations that determine these electronic properties. These equations
involve integrals over the boundaries between the homogeneous regions, and they are discretized and solved
numerically. In effect, this approach changes a partial differential equation with boundary conditidns in
independent variables into an integral equatiod-nl independent variables, which leads to its efficiency. For
bound states these methods are used to calculate eigenenergies, for scattering states to calculate differential
cross sections, and for both bound and scattering states to calculate spectral density functions and wave
functions. For such systems, we show that this method generally provides improved calculational efficiency as
compared to alternative approaches such as plane-wave expansions, finite-difference methods, or finite-element
methods and that it is more effective in treating highly excited states than are these methods. lllustrative
examples are given here for several systems whose potentials are functions of two variables, such as quantum
wires or patterned two-dimensional electron gag88163-182€06)09227-2

I. INTRODUCTION as cylindrical wires or spherical dots, ScHiger's equation
is separable, meaning that any wave functigfr) can be

Quantum wires, quantum dots, and other more complexvritten in the formy(r)="f(7)g({)h(&), where (,,¢) are
structures that involve confinement in more than one dimensome appropriate set of curvilinear coordinates, and
sion are of considerable current interest. Such structures afe=E{” +E(Y+E{¥), where the three terms on the right-
being produced in a variety of ways including growth ashand side are eigenenergies associated with the motion along
microcrystals, in nonequilibrium growth such as molecular-the individual spatial coordinates. However, most realistic
beam epitaxy, formation by lithography and etching, and bysystems of physical interest are not of such simple shapes,
the use of chemical and biological templates and processeand their wave functions and energies are nonseparable.
Perhaps the most intensely investigated materials involv@hysically, the reasons that such equations are not in general
semiconductors, but other materials including insulators andeparable are thdt) the potential in Schidinger’s equation
metals are also being studied. These systems permit the imay not be written as a simple sum of potentials each de-
vestigation of different physical phenomena in effectively pendent on a single variable, 6r) the boundary conditions
one and zero dimensions. From a technological point obn the wave functions in lower-dimensional systems involve
view, such structures are of interest because of their potentiahore than one of the variables. Thus numerical techniques
for future advanced technologies such as highly integratedhust be used to study the properties of such realistic struc-
electronic and optical systems. tures.

In order to obtain a full understanding of these systems Some numerical techniques which are used for studying
and to provide a detailed interpretation of experimental resuch semiconductor nanostructures include plane-wave
sults for realistic systems it is necessary to have quantitativexpansionsg, finite-difference method%,and finite-element
results for the single-particle electronic states of such strucmethods® Plane-wave expansions are found to converge
tures. In the case of quantum wells and superlattices, Schraelatively slowly in the vicinity of the interfaces of nano-
dinger's equation generally separates, and such results catructures where the potentials change rapidly. Finite-
readily be obtained from one-dimensional calculations. Fodifference methods involve discretizing Sctimger’s equa-
lower-dimensional structures Schlinger's equation gener- tion in the two(or more variables that do not separate. The
ally does not separate; to date either simple approximationgesulting matrix to be diagonalized then increases roughly
or numerically extensive methods have been used. In theith the product of the numbers of points chosen in each
present work we present a numerical approach for calculadirection and can involve relatively large matrices. Finite-
ing quantitatively the single electronic properties of low- element methods bear a resemblance to finite-difference
dimensional structures of general shape that is relatively efmethods. Each of these methods has difficulties in treating
ficient and conveniently gives results for high-lying and for highly excited or continuum states, for which the wave func-
continuum states. tions vary rapidly over the nanostructure.

For a few examples of highly symmetrical structures such Here we present an alternative method that is efficient and
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TABLE I. Green'’s functions for uniform regions having one, two, or three independent variables, where
H{ is the zeroth-order Hankel function of the first kind afiglis a zeroth-order modified Bessel function.
In the classically allowed regionsk?’=2m(E—V)/# and in the classically forbidden regions
y?=2m(V—E)/4.

Number of independent Classically allowed Classically forbidden Form of gmall-
variables E>V) (E<V) divergence
1 ielklxl e M none

2k 2y
2 iHD (kr) Ko(yr) nr

4 2 2
3 eikr e yr 1

4ar 4ar 4ar

straightforward for the calculation of the wave functions,we give results for the energies and wave functions of the
eigenenergies, scattering cross sections, and spectral denditgund states. In Sec. IV we treat the continuum portion of
functions of electrons in arbitrarily shaped nanostructureghe spectrum, calculating differential scattering cross sec-
composed of different uniform regions. It is called thetions for the case of incident plane waves. In Sec. V we
“boundary-e|ement method” and we show that it providesCﬁ'CU'&te Spectral density functions, which offer a unified
advantages, including improved numerical efficiency, overepresentation of electronic states in all portions of the spec-
alternate approaches. In previous work we have used a simitum, both discrete and continuum. In Sec. VI we will give
lar method to treat the LO phonons of quantum %iemd €xamples of all of these physical quantities for several
quantum dot structures and we have also developed suctshapes and systems which depend on two variables.
methods to treat photohsnd acoustic phonohsn hetero-

structures. Here we develop and discuss this method for elec- Il. FORMALISM

trons in such systems. For the present purpose we use the wyithin the effective-mass approximatidnSchrainger’s
effective-mass approximation for the electrons. In generalgquation can be written in the form

electron, phonon, or photon states are determined by a partial
differential equation, whose solution satisfies certain bound-
ary conditions. For the cases of a wave confineciﬁ,t\:) or ex-
cluded from a region of finite spatial extent it is kndwthat .
by using Green’s-function techniques one may transform th(\_gv_here _the carrier ”?as's‘(r) and the ba_\nd offsew(r) are .
system of a differential equation and boundary conditiond’!€ceWISe uniform, i.e., are constants in the severgl regions
into an integral equation over only the internal interfagef Of the nano.fstructur& Across an mterface separating two
the system; these equations can then be discretized aﬁiéfferent regions, both the wave funct|qhal_1d Its inverse-
solved numerically. Here we extend this technique to inho- mass weighted normal derivative are continuous. If there is

mogeneous systems such as semiconductor heterostructur@g,magne“.C field, the Hamiltonian is time revers_|_ble anq t_he
wave functions can be expressed as real quantities. Within a

which involve the guantum-mechanical motion of an elec-""" ) .
q particular regionV of the nanostructure through whiah

tron from one homogeneous region to another. : : ) ,
The formalism that we will present is valid in nanostruc- *”.‘“dV are uniform, the equation governing the Green'’s func-

ture systems that have quasi-two-dimensional geometry sudipn is
as quantum wells or superlattices, quasi-one-dimensional ge- om
ometry such as quantum wires, or quasi-zero-dimensional —-V2+ ?(V— E)|G(r,r";E)=6(r—r1"), (2)
geometry such as quantum dots. For the sake of illustration,
we will limit our examples to cases of systems that havewhere E is complex(usually with only a small imaginary
potential variations in two dimensions in order to demon-component Following the usual convention, the particular
strate most simply the effects of nonseparability and noninfand  uniqu¢ form chosen for G  satisfies
tegrability. Such results can be considered to apply to at leasim|,_,,|_..G(r,r ';E) =0 if Im(E)>0. For uniform regions
two otherwise dissimilar classes of nanostructufgsquan-  [where m(r) and V(r) are constanisthe results for the
tum wires, which have translational symmetry in the oneGreen’s function are listed in Table | for various geometries.
direction, andii) heterojunctions or quantum wells that have In Table | and in the following development we find it
been laterally patterned to create quantum dots whose verttonvenient to discuss issues in terms of the number of inde-
cal extent is so much smaller than its lateral extent that th@endent variables that need to be treated numerically in the
vertical motion essentially decouples from the in-plane mo-problem under consideration. Typically this number is that of
tion. the largest set of variables that do not separate from one
In Sec. Il the basic equations used for the subsequergnother in the problem. For example, in the case of a quan-
development are written down. In Secs. llI-V we use theseéum well, the motion along the growth direction separates
equations to develop the boundary-element method for thtom the motion in the plane of the well and this latter two-
electronic states in various parts of the energy spectrum. Idimensional motion separates into independent one-
Sec. Il we do this for the discrete part of the spectrum andlimensional motions owing to translational symmetry. The

2
—%V.m(r)‘1V+V(r)—E P(r)=0, (1)



1882 P. A. KNIPP AND T. L. REINECKE 54

variable of interest here is usually along the growth direcinite or infinite spatial extent. Becaus(r,r ';E) vanishes
tion. In the case of quantum wire the motion along the wireas eitherr or r’ goes to infinity, the “surface” at infinity
axis separates from the motion in the transverse directiongoes not appear in any of these equations. The entire linear

and 2 is the number of independent variables that do no$ystem of integral equations can then be represented as
separate. In the case of patterned two-dimensional systems,

whose lateral extent typically greatly exceeds their vertical 0 B, C;

extent[=0(5 nm)], the mismatch of the sizes ensures that

the motion in the growth direction separates from that in the 0 _ By Caoll ¢ M ¢ (5)
transverse directions owing to the symmetry-breaking in- : : ] Uyl

duced by the patterning process. The motion in the two trans- 0 By Cu

verse directions generally do not separate from one another,

leading also to 2 as the number of independent variables th%hereB, andC, represent théth region’s integral operators,
are not separable. For a quantum dot that has no symmet{yhich depend parametrically on the ener§y The lower
axis and for which all three orthogonal spatial lengths are of,5f of the (symbolid column vectof ¢>] contains the values
the same order of magnitude, 3 is the number of independeRf the wave function on all interfa(d:jes, and the upper half
variables that must be treated simultaneously. Correspongyntains the values of the normal derivatives of the wave
ingly, in Table | the Green's functions for the number of ¢nciion divided by the effective mass. If the particle’s
independent Cartesian variables involved are listed. Thesgqion s classically forbidden in all regions of infinite spa-
Green’s functions correspond essentially to free motion ijg| extent and is classically allowed in at least one of the
one-, two-, or three-dimensional space. finite regions, then the energy spectrum contains a bound
portion. The energies of these bound states are determined
lll. E<0: BOUND-STATE ENERGIES by finding the nontrivial solutions of Eq5), which occur for
AND WAVE FUNCTIONS certain discretely spacedeal) values ofE.

We begin by multiplying Eq(1) by 2mG(r,r ;E)/#2 and A number of ways exist to solve E¢6) numerically. We

: : : . hoose to do this by using what is known as the boundary-
subtracting the resulting equation from multiplied b ¢ - . .
w(r), whgrer and r’ %reqwithin V, aEpa;rticuIeFr regign element methodBEM). To implement this approach we dis-

throughout which the material properties are uniform. Inte-Creuze the integral in Edd), thus approximating it as a sum

grating the resulting equation overthrough the volume/ of n terms, to obtain
and using Green’s theorem, we obtain

n

> (Bij+Cij)=0, ()
LdA[m¢(A)G(A,r’;E)—¢(A)6AG(r,r’;E)]=¢(r’), =
(3) where B|lEf]dA,B(A| ,A,), C,lszdAIC(A| ,A,),
di=d(A)), j=¢(A)), and [; represents the integration
over a small boundary eleme8, whereX{_;S;=S, and
n is the number of boundary elements ®nThe entire set of
homogeneous integral equations then is approximated by a
homogeneous equation represented again by(Egbut for
which B, and C, are n;X N matrices(instead of integral

values for(i) the Green’s function everywhere withif (ii) gpg:igr"“ d)MaInS d?/,zg\g/%/]}go%atgﬁéﬁsziﬁm?: 3201222@
the wave function at all point8 on the surfaces, and(iii) P ' P

the (inne normal derivative of the wave function for af  Stead of functions andA= 3 =L;n;, wheren, is the num-
'S, then one can calculatg everywhere withirV. In order ~ ber of boundary elements df , the surface of theth re-
to Calcu|atelr//(A) and ¢(A) we evaluate Eq(3) at a point gion. The divisor of 2 in the definition Woriginates from
r’ that is withinV but arbitrarily close toS and we inter- the fact that each boundary element serves two different re-
changeA andA’ to obtain the homogeneous integral equa-9'0ns. _ . _ o
tion The discretized version of E@5) will have a nontrivial
solution only if the determinant of the complex-valued ma-
, . , . , trix M vanishes. For the bound states, this determinant van-
LdA [BIAA)G(A")+CAAT)Y(A")]=0 (4) ishes for values oE that are discretely spaced in the com-
plex plane. We usually find these energies to be slightly
where the kernels are given B(AA’)=2mG(AA";E) removed from the real axis owing to the approximation as-
and C(AA")=-20,G(r',A;E)—S8(A—A"). It should be sociated with discretizing the integral equation. This proce-
noted that for the piecewise uniform nanostructures considdure yields accurate results for the energies of those bound
ered here the Green’s functions involved in E@.and (4) states for which the wave functions, or, more precisely, the
are known straightforwardly and are given in Table I. wave functions and their normal derivatives evaluated along
If the composite system consists Mfdifferent homoge- the boundans, vary slowly on the scale of a typical bound-
neous regions, then such an integral equation can be derivedly element. In order accurately to determine highly excited
for each of theN regions, including both classically allowed states the grid of boundary elements needs to be sufficiently
and classically forbidden regions, as well as regions of eithefine.

where S is the surface boundiny, A indicates a point 4
located onS, ¢(A)=m~19,u(r), da=Np- dldr|s, and
N is the normal vector that pointaut of the regionV at the
point A. Note that the reason for th~* factor in our defi-
nition for ¢ is so that¢ is single valued, modulo a minus
sign, at the interface. It is seen from H®) that if one has
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A few technical points about the implementation of thewheref(6,k;) andf(k;,k;) are the angle-dependent differ-
BEM are worth mentioning. For the case of three indepenential amplitudes for elastic scattering in two- and three-
dent variables the singularity in the Green’s function causegimensionsR and T are the reflection and transmission co-

’ ’ H _
the_ kerg?IsFB(AﬁA ) andf C(A.'Ad) tod dlverg.eblgs efficients for scattering in one dimensiok; andk; are the
Lr.A N | ) QLt e (I:Iasa?eo 2’)’0 w(;cepen enthvana S, electron’s initial wave vector in two and three dimensions,
verges logarithmically ad—A " andC approaches a num- k; is the electron’s final vector in three dimensiofss the

ber proportional tp the l(.)(.:al radiu; of curvatgre. For Smoothangle of the electron’s final motion in the two-dimensional
surfaces these singularities are integrable in the sense that

lims_f sdAJA—A'| 150, even if A’ 5CS. For non-  case an&=|ki|=|k¢=[ki|=|k]. In two and three dimen-
smooth surfacef.e., those having cusps, corners, or e(ilgess"f)nS the d|fferer21t!al scat.terlng Cross secjclodf||§. For a
these singularities are nonintegrable. For the case of an eler® ggometryjf| IS the. differential scattering cross section
tron completely confined to or excluded from a region, thisP€r unit length of the wire.
nonintegrability leads to divergent values ¢{A) near the For all regions excgpt for thith one, Eqgs(3) and(4) are
nonsmooth singularitf? and for the case of interface va_llld. In the Nth region we have a formula that differs
optical-phonon modes near such singularities, a similar nons''ghtly from Eq.(3):
integrability causes qualitative changes in the frequency
spectrunf:® For the case considered here, namely, that of ¢(r’):eik'f'+J dA[M[ H(A)— ¢o(A)]G(A,r";E)
electrons that are allowed to tunnel into classically forbidden SN
regions, no such qualitative difficulties are encountered. _ _ %

After calculating a particular eigenenergy, by standard [HA) = oA J0AG(rr )], ©
rootfinding methods, the column-vector componepitsand ~ where Sy consists of the finite surface separativig from
; are determined by finding the null eigenvector of thethe other N—1) regions, but does not include the surface at
square matrix. Théunnormalizefiwave function is then cal- infinity,
culated by discretizing Eq3) to obtain

1, AeSy
— aiker
wrH=3 [m(bifdAG(A.r';Ep) VoAI=€TM 0, Aesy (10
i j
and

—z,bjfdAaAG(r,r’;Ep) . (7) . R
j ) elk.rA[ik.nA’ AeSy wn
A= 11

We conclude this section by mentioning how the equa- bo m |0, AgSy.

tions derived in it are modified to treat the special case stud- o ] )
ied in earlier work of a wave that is completely confined to a When 'Fhe limit is taken as’— A" in Eq. (9)_, an ln_homo-
nanostructure. In this case, the boundary condition satisfie€neous integral equation fgi(A) and ¢(A) is obtained:
by the wave function is that(A) vanishes. Hence EB) is

modified by settingy(A) to vanish, Eq.(4) by setting f dA'[B(AA")p(A")+C(AA" ) Y(A")]

#(A") to vanish, and Eqg6) and(7) by settingy; to vanish. SN

Equation(5) is replaced by the integral equati@p=0.

=f dA’'[B(AA") do(A") +C(AA") ho(A")],
IV. E>0: SCATTERING CROSS SECTION Sn

Consider a nanostructure that consists of several regions, (12

only one (the Nth) of which extends to infinity. If’=0 in \where the kernel8 andC are the same as defined in Sec.
this region, therE>0 represents the continuous portion of |||, When this is combined with the otheN(1) regions’
the energy spectrum, which corresponds to delocalizeomogeneous integral equations, which are of the same form

states. For these states one is often interested in the differegs Eq.(4), the resulting inhomogeneous system of equations
tial scattering cross section. If an incoming electron han%overning[?] is

momentum#Ak impinges upon the nanostructure, the wave

scatters elastically into other plane-wave states. InNtte ¢ oo
region, asymptotically far from the other regions, the wave M| |= Mo{ } (13
function will have the forms v Yo
[ et Re kX one dimension. x<0 mhg;(.e(t;(,e ;rrl]tggral operatd is the same as that appearing
Tk, one dimension, x>0
o o ikr 0 0
y={ eki'"+f(9,k;)—, two dimensions P
ﬁ Mo=| o 4| (14)
) R e|kr
ek 4 f (K ’k‘)T' three dimensions, By Cn

' (8) Unlike Eq. (5), Eq. (13) is inhomogeneous.
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We solve Eq(13) numerically in the same way as for Eq. spectrum. In addition, this representation eliminates ambigu-
(5), by discretizing and using the BEM. The discretized formities associated with degeneracies. In the continuum, for in-
of Eq.(12) is stance, the states are usually infinitely degenerate and then it

is more relevant when discussing physical quantities to con-
" ! © © sider the spectral density at a particular energy rather than
]2::1 (Bij;+Cj ’z”j):;l By +Cyjyy), (19 one of the degenerate wave functions at that energy. In pre-
vious work® we have found the corresponding spectral den-
PO=yo(A)), ¢{V=¢o(A;), and whereB;;, C;;, ¢;, and sities for optical phonons to be useful in picturing the vibra-
y; are the same as those defined in Sec. IIl. Hence the entitional amplitudes’ spatial dependence and in representing the
set of integral equations is then approximated by an inhomoresults of electron-phonon scatterity.
geneous equation represented by Bd@), but for whichM Often it is convenient to represent the spectral density
andM, are 2VX 2\ matrices anqio] is a 2\-component function as @~ limyng) o+ Imp(r.,r';E], where the
0 complex-valued spectral density functigrr,r’;E) is de-

column vector. This equation is then solved by matrix inver-c -4 by

sion:
(NP (r')
¢ ¢ nr';E)y=2 ——. 18
o] e prrB)=2 —F ¢ (18)
v o _ _ _
It is straightforward to verify that the complex-valued spec-
In three dimensions the differential scattering amplitude istral density functiorp satisfies the equation
obtained by equating Eq8) with the larger’ form of Eq.
(9) to obtain

=M"M,

2
—%V-m(r)*1V+V(r)—E p(rr;E)=8(r—r").
(19

For smalllr—r’|, for largeE, or for a homo%eneous system,
LA _ the spectral density equals 2nG(r,r';E)/A~.

ik NALY(A) = (A ]}- 17 In the following we will not explicitly indicate theé de-
In two dimensions this formula is unchanged, except that thggendence of the spectral density and of the Green'’s function.
1/44 prefactor is replaced by i/4\/7k owing to the as- We multiply Eq.(19) evaluated atr(r”) by 2mG(r,r')/4?
ymptotic behavior of the Bessel function and that the integrapnd subtract the resulting equation from E2) multiplied
over the closed surfacdy is replaced by an integral over a by p(r,r”), where the points, r’, andr” are in the region
closed contour. In one dimension, the reflectid®) (and V. Then we integrate the resulting equation ovever the
transmission T) coefficients are trivially related to the val- volumeV and use Green'’s theorem to obtain
ues of the wave functiony evaluated at the left and right
boundaries of the nanostructure. / " _ " /

Now we describe how the equations derived in this sec- LdA[G(A,r VIap(rr) = p(AT) IAG(rr )]

tion are modified to treat the special case studied in previous . R,
work of a wave that is completely excluded from a nano- =p(r',r")=2mG(r",r")/a". (20
structure, for which the boundary condition satisfied by theThus having values fod,p(r,r”) andp(A,r") enables one
wave function is thatj(A) vanishes. Hence Eq$9) and  to calculatep(r’,r”) for all r’ within V. To calculate the
(17) are modified by settings(A) to vanish, Eq.(12) by  former two quantities, we carefully take the limit as
settingy(A’) to vanish, and Eq(15) by settingy; to vanish. " A” in Eq. (20), which yields
Equations(13), (14), and (16) are replaced by the single
integral equatiorB¢=B ¢+ Ciy. Equations8), (10), and
(121) are not modified at all.

~ 1 )
f(ks ki) = EJS dAe  TA{m[ p(A) — do(A)]

fdA[G(A,r')mH(A,A”)—p(A,A")&AG(r,r’)]
S

_ 2
V. E<0 OR E>0: SPECTRAL DENSITY FUNCTION =p(r',A") —mG(A",r")/h", (21)

"y —pm—1 " H
A very useful way to present results for the discrete andVhere IL(AA")=m “d,p(r,A"). Thus having values for
continuous portions of the spectrum in a unified way isP?(AA") andII(A,A") enables one to calculaggr’,A") for

through the use of the spectral density function@! " within V. , /

s (D), (r')* S(E—E,), where all states of the system To calculatep(A,A’) andII(A,A") we evaluate Eqg(21)
are included in the sum over, in which E, and ¢, are the at a pointr’ that is withinV but very close t&. This yields
energy and normalized wave function of théh state. In  the integral equation

cases where there is no magnetic field, the Hamiltonian is

time reversible and the wave functions,(r) can be ex- fdA'[B(A,A')H(A’,A")-I—C(A,A')p(A',A")]
pressed as purely real quantities. The spectral density func- S
tion is a purely real quantity that is symmetricinandr’. = —2MG(AA")/#2 (22)

Forr=r' the spectral density function is useful in providing
a picture of the spatial dependence of the density of statesyhere for convenience we have made the interchange of
including both the discrete and continuous portions of thevariabler’«<r. Performing the above procedure in &l



54 BOUNDARY-ELEMENT METHOD FOR THE CALCULATICN . .. 1885

regions of the nanostructure yields the inhomogeneous sys- TABLE Il. Convergence of the BEM-calculated energies of the

tem of linear integral equations ground E,) and first excited ;) states of a 25X 50 nn?
stadium-shaped dot for whiah; =m,=0.0665 and the band offset
B, is 10 meV as a function of/, the number of boundary elements in
the irreducible surface.
1 B,
M| |=-h7% ", (23)
p : N Eo Es
Bn 4 4.8823-0.1200 8.7019-0.0373
where the integral operatdl is the same as that appearing 8 4.8095+0.0008 8.6614-0.0223
in Egs.(5) and(13). Unlike Egs.(5) and(13), in which the 16 4.8042-0.0006 8.6403-0.0076
upper and lower halves of the column vecldi are func- 32 4.8028-0.0002 8.6334-0.0022
tions of one variable4), the upper and lower halves of the 64 4.8024-0.0001 8.6312-0.0005
column vector 7] in Eq. (23) are functions of two variables 128 4.8023-0.0000 8.6308-0.0002
(A,A’). Unlike Eq. (5) and like Eq.(13), Eq. (23) is inho-

mogeneous.
We solve Eq.(23) numerically in the same way as for
Egs. (5) and (13), using the BEM. The discretized form of

states in the vicinity of the nanostructure. For a homoge-
neous material or for largE, this yields a function propor-

Eq. (22) is tional toE¥?~*, owing to the density of states of an electron
in d-dimensional free space. Because of degeneracy-induced
n ambiguities discussed earlier regarding continuum states,
21 (Binjk+Cijpjk)=—Bik/ﬁ2, (29 there is some flexibility involved in the construction of a
i<

wave function for a fixed value d& (>0). The most general
whereIl;;=[,dA'TI(A; ,A"), p;=[;dA’p(A;,A"), andn form for ther dependence of &unnormalizegl wave func-
again is the number of boundary elements on the surfacon of such a state at enerdyis given by
S. The linear system of inhomogeneous integral equations

then is approximated by fdA”f(A”)Im[fdA’[G(r,A’;E)H(A’,A”;E)
S S
B1
1 B —p(A",A";E)dpG(r,r;E) ]+ G(A",r;E)/2|,
M| |=—n-2 2=y, 25 p( )anG(rr S E) ]+ G(A",IE)
p :
B, (27)

where f(A) is another arbitrary weighting function, which

where M is a 2VX 2N matrix (as opposed to an integral
we usually choose to be a constant.

operato), IT andp are N XN matrices(as opposed to func-
tions of two variables B, are n;X N matrices(instead of
functions of two variables m, is the effective mass in the VI. EXAMPLES
Ith region, andy is a 2NV X A matrix. Equation25) is solved

o . In this section we give results of calculations of the elec-
by matrix inversion

tronic properties of several model systems using the BEM
discussed above. For the purpose of verifying the correctness
=M1y (26) and accuracy of the present method, we have studied a num-
ber of separable systems such as circular quantum dots, and
in the largeA/ limit we have found complete agreement be-
My 4 : : _ tween BEM results and those obtained by analytical meth-
trum,H[p] diverges when dell) vanishei.e., for_ E=E,) ods. Rather than produce the details of tho);e stugies here, we
and[, ] is purely real when del) does not vanish. Away

from the bound portion of the spectrum. the imadinary par resent instead results for nonseparable systems that illus-
portion. P ' ginary Part ate the kinds of results obtainable and the characteristics of
of the spectral density is a continuous nonzero function o

E WhenE is analviicallv continued into the complex plane he calculations. The systems chosen are also typical of prob-
) yucaly -OmMpiex pl lems of current physical interest. For simplicity, we choose
near the bound portion of the spectrum, this gives rise t

) X - o2 %hese systems to be characterized by two nonseparable vari-
Lore_nt2|ans in the spectral density whose widttEins pro- ables as described in connection with Table .
portional to ImE).

For each value ofe, the column vector[?] contains
2/N? numbers. Instead of using Eq&0) and(21) to generate
p(r,r’;E) from p(A,A’;E) and II(A,A’;E), it is usually In Table Il and Figs. 1-3 we give results for a “stadium”
convenient for purposes of display and of analysis to conshape of size 25 50 nn? sketched in Figs. 1 and 2. The
dense these data by looking at a function of the single varistadium’s perimeter consists of two straight line segments
able E. One possible function to look at is and two semicircles. This shape has been studied
[sfsdAdA’g(A,A)Im[p(AA";E)], whereg(A,A’) is an  theoretically**° and experimentalfy~—'’for the special case
arbitrary weighting function, which we usually choose toin which the wave function is completely confined to the
equal S(A—A’). This provides a picture of the density of structure’s interior. Current experiments of interest on these

p
When ImE) —0 andE is in the bound portion of the spec-

A. Stadium
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FIG. 1. Contour plot of the first excited bound electronic state of FIG. 3. Spectral density of a 2% 50 nn? stadium-shaped

a stadium-shaped structure whose shape is shown by the dashggl,yre whose potential offset is taken here to be 10 meV. The
line. The potential offset is taken to be 10 meV here. Note that thig,o s give the positions of the two bound states and the continuum
wave function is antisymmetric with respect to reflection throthbegins at 10 meV. The bound-state energies of this system are
thex=0 plane. tabulated in Table Il, and the wave function of the first excited state
is given in Fig. 1. For purposes of presentation we have set

shapes have involved electrons on metal surf&a@smicro- Im(E)~ 0.1 meV.

waves in thin cavitie$>!’ In the case of a thin microwave
cavity surrounded by metal, a one-to-one correspondence ) ) )

can be drawn between Maxwell's equations and Shro quantum wire or the perimeter of a quantum dot with a
inger's equatiort’~2° so the eigenfrequencies derived from growth axis perpendicular to it. These structures are moti-
microwave experiments are simply related to the electroni¥ated by GaAs nanostructures and we take the electron mass
energies of a two-dimensional quantum dot having the samt be 0.0665 in both materials. Table Il and Figs. 1 and 3 are
shape and infinite barriers. The vertical component of thénotivated by quantum dots that exist within quantum wells.
electric field (the square of which can be measured readily These dots are formed by slight variations in the well

in a microwave cavity is the analog of the wave function inWidth.* giving rise to a small potential offset, which we take
Schradinger’s equation. here to be 10 meV. This choice of band offset results in a
It is well known that the states of the stadium structure aréStructure having only two bound states. The fact that the
nonseparable, and accordingly this shape is of current inteWave function of the first excited state, plotted in Fig. 1, is
est in the study of the onset of chaos and related tdfitdt ~ only weakly bound to the well region would require a large
is worth noting that all previous calculations for this systemunit cell if a f|n|te-d|_fference or_flnlte-element method were
treated the particle as being completely confined to the inteUSed to calculate this state, owing to the fact that these latter
rior, whereas in order to study electrons in semiconductofethods require the wave function to be completely con-
nanostructures we need to allow the particle to tunnel intdained within an artificial two-dimensional box.
the classically forbidden(barriep region. Our ability to In Table Il the convergence of the energies of the two
implement the BEM for the stadium is an indication of the Pound states of this stadium structure with a 10-meV poten-
flexibility of this method. For the purposes of the presentt'a| offset are given. The energy of each of these states is an

discussion, this shape represents either the cross section ofBPreciable fraction of the potential offset of 10 meV and as
a result these bound states have a spatial extent well beyond

the nanostructure, as seen in Fig. 1 for the first excited state.
From the results in Table Il it can be seen that the energies of
these states converge well with a modest number of bound-
ary elements\ contained in the irreducible surface, which
for this system is one-quarter of the perimeter. In fact, it is
seen that the relative error of the calculated energy is
O(N?).

In Fig. 3 the spectral density of the system with a 10-meV
barrier offset is given. Note the two peaks for the two bound
states near 4.8 and 8.6 meV. For purposes of presentation we
have set ImE)~ 0.1 meV and therefore the bound states
have corresponding widths. For energies above 10 meV the
onset of a continuum of states is seen.

In Fig. 2 the same stadium shape is considered with a
larger potential offset of 190 meV, which is motivated by a

FIG. 2. Contour plot of an excited electronic state of a stadium-quantum wire of GaAs embedded in M&a; _,As. An ex-
shaped structurédashed ling whose potential offset we take here ample of a highly excited bound state that has an energy
to be 190 meV. The energy of the bound state is 184.4 meV.  slightly below this threshold is shown there. This state ex-
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FIG. 4. Plot of the shape dependence of the energies of a rect-
angular quantum dot for the two particular electronic states dis- FIG. 5. Results for the scattering of an electron from a rectan-
cussed in the text. The band offset is here taken to be 50 meV an L 9

. o , é{llar quantum dot having dimensions of 2448 nn? and a band
the dot area to be 1150 rfmThe dashed lines indicate the energies offset of 50 meV. Plot of the angle dependence of the differential

f:lcul?tg(?_ assuming a sep?rableltfom for the ;Na\t/_e fur;ﬁtlonst_ aross sectionf()|? for an electron scattering from a rectangular
the smt |n|es, alre Otl:: tex_etlc r,edstlr]] s. The aspect ratio 1 the ralio G4 ;antum dot, for an incident electron that moves parallel to the
€ rectangie’s fength fo its width. rectangle’s long axigsolid curve or along its diagonaldashed

. ) . curve. The electron energy is taken here to be 5 meV.
hibits a considerable number of nodes. The numerical calcu-

lation of this state, however, requires only approximately . o
N=50 boundary elements in the irreducible perimeter. Thiglifferent angles are shown in Fig. 5. The energy dependence
example shows that the BEM is efficient and effective inof the total scattering cross sectien for an electron that
treating highly excited bound states of nanostructures. Byravels initially parallel to the long axis of the rectangle is
comparison, calculations for such a state using a finiteshown in Fig. 6. The result for the Born approximation,
difference method would requir®(AN?)=0(2500) mesh Which can be calculated for this geometry and equals the
points. exact result for highe, as expected, is also displayed in this
figure. As a check of the correctness of our calculation of the
B. Rectangle total cross sectionr [=fd6|f(6)|%], we also calculated this

] ) ) quantity using the optical theorem, which relatesto the
In this subsection we consider a rectangular shape whosgnyard-scattering amplitude. In two dimensions, the optical

area is the same as that considered for the stadium in t —— . —
preceding subsection and whose band offset is taken to equ eorem says thatr=2ya/kim[(1=1)f(6=0.k;)]. We

50 meV. Although states completely confined within a rect-.have used the BEM to calculate e"?‘Ch side of this equation
angular shape are separable, states that are partially Conﬁn}g@ependently and the agreement is perfect in the limit of
to a rectangle or completely or partially excluded from ala9e/.

rectangle aranot separable. The nonseparability of this sys-
tem can be understood most easily by using Cartesian coor-

dinates, in which case Schtinger's equation separates, but 80 S g
the boundary conditions do not. Hence the states not com- 160 \ B
pletely confined to a rectangle cannot be characterized by an 140 - | 7]
ordered pair of quantum numbers, one for the confinement 120 N
number €,) in the x direction and one for the confinement £ 100 |- 4
number ) in the y direction. As an illustration of the =) %0 | N
gualitative importance of this nonseparability, the energies of S - ]
two bound states of a rectangle having a fixed area but a or B
varying aspect ratidratio of length to width are shown in 40 - ]
Fig. 4. If a separable approximation is made for these states’ 20 [~ —
wave functions, then then(,n,)=(1,2) state and the ) P! Y PRSIV B
(ny,ny)=(3,0) state are accidentally degenerate when the s 100 2 s 100 2 s 100 2 s
aspect ratio equals approximately 1.25. However, when the E (meV)

energies are calculated exactly using the BEM, they are seen
to exhibit an avoided crossing instead. The extent of the g 6. Results for the scattering of an electron from a rectan-
deviations from a simple separable approximation are seen ifjar quantum dot having dimensions of 448 nn? and a band

Fig. 4. offset of 50 meV. Plot of the energy dependence of the total scat-

Results for the scattering of an electron from such a recttering cross section for an electron that moves initially parallel to
angle, whose dimensions are 24 48 nm?, are shown in  the rectangle’s long axis, calculated using the exact formulation
Figs. 5 and 6. The differential scattering cross sections for @resented in this papésolid line) and using the Born approxima-
5-meV electron that impinges upon the rectangle from twaion (dashed curve
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20-10 0 10 20 30 40 20-10 0 10 20 30 40 FIG. 8. Results for the lowest 'three electronic states of isospec-
X (nm) X (nm) tral cavities. The electron mass is taken to be 0.0665. The band-
offset dependence of the energies of the ground, first excited, and

second excited states are shown for cavitfgdlid line) and cavity

FIG. 7. Results for the ground electronic states of isospectrap (dashed ling The energies of these three states for the case of
cavities. The electron mass is taken to be 0.0665. Contour plots Gffinite offset are 18.3, 26.3, and 37.2 meV.

the wave functions of cavities 1 and 2 are respectively showa)in

and (b) for the case of an infinite band offset. The cavity outlines are shown in Fig. 8. It is worth noting that the differences
are indicated by dashed lines. Contour plots of the same states, bHIet\Neen the energies for the two structures are small even
for the band offsets having the finite value of 20 meV, are shown "\Nhen the eigenenergy is a substantial fraction of the band

(©) and(d). offset. This suggests that it will be difficult to extract infor-
C. Isospectral shapes mation about the size and shape of realistic nanostructures

i ) based solely on spectroscopic data.
The extent to which knowledge of the size and shape of a

nanostructure can be obtained from spectroscopic results ) )
such as photoluminescence data is of fundamental interest. D. Lithographically formed structures
This question is related to a mathematical problem of current In Figs. 9-11 we show examples of the results of calcu-
interest, which is paraphrased by the question, “Can ondations of localized and extended states using the BEM that
hear the shape of a drum#?That is, can one determine the have helped to elucidate experimental results for two litho-
shape of a drumhead from a knowledge of all of its eigengraphically formed quantum-wire structures of current inter-
frequencies? In recent mathematféaind experimentdd  est. We have studied in Ref. 24 the optical properties in
studies of a particular set of shapes known as “isospectrahodulated barrier quantum wires formed by selectively etch-
shapes” this question has been answered in the negativing an overlayer of wider-band-gap material from a quantum
The experiments, however, were done in thin metal microwell. In Fig. 9 the ground-state wave function of a GaAs/
wave cavities. The analogous case for nanostructures inng,{Ga, odGaAs modulated barrier quantum wire is shown.
volves electrons that are forbidden from tunneling out of theThat this structure is a nonseparable system can be seen, for
structures’ interiors. example, by noting the extent to which the wave function
In the present work we are interested in this example as iinoves more deeply into the GaAs substrate for narrower
relates to the question of determining shapes and sizes @fires. The relatively large penetration of the wave function
realistic nanostructures from spectroscopic data. An exampl@to the GaAs substrate on the side away from the vacuum
of one pair of such isospectral shapes is shown by the dashedgions is especially significant and we have found it to be
lines in Figs. Ta)—7(d). Each one of the pair is composed of
seven isosceles right triangles. The shapes have equal areas
and equal circumferences. For comparison, we choose the
areas of these shapes to equal those of the others studied in 5
Secs. VI A and VI B. The electronic ground-state wave func-
tions for the case of no tunneling into the barriers are shown
in Figs. @) and 1b).?% Although the wave functions differ
for the two structures the energies are identical, which is
consistent with the results noted abdv¥é? For many realis- 0 [
tic nanostructures, however, carrier tunneling must be in- i L .
cluded. Results for a finite potential barrier equaling 20 meV 15 <10 -5 0 5 10 15
are shown in Figs. (€) and 7d). Tunneling into the barriers X (nm)
is found to decrease the energies, of course. More impor-
tantly, the eigenenergies of the two structures are no longer FIG. 9. Contour plot of the ground-state wave function of an
identical in the presence of tunneling. The band-offset deelectron in a GaAs/l§,Ga, ofAS/GaAs modulated barrier quantum
pendence of the three lowest energies of the two structuresire corresponding to those discussed in Ref. 24.

—
[ vacuum

——
vacuum |

&
Z

y (nm)
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FIG. 10. Results for InP/hsGay 4AS/INP deep-etched quan-
tum wires corresponding to those discussed in Ref. 25. The
weighted spectral density as a function of energy is given for a
66-nm-wide wire(solid line) and for a 34-nm-wide wirédashed
line).

important in understanding quantitatively the wire width de-

pendence of the energies of the bound st4tes. 30 k C'_j ]

In the work in Ref. 25 the photoluminescence rise time of 40 R, NINT 2 1 LA J
deep-etched InP/x44, ./ AS/INP  quantum-wire structures B 30-20-10 0 10 20 30
was observed to exhibit what appeared to be a barrier for the X (nm)
transport of carriers from the InP substrate into the

In,Ga; _,As wire even though no physical barrier was

present. In Fig. 10 the spectral density of a system consisting FIG. 11. Results for a 34-nm InPjadGa, ;As/InP deep-etched

of the InP substrate plus the InP material below a 34-nnfiuantum wire corre_spondlng to thpse discussed in Ref. 25. Contour
In,Ga;_,As wire is shown. It should be noted that the Plot of an electronic wave function fofg) E=2 meV and(b)
narrower-gap InGa; _,As quantum wire is located near the E=5 meV.

top of the pedestal-like InP structure in Fig. 11. The spectral Here we will use the BEM to illustrate results for the
density is evaluated in the narrow region leading to thesiates of such systems, which form a continuum. We con-
In,Ga; _,As wire. It is seen that there is a nonzero spectrakjder a system in which electrons move effectively in a two-
density for all energies down to zero, but that there is a fairlygimensional plane in the presence of four antidots as shown
abrupt increase of the spectral density for energies increasing Figs. 12a) and 12b). The antidots are taken to circular
above the energy corresponding roughly to the lowest boungisks of 100 nm diameter, centered on the corners of a square
state of the vacuum/InP/vacuum quantum-well system. Thigf 150 nm sidelength, with a potential barrier of 10 meV for
increase in the spectral density accounts for the appearanggsctron penetration into the antidots, and the electron mass
of an effective barrier observed in the experiments foris taken to be 0.0665. Note that the area of the region en-

temperature-dependent transport from the substtalgpi-  circled by the antidots is larger than, but on the same order
cal wave functions for energies below and above this threshpg the area of the shapes considered in Secs. VI A-VI C.
hold are shown respectively in Figs.(&lLand 11b). There it Figure 13 shows the spectral density of this system. All of

is seen that the latter has more amplitude in the region neghe states of this system are part of a continuum. Most of
the continuum that extends throughout the substrate regionscattering from the group of four antidots, which gives the
continuous spectral density. In addition, however, there are
peaks at approximately 0.6, 1.3, and 3.2 meV, which corre-
spond to resonance states in which the carrier exists prefer-
In Figs. 12 and 13 we illustrate calculations for a model ofentially within the region of the four antidots. For the case of
a system of four antidots. A single antidot has a repulsiveno tunneling into the antidots, such resonances have been
potential that binds no states, but arrays of antidots can giviterpreted as quantum-mechanical “scars” of unstable clas-
rise to interesting dynamical behavior owing to successiveical orbits?” The inverse of the peak width provides a mea-
collisions between the electron and neighboring antidotssure of the lifetime of localized states, when viewed in the
The electronic properties of such systems have been of patime domain. In Fig. 1@&) we show the wave function of the
ticular interest in interpreting quantum beats in magne-0.6-meV resonance. There it is seen that, although the state
totransport and related phenoméfdor an array of four exists in the continuum, its wave function is preferentially
antidots, this interesting behavior amounts to an electron’tocated in the region of the four antidots. Note that this
being resonantly localized by the combination of four repul-lowest-energy resonance is symmetric about four antidots, as
sive potentials. expected. The peak at 3.2 meV corresponds to a state that is

E. Arrays of antidots
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FIG. 13. Results for the electronic states of a system consisting
of four antidots. Note that all states are continuum states. Spectral
density as a function of energy. The peaks correspond to resonances
that are preferentially located in the region surrounded by the four
antidots and the background continuum is associated with com-
pletely free states impinging on the exterior perimeter of the anti-
dots.

y (nm)

equations are discretized and solved by matrix techniques.
Results are given for bound and continuum states, for the
) .. wave functions, for the spectral density functions, and for
FIG. 12. Results for the electronic states of a system Cons'sungcattering cross sections. In effect, this integral equation ap-
of four antidots. Note that all states are continuum states. Comouﬁroach reduces a problem involving a differential equation
plots of electronic states having) E=0.6 meV, which is prefer- 54 houndary conditions id independent variables to an
enyally located in the region of the four dots, afil E=0.7 meV, integral equation id— 1 independent variables, which leads
which tends to scatter from the region of the four dots. to its efficiency. A number of illustrative examples taken
from nanostructural systems of current interest are given
antisymmetric with respect to reflection through either thenhere. It should be noted that this approach is especially ef-
x axis or they axis. The peak at 1.3 meV consists of two fective for calculating the properties of highly excited states
degenerate resonances, the wave function for each of whiakith numerous nodes and also for handling geometries with
is antisymmetric with respect to reflection in one directionsharp corners and unusual shapes, for which other methods
and symmetric with respect to reflection in the orthogonaloften have difficulties.
one. In Fig. 12b) a wave function of a 0.7-meV state is
shown. This state is nonresonant and has the appearance of ACKNOWLEDGMENTS
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