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We consider a clean two-dimensional electron liquid in a weak magnetic field whereN@1 lower Landau
levels are completely filled, while the upper level is only partially filled. Due to a screening by the lower
Landau levels, the repulsive interaction between any two electrons at the upper level as a function of the
separation between the guiding centers of their cyclotron orbits abruptly drops at the distance of two cyclotron
radii. Such a ‘‘box-like’’ component in the interaction potential makes the uniform distribution of the electron
density at the upper Landau level unstable, and domains with filling factor equal to one and zero are formed.
The shape of domains is studied both analytically and numerically. We show that when the filling factor of the
upper Landau level is close to one-half, the domains have the form of parallel stripes alternating with a spatial
period close to three cyclotron radii. Away from a small interval around half-filling, a ‘‘bubble’’ phase is more
favorable. We investigate the implications of the proposed ground state for the one-particle density of states,
which can be probed by tunneling experiments. For the stripe phase, the density of states is shown to have a
pseudogap linearly dependent on the magnetic field in the limit of largeN. @S0163-1829~96!00227-5#

I. INTRODUCTION

Since the discovery of the integer and fractional quantum
Hall effects,1 the description of the ground state of an inter-
acting two-dimensional~2D! electron gas in a magnetic field
became one of the central problems of condensed matter
physics. The main difficulty of this problem is related to the
fact that the electron gas in the magnetic field is highly de-
generate and, therefore, the Coulomb interaction cannot be
considered as a small perturbation.

In a pioneering work made even before the discovery of
the quantum Hall effect, Fukuyama, Platzman, and
Anderson2 found that in a quantum limit where only one
Landau level~LL ! is partially occupied, a uniform uncorre-
lated spin-polarized electron liquid is unstable against the
formation of a charge density wave~CDW!. Later, Yoshioka
and Fukuyama and also Yoshioka and Lee3 claimed that the
optimal period of the CDW coincides with that of the clas-
sical Wigner crystal~WC!. In both works, the Hartree-Fock
~HF! approximation has been used. The difference of the
proposed HF WC state from a classical WC of pointlike
particles is that the electrons are smeared over a distance of
the order of the magnetic lengthl5\/Amvc around the sites
of the WC lattice. The WC ground state, however, failed to
explain the fractional quantum Hall effect occurring when
the filling factor n5kF

2 l 2 is a simple rational fraction~here
kF is the Fermi wave vector of the 2D gas in zero magnetic
field!.

The explanation was made possible when Laughlin4 sug-
gested a non-HF trial state of uniform density forn5 1

3,
1
5,

which turned out to be a few percent lower in energy. Thus,
although the HF approximation gives a rather accurate esti-
mate of the energy, it fails to describe important electron-
electron correlations at a partially filled lowest LL.

In the works discussed above, the ground state has been
always assumed to be spin polarized. Recently, this require-
ment also has been reconsidered. It was found that a partially
filled lowest LL may contain skyrmions.5

In this paper we consider the case of weak magnetic fields
or high LL numbersN. A short version of this work6 was
published before.

There is growing evidence from analytical and numerical
calculations that both the fractional states and skyrmions are
restricted to the two lowest LL’s (N50,1) only ~see Refs.
7–9!. This point of view is also consistent with experiment
because none of those structures has yet been observed at
N.1 to our knowledge. Denote byn̄N the filling of the
upper LL, n̄N5n22N. We will assume that~i! at n̄N<1 the
upper LL is completely spin polarized and~ii ! the HF ap-
proximation gives an adequate description of the system.

Our theory strongly relies on the existence of Landau lev-
els. In other words, we assume that even in weak magnetic
fields, where the cyclotron gap\vc is small, the electron-
electron interactions do not destroy the Landau quantization.
Certainly, this is far from being evident. On the mean-field
level, the following argument can be given.~For a discussion
of quantum fluctuations, see the paper by Aleiner and
Glazman.9! The LL’s survive if the absolute value of the
interaction energy per particle at the upper LL is much
smaller than\vc . The largest value of the interaction energy
is attained atn̄N51 where the electron density at the upper
LL is the largest. It is equal to2 1

2Eex, whereEex is the
exchange-enhanced gap for the spin-flip excitations10 at
n̄ N51 ~it determines, e.g., the activation energy at the
minima between spin-resolved resistivity peaks!. The magni-
tude of this gap is given by9

Eex5
r s\vc

A2p
lnS 2A2r s D 1Eh , r s!1, ~1!

whereEh is the ‘‘hydrodynamic’’ term11

Eh5\vc

ln~Nrs!

2N11
. ~2!
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The parameterr s entering these formulas is defined by
r s5A2/kFaB , aB5\2k/me2 being the effective Bohr ra-
dius. Therefore, in the considered limitr s!1 the LL’s are
indeed preserved. In practicer s;1 but even at suchr s the
ratio a5Eex/\vc is still rather small. Experimentally, this
ratio can be estimated to be near 0.25 at 0<N<4.12

Let us now turn to the main subject of the paper, a par-
tially filled upper LL. Due to the electron-hole symmetry
within one spin subband, it suffices to consider only
0, n̄N< 1

2.
We want to find the ground state of a partially filled LL.

As we just saw, the cyclotron motion is quantized. Thus, the
remaining degrees of freedom are associated with the guid-
ing centers of the cyclotron orbits. In the ground state these
centers must arrange themselves in such a way that the in-
teraction energy is the lowest. This prompts a quasiclassical
analogy between the partially filled LL and a gas of ‘‘rings’’
with repulsive interaction, the radius of each ring being equal
to the cyclotron radius,Rc5A2N11l . Strictly speaking, the
guiding center cannot be localized a single point, and so our
analogy is not precise. However, there exists a single-
electron state13 ~so-called coherent state! in which the guid-
ing center has a very small scatter~of orderl ) around a given
point. ~For a more detailed description of such a state, see
Sec. IV.! At large N where l!Rc , the proposed analogy
becomes rather accurate. Since the rings repel each other, it
is natural to guess that they form the WC. A trial wave
function for this state was written by Aleiner and Glazman9

by generalizing the Maki-ZotosN50 wave function14 to ar-
bitrary N:

uC&5)
i
cRi
† u0N&, ~3!

where u0N& stands forN completely filled LL’s, cR
† is the

creation operator for a coherent state,13 andRi are the lattice
sites of the classical WC with densityn̄N /(2p l 2). When
n̄ N is small,n̄N!1/N, the rings centered at neighboring lat-
tice sites do not overlap and the concept of the WC is per-
fectly justified. However, at largern̄N they overlap strongly.
In this work we show that atn̄N@1/N the ground state is
completely different. Generally speaking, the structure of the
ground state depends onr s . In this section we discuss the
results only for the practically important case,r s.0.06. We
found that in the range 1/N& n̄N, n̄N* where n̄ N is some-
what smaller than12, the electrons form a ‘‘super’’ WC@Fig.
1~a!# of large domains~‘‘bubbles’’! containing about three
n̄ NN electrons each and separated by the distance that slowly
changes from 2Rc near the lower end of this range ofn̄N to
approximately 3.3Rc near the upper end. At largern̄N ,
n̄ N*, n̄N< 1

2, the ‘‘bubbles’’ merge into parallel stripes@Fig.
1~b!# with the spatial period of approximately 2.7Rc . The
transition pointn̄N* depends onN. In the limit of largeN, it
approaches the value of 0.4.

Domain patterns shown in Fig. 1 are well known in many
other physical and chemical systems,15 examples of the
former being type I superconducting films in their interme-
diate state and magnetic films. We will refer to the patterns
in Figs. 1~a! and 1~b! as the ‘‘bubble’’ and ‘‘stripe’’ phases,
respectively.

It is, perhaps, surprising that the repulsive interaction
leads to the formation of compacted clusters. In Sec. II we
study this phenomenon in more detail and derive a general
criterion for the interaction potential to have this property.

To understand why the clusterization occurs in the con-
sidered system, it is important to keep in mind the distinction
between the local density of the guiding centers~i.e., the
filling factor! and the local charge density. Despite the
former being very inhomogeneous, the variations of the latter
are rather small~of the order of 20%). In other words, our
CDW state is not a conventional charge density but rather a
guiding center density wave. This surprising property is a
result of the ringlike shape of the electronic wave functions.
Recall now that the energy of the system can be presented as
the difference of the Hartree and the exchange terms. The
inhomogeneity makes both of them increase relative to their
uniform state values. However, the Hartree energy is sensi-
tive only to the charge density variations and, therefore, it
does not increase too much. On the other hand, for the ex-
change energy the variations in the filling factor are impor-
tant, and it increases considerably, making the CDW state
more favorable.

For not too smalln̄N , the cohesive energy of our state is
of the order of the exchange gapEex. For example, the co-
hesive energy atn̄N; 1

2 and r s;1 is given by

Ecoh
CDW'2

r s

8A2p
\vclnS 11

0.3

r s
D2

Eh

4

'20.01\vc2
Eh

4
. ~4!

The last line in this equation corresponds to the caser s;1,
where the logarithmic factor can be expanded.

By the term cohesive energy we mean the difference in
the energies per particle at the upper LL in the given state
and in the uniform uncorrelated electron liquid~appropriate
at very high temperature!.

One can argue also that our CDW state turns out to be the
most energetically favorable because it possesses the optimal
correlations on the largest length scale in the problem,Rc .
The correlations on the length scalel , built into the structure
of, say, the WC, are much less effective. We believe that for
the same reason at largeN the Laughlin liquids cannot com-
pete with the CDW state either.

FIG. 1. ~a! ‘‘Bubbles.’’ ~b! ‘‘Stripes.’’ The black dots represent
the guiding centers of cyclotron orbits.
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One of the important properties of the proposed ground
state is a pseudogap in its one-particle density of states
~DOS!. We call it a pseudogap because although the DOS
does not actually vanish, it appears small between two sharp
peaks at the extremes of the spectrum~see Fig. 2!. Such
peaks are the particular form of the Van Hove singularities.
The distance between the peaks~the width of the pseudogap!
for n̄N; 1

2 is equal to

Eg'
r s\vc

A2p
lnS 11

0.3

r s
D1Eh'0.07\vc1Eh , ~5!

which is very close toEex.
Besides the peaks, the DOS has an additional structure,

such as a shallow gap of widthEh centered at the Fermi
energy. The existence of such a gap was predicted in Refs. 9
and 19.

Figure 2 depicts the asymptotical form of the DOS at truly
largeN. At moderateN, the DOS appears merely as two
distinct peaks. The reason for this is that the difference be-
tweenEg andEh is not too large yet, while the Van Hove
singularities are not extremely sharp. As a result, the inter-
vals 1

2Eh,uEu, 1
2Eg of constantg(E) ~see Fig. 2! are totally

absorbed by the Van Hove peaks.
The proposed ground state enables us to explain two in-

teresting experimental findings. One is a pseudogap in the
tunneling DOS first observed in the experiments with single
quantum well16 systems and, recently, with double quantum
well systems.17,18 It was found that the differential conduc-
tivity as a function of the bias voltage exhibits two maxima.
The distanceEtun between the maxima appears to be linear in
magnetic field.18 We show that the dependence ofE tun on
the magnetic field is more complicated. However, in the ex-
perimental rangeN<4, it can be satisfactorily fitted to the
linear law E tun'0.4\vc , which compares favorably with
the experimental value of 0.45\vc .

18

Another important application of the proposed picture
concerns the conductivity peak width of the integer quantum
Hall effect in high-mobility structures. It is usually assumed
that the disorder in such systems is long ranged. In this case
the semiclassical electrostatic model of Efros21 predicts that
the electron liquid is compressible in a large fraction of the
sample area. If compressible liquid is considered to be me-
tallic, then the conductivity peaks are necessarily wide,21

which is indeed the case at relatively high temperatures.22

However, it is well known that at low temperatures the peaks
are narrow, which may be interpreted as the pinning of the
compressible liquid by the disorder.23 The crystalline struc-

ture of the compressible liquid~Fig. 1! makes such a pinning
possible even though the disorder is long ranged. When the
compressible liquid is pinned, it cannot move as a whole. As
a result,sxx vanishes at alln̄NÞ 1

2. Precisely atn̄N5 1
2, how-

ever, another mechanism of the transport becomes
operational.24 It is related to the propagation of quasiparticles
along the boundaries of the domains withnN51 and 0,
sometimes referred to as ‘‘bulk edge states.’’ The dc trans-
port is possible only when the bulk edge states percolate
through the sample. This is realized only atn̄N5 1

2, because
the long-range order of the stripe phase is destroyed by dis-
order. This explains narrow peaks ofsxx at zero temperature
at half-integern ’s.

At nonzero temperature the peaks have a finite width due
to a hopping between spatially closenN51 domains. How-
ever, the consideration of such a hopping goes beyond the
scope of the present paper.

The outline of the paper is as follows. In Sec. II we
present a qualitative discussion where we show that even a
perfectly repulsive interaction may cause the clusterization
of particles. In Sec. III we formulate the self-consistent HF
problem and give its approximate solution under two kinds
of simplifying assumptions~one corresponds to ‘‘stripes’’
and the other to ‘‘bubbles’’!. In Sec. IV we report the results
of a numerical study of CDW patterns based on the trial
wave function~3!. In Sec. V we discuss the implications of
the CDW state for the double-well tunneling experiments.
Finally, Sec. VI is devoted to conclusions. Various details of
calculations, e.g., a careful comparison of the energies of the
CDW and the conventional WC, may be found in the Ap-
pendixes.

II. QUALITATIVE DISCUSSION

Our results can be understood by analyzing the following
toy model. Consider a one-dimensional~1D! lattice gas in-
teracting via the boxlike potential

u~x!5u0Q~2R2uxu! ~6!

and situated on the background of the same average density,
interaction with which is described by the potential of the
same type but with the opposite sign. One can say that each
particle has a negative unit charge while the background is
charged positively. We assume thatR is much larger than the
lattice constanta. We also assume that a multiple occupancy
of the sites is forbidden; then the average occupancy or the
average filling factorn̄ is always between 1 and 0. Let us
focus on the casen̄5 1

2.
One of the possible particle distributions is the WC, i.e.,

the state where every other lattice site is occupied. It can be
shown that the absolute value of its cohesive energy does not
exceedu0 , the maximum value of the two-particle interac-
tion potential. Now we demonstrate that atn̄51/2 the ar-
rangement of the particles in a series of equidistant large
clusters of width;R allows the system to attain the cohesive
energy as small as

Ecoh52~322A2!~R/a!u0 . ~7!

For the obvious reason we call this state the CDW state.
Since the spatial periodL;R of this state is much larger

FIG. 2. The DOS for the stripe CDW in the limit of largeN
~schematically!.
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than the average interparticle distance, it is convenient to
switch from the description in terms of discrete particles to
the continual representation where one uses the local filling
factor n(x). We consider the CDW with the boxlike profile
of n(x):

n~x!5QS L

4
2uxu D , 2

L

2
,x,

L

2
; ~8!

see Fig. 3~a!. The lowest value of the energy quoted above is
reached atL52A2R'2.8R. Indeed, this period is much
larger than the average interparticle distance 2a, i.e., instead
of being equidistant as in the WC, the particles are com-
pacted in large clusters of the highest possible densitya21.

The clusterization is advantageous because in contrast to,
e.g., the usual Coulomb law, here the interaction potential
ceases to increase at distances smaller than 2R. Therefore,
particles can be brought closer to each other at no energy
cost. At the same time the particles in the interior of a given
cluster avoid the particles in the other clusters. Hence, they
interact only with the chargeL/2a of their own cluster. Now
recall that each particle interacts with the background as
well. The amount of the background charge involved in this
interaction is (2R/a).(L/2a). Therefore, the interaction
with the positive background dominates and each cluster re-
sides in a deep potential well. The cohesive energy of the
system is determined simply by the average depth of this
well. Let us now calculate the cohesive energy and then
minimize it with respect toL. This way we will find the
optimal period of the state.

Define the one-particle energye(x) at a pointx by

e~x!5E dx8

a
u~x2x8!@n~x8!2 n̄ #, ~9!

then the cohesive energy is determined by the average value
of e(x)n(x):

Ecoh5
1

2n̄
^e~x!n~x!&. ~10!

It is easy to see that forn(x) given by Eq.~8! andL in the
range 8

3R,L,4R, e(x) has an approximately sawtooth
form @Fig. 3~b!# and oscillates between6 1

2Eg , where

Eg5u0
4R2L

a
. ~11!

The cohesive energy can be readily evaluated to be
Ecoh(L)52Eg(L22R)/2L, which reaches its lowest
value ~7! at L52A2R.

Let us now calculate the DOSg(E), which we define by

g~E!5
1

Lx
E dxd„e~x!2E…, ~12!

whereLx is the length of the system. The integration yields

g~E!5
2

L H U de

dxU
21

, uEu, 1
2 Eg

0, uEu. 1
2 Eg ,

~13!

where the coordinatex appearing on the upper line of Eq.
~13! is any of those wheree(x)5E. Clearly,g(E) is con-
stant in the interval2 1

2Eg,E, 1
2Eg but diverges at the end

points of this interval@Fig. 3~c!#. These divergencies are the
particular form of the Van Hove singularities inherent to the
DOS of all periodic structures.

Let us now return from the toy model to the real electrons
at the upper partially filled LL. Consider again the case
n̄ N5 1

2. As discussed in Sec. I, at suchn̄N the stripe CDW
pattern forms. In this case the problem is effectively 1D be-
cause the one-electron basis states can be chosen in such a
way that they are labeled by one quantum number~the guid-
ing center coordinate! X. In the Landau gaugeA52Bxŷ,
the wave function of one of such states is given by

cX5
eiyX/ l

2

p1/4A2NN! lL y

expF2
~x2X!2

2l 2 GHNS x2X

l D , ~14!

whereLy is they dimension of the system andHN(x) is the
Hermite polynomial.25 The wave function~14! is extended in
the y direction but has a finite spread of 2Rc in the x direc-
tion. Strictly speaking, the HF potentialuHF(x) via which the
basis states interact, is different from the one given by Eq.
~6!. However, as will be shown in the next section, for
r s;1 this potential is roughly equivalent to

uHF
eff ~x!5a

\vc

2p2Rc
Q~2Rc2uxu!2aEhd~x!, ~15!

a5
2p l 2

Ly
. ~16!

Such a formula foruHF
eff (x) results from the particular form of

the bare interaction potentialv(r ) ~the interaction potential
of two pointlike charges! in the 2DEG in a weak magnetic
field, which is as follows. At very shortr!aB and very large
r@Rc

2/aB distances,v(r ) coincides with the usual Coulomb
law v(r )5e2/kr . At intermediate distances, it is signifi-
cantly smaller than the Coulomb potential because of a

FIG. 3. The CDW in the lattice gas.~a! Local filling factor
n(x). ~b! One-particle energye(x). ~c! DOS in the lattice gas.
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strong screening by the large number of electrons at the
lower LL’s. Very crudely,v(r ) can be approximated by

v~r!5pe2aBd~r!1Eh , r&2Rc , ~17!

whereEh5(e2aB /kRc
2)ln(Rc /A2aB) @cf. Eq. ~2!#.

Clearly, the first term inv(r ) gives a nonvanishing con-
tribution to the interaction potentialuHF(x) between two ba-
sis states only if the densities of the two states overlap, i.e.,
at uxu,2Rc . Beyond 2Rc , this contribution becomes very
small. This is represented by the first term in Eq.~15!, which
exhibits a steplike discontinuity atuxu52Rc .

The second term inuHF
eff (x) comes from the second~‘‘hy-

drodynamic’’! term in the bare interaction potential. It is
important that this second term inv(r ) is almost constant in
real space up to rather large distances~of the order of several
Rc). It is then clear on physical grounds that this long-range
‘‘hydrodynamic’’ term in v(r ) @or its imageaEhd(x) in
uHF
eff # has no effect on the short length scale structure of the
ground state. In other words, as long as the characteristic
spatial scales of a given state are of the order ofRc or
shorter, the contribution of the ‘‘hydrodynamic’’ term to the
cohesive energy of such a state is the same. It can be shown
that this contribution is equal to

Ecoh
h 52

12 n̄N
2

Eh ~18!

~see also Sec. III!. Therefore, the ground-state structure is
determined by the boxlike part and is exactly the same as in
our toy model@see Fig. 3~a!#.

Given the results of the toy model, we can immediately
derive the quantities of interest for the real system~in the
practically important caser s;1) as well. First, the optimal
CDW periodL should be close to 2.8Rc . Indeed, we found
the value of 2.7Rc for this quantity. Second, Eq.~4! for the
cohesive energy follows from Eq.~7! after the appropriate
substitutions foru0 andR by the parameters from Eq.~15!.
@One should not forget here to add the contribution of the
short-range part given by Eq.~18!#. Finally, to deduce the
functional form of the DOS, let us examine the effect of this
short-range part one(x). Clearly, it is to lowere(x) by
1
2Eh in n(x)51 intervals and to raise it by the same amount
in the other intervals wheren(x)50. This generates the
jumps ine(x) at x56 1

4L ~Fig. 4! superimposed on the fa-
miliar sawtooth profile ofe(x) in the lattice gas model@Fig.
3~b!#. Hence, the effect of the short-range part on the DOS is
to insert a hard gap of widthEh centered at zero energy~Fig.
2!. Therefore,Eg is augmented by the same value, which is
accounted for by the second term in Eq.~5!. The first term in
this equation~for r s;1) follows from Eq. ~11! upon the
appropriate substitutions foru0 andR.

Note that in the real system, unlike in the toy model, the
Van Hove singularities at the edges of the spectrum are not
d-function-like but the inverse square-root ones. Indeed, the
DOS is inversely proportional tode/dx; hence, the type of
singularity at, say,E52 1

2Eg is determined by how this de-
rivative goes to zero atx→0. The real interaction potential is
never an ideally flat-top box, and in reality the extrema in
e(x) in Fig. 2 are, in fact, somewhat rounded. We expect that
the second derivatived2e/dx2 is finite atx50, which corre-
sponds to the inverse square-root singularity ing(E).

Our toy model enabled us to derive our main results@Eqs.
~4,5!# for the most practical case ofr s;1. At smallerr s the
potential is no longer boxlike and we have to examine the
problem more carefully, which will be done in the next sec-
tion. Before we do so, it is important to identify a general
criterion, which enables one to tell whether or not a given
type of the repulsive interaction would lead to a similar clus-
terization of particles. This criterion can be obtained by ana-
lyzing the Fourier transform of the potential and it is well
known in the theory of the CDW systems.

For simplicity, let us return to the 1D case. The cohesive
energy can be written as

Ecoh5
1

2Lxn̄a
2(qÞ0

ũ~q!ñ 2~q!, ~19!

whereLx is the length of the system.~From now on, where
using the same symbol for both real-space andq-space quan-
tities may lead to an ambiguity, the Fourier transformed
quantities are denoted by tildes.! Obviously, if ũ(q) is nega-
tive at a certainq, then the formation of a CDW with such
q will lead to the lowering of the system energy. Therefore,
the criterion for the CDW instability is the presence ofnega-
tive valuesof ũ(q). The Fourier transform of the boxlike
potential~6! is given byũ(q)52sin(2qR)/q, which is indeed
negative at certainq. Note also that the CDW instability is
the strongest atq53p/4R where ũ(q) reaches its lowest
value. This particularq corresponds to the spatial period of
8
3 R'2.67R, which is very close to the optimal period of
approximately 2.8R we found above. The reason why they
are slightly different is that the CDW instability enters the
nonlinear regime. Apparently, a small change in the period
enables the CDW to incorporate the contribution of sublead-
ing harmonics in a more optimal way.

In the next section we give details of the HF approxima-
tion from which the true form of the interaction potential can
be found.

III. CDW STATE

In this section we formulate the self-consistent HF prob-
lem and give its approximate solution.

The first-principles formulation of the HF problem takes
into consideration all occupiedN11 LL’s together with sev-
eral low-lying empty ones. In other words, it deals with
O(N) different species of fermions interacting viaO(N2)
different types of interactions among themselves. Although
for moderateN such a treatment is feasible, the solution can
be obtained only numerically~see, e.g., MacDonald and
Aers26!.

A different approach was put forward by Aleiner and

FIG. 4. One-particle energye(x) for the CDW in the real sys-
tem ~schematically!.
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Glazman.9 They showed that at sufficiently largeN,
N@r s

21@1, the degrees of freedom associated with lower
N LL’s can be integrated out, and derived an effective
Hamiltonian9 governing the low-energy physics of the 2D
liquid in a weak magnetic field:

Ĥeff5
1

2LxLy
(
q

r~q!ṽ~q!r~2q!, ~20!

wherer(q) is the projection of the density operator onto the
upper LL and

ñ ~q!5
2pe2

«~q!q
~21!

is the renormalized interaction potential~recall that the tilde
is used for Fourier transformed quantities!. Physically, the
bare Coulomb interaction among the electrons at the upper
partially filled LL gets renormalized because electric fields
become screened by the lower completely filled LL’s. The
quantity «(q) has, therefore, the meaning of the dielectric
constant for the system of the filled LL’s. It is given by9

«~q!5kH 11
2

qaB
@12J0

2~qRc!#J , ~22!

wherek is the background dielectric constant andJ0 is the
Bessel function of the first kind.25 Note that the asymptotic
expressions for«(q),

«~q!5kH 11
2

qaB
, Rc

21!q!kF

11
Rc
2q

aB
, q!Rc

21 ,

~23!

were obtained earlier by Kukushkin, Meshkov, and
Timofeev.27 Equation~17! of Sec. II can be obtained by per-
forming the Fourier transform of Eq.~21!.

Let us return to Eq.~20!. It contains the density operator
r(q) projected on the upper LL expressible in the form

r~q!5(
X

F~q!e2 iqxXaX1

† aX2
, ~24!

whereaX
† (aX) is the creation~annihilation! operator of the

state ~14!, X6 are defined byX65X6qyl
2/2, andF(q),

given by

F~q!5E dx dyucXu2e2 iqx, ~25!

bares the name of the form factor of state~14!. Performing
the integration, one obtains

F~q!5expS 2
q2l 2

4 DLNS q2l 22 D , ~26!

LN(x) being the Laguerre polynomial.
25 Following the usual

procedure of the HF decoupling of the Hamiltonian~20! we
get

ĤHF5
nL
2 (

q
ũHF~q!D~2q!(

X
e2 iqxXaX1

† aX2
, ~27!

wherenL5(2p l 2)21 is the density of one completely filled
LL and

D~q!5
2p l 2

LxLy
(
X

e2 iqxX^aX1

† aX2
& ~28!

is the CDW order parameter.2,3 By ũ HF in Eq. ~27! we de-
note the HF potential,ũHF(q)5ũH(q)2ũex(q). The Hartree
potentialũH(q) is given by

ũH~q!5 ṽ~q!F2~q!. ~29!

The exchange potentialũex(q) in the reciprocal space turns
out to be proportional to the real-space Hartree potential,

ũex~q!5uH~ql2!/nL . ~30!

From Eqs.~26!, ~29!, and~30! and also from an asymptotic
formula forF(q),

F~q!.J0~qRc!, q!kF , ~31!

more convenient expressions forũH(q) and ũ ex(q) at
Rc

21&q!kF can be derived:

nLũH~q!'
\vc

21qaB
J0
2~qRc!, ~32!

nLũex~q!'
r s\vc

A2p
H lnS 11

r s
21

A2qRc
D 1

sin~2qRc!

2qRc@11~r s /A2!#
J

1Eh . ~33!

The cohesive energy can be obtained from Eq.~27! by
omitting the wave vectorq50 in the sum, taking the
quantum-mechanical average, and then dividing the result by
the total number of particlesn̄NnLLxLy at the upper LL,
which gives

Ecoh5
nL
2n̄N

(
qÞ0

ũHF~q!uD~q!u2. ~34!

We want to find the set of the CDW order parameters
D(q) that minimizes the cohesive energy under certain con-
ditions of the self-consistency~see below! imposed on
D(q). We will present an approximate solution based on the
consideration of only two idealized CDW patterns: a system
of uniform parallel stripes and a triangular lattice of perfectly
round ‘‘bubbles.’’ As mentioned in the Introduction, the
stripe phase is more favorable in some interval ofn̄N around
half filling. Outside of this interval, it gets replaced by the
‘‘bubble’’ phase. We will consider the two phases separately.

A. Stripe phase

In this caseD(q) are nonzero only ifqy50. It is conve-
nient to introduce the local filling factornN ~compare with
n̄ N , the average filling factor! by nN(x,y)
5nN(x)[^ax

†ax&. In the stripe phase, the order parameter
D andnN are just proportional to each other:

D5
nN
LxLy

. ~35!
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The self-consistency condition mentioned above is

nN~x!5Q@eF2e~x!#, ~36!

whose meaning is that all the states below the Fermi level
eF are filled, and all others are empty. The self-consistent
potentiale(x) in Eq. ~36! is given by

e~x!5nL(
qÞ0

ũHF~q!D~qx̂!eiqx. ~37!

By x̂ we mean the unit vector in thex direction. Equations
~34!–~37! define the HF problem for the case of the unidi-
rectional CDW.

ForN.0 the Hartree potentialũH(q) inevitably has zeros
due to the factorF(q) containing the Laguerre polynomial
@Eq. ~29!#. The first zero,q0 , is approximately given by
q0'2.4/Rc . Since the exchange potential is always positive
@Eq. ~33!#, there existq’s where the total HF potentialũHF is
negative. This leads to the CDW instability because the en-
ergy can be reduced by creating a perturbation at any of such
wave vectors~cf. Ref. 2!.

We will focus on the parameter range 0.06,r s,1 and
N,50, which covers the cases of the experimental practice
and even beyond that. In such a parameter range, the HF
potential is negative at all wave vectorsq.q0 and reaches
its lowest value nearq5q0 ~see Fig. 2 of Ref. 6!. One can
guess then that the lowest-energy CDW is the one with the
largest possible@under the conditions~36! and~37!# value of
uD(q0x̂)u. The CDW having this property consists of alter-
nating stripes with filling factorsnN(x)50 and51 @Fig.
1~b!#. Within the class of unidirectional CDW’s we are con-
sidering now, this guess turns out to be correct. However,
due to the anharmonism of such a solution, the optimal spa-
tial periodL of the CDW is slightly larger than 2p/q0 and is
equal to

L52.7Rc . ~38!

NonzeroD(q) for this solution are given by

D~qx̂!5
2

Lq
sinS n̄N

2
LqD ~39!

providedq is an integer multiple of 2p/L.
Let us now derive Eq.~5! for the pseudogap. Clearly,

Eg52ue(0)u. To calculatee(0) we could, in principle, use
Eqs.~32! and~33! to sum the series in Eq.~37!. However, to
establish the connection with Sec. II, we will switch to real
space. Define a 1D HF potential,

uHF~x![
1

Ly
E dqeiqxũHF~q!, ~40!

thene(x) will be related tonN(x) in a way similar to Eq.~9!:

e~x!5E dx8

a
uHF~x2x8!@nN~x8!2 n̄N#, ~41!

wherea is given by Eq.~16!.
At largeN the potentialuHF(x) can be approximated by

uHF
eff ~x!5a

\vc

2p2R
B~x!2aEhd~x!, ~42!

B~x!5E
0

p/2 dw

~r s /A2!1A12@12k2~x!#sin2w
, ~43!

where k(x)[x/2Rc ~see Appendix A!. Equation~42! is a
good approximation if one is not interested in the detailed
behavior ofuHF(x) atx smaller thanaB or larger than several
Rc . For r s!1 the functionB(x) satisfies the following
asymptotic relations:

B~x!55
lnS 2A2r s D , x50

K8S x

2Rc
D , r sRc&uxu,2Rc

0, uxu.2Rc ,

~44!

whereK8 is the complete elliptic integral of the first kind.25

The plot ofB(x) is shown schematically in Fig. 5. One can
see that it has a steplike discontinuity atx52Rc already
mentioned in Sec. II. In fact, atr s;1, B(x) is very nearly
boxlike,B(x);Q(2Rc2uxu) and Eq.~15! follows.

Using Eqs.~41! and ~42!, we find forEg :

Eg5
\vc

p2Rc
E
0

2Rc
dxB~x!sgnS x2

L

4 D1Eh , ~45!

which with the help of Eq.~43! can be transformed into

Eg'\vcS 0.0131 r s

A2p
E
r s

L/8Rcdk

k D 1Eh . ~46!

After the substitutionL52.7Rc , one recovers Eq.~5!. @The
small number in the parentheses of Eq.~46! is the result of a
numerical evaluation of a certain integral. To obtain Eq.~5!
it was disregarded.#

Let us now calculate the cohesive energy@Eq. ~4!#. When
r s is not much smaller than unity,B(x) remains approxi-
mately boxlike, and, consequently,e(x) in thenN(x)51 in-
tervals has an essentially triangular cusp~Fig. 4!. Using Eq.
~10!, we then arrive at

Ecoh
CDW52 1

8 ~Eg1Eh!, ~47!

which leads to Eq.~4!.
Note that at smallerr s , r s;0.1, the cusp ine(x) deviates

from the triangular form. This is illustrated in Fig. 6, where
e(x) for r s50.1, N530 is shown. In this figure one can see
the bending of the initially straight lines of Fig. 4.

FIG. 5. The functionB(x).

54 1859GROUND STATE OF A TWO-DIMENSIONAL ELECTRON . . .



This bending is due to the deviation ofB(x) from the
ideally flat-top box, or in physical terms, due to the Hartree
term in the interaction. The Hartree interaction reduces the
slope ofe(x), or the magnitude of the directed inward the
stripes ‘‘electric field’’ 2(de/dx) x̂. The magnitude of the
field is equal to

de

dx
5

\vc

2p2Rc
F2BS L

2 D2B~0!G . ~48!

at the stripe boundaryx5L/4 ~or, more precisely, at a dis-
tance;aB from the boundary!. Equation~48! enables one to
find the range ofr s where the simple CDW profile with one
stripe per period remains stable. Indeed, there is a critical
value ofr s at which the electric field near the stripe boundary
vanishes. Using Eqs.~38!, ~44!, and~48!, one arrives at

r s*52A2expF22K8S L

4Rc
D G'0.06 ~49!

for the criticalr s . At r s5r s* , the original stripe breaks into
three smaller ones: the central one, almost as wide as the
original stripe, and two narrow ones~of width ;aB) on the
sides@Fig. 7~b!#. Note that this transformation resembles the
edge reconstruction of quantum dots28 ~the decrease ofr s in
this analogy is equivalent to the steepening of the quantum
dot confining potential!.

Sincer s50.06 is rather difficult to reach under the terres-
trial conditions, only the boxlike solution and Eq.~4! have a

practical value. The next four paragraphs are devoted to a
purely theoretical issue of the CDW structure at truly small
r s . Uninterested readers can skip these paragraphs.

We expect that the reduction ofr s beyondr s* leads to a
further increase in the number of stripes per period. It is
important also that these stripes will be of unequal width,
such that after a coarse-grain averaging of the filling factor
nN(x), it would appear approximately sinusoidal@Fig. 7~c!#.
To understand this let us go back to theq space.

In the limit r s!r s* andN@r s
22 , the exchange potential

ũex(q) is on average much smaller than the Hartree potential
u˜H(q) for Rc

21,q,(Rcr s)
21 @see Eqs.~29! and ~33!#, so

the total HF potential is negative in smallq intervals cen-
tered at the zeros ofũH(q). The absolute minimum of
ũHF(q) is still situated nearq5q0 . If one chooses the wave
vector of the principle harmonic to beq0 , already the next
harmonic of the boxlike profileq53q0 will correspond to a
large positiveũHF(q). Hence, to minimize the energy of the
system all such unfavorable harmonics must be suppressed.
In other words, the CDW may be only slightly anharmonic.
In a simplified description, the spatial distribution of the fill-
ing factor is sinusoidal, and has the amplituden̄N and the
spatial period 2p/q0 . Let us find the cohesive energy of the
stripe phase at givenn̄N . Since the filling factor is approxi-
mately sinusoidal inx, in formula ~34! we have to retain
only two terms withqx56q0 for which uD(q)u. 1

2n̄N . Tak-
ing advantage of Eq.~33!, we arrive at the estimate

Ecoh
CDW.2

n̄Nr s\vc

4A2p
lnS 11

0.3

r s
D2

12 n̄N
2

Eh . ~50!

The last term was obtained by a more accurate procedure
based on the sum rule3

(
qÞ0

uD~q!u25 n̄N~12 n̄N!, ~51!

which is just another way to derive Eq.~18!.
In fact, the functionnN(x) is more complicated. First,

there are deviations from the pure sinusoidal form in narrow
regions centered at the extrema ofnN(x). In these regions
nN(x) is flattened, such that it reaches zero~or one! not at
single points but in small intervals ofx. Second, even with
these corrections, the simple sinusoidal ofnN(x) is not the
complete answer yet because, taken literally, it contradicts
Eq. ~36!. Indeed, according to Eq.~36!, the local filling fac-
tor can be only one or zero whereas we just argued that
nN(x) takes intermediate values as well. The contradiction is
resolved by the fine structure of the CDW. Namely, the
CDW profile consists of many narrow boxes@Fig. 7~c!#, and
appears sinusoidal only after the coarse-grain averaging. To
find the characteristic width of such boxes we have to ana-
lyze the HF potential more carefully. It is easy to see that at
wave vectorsq.1/Rcr s , the exchange potential becomes
larger than the average of the oscillating Hartree potential
@Eqs. ~29! and ~33!#. Therefore, in this range ofq there are
many harmonics, which need not be suppressed. Thus, the
typical distance between the boxes is of the order of
j[A2r sRc . The appearance of the scalej in the ground-
state structure is not accidental. It is related to the fact that

FIG. 6. e(x) for r s50.1, N530.

FIG. 7. The local filling factor in the stripe CDW pattern for
different r s . ~a! r s.r s* , ~b! r s;r s* , ~c! r s!r s* .
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j is nothing more than the range of the exchange potential
uex(r ) in real space@at r.j uex(r ) rapidly decreases:
uex(r )}1/r

2#.

B. ‘‘Bubble’’ phase

We will consider only the large-N limit whereRc@ l and,
therefore, both the period of the bubble lattice and the radius
of the ‘‘bubbles’’ are much larger than the magnetic length.
In this case we can still use the concept of the local filling
factor, but now it depends on bothx andy coordinates. The
filling factor nN(x,y) is assumed to be unity inside the
‘‘bubbles’’ and zero everywhere else. The ‘‘bubbles’’ form a
triangular lattice. The relation between the lattice constant
Lb and the radiusr b of the ‘‘bubbles’’ is

r b
Lb

5SA3n̄N
2p D 1/2. ~52!

Similar to the case of stripes, we will use an asymptotic
expression for the HF potential,

nLuHF~r!'
\vc

2p3Rc

Q~2Rc2r !

A4Rc
22r 2

1Eh@nL2d~r!#, ~53!

valid at r s;1 andr smaller than severalRc . One possible
way to obtain this equation is to start from the formula for
u HF
eff in q space~see Sec. II! and then perform its 2D Fourier
transform.

With the help of Eqs.~52! and ~53!, for every givenn̄N
we have numerically calculated the cohesive energy of the
‘‘bubble’’ phase as a function ofLb . This way we have been
able to determine the optimal value ofLb , which is plotted
in Fig. 8~a!. Note that atnN&0.1 the optimal period closely

follows the formula

Lb.
2Rc

122~r b /Lb!
, ~54!

whose meaning is that the neighboring ‘‘bubbles’’ barely
interact with each other.

At n̄N5nN*'0.39, the cohesive energies of the stripe and
the ‘‘bubble’’ phases become equal@Fig. 8~b!#. At smaller
n̄ N , the ‘‘bubble’’ phase replaces the ‘‘stripes.’’ Arguments
can be given that this transition is of first order.29

The dominance of the ‘‘bubble’’ phase over the ‘‘stripes’’
at small n̄N allows a simple geometrical interpretation. Re-
call that at smalln̄N the ‘‘bubbles’’ barely interact with each
other. The situation in the stripe phase is similar: the optimal
period is very close toL.2Rc /(12 n̄N), so that only the
particles within the same stripe interact with each other.
Given this, the cohesive energy is determined by the interac-
tions of particles within a single stripe~for the stripe phase!
or within a single ‘‘bubble’’~for the ‘‘bubble’’ phase!. In the
stripe phase, each particle interacts with all the particles
within the area 4Rc3Ln̄N.8Rc

2n̄N . In the ‘‘bubble’’ phase,
the corresponding area ispr b

2.2A3Rc
2n̄N , i.e., roughly a

factor of 2 smaller. Thus, in the ‘‘bubble’’ phase the particles
avoid each other more effectively, and this phase should be
more energetically favorable. It is possible to further elabo-
rate upon this way of reasoning and to show that for the
interaction potential~53!, the ratio of the cohesive energies
of the two phases tends to 1.7 asn̄N→0 in agreement with
data of Fig. 8~b!.

On the intuitive level, the ‘‘bubble’’ phase is expected to
appear asnN decreases because of the imminent Wigner
crystallization at sufficiently smalln̄N . Indeed, the WC is a
particular case of the ‘‘bubble’’ phase withne51, where
ne is the number of particles in one ‘‘bubble.’’ When
n̄ N@1/N, ne is large and can be found from

ne5
A3
2p S Lb

Rc
D 2Nn̄N . ~55!

following from Eq. ~52!. As n̄N becomes smaller,ne de-
creases. Eventually, atn̄N;1/N, ne reaches the value of one
and the ‘‘bubble’’ state becomes the ordinary WC. Thus, the
‘‘bubble’’ phase appears as a natural intermediate state be-
tween the stripe phase and the WC.

Equation~55! implies that in the interval 1/N, n̄N< 1
2 the

optimal number of electrons in one ‘‘bubble’’ is larger than
one; i.e., the ‘‘bubble’’ phase is more energetically favorable
than the WC. This issue is discussed in more detail in Ap-
pendix B.

So far, we have been discussing the caser s;1. We ex-
pect that with decreasingr s , the original ‘‘bubbles’’ break
into smaller ones, similar to the case of the stripes@Figs. 7~b!
and 7~c!#. The characteristic distance between neighboring
bubbles is of the order ofj;Lr s . Such smaller ‘‘bubbles’’
contain fewer electrons each; therefore, the transition to the
WC phase occurs at larger filling factorn̄N;1/(Nrs

2).
Section IV is devoted to numerical simulations, which

confirm the formation of the stripe and ‘‘bubble’’ phases.

FIG. 8. ~a! The optimal distanceLb between neighboring
bubbles as a function of the filling factor.~b! The cohesive energy
of the ‘‘bubble’’ and stripe phases~solid and dashed lines, respec-
tively!. The plotted dependencies correspond to the limitN→`,
r s;1. The ‘‘hydrodynamic’’ term in the cohesive energy, small in
this limit, is neglected.
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IV. NUMERICAL STUDY

In Sec. III we showed that the electron liquid at the upper
partially filled LL is unstable against the CDW formation. At
not too small~‘‘realistic’’ ! r s , the CDW instability is rather
strong and it causes the uniform electron liquid to break into
occupied and empty domains~Fig. 1!. It is difficult to find
the optimal shape of such domains analytically,15 and to
study this question we resorted to numerical simulations, de-
scribed below.

The trial wave function used in our finite-size modeling is
given by Eq.~3! where the centersRi are chosen from the
sites of the triangular lattice. The lattice constant is equal to
(4p/A3)1/2l in physical units. Hence, the fully populated
lattice corresponds to the average density1/(2p l 2), i.e., to
the filling factor n̄N51. Denote byniP$0,1% the occupancy
of the i th site. Let us derive the expression for the cohesive
energy of the trial state in terms ofni .

We begin by examining a state with a single occupied site
at the origin. This state bares the name of the coherent
state.13 The following properties of such a state are important
for us. First, the probability density distribution, i.e., the
square of the absolute value of the wave functionf(r) of the
coherent state is given by

uf~r!u25
1

2p l 2N! S r
2

2l 2D
N

e2r2/2l2. ~56!

It has a sharp maximum atr5A2N11l5Rc , i.e., at the
location of the classical cyclotron orbit. The characteristic
width of the maximum in the radial direction isl . Thus, the
picture of the electron localized within a narrow ring natu-
rally appears~see Sec. I!.

Second, using Eq.~56!, the order parameter@Eq. ~28!# of
a single coherent state can be calculated easily. It is equal to

D~q!5Dc~q![
1

LxLy
expS 2

1

4
q2l 2D . ~57!

Third, two coherent states centered at pointsR1 andR1
separated by a distancer5uR22R1u, have a very high degree
of orthogonality if r@ l . @This is owing to oscillating phase
factors not shown in Eq.~56!#. The overlapA(r ) between
two such states is given by

A~r ![u^cR1cR2
† &u25expS 2

r 2

2l 2D . ~58!

As a result, with high accuracy, the order parameter of the
HF state ~3! of two electrons is simply additive:
D(r).Dc(r2R1)1Dc(r2R2). This holds for a many-
electron state as well, provided that the guiding center sepa-
ration in each pair of electrons exceedsl . Using Eqs.~34!
and ~57!, we arrive at

Ecoh.
1

2Ne
(
iÞ j

@~ni2 n̄N!gHF~Ri2Rj !~nj2 n̄N!#2
n̄N
2
E ex,

~59!

whereNe is the total number of electrons, and the quantity
gHF(r ), defined through its Fourier transform,

g̃HF~q!5ũHF~q!e2 ~1/4! q2l2, ~60!

has the transparent meaning of the interaction energy of two
coherent states whose centers are separated by the distance
r . In the actual simulations, we replacedgHF(r ) by

GHF~r !5
gHF~r !

12A~r !
~61!

to take into account a nonzero overlapA(r ). In fact, the
overlap is not too small only for nearest lattice sites, for
which A'0.027.30

In the simulations the lattice had the form of a parallelo-
gram ~see Fig. 9! and contained a total of 50350 sites. In
every run, the goal of the simulations was to minimize the
energy ~59! with respect to different configurations of the
given number of the occupied sites, i.e., at givenn̄N . Since
the total number of such configurations is enormous even for
a relatively small lattice, the true ground state is extremely
hard to find. Fortunately, the Hamiltonian~59! is exactly of
the form studied in the context of electrons localized at

FIG. 9. The CDW patterns produced by our numerical simula-
tions with the parametersr s5A2/3,N510 for three different val-
ues ofn̄N : ~a! n̄N5

1
2, ~b! n̄N5

1
4, ~c! n̄N5

1
16.
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charged impurities in doped semiconductors,31 and we can
employ some techniques of finding the approximate solution,
developed in that field.

Our computational procedure starts from some initial con-
figuration of the occupied sites~usually a random one!. At
each step the configuration is changed in favor of a new one
with a lower energy. Ideally, the algorithm has to contain
many stages with different rules to pick up the new configu-
ration at each stage. At the first stage the new configuration
differs from the previous one by the position of only one
occupied site; at the second stage, by the positions of the
two, and so on. We, however, restricted ourselves to the first
stage only. Presumably, it already gives a good approxima-
tion to the ground state. The site to move is chosen according
to the following procedure. First, we calculate the potentials
e i of all the lattice sites,

e i5Ne

]Ecoh

]ni
5(

jÞ i
GHF~Ri2Rj !~nj2 n̄N!, ~62!

and find the occupied sitei with the highest potential. Then
we scan all the vacant sitesj , calculating the quantity

dEi→ j5e j2e i2GHF~Ri2Rj !, ~63!

which is the change in the system energy upon the relocation
of the occupied sitei to the vacant sitej .31 The relocation is
performed on the vacant site with the largest positive
dEi→ j . If all dEi→ j for the giveni are negative, then we try
to relocate another occupied sitei in the same manner. Even-
tually, if the pair of an occupied sitei and a vacant sitej
with positive dEi→ j cannot be found, the algorithm termi-
nates.

The results of the calculations with the parameters
r s5A2/3,N510, andn̄N5 1

2,
1
4,

1
16 are shown in Fig. 9. In Fig.

9~a! one can see that atn̄N5 1
2 the stripe pattern forms. The

deviations from the ideal picture of identical parallel stripes
are mainly due to the incommensurability of the lattice con-
stant with the optimal CDW period. Other factors working in
the same direction are the finite size of the lattice and the fact
that the algorithm is able to find only an approximation to the
ground state. For the same reasons, it is difficult to pinpoint
the transition to the ‘‘bubble’’ phase. However, we can put
some bounds on it. For example, atN510, the transition
occurs within the interval 0.3, n̄N,0.4 ~in agreement with
our earlier estimatenN*50.39). At smallern̄N , the pattern of
isolated ‘‘bubbles’’ becomes fully developed, see Fig. 9~b!.

We found that both the distance between the ‘‘bubbles’’
(Lb'3.3Rc at n̄N5 1

4! and the average number of electrons
in one ‘‘bubble’’ ne'3n̄NN are in agreement with the
asymptotical laws given by Eq.~55! and the data of Fig. 8.
As n̄ N goes down,ne becomes smaller, and, at sufficiently
small filling factor (n̄N;0.1 forN510), the ‘‘bubbles’’ con-
sist of only single occupied sites. At this moment the distinc-
tion between the CDW and the WC disappears. At even
smaller n̄N , the occupied sites become more distant@Fig.
9~c!#.

Summarizing the results discussed in this section, we see
that our numerical simulations give an additional piece of
evidence in favor of the proposed CDW ground state. In Sec.
V we discuss the one-particle DOS of the CDW state and its
relation to the recent tunneling experiments.18

V. TUNNELING PROPERTIES

In Sec. II we found that the one-particle DOS consists,
roughly, of the two Van Hove singularities at the extremes of
the spectrumE56 1

2Eg with Eg given by Eq.~5!. Experi-
mentally, the DOS can be probed by the double-well tunnel-
ing experiments.17,18 We derive the expression for the tun-
neling conductance as a function of the voltage difference
between the two wells and then compare this expression with
the experimental results of Ref. 18.

In the tunneling experiments of Refs. 18 and 17 two
;200-Å-thick high-mobility GaAs quantum wells, each con-
taining the 2DEG, are separated by an AlxGa12xAs barrier
of width about 150 Å . The experiment consists in measur-
ing the low-temperature current-voltage characteristics of the
double-well system in the magnetic field applied perpendicu-
lar to the 2D planes. The results of the experiments~illus-
trated by Fig. 10! suggest the following scheme:~A! At suf-
ficiently weak magnetic fields the differential conductivity
G5dI/dV exhibits a single peak centered at zero bias volt-
age @Fig. 10~a!#. The form of the peak is consistent with a
Lorentzian-type dependence ofI on V:18

I

V
5D

2G

~eV!21G2 , ~64!

whereG is the tunneling peak width andD is some constant.
~B! At larger magnetic fields the peak broadens and a small
depression inG as a function ofV at V50 develops. Thus,
the dependenceG(V) has two maxima@Fig. 10~b!#. ~C! With
further increase in the magnitude of the magnetic field, both
the total width of the feature and the distanceEtun between
the two maxima increases. The latter distance appears to be
linear in magnetic field,

Etun50.45\vc ; ~65!

see Fig. 10~c!.
We are interested mainly in regime C where the magnetic

field is not too weak. Nevertheless, for the sake of complete-
ness, we will discuss the other two regimes@~A! and~B!# as
well. We associate the existence of the three different re-
gimes @~A!, ~B!, and ~C!# with different relations among
three energy scales:\vc , g, andEex;r s\vc . They charac-

FIG. 10. The evolution of the peak in the differential conduc-
tivity G(V) as the magnetic field increases.~a! Shubnikov–de Haas
regime.~b! Spin-unresolved QHE regime.~c! Spin-resolved QHE
regime.
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terize the strength of the magnetic field, the LL broadening
due to the disorder, and the strength of the electron-electron
interactions, respectively.

~A! Shubnikov–de Haas regime. This regime corresponds
to the condition\vc!g, where the dominating energy scale
is due to the disorder. In this case the role of the electron-
electron interactions reduces mainly to the screening of the
impurity potential. Denote the screened potential byW(r).
The tunneling properties of the system can be adequately
analyzed within a simple model of noninteracting electrons
in zero magnetic field subjected to the external potential
W(r). Such a theory leading to formula~64! was developed
by Zheng and MacDonald.32 In the simplest case where the
two wells have identical densities, amounts of disorder, and
where the disorder in the wells is uncorrelated, the results of
Zheng and MacDonald can be understood from a well-
known formula ~see, e.g., Shrieffer, Scalapino, and
Wilson33!:

I5
e

\3(
kps

uTkpu2E dE

2p
Aks
L ~E!Aps

R ~E1eV!

3@ f ~E!2 f ~E1eV!#. ~66!

In this formulaTkp is the tunneling matrix element,Aks(E)
is the spectral density for energyE, momentum\k, and spin
s. The superscriptsL and R stand for the left and right
wells. Finally, f (E) is the Fermi-Dirac distribution function.
Equation~66! shows that the tunneling experiments measure
the convolution of the wells’ spectral functions.

The most important assumption for the derivation of Eq.
~64! ~and for the resonant character of zero-bias tunneling in
general! is that the momentum is conserved during tunneling,
e.g., thatuTkpu2}dk,p . If, following Ref. 32, one now takes
advantage of the Born approximation expression

Aks~E!5
\2/t

~E2Ek!
21~\/2t!2

~67!

for the spectral function, one then recovers Eq.~64! with
G5\/t. Here, t is the quantum lifetime and
Ek5\2k2/2m. As noted above, Eq.~64! describes the ex-
perimental results rather well.18,32,34 However, before we
proceed to the case of stronger magnetic fields@regime~B!#,
we note that in dirtier samples one should observe a different
I (V) dependence, owing to the fact that the Born approxi-
mation breaks down. We will show that the disorder broad-
eningg of the LL’s, and, consequently, the tunneling peak
width, can be much larger than\/t. To do so, we will need
to make several definitions first. In the studied samples the
disorder is presumably due to randomly positioned ionized
donors. In this case the correlation length of the disorder
potential is of the order of spacer widthd, which can easily
be of the order of 1000 Å . Letn be the 2D electron gas
~2DEG! density, andni be the density of randomly posi-
tioned donors. It is easy to calculate then that the root-mean-
square~rms! value of the screened disorder potential in the
plane of the 2DEG is equal to21

U[A^W2&5S p

8 D 1/2e2aBAnid
. ~68!

The Born approximation and, consequently, Eq.~64! are
valid if U!\vF /d, which is the same asn@ni . In the op-
posite case,n!ni , one has to use the quasiclassical approxi-
mation, which leads to

Aks~E!5
A2p\

U
expF2

~E2Ek!
2

2U2 G ~69!

for the spectral function and

I

V
5

ApD

U
expF2

~eV!2

4U2 G ~70!

for the tunneling current. Technologically, it is currently pos-
sible to change bothn andni in a given sample. The former
may be done by applying a voltage to gates located nearby
the quantum wells,35 and the latter by special techniques of
the sample’s cooldown.36 Hence, it is possible to see the
crossover from Eq.~64! to Eq. ~70! experimentally. In this
connection we mention a relationU5(\/t)An/ni , which
ensures that the change in the tunneling peak width from
g5\/t ~at n@ni) to g5U ~at n!ni) is continuous.

37 Con-
cluding the consideration of regime A, note that in terms of
transport measurements, it corresponds to the Shubnikov–de
Haas effect, which is reflected in the name of this regime.38

Since the data of Ref. 18 appear to agree with Eq.~64!,
corresponding ton@ni , we will assume this inequality to
hold in the following. In this case, regime A can be~some-
what arbitrarily! defined asvct,p.

~B! Spin-unresolved quantum Hall effect regime. When
the magnetic field is increased, we switch from regime~A! to
regime~B!, whereg!\vc yetg@Eex. It corresponds to the
spin-unresolved quantum Hall effect~QHE! in transport
measurements. The LL’s with differentN are now well de-
fined; however, the disorder is still strong enough to cause
the collapse of the spin splitting of the LL spin subbands.40

Hence, the ground state is not spin polarized, and the CDW
at the upper LL does not appear yet.

As in regime~A!, the interaction among electrons can be
treated on the mean-field level, and the main interaction ef-
fect is the screening of the impurity potential. It can be
shown that the screening is performed largely by the elec-
trons occupying the lower completely filled LL’s and the
screened potentialW(r) is changed little from itself in zero
field.40

In regime ~B!, the shape of the tunneling peak is deter-
mined by the convolution of the upper LL DOS of the two
wells. To show this, in Eq.~66! we switch from (kx ,ky) to
(X,n) ~the guiding center coordinate and the LL index! rep-
resentation. The basis states in this representation are given
by Eq. ~14!. At zero temperature the expression for the tun-
neling current becomes

I5
e

\3T
2(
Xns

E
0

eVdE

2p
AXns
L ~E2eV!AXns

R ~E!. ~71!

This equation allows two simplifications. First, at bias volt-
ages ueVu,\vc we have to retain only the terms with
n5N in the sum. Second, it is easy to understand that
AXNs(E) does not depend on eithers or X. Instead of
AXNs(E), it is more convenient to use another quantity,
g(E), which depends only onE:
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g~E!5
1

2p\
AXNs~E!. ~72!

Clearly,g(E) is the DOS at the upper LL. In agreement with
our statement above we find that

I52
pD\vc

e E
0

eV

dEg~E2eV!g~E!, ~73!

i.e., that the tunneling current is determined by the convolu-
tion of the DOS in the two wells. The factor of two in Eq.
~73! accounts for the spin degeneracy. The constantD is the
same as in Eq.~64!.

The characteristic widthg of LL’s has a square-root de-
pendence on the magnetic field,41

g5A\vc

\

2pt
. ~74!

Owing to the convolution, the width of the tunneling peak is
a factor of 2 larger thang. As for the shape of the tunneling
peak, it depends on the relation between the magnetic length
l and the correlation lengthd of the disorder potential.42

There is still one more issue to address when considering
regime~B!. In the experiment, one can see a small depres-
sion inG(V) in the vicinity of zero bias@Fig. 10~b!#. Such a
depression cannot be explained within the model where the
electron-electron interactions are treated on the mean-field
level. We think that the observed depression is a manifesta-
tion of a correlation effect, namely, the Coulomb gap.31 At
present, the theory of the Coulomb gap is developed only for
strongly localized, i.e., almost classical particles. The
quantum-mechanical effects have been studied numerically
within the Hartree-Fock approximation.43 It is not clear
whether or not the ideas of the classical Coulomb gap are at
all applicable to the system we are studying now. If they do,
a naive estimate for the characteristic width of the depression
will be the energy of the Hartree interaction at the distance of
the order of the magnetic lengthl . This energy is larger than
Eh but smaller thanEex. For a better estimate, a deeper
understanding of the Coulomb gap in the QHE regime is
required.

~C! Spin-resolved QHE regime. This regime is realized at
even stronger magnetic fields whereEex becomes larger than
g.40 The electron-electron interactions are now the most im-
portant, while the disorder can be treated as a weak pertur-
bation.

Depending on how large the ration/ni is, the evolution of
the thermodynamical and transport properties of the system
undergoes one or multiple stages as the magnetic field in-
creases. To avoid complexity, let us consider only the case
ni!n!ni /a

3, wherea5E ex/\vc .
The transition from regime~B! to regime~C! is associated

with several dramatic changes.40 First, the LL’s become spin
split and in transport measurements one should see spin-
resolved conductivity peaks. Second, the nature of screening
changes. Now it is performed mainly by the upper LL and it
is stronger than in zero magnetic field. As a result, the am-
plitude of the random potential drops by a factor of the order
of a, andg→ag. Thus, in this regime the disorder is addi-
tionally suppressed. Third, at the upper spin subband the
CDW appears. As a result, the DOS acquires Van Hove sin-

gularities separated by a pseudogap of the order ofEg . As
for the tunneling current, it is related to the DOS by

I5
pD\vc

e E
0

eV

dEg~E2eV!g~E!, ~75!

which differs from Eq.~73! by a factor of 2 due to the fact
that the spin degeneracy is lifted. We show below that at
moderateN, the differential conductanceG(V) exhibits two
sharp maxima separated by a pseudogap whose width we
denote byEtun @Fig. 10~c!#.

Equation~75! shows that the tunneling current is deter-
mined by the DOS. In a disorder-free system the DOS is
given by

g~E!5
2p l 2

LxLy
( d~e i2E!, ~76!

e i being the energy levels in the self-consistent HF potential
e(x,y). We will consider the stripe and ‘‘bubble’’ phases
separately.

A. Stripe phase

In this case the energy levels are given bye i5e( ia), a
defined by Eq.~16!, which in the limitLy→` leads to

g~E!5
2

L H U de

dxU
21

, uEu, 1
2 Eg

0, uEu. 1
2 Eg .

~77!

We will start with the case of a theoretical interest,N@1,
where the DOS is schematically shown in Fig. 2. In the first
approximation,g(E) vanishes atuEu, 1

2Eh and uEu. 1
2Eg ,

and so does the tunneling current at bias voltagesueVu,Eh
andueVu.Eg . More precisely, atueVu,Eh , the current first
precipitously drops towardsV50 by a factor of the order of
N2 and then decreases more slowly until atV50 it vanishes
entirely. Clearly, at largeN the differential conductivity
G(V) at ueVu,Eh andueVu.Eg is very small. Now examine
the intermediate range ofeV.

At eV56 1
2(Eh1Eg) and eV56Eg , G exhibits sharp

maxima associated with the presence of the delta functions in
g(E). Thus,G has four maxima as a function ofV, and the
distance between the furthermost ones is 2Eg .

Now let us see how these results are modified by a weak
disorder. Recall that the impurity potentialW(r) is strongly
screened by the electron gas. In general, it is necessary to
know how such a screening is achieved. For simplicity, we
will discuss only the case of high magnetic fields where
Rc!d. In this case the screening is performed by long-range
fluctuations of the electron density at the upper LL. We can
say that there is a random distribution of the local filling
factor nN , described by the probability densityP(nN).
Clearly, in our modelP(nN) is close to the normal distribu-
tion

P~nN!5
1

A2pdn
expF2

~nN2 n̄N!2

2~dn!2 G . ~78!
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The characteristic spreaddn of such a distribution can be
related toni , in its turn related to the width of the tunneling
peakG5\/t in zero magnetic field:

~dn!25
ni

A8p~nLd!2
5

A2
r s

~e2/kd!~\/t!

~\vc!
2 . ~79!

The DOS is given by

g~E!5E
0

1

dnNP~nN!g0~nN ,E!, ~80!

whereg0(nN ,E) is the DOS in a disorder-free system for the
filling factor nN . The energyE is referenced with respect to
the Fermi level.

It is clear that the disorder causes smearing of all sharp
features in the DOS. Consequently, the main effect of the
disorder is the removal of the singularities ing(E) at the
extremes of the spectrum. In fact, these singularities have a
very small weight@equal to the fraction of the CDW period
wheree(x)5const, see Fig. 4#. As a result of such a smear-
ing, the sharp maxima inG(V) disappear. The remaining
feature has the total spread of 2Eg and it is as follows@Fig.
11~a!#. At ueVu,Eh , G(V)'0; at Eh,ueVu, 1

2(Eh1Eg),
the differential conductivity is positive and approximately
constant. AtueVu' 1

2(Eh1Eg), G(V) drops sharply, crosses
zero, and becomes equal to a negative constant with about
the same absolute value. Finally, atueVu5Eg , G(V) rises
rapidly to reach zero. In the limit of largeN, Eg@Eh , and so
G(V) does not exhibit any sharp maxima. The small
‘‘bumps’’ visible in Fig. 11~a! are the only reminders of the
distinct Van Hove singularities of the clean case. Clearly, in
the dirty case our definition of the tunneling pseudogap be-
comes very unnatural. It is more logical to associate the

pseudogap with the range2Eh,eV,Eh whereG(V) is
small. As for the larger energy scaleEg , it describes the total
width of the tunneling peak.

The described picture applies to the case of largeN. How-
ever, experimentally accessibleN (1<N<4) are not large.
For suchN we calculatedG(V) numerically. As an example,
the results forN53 are shown in Fig. 11~b! where one can
see two sharp maxima inG(V). We found thatEtun can be
satisfactorily fitted to a linear lawEtun'0.4\vc . We recall
that this expression is obtained forn̄N5 1

2. In general,E tun
decreases more or less linearly asn̄N becomes smaller. At
n̄ N&1/N this dependence becomes sublinear. Eventually,
Etun vanishes altogether atn̄N50.

B. ‘‘Bubble’’ phase

In this case to obtain the DOS@Eq. ~76!# one has to find
the self-consistent HF potentiale(x,y) and then solve the
Schrödinger equation with this potential to find the energy
levelse i . As in any periodic system, they will form energy
bands. Certainly, the stripe phase we studied above is also
periodic, and, therefore, its DOS also has a band structure.
However, in the case of the stripe pattern there is only one
~partially occupied! band, so mentioning the band structure
would have been superfluous. On the contrary, for the
‘‘bubble’’ phase there are several bands, and their total num-
ber depends on the number of flux quanta penetrating a unit
cell of the lattice formed by the ‘‘bubbles.’’ When this num-
ber is not a rational fraction, the band structure becomes a
fractal set akin to the celebrated Hofstadter ‘‘butterfly.’’1

However, a small amount of disorder will smear such subtle
details in the DOS, leaving only some robust features. The
latter can be easily analyzed whenN is large and the quasi-
classical approximation is adequate.

Recall that every ‘‘bubble’’ resides in a potential well
created by the HF interaction. Neglect at first the possibility
of tunneling into the neighboring wells, then the spectrum is
discreet and the quantized energiese i are simply the energies
of the constant energy contours in the self-consistent poten-
tial e(x,y), enclosing an integer number of flux quanta. The
difference between the largest and the smalleste i is of the
order of the potential well depth. The tunneling causes the
spreading of such discreet levels into the energy bands.
However, at largeN their widths are exponentially small.
Indeed, these widths have the same order of magnitude as the
overlap of two coherent states separated by the period of the
‘‘bubble’’ lattice, i.e., by the distance of the order 3Rc@ l .
Hence, at largeN the DOS can be approximated by a set of
narrow peaks and our predictions for the tunneling experi-
ments are as follows. In a sufficiently clean sample, the dif-
ferential conductivity exhibits many peaks. The distance in
energy between the furthermost peaks is of the order ofEg
~as in the case of the stripe pattern!. Also, similar to the case
of stripes, there exists a gap of width 2Eh centered at zero
bias. However, unlike in the case of stripes, the current is not
just strongly suppressed atueVu,Eh , but vanishes exactly
because in this case this is a true gap, not a pseudogap. This
concludes our analysis of regime~C!.

Previously, the conclusion about the existence of the tun-
neling gap with the width 2Eh was reached in Refs. 9 and
19. However, their predictions for the overall shape of the

FIG. 11. The differential conductivityG as a function of the
bias voltageV. eV ~horizontal axes! is in units of \vc . ~a!
N@1, ~b! N53. The other parameters used in generating these
graphs arer s51, n̄N5

1
2, anddn50.05. The calculations are made

for the stripe phase.
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DOS are different from ours. Unlike the broad feature with
the overall widthEg@Eh we derive, their results are that the
DOS consists of just two narrow peaks. Thus, the energy
scaleEg does not appear in their DOS.

Recently, Levitov and Shytov20 also argued that the tun-
neling conductance is represented by two narrow peaks. Let
us again useEtun to denote the distance between the peaks in
G(V). In our notations, the result of Levitov and Shytov is

Etun52Eex. ~81!

By Eex in this formula, we mean the exchange gap for the
spin excitations in one well for the double-well system. It
differs from the one given by Eq.~1!, derived for an isolated
well, by arguments of the logarithms.@This originates from
the difference in the screening properties of a single-well and
of the double-well system~see below!.# As for a single-well
system,Eex is linear in field at largeN. Formula~81! was
derived in Ref. 20 under an assumption that the dynamics of
the system can be described by fluctuations of the Fermi
surface. Apparently, in this approach the discreteness of the
LL’s is lost. It is not accidental then thatEtun, as given by
Eq. ~81!, does not depend on the fillingn̄N of the upper LL.
At the same time, it is clear that such dependence does exist.
Indeed, consider then̄N!1/N case where the ground state is
a dilute WC. This system can be treated semiclassically with
the result that the tunneling gap is equal to twice the energy
difference of a vacancy and an interstitial, which is of the
order of the Hartree interaction on the distance between near-
est neighbors. This energy is much smaller thanEex, and,
moreover, vanishes altogether in the limitn̄N→0. More gen-
erally, it can be shown thatEtun never exceeds 2E ex, and
Eq. ~81! holds only in the limitn̄N→10 in one well, while
n̄ N→120 in the other. It does not hold in the case of equal
densities it was proposed for.

Concluding this section, we discuss briefly the proximity
effects, important if the separationb between the two wells
is comparable withaB;100 Å . If we go again through the
derivation of Eq.~75!, keeping in mind that we are examin-
ing regime ~C! now, it is easy to realize that we, in fact,
assumed that any reasonable amount of the disorder would
be sufficient for the self-averaging ofANX in the sample and
that the phases of the CDW in the two wells are uncorrelated.
We also ignored the interaction between the tunneling elec-
tron and the hole it leaves behind.44 Let us examine how
such effects can modify our results.

Ideally, when the two wells are brought close together,
the CDW patterns existing in each well should lock in the
antiphase to reduce the Hartree energy of the system. This
can be understood with the example of the limiting case of
the two wells located next to each other. In this case the
Hartree energy is reduced to zero because the charge oscil-
lations in one well are compensated by the charge oscilla-
tions in the other, and the total charge no longer oscillates.
This effective suppression of the Hartree potential would
lead to an increase in the optimal CDW period. Correspond-
ingly, in the expression~46! for Eg one has to use larger
L; i.e., Eg tends to increase. However, the phase locking
energy, or the difference in energy for the antiphase and
in-phase arrangements turns out to be small for the param-
eters of Ref. 18. We expect that this phase locking effect is

totally washed out at experimentally accessible temperatures
and amounts of disorder. Therefore, it is more reasonable to
assume that the CDW in the two wells are uncorrelated as we
did above.

A more important effect is the enhancement of the dielec-
tric constant. It can be shown that for the double-well system
the single-well dielectric constant«(q) @Eq. ~22!# gets re-
placed by a larger value of

«~q!→«~q!
e2qb2@12«~q!21#2

e2qb2@12«~q!21#
. ~82!

For example, atb50 the dielectric constant roughly doubles.
The stronger screening leads to decrease inEtun.

Finally, there is also a so-called excitonic shift, which
accounts for the interaction between the negatively charged
tunneling electron and the positively charged hole it leaves
behind. The excitonic shift reducesEtun as well. For ex-
ample, in the limiting caseb50, Etun vanishes altogether. In
practice, however, one has the inequalityaB!b!Rc , and
the aforementioned effects cause a small correction toEtun.
Our estimate of such a correction is as follows:

Etun~b!5Etun~`!2\vcF ln~2NrsAaB /b!

N
1

pr s

12A2
aB
2

b2G .
~83!

VI. CONCLUSION

In this paper we showed that, in the framework of the
Hartree-Fock approximation, the ground state of the 2D elec-
tron gas in a weak magnetic field is a CDW at the upper
partially filled LL. Both the cohesive energy per electron at
the upper LL and the characteristic width of the LL’s have
the scale of the exchange-enhanced spin splitting of the up-
per LL. This energy is smaller than\vc for r s&1, and thus,
the LLs are not destroyed by the electron-electron interac-
tion.

As the magnetic field decreases, the fraction of electrons,
participating in the CDW, goes to zero, so that at zero mag-
netic field the density is uniform.

The existence of the CDW leads to the pseudogap in the
one-particle DOS centered at the Fermi energy. The calcu-
lated width of the pseudogap seems to be in a good agree-
ment with the width of the pseudogap observed in the tun-
neling conductance of the double-well system.18

The CDW at the upper LL strongly affects the low-
temperature transport properties of the 2D gas. Due to the
pinning of the CDW by disorder, the dissipative conductivity
sxx has narrow peaks at half-integer fillings even in high-
mobility heterostructures. At higher temperatures the depin-
ning of the CDW becomes possible. The effect of this phe-
nomenon on the transport properties remains to be studied.
At the moment, we can only estimate the temperatureTc at
which the CDW melts into a perfectly uniform electron liq-
uid. In the spirit of Ref. 2, this estimate is

kBTc5 n̄N~12 n̄N!ũex~q0!. ~84!

At r s;1, we can use the asymptotical formula~33! to get
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kBTcS n̄N5
1

2D'0.02\vc10.06Eh . ~85!

Above Tc , the pinning effects disappear completely; the
peaks insxx become wide; the plateaus insxy become nar-
row. At N55, Eq. ~85! gives Tc'0.03\vc in reasonable
agreement with experimental data.22,45
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APPENDIX A: DERIVATION OF EQ. „43…

Using Eqs.~22!, ~29!, ~30!, and~40!, we find

uex~x!5
\vc

Ly
E
0

` dyF2~r / l 2!

11r /j2J0
2~rkF!

, ~A1!

r[Ax21y2. ~A2!

We will use the following asymptotic formula forF(q),
which can be derived by the saddle-point integration in Eq.
~25!, using the WKB approximation for the wave functions
~14! in the integrand:

F~q!.A 2

pqsRc
cosFqsRc2

1kFRcarcsinS q

2kF
D2

p

4 G ,
~A3!

where

s[A12~q/2kF!2. ~A4!

This formula is valid forqRc ,(2kF2q)Rc@N2/3. Note that
it agrees with Eq.~31! but has a broader region of validity
towards largeq.

By means of this formula, Eq.~86! can be transformed
into

uex~x!.
a\vc

p2Rc
E
0

A4Rc
2
2x2 dy

rA4Rc
22r 2~11r /j!

1ad~x!Eh ,

~A5!

which can be rewritten as

uex
eff~x!.ad~x!Eh1

a\vc

p2 E
0

A4Rc
2
2x2 dy

A4Rc
22x22y2

3S 1

Ax21y2
2

1

j1Ax21y2
D . ~A6!

On the other hand, the Hartree part foraB,uxu,cRc , c
being a number of order unity, can be approximated by

uH
eff~x!5

2

Ly
E
0

A4Rc
2
2x2

dy
e2aB

prkA4Rc
22x22y2

1const;

~A7!

see Eq.~B12! below. Combining the last two equations, we
obtain Eq.~43!.

APPENDIX B: WIGNER CRYSTAL REVISITED

In this appendix we calculate the cohesive energyEcoh
WC of

the HF WC state and then compare it with the cohesive en-
ergyE coh

CDW of the CDW state. As explained in Sec. III, our
CDW state differs from the WC at 1/(Nrs

2)& n̄N< 1
2. We will

show that in this entire rangeEcoh
CDW,Ecoh

WC; i.e., the CDW
state is indeed more energetically favorable. The qualitative
arguments in favor of this statement were given in Sec. II.

Earlier, the cohesive energyEcoh
WC of the WC has been

calculated in Ref. 9. Forn̄N,1/N our results agree with Ref.
9. At larger n̄N , they differ.

To calculateEcoh
WC we have to find the set ofD(q) corre-

sponding to the WC state, and then substitute them into the
general formula~34!. Using Eq.~57!, the additivity of order
parameter~see Sec. IV!, and the Poisson summation formula,
it is easy to obtain that nonzeroD(q) correspond to the
wavevectors of the reciprocal lattice of the WC

qi , j5Q0S i1 1

2
j ,

A3
2
j D , Q05A4pn̄N

A3
1

l
, ~B1!

for which q they are given by

D~q!5 n̄NexpS 2
1

4
q2l 2D , ~B2!

derived earlier in Ref. 3 for the WC at the lowest LL. Hence,
for the cohesive energy of the WC we obtain

Ecoh
WC5

n̄NnL
2 (

u i u1u j u.0
ũHF~qi , j !expS 2

1

2
qi , j
2 l 2D . ~B3!

1. n̄N51/2

At n̄N51/2 the contribution of the six shortest reciprocal
lattice vectors (i , j )P$(61,0),(0,61),(1,21),(21,1)%
constitutes more than 97% of the sum~B3!. Therefore, with
a good accuracy one can write

Ecoh
WC5

3

2
nLũHF~Q0!e

2p/A3, ~B4!

Q05A2p

A3
1

l
. ~B5!

Analyzing this expression, we discover a remarkable fact
thatEcoh

WC can be positive. In other words, the WC loses com-
petition even to the uniform electron liquid. Indeed, consider
the limit N@r s

22@1. It follows from Eqs.~32! and~33! that
at q;Q0; l21 the HF potential is dominated by the~non-
negative! Hartree potentialũH(q) exhibiting oscillations in
q. Roughly, the oscillating part ofũH(q) is proportional to
sin(2qRc). Since differentN correspond to different values of
sin(2Q0Rc), Ecoh

WC oscillates as well. For example, if
sin(2Q0Rc)521, or, more precisely, ifQ0 is one of the zeros
of form factorF(q), the Hartree termũH(Q0) is also zero. In
this caseEcoh

WC has a minimum and its value is negative. On
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the other hand, ifQ0 coincides with a maximum ofF(q),
then the HF potential and, consequently,Ecoh

WC are both posi-
tive.

The quantity sin(2Q0Rc) is a pseudorandom function of
N. Its average value within an intervalNP(r s

22,Nmax) tends
to zero asNmax→`. Hence, roughly at every otherN the
cohesive energyEcoh

WC is positive and the WC~at least, with
the triangular lattice! at n̄N5 1

2 is absolutely unstable.
Nevertheless, there existN at whichEcoh

WC is negative, and
the lower bound forEcoh

WC can be found assuming thatQ0

coincides with a zero of the Hartree potential. In this case
ũHF(Q0)52ũex(Q0). Using Eqs.~33! and~B4!, one obtains

min$Ecoh
WC%'20.01

\vc

AN
2
Eh

4
. ~B6!

This result should be compared with the energy of the CDW
state given by Eq.~4!. The last term in the two formulas are
identical. In fact, it is common for any low-energy state at
theNth LL at n̄N*1/N ~see Sec. II!. Therefore, we have to
compare only the remaining terms. These other terms are
negative in bothE coh

WC andEcoh
CDW. In the limitN@r s

22 we are
considering now, the absolute value of the term for the CDW
state is much larger than of that for the WC state. Hence, the
CDW state is more energetically favorable. In addition to the
analytical arguments, we also comparedEcoh

WC andEcoh
CDW nu-

merically. We found thatEcoh
CDW is always smaller thanEcoh

WC

in the parameter range of interest: 1<N<10 and
0.14,r s,1.2. However, at such rather moderateN, the dif-
ference between the two is not too large~of the order of
5%).

2. n̄N!1/2

In this subsection we will consider only the limit
N@r s

22@1. In principle, we can continue using the general
formula ~95!. However, to give our analysis a new angle, we
choose to use formula~59!, which, in the case of the WC, is
nothing more than the standard lattice sum:9,14

Ecoh
WC5

1

2 (
RiÞ0

g HF~Ri !2
n̄NnL
2 E d2rgHF~r!. ~B7!

The conventional estimate of such a lattice sum is

Ecoh
WC;2

n̄NnL
2 E

WS
d2rgHF~r!;2

1

2
gHF~a0!, ~B8!

where the integration is performed over the area of the
Wigner-Seitz cell. This is how the results of Ref. 9 have been
obtained. As long as the interaction potentialgHF(r ) is suf-
ficiently smooth atr>a0 , a0 being the lattice constant, this
procedure is correct. It can be shown, however, that at large
N the potentialgHF(r ) is given by@compare with Eq.~53!#

gHF~r !;
e2aB

pkrA4Rc
22r 2

1Eh , r*j, 2Rc2r* l ,

~B9!

i.e., it has a sharp maximum atr52Rc corresponding to the
separation at which the cyclotron orbits of the two states start

intersecting. It is due to this sharp maximum the Fourier
transform of the HF potential oscillates with the period
1/(2Rc).

Let us derive Eq.~B9!. First of all, note thatg̃HF(q) de-
viates fromũHF(q) only atq* l21 @Eq. ~60!#; hence, in real
space these two potentials essentially coincide atr* l . Sec-
ondly, the exchange potentialu ex(r ) decays rapidly at dis-
tancesr larger thanj5A2r sRc ~see Sec. III! and soon be-
comes much smaller than the Hartree potential; therefore,

gHF~r !;uH~r !, r*j. ~B10!

According to Eqs.~29!,

uH~r !5E d2q

~2p!2
eiq•rṽ~q!F2~q!. ~B11!

At q yielding the dominant contribution to this integral,
ṽ (q) can be replaced bype2aB1(2p)2Ehd(q) @cf. Eq.
~17!#. Using also Eq.~31! for F(q), we arrive at

uH~r !'pe2aBE d2q

~2p!2
eiq•rJ0

2~qRc!1Eh

5
e2aB

pkrA4Rc
22r 2

1Eh , ~B12!

which together with Eq.~B10! leads to Eq.~B9!.
Note thatuH(r ) satisfies the relation

uH~r !5nLũex~r / l
2!, ~B13!

which follows from Eq.~30!. One may wonder whyuex(q)
as given by Eq.~33! does not show the inverse square-root
singularity present inuH(r ) according to Eq.~B12!. It is easy
to see, though, that the singularity inuex(q) is located at
q52kF , which is beyond the limited range ofq, for which
Eq. ~33! is written. Using the relation\vc5e2aB /k l

2, one
can verify that Eq.~B12! does agree with Eq.~33! in the
indicated range ofq.

Let us now return to the calculation of the cohesive en-
ergy of the WC. Depending on the lattice constanta0 , one
can distinguish two possibilities:a0@2Rc ( n̄N!1/N) and
a0!2Rc (1/N! n̄N! 1

2!. In the former case the singular part
of gHF(r ) has no effect andEcoh

WC can be estimated with the
help of Eq.~B8!. In the latter case this standard procedure
fails. This case requires a more accurate treatment of the
lattice sitesRi in Eq. ~B7! enclosed by the circle of radius
2Rc . This can be done as follows.

We divide the entire area of the circle into narrow con-
centric rings of widthdr and then sum the contributions to
Ecoh
WC from all rings. Denote byM (r ) the number of lattice

sites in the ring with inner radiusr and outer radiusr1dr .
Generally,M (r ) is a pseudorandom function ofr with the
average value ofM̄ (r )52prdr n̄NnL . Clearly, the contribu-
tion of the ring under consideration toEcoh

WC is
1
2gHF(r )@M (r )2M̄ (r )#. The largest contribution comes
from rings with r;2Rc wheregHF(r ) has the maximum. In
order for our procedure to make sense the rings must contain
at least one lattice site on average. On the other hand, the
accuracy of the estimate is higher if the rings are as narrow
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as possible. Hence, the width of the ringsdr has to be de-
termined from the conditionM̄ (2Rc);1, which yields

dr;a0
2/~4pRc!. ~B14!

SinceM (r ) is pseudorandom, and the total number of
rings;Rc /dr is finite, Ecoh

WC is also a pseudorandom quan-
tity. In other words, for any givenn̄N , the cohesive energy
E coh
WC experiences fluctuations as a function of the ratio

Rc /a0 , i.e., as a function ofN. This is exactly the conclu-
sion we came to in the preceding subsection by using differ-
ent arguments. In can be verified that the root-mean-square
~rms! value ofEcoh

WC fluctuations is much larger than its aver-
age value given by Eq.~B8!; therefore, minE coh

WC can be esti-
mated as rms value ofEcoh

WC taken with the negative sign. To
proceed we need to know the statistical properties of the
pseudorandom quantitydM (r )[M (r )2M̄ (r ). This is an
interesting mathematical problem in itself. A related prob-
lem, namely, the fluctuations in the number of the square
lattice sites contained in a circle as a function of its radius,
was studied by many mathematicians starting in the last
century.46 The complete solution has not yet been obtained.
However, extensive numerical data indicate that, provided
dr,a0 , ~i! the rms value ofdM (r ) is of orderM̄ (r ) and~ii !
the fluctuations indM (r ) anddM (r1Dr ) can be considered
to be statistically independent ifDr,a0 . In other words, the
distribution of the lattice sites within any ring of widtha0
resembles the completely random Poisson distribution. How-
ever, the fluctuations in any two such rings are correlated.
Clearly, the ring 2Rc2a0,r,2Rc gives the dominating
contribution to the fluctuations inEcoh

WC because in this ring
gHF(r ) reaches its maximum. This leads to the estimate

~minEcoh
WC!2; (

j50

a0 /dr

gHF
2 ~r !M̄ ~2Rc2 jdr !

;
M̄ ~2Rc!

dr E
dr

a0
drgHF

2 ~2Rc2r !. ~B15!

Evaluating this integral with the help of Eq.~B9!, we get

minEcoh
WC;2\vcS n̄N

N D 1/2ln1/2F a0
max~dr ,l !G . ~B16!

Recall that we are considering the case 1/N! n̄N! 1
2. As one

can see, at the upper limit it agrees~up to a numerical factor!
with the result obtained earlier forn̄N5 1

2 @Eq. ~B6!#.
Finally, the results for differentn̄N may be summarized in

the following way:

uEcoh
WCu

\vc
&

{
r sAn̄NN, n̄N!

1

N3r s
2

ln~ n̄NN
3r s

2!

N
,

1

N3r s
2 ! n̄N!

1

N

S n̄N
N D 1/2ln1/2~ n̄NN!,

1

N
! n̄N!

1

AN

S n̄N
N D 1/2ln1/2S 1

n̄N
D , 1

AN
! n̄N!

1

2
.

~B17!

At this point we can compare the energies of the WC and
the CDW @Eqs. ~50! and ~B17!, respectively# at
1/(Nrs

2)! n̄N! 1
2 where Eq. ~50! holds. We see that the

CDW state wins over the WC in this entire interval.
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