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Ground state of a two-dimensional electron liquid in a weak magnetic field
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We consider a clean two-dimensional electron liquid in a weak magnetic field etk lower Landau
levels are completely filled, while the upper level is only partially filled. Due to a screening by the lower
Landau levels, the repulsive interaction between any two electrons at the upper level as a function of the
separation between the guiding centers of their cyclotron orbits abruptly drops at the distance of two cyclotron
radii. Such a “box-like” component in the interaction potential makes the uniform distribution of the electron
density at the upper Landau level unstable, and domains with filling factor equal to one and zero are formed.
The shape of domains is studied both analytically and numerically. We show that when the filling factor of the
upper Landau level is close to one-half, the domains have the form of parallel stripes alternating with a spatial
period close to three cyclotron radii. Away from a small interval around half-filling, a “bubble” phase is more
favorable. We investigate the implications of the proposed ground state for the one-particle density of states,
which can be probed by tunneling experiments. For the stripe phase, the density of states is shown to have a
pseudogap linearly dependent on the magnetic field in the limit of INrgeS0163-18296)00227-3

I. INTRODUCTION In this paper we consider the case of weak magnetic fields
or high LL numbersN. A short version of this wofkwas
Since the discovery of the integer and fractional quantunpublished before.
Hall effects! the description of the ground state of an inter-  There is growing evidence from analytical and numerical
acting two-dimensional2D) electron gas in a magnetic field calculations that both the fractional states and skyrmions are
became one of the central problems of condensed matteestricted to the two lowest LL'sN=0,1) only (see Refs.
physics. The main difficulty of this problem is related to the 7—9). This point of view is also consistent with experiment
fact that the electron gas in the magnetic field is highly debecause none of those structures has yet been observed at
generate and, therefore, the Coulomb interaction cannot bid>1 to our knowledge. Denote by, the filing of the
considered as a small perturbation. upper LL, vy=v—2N. We will assume thati) at vy<1 the
In a pioneering work made even before the discovery olupper LL is completely spin polarized arfd) the HF ap-
the quantum Hall effect, Fukuyama, Platzman, andproximation gives an adequate description of the system.
AndersoRl found that in a quantum limit where only one  Our theory strongly relies on the existence of Landau lev-
Landau level(LL) is partially occupied, a uniform uncorre- els. In other words, we assume that even in weak magnetic
lated spin-polarized electron liquid is unstable against thdields, where the cyclotron gapw, is small, the electron-
formation of a charge density wavEDW). Later, Yoshioka electron interactions do not destroy the Landau quantization.
and Fukuyama and also Yoshioka and {elimed that the  Certainly, this is far from being evident. On the mean-field
optimal period of the CDW coincides with that of the clas- level, the following argument can be givegfor a discussion
sical Wigner crysta[WC). In both works, the Hartree-Fock of quantum fluctuations, see the paper by Aleiner and
(HF) approximation has been used. The difference of theSlazmar®) The LL’s survive if the absolute value of the
proposed HF WC state from a classical WC of pointlikeinteraction energy per particle at the upper LL is much
particles is that the electrons are smeared over a distance sfnaller tharf w. . The largest value of the interaction energy
the order of the magnetic lengtk: 1/ mw, around the sites is attained atvy=1 where the electron density at the upper
of the WC lattice. The WC ground state, however, failed toLL is the largest. It is equal to- 1E,,, where E,, is the
explain the fractional quantum Hall effect occurring whenexchange-enhanced gap for the spin-flip excitafidrat
the filling factor v=k2I? is a simple rational fractiothere ~ »y=1 (it determines, e.g., the activation energy at the
ke is the Fermi wave vector of the 2D gas in zero magnetigninima between spin-resolved resistivity peakéhe magni-
field). tude of this gap is given ﬁy
The explanation was made possible when Laudtsirg-
gested a non-HF trial state of uniform density for 31,1,

which turned out to be a few percent lower in energy. Thus, Eex:rsﬁw%n(& +E,,  re<i, (1
although the HF approximation gives a rather accurate esti- N I's

mate of the energy, it fails to describe important electron-

electron correlations at a partially filled lowest LL. whereE,, is the “hydrodynamic” term®

In the works discussed above, the ground state has been
always assumed to be spin polarized. Recently, this require-
ment also has been reconsidered. It was found that a partially E—tw In(Nry) @
filled lowest LL may contain skyrmions. h C2N+1"
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The parameterg entering these formulas is defined by

[ X ]

re=v2/keag, ag=%h2x/mé being the effective Bohr ra- a) 0:0:0:::0 -:::::::o b)
dius. Therefore, in the considered limif<1 the LL’s are eee b
indeed preserved. In practieg~1 but even at suchg the
ratio a=E.,/fiw, is still rather small. Experimentally, this XXX 0 R < < < ¥
ratio can be estimated to be near 0.25 a&tN<4.? oo e o

Let us now turn to the main subject of the paper, a par-
tially filled upper LL. Due to the electron-hole symmetry S, ey
within one spin subband, it suffices to consider only sose oo XXX

We want to find the ground state of a partially filled LL.
As we just saw, the cyclotron motion is quantized. Thus, the
remaining degrees of freedom are associated with the guiqﬁe
ing centers of the cyclotron orbits. In the ground state these
centers must arrange themselves in such a way that the in- | o o )
teraction energy is the lowest. This prompts a quasiclassical 't 1S, perhaps, surprising that the repulsive interaction
analogy between the partially filled LL and a gas of “rings” leads to'the formation of compacted _clusters. In Sec. Il we
with repulsive interaction, the radius of each ring being equaﬁtgdy_ this phenomenon in more detail and derive a general
to the cyclotron radiusR.= y2N+ 1. Strictly speaking, the criterion for the interaction potentlf'al to have this property.
guiding center cannot be localized a single point, and so our. To understanq .why the clusterlzam?n oceurs m_th_e con-
analogy is not precise. However, there exists a singleSidered system, itis important to keep in mind the distinction
electron stat¥ (so-called coherent staten which the guid- pe}ween the local density of the guiding .cent(are., _the
ing center has a very small scattef orderl) around a given filling fac?or) and_ the local charge denslt)_/. Despite the
point. (For a more detailed description of such a state, Seéormer being very inhomogeneous, the variations of the latter
Sec. IV) At large N where|<R,, the proposed analogy are rather smal(of the order of 20%). In other words, our

becomes rather accurate. Since the rings repel each other,CfPW state Is not a gonventlonal pharge F’?”S'ty but rather a
is natural to guess that they form the WC. A trial wave 9Uiding center density wave. This surprising property is a

function for this state was written by Aleiner and Glazfhan result of the ringlike shape of the electronic wave functions.
by generalizing the Maki-Zotol =0 wave functiod’ to ar- Reca!l now that the energy of the system can be presented as
bitrary N: the difference of the Hartree and the exchange terms. The

inhomogeneity makes both of them increase relative to their
uniform state values. However, the Hartree energy is sensi-

|wy=1] ch 0N, (3)  tive only to the charge density variations and, therefore, it
! ' does not increase too much. On the other hand, for the ex-
change energy the variations in the filling factor are impor-
tant, and it increases considerably, making the CDW state

FIG. 1. (a) “Bubbles.” (b) “Stripes.” The black dots represent
guiding centers of cyclotron orbits.

where |0y) stands forN completely filled LL’s, ¢}, is the
creation operator for a coherent stéﬁa@ R arezthe lattice more favorable

s_|te-s of the_classmal WC, with densnyN/(qu! ). When For not too smallvy, the cohesive energy of our state is
vy is small,»y<1/N, the rings centered at neighboring lat- o the order of the exchange gé&,. For example, the co-
tice sites do not overlap and the concept of the WC is peryeasive energy aby~ 5 andro~1 is given by

fectly justified. However, at largery they overlap strongly.
In this work we show that aiy>1/N the ground state is

completely different. Generally speaking, the structure of the re 0.3\ Ey
d S N CDW__ A |
ground state depends ag. In this section we discuss the Econ ~— 827 wcln| 1+ T4
results only for the practically important casg>>0.06. We
found that in the range N<vy<vy where is some- E
g UN=IN UN ~— 0.0t w,— —. 4)

what smaller thar, the electrons form a “super” WCFig.
1(a)] of large domaing“bubbles”) containing about three

vyN electrons each and separated by the Qistancet_hat slowishe |ast line in this equation corresponds to the aasel,
changes from B. near the lower end of this range of ©0  \yhere the logarithmic factor can be expanded.
approximately 3.B. near the upper end. At largery, By the term cohesive energy we mean the difference in
v <wvy<3, the “bubbles” merge into parallel stripd§ig.  the energies per particle at the upper LL in the given state
1(b)] with the spatial period of approximately R7. The and in the uniform uncorrelated electron liquibpropriate
transition pointvy, depends oM. In the limit of largeN, it at very high temperatuye
approaches the value of 0.4. One can argue also that our CDW state turns out to be the
Domain patterns shown in Fig. 1 are well known in manymost energetically favorable because it possesses the optimal
other physical and chemical systefisexamples of the correlations on the largest length scale in the problBm,
former being type | superconducting films in their interme-The correlations on the length scélebuilt into the structure
diate state and magnetic films. We will refer to the pattern®of, say, the WC, are much less effective. We believe that for
in Figs. 1@ and 1b) as the “bubble” and “stripe” phases, the same reason at larffethe Laughlin liquids cannot com-
respectively. pete with the CDW state either.
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ture of the compressible liquidFig. 1) makes such a pinning
8(E) possible even though the disorder is long ranged. When the
compressible liquid is pinned, it cannot move as a whole. As
a result,o,, vanishes at alby# 3. Precisely ay= 3, how-
ever, another mechanism of the transport becomes

— | /1 operationaf* It is related to the propagation of quasiparticles
Eg E, Ey, Eg along the boundaries of the domains with=1 and 0,
- 3 - 3 3 3 sometimes referred to as “bulk edge states.” The dc trans-

port is possible only when the bulk edge states percolate
through the sample. This is realized only:qt=3, because

FIG. 2. The DOS for the stripe CDW in the limit of larg¢  the long-range order of the stripe phase is destroyed by dis-
(schematically. order. This explains narrow peaks @f, at zero temperature

at half-integerv’s.

One of the important properties of the proposed ground At nonzero temperature the peaks have a finite width due
state is a pseudogap in its one-particle density of stateg) a hopping between spatially closg=1 domains. How-
(DOS). We call it a pseudogap because although the DO%ver, the consideration of such a hopping goes beyond the
does not actually vanish, it appears small between two shagcope of the present paper.
peaks at the extremes of the spectrisee Fig. 2 Such The outline of the paper is as follows. In Sec. Il we
peaks are the particular form of the Van Hove singularitiespresent a qualitative discussion where we show that even a
The distance between the pedktse width of the pseudogap perfectly repulsive interaction may cause the clusterization
for vy~3 is equal to of particles. In Sec. Ill we formulate the self-consistent HF

problem and give its approximate solution under two kinds
rshoe of simplifying assumptiongone corresponds to “stripes”
By~ o +En=0.07%wc+En, (5 and the other to “bubbles): In Sec. IV we report the results
of a numerical study of CDW patterns based on the trial
which is very close tdE . wave function(3). In Sec. V we discuss the implications of

Besides the peaks, the DOS has an additional structuréle CDW state for the double-well tunneling experiments.
such as a shallow gap of widtf, centered at the Fermi Finally, Sec. Vlis devoted to conclusions. Various details of
energy. The existence of such a gap was predicted in Refs. @lculations, e.g., a careful comparison of the energies of the
and 19. CDW and the conventional WC, may be found in the Ap-

Figure 2 depicts the asymptotical form of the DOS at trulyPendixes.
large N. At moderateN, the DOS appears merely as two
distinct peaks. The reason for this is that the difference be- Il. QUALITATIVE DISCUSSION

tweenEgy and E, is not too large yet, while the Van Hove o | b q db vzina the followi
singularities are not extremely sharp. As a result, the inter- ©OUr results can be understood by analyzing the following

vals %Eh<|E|<:_2LEg of constangg(E) (see Fig. 2are totally toy m_odel._ Consider a one-dimensior(aD) lattice gas in-
absorbed by the Van Hove peaks. teracting via the boxlike potential

The proposed ground state enables us to explain two in- .
teresting experimental findings. One is a pseudogap in the u(x)=Uo®(2R—|x|) 6)
tunneling DOS first observed in the experiments with singleangd situated on the background of the same average density,
quantum weft® systems and, recently, with double quantuminteraction with which is described by the potential of the
well SyStemsl.7’18 It was found that the differential conduc- same type but W|th the opposite Sign_ One can Say that each
t|V|ty as a function Of the biaS V0|tage exhibits two maXima. partic'e has a negative unit Charge Wh||e the background is
The distancé,,, between the maxima appears to be linear incharged positively. We assume tiats much larger than the
magnetic field® We show that the dependence Bf,, 0N |attice constana. We also assume that a multiple occupancy
the magnetic field is more complicated. However, in the exf the sites is forbidden; then the average occupancy or the
perimental I’angé\ls4, it can be SatiSfaCtOl‘ily fitted to the average f||||ng factogis a|WayS between 1 and 0. Let us

linear law E y,,~0.4h @, which compares favorably with focus on the case= 1.

the experimental value of 0.4%.*° _ One of the possible particle distributions is the WC, i.e.,
Another important application of the proposed picturethe state where every other lattice site is occupied. It can be

concerns the conductivity peak width of the integer quantumshown that the absolute value of its cohesive energy does not

Hall effect in high-mobility structures. It is usually assumed exceedu,, the maximum value of the two-particle interac-

that the disorder in such systems is long ranged. In this casgyn potential. Now we demonstrate thatat1/2 the ar-

the semiclassical electrostatic model of Effogredicts that rangement of the particles in a series of equidistant large

the electron liquid is compressible in a large fraction of thec|ysters of width~ R allows the system to attain the cohesive
sample area. If compressible liquid is considered to be meanergy as small as

tallic, then the conductivity peaks are necessarily Vide,

which is |r_1d_eed the case at relatively high temperattfres. Ecoh:—(3—2\/§)(R/a)Uo- 7)
However, it is well known that at low temperatures the peaks

are narrow, which may be interpreted as the pinning of thd=or the obvious reason we call this state the CDW state.
compressible liquid by the disord&tThe crystalline struc- Since the spatial period ~R of this state is much larger

0.3
14—
rS

In
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It is easy to see that far(x) given by Eq.(8) and A in the

@ ) range SR<A <4R, €(x) has an approximately sawtooth
[ | | | | form [Fig. 3(b)] and oscillates between ;E,, where
-ZRC O ZRC X 3 4R_A
(b) <) -y -
A / A X The cohesive energy can be readily evaluated to be
2 2 EcolA)=—E4(A—2R)/2A, which reaches its lowest
o(E) value(7) at A=22R.
© Let us now calculate the DO&E), which we define by
1
E 7 o(€)= 1| axster0-©), 12
2 2 x

wherel, is the length of the system. The integration yields
FIG. 3. The CDW in the lattice gaga) Local filling factor

v(X). (b) One-particle energy(x). (c) DOS in the lattice gas. de

. . . L . g(E)=E dx
than the average interparticle distance, it is convenient to
switch from the description in terms of discrete particles to 0, |E|>3Eq,
the continual representation where one uses the local fillin
factor v(x). We consider the CDW with the boxlike profile
of v(x):

-1

(13

%vhere the coordinatg appearing on the upper line of Eq.

(13) is any of those where(x)=E. Clearly,g(E) is con-

stant in the interval- 3E,<E< 3E, but diverges at the end

points of this interva[Fig. 3(c)]. These divergencies are the

®) particular form of the Van Hove singularities inherent to the
DOS of all periodic structures.

Let us now return from the toy model to the real electrons
see Fig. 8a). The lowest value of the energy quoted above isat the upper partially filled LL. Consider again the case
reached atA =2\2R~2.8R. Indeed, this period is much vy=31. As discussed in Sec. |, at suek the stripe CDW
larger than the average interparticle distanee i2e., instead pattern forms. In this case the problem is effectively 1D be-
of being equidistant as in the WC, the particles are com¢ause the one-electron basis states can be chosen in such a
pacted in large clusters of the highest possible derssity way that they are labeled by one quantum numnibes guid-

The clusterization is advantageous because in contrast ting center coordinajeX. In the Landau gaugé&= —Bxy,
e.g., the usual Coulomb law, here the interaction potentialhe wave function of one of such states is given by
ceases to increase at distances smaller ttanTherefore,
particles can be brought closer to each other at no energy ’ gyxi? F{ (x—X)?
cost. At the same time the particles in the interior of a given X~ N ——¢X )
cluster avoid the particles in the other clusters. Hence, they 2N ILy 2l
interact only with the charga/2a of their own cluster. Now whereL, is they dimension of the system aridly(x) is the
recall that each particle interacts with the background agjermite polynomiaP® The wave functior(14) is extended in
well. The amount of the background charge involved in thisihe y direction but has a finite spread oR2in the x direc-
interaction is (R/a)>(A/2a). Therefore, the interaction o, Strictly speaking, the HF potential=(x) via which the
with the positive background dominates and each cluster reyagis states interact, is different from the one given by Eq.
sides in a deep potential well. The cohesive energy of theg) However, as will be shown in the next section, for

system is determined simply by the average depth of thi$ 1 this potential is roughly equivalent to
well. Let us now calculate the cohesive energy and then

minimize it with respect toA. This way we will find the , e
optimal period of the state. Ubr(X) =85 25~ O(2R.— |x|) —aByd(x), (19
Define the one-particle energyx) at a pointx by ¢

_olA A A
v(X)= Z_|X|’ _§<X<§’

X—X
I

N ’ (14)

272

dx’ , S a=——
e<x>=j7u<x—x v(x) =71, © y

Such a formula fouﬁfL(x) results from the particular form of

then the cohesive energy is determined by the average valilee bare interaction potential(r) (the interaction potential
of e(x) v(X): of two pointlike chargesin the 2DEG in a weak magnetic
field, which is as follows. At very short<ag and very large
r>R§/aB distancesy(r) coincides with the usual Coulomb
Ecoh:i—<f(x)y(x)>- (10 law v(r)=e%«r. At intermediate distances, it is signifi-
2v cantly smaller than the Coulomb potential because of a

(16)
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e(x) Note that in the real system, unlike in the toy model, the
m E, Van Hove singularities at the edges of the spectrum are not
S-function-like but the inverse square-root ones. Indeed, the
\/ A \Jr/ A ‘i/ * DOS is inversely proportional tde/dx; hence, the type of
2 2 singularity at, sayE= — %Eg is determined by how this de-
rivative goes to zero at— 0. The real interaction potential is
FIG. 4. One-particle energy(x) for the CDW in the real sys- never an ideally flat-top box, and in reality the extrema in
tem (schematically. €(x) in Fig. 2 are, in fact, somewhat rounded. We expect that
the second derivative?e/dx? is finite atx=0, which corre-
strong screening by the large number of electrons at thgponds to the inverse square-root singularity(i).

lower LL’s. Very crudely,v(r) can be approximated by Our toy model enabled us to derive our main resjHigs.
(4,5)] for the most practical case of~1. At smallerr the
v(r)=me’agd(r)+Ep, rs2R, (17)  potential is no longer boxlike and we have to examine the
) ) problem more carefully, which will be done in the next sec-
whereE,=(e%ag/kR2)IN(R./\2ag) [cf. Eq. (2)]. tion. Before we do so, it is important to identify a general

Clearly, the first term irv(r) gives a nonvanishing con- criterion, which enables one to tell whether or not a given
tribution to the interaction potential,x(x) between two ba-  type of the repulsive interaction would lead to a similar clus-
sis states only if the densities of the two states overlap, i.eterization of particles. This criterion can be obtained by ana-
at [x|<2R.. Beyond R, this contribution becomes very |yzing the Fourier transform of the potential and it is well
small. This is represented by the first term in Etp), which  known in the theory of the CDW systems.
exhibits a steplike discontinuity ax|=2R.. For simplicity, let us return to the 1D case. The cohesive

The second term iuﬁf,f:(x) comes from the secondhy- energy can be written as
drodynamic™) term in the bare interaction potential. It is
important that this second term ir(r) is almost constant in
real space up to rather large distangefsthe order of several Econ
R.). It is then clear on physical grounds that this long-range
“hydrodynamic” term in v(r) [or its imageaE,5(X) in whereL, is the length of the systeniErom now on, where
uﬁfé] has no effect on the short length scale structure of theising the same symbol for both real-space gfspace quan-
ground state. In other words, as long as the characteristigties may lead to an ambiguity, the Fourier transformed
spatial scales of a given state are of the orderRefor  quantities are denoted by tildg©bviously, if i(q) is nega-
shorter, the contribution of the “hydrodynamic” term to the tive at a certairg, then the formation of a CDW with such
cohesive energy of such a state is the same. It can be showwill lead to the lowering of the system energy. Therefore,

> U7 2(q), (19

2L, va*i#o

that this contribution is equal to the criterion for the CDW instability is the presencenefga-
_ tive valuesof T(q). The Fourier transform of the boxlike

Eh __ 1-wvy E (19) potential(6) is given byu(q) =2sin(1R)/g, which is indeed
coh 2 h negative at certailg. Note also that the CDW instability is

~ the strongest aj=3w/4R wherel(q) reaches its lowest

(see also Sec. NI Therefore, the ground-state structure isyajye. This particulag corresponds to the spatial period of
determined by the boxlike part and is exactly the same as i R~2.67R, which is very close to the optimal period of
our toy model[see Fig. 8)]. _ _ approximately 2.B we found above. The reason why they

Given the results of the toy model, we can immediatelyare slightly different is that the CDW instability enters the
derivg the lquantities of interest for the rgal systemt-he nonlinear regime. Apparently, a small change in the period
practically important cases~1) as well. First, the optimal  enaples the CDW to incorporate the contribution of sublead-
CDW periOdA Sh0u|d be C|Ose to ZR% . Indeed, we found |ng harmonics in a more 0pt|ma| Way_
the value of 2.R. for this quantity. Second, Eq4) for the In the next section we give details of the HF approxima-
cohesive energy follows from Eq7) after the appropriate tjon from which the true form of the interaction potential can
substitutions foluy andR by the parameters from EGL5).  pe found.
[One should not forget here to add the contribution of the
short-range part given by E@18)]. Finally, to deduce the
functional form of the DOS, let us examine the effect of this
short-range part ore(x). Clearly, it is to lowere(x) by In this section we formulate the self-consistent HF prob-
3En in v(x)=1 intervals and to raise it by the same amountlem and give its approximate solution.
in the other intervals where/(x)=0. This generates the The first-principles formulation of the HF problem takes
jumps ine(x) atx=+3A (Fig. 4 superimposed on the fa- into consideration all occupied+1 LL'’s together with sev-
miliar sawtooth profile ofe(x) in the lattice gas modé¢Fig.  eral low-lying empty ones. In other words, it deals with
3(b)]. Hence, the effect of the short-range part on the DOS i©O(N) different species of fermions interacting via(N?)
to insert a hard gap of width}, centered at zero energlfig.  different types of interactions among themselves. Although
2). Therefore E, is augmented by the same value, which isfor moderateN such a treatment is feasible, the solution can
accounted for by the second term in E5). The firsttermin  be obtained only numericallysee, e.g., MacDonald and
this equation(for r,~1) follows from Eq.(11) upon the Aers®).
appropriate substitutions far, andR. A different approach was put forward by Aleiner and

Ill. CDW STATE



1858 M. M. FOGLER, A. A. KOULAKOV, AND B. I. SHKLOVSKII 54
Glazmar® They showed that at sufficiently largé\, wheren, =(2712) 1 is the density of one completely filled
N>r_ '>1, the degrees of freedom associated with lower.L and

N LL's can be integrated out, and derived an effective 9|2

Hamiltoniar? governing the low-energy physics of the 2D A(Q) = m —ig,X/ 5t

o oo = e xNay a 28
liquid in a weak magnetic field: (@ Lxl—y; (ax,ax) 28

R 1 _ is the CDW order parametéf. By U . in Eq. (27) we de-

Heﬁzﬁz p(Qu(a)p(—a), (200 note the HF potentialiy=(q) =Uy(q) —Uex(q). The Hartree
xoy d potentialt,(q) is given by

wherep(q) is the projection of the density operator onto the ~ _

upper LL and Un(a)=v(a)F3(q). (29)

2.2 The exchange potential.,(q) in the reciprocal space turns
V()= @0 (21)  out to be proportional to the real-space Hartree potential,
€
is the renormalized interaction potentiaécall that the tilde Uel@)=uy(ql?)/n. (30)

is used for Fourier transformed quantitie®hysically, the  grom Egs.(26), (29), and (30) and also from an asymptotic
bare Coulomb interaction among the electrons at the uppgpmula for F(q)

partially filled LL gets renormalized because electric fields
become screened by the lower completely filled LL's. The F(Q)=Jo(gR.), 0<kKg, (31)
qguantity e(q) has, therefore, the meaning of the dielectric

constant for the system of the filled LL’s. It is givendy ~ MOre convenient expressions far,(q) and Ue(q) at

R. '<q<kg can be derived:

2
e(q)=r{ 1+ —[1-J5(qR]|, (22 - fiw
qag N (a)~ 5o o J5(ARY), (32
where k is the background dielectric constant aiylis the
Bessel f_unction of the first kintf. Note that the asymptotic _ r o, rgl sin(2qR,)
expressions foe(q), N Ug(Qq)~ In| 1+ +
V2m V2qR./  2qR[1+(rs/V2)]
2
I+ o Re'<ake +En. 33
B
e(@) =« R2q ) (23 The cohesive energy can be obtained from EY) by
1+ ——, q<R;", omitting the wave vectorg=0 in the sum, taking the
B gquantum-mechanical average, and then dividing the result by

were obtained earlier by Kukushkin, Meshkov, andthe total number of particlesr_NnLLXLy at the upper LL,
Timofeev?’ Equation(17) of Sec. Il can be obtained by per- which gives
forming the Fourier transform of Eq21).
Let us return to Eq(20). It contains the density operator s~ 2
p(q) projected on the upper LL expressible in the form Econ 2V_Nq§,+:0 Une(c)|A ()] (34)

_ a1t We want to find the set of the CDW order parameters
p(q)—; F(q)e™"% ax, Ax_ (24) A(q) that minimizes the cohesive energy under certain con-
‘ ] . o ditions of the self-consistencysee below imposed on
whereay (ay) is the creationannihilatior) operator of the A (q). We will present an approximate solution based on the
state (14), X. are defined byX.=X*qyI?/2, andF(d),  consideration of only two idealized CDW patterns: a system
given by of uniform parallel stripes and a triangular lattice of perfectly
round “bubbles.” As mentioned in the Introduction, the
F(q):f dx dy]iy|2e 19, (25) stripe phase is more favorable in some intervalgfaround
half filling. Outside of this interval, it gets replaced by the
bares the name of the form factor of stdla). Performing “bubble” phase. We will consider the two phases separately.

the integration, one obtains
A. Stripe phase

22 212
F(q)=ex;{ — ﬁ)LN<£) (26) _ In this_ caseA(q) are nonzero only iff,=0. It is conve-
4 2 nient to introduce the local filling factory (compare with

Ln(x) being the Laguerre polynomi&l.Following the usual ¥n» the average filing factor) by wy(xy)

procedure of the HF decoupling of the Hamiltoni@®) we = ¥n(X)=(ata,). In the stripe phase, the order parameter
get A and vy are just proportional to each other:

N n _ »
Hre=5 2 The(@A(-0) 3 e %¥a) ax , (27) A= 39
q X X
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The self-consistency condition mentioned above is

B(x)
vN(X)=O[er—€(X)], (36)
whose meaning is that all the states below the Fermi level
ex are filled, and all others are empty. The self-consistent
potentiale(x) in Eq. (36) is given by
— ~ 3\ aldx
€0 = 2 Tye(@)A(GR)e™ (37 T ¢ R T
By X we mean the unit vector in the direction. Equations )
(34)—(37) define the HF problem for the case of the unidi- FIG. 5. The functiorB(x).
rectional CDW.
ForN>0 the Hartree potential,(q) inevitably has zeros B(x) JW/Z de 43
. . . X = s
due to the factoi~(q) containing the Laguerre polynomial 0 (rS/\/E)Jr VI-[1-K3(x)]sie

[Eq. (29)]. The first zero,qy, is approximately given by
Jo~2.4/R.. Since the exchange potential is always positivewhere k(x)=x/2R; (see Appendix A Equation(42) is a
[Eq. (33)], there exisfy’s where the total HF potential,-is  good approximation if one is not interested in the detailed
negative. This leads to the CDW instability because the enbehavior ofu,(x) atx smaller tharag or larger than several
ergy can be reduced by creating a perturbation at any of sudR.. For r,<1 the functionB(x) satisfies the following

wave vectorgcf. Ref. 2. asymptotic relations:
We will focus on the parameter range 006,<1 and
N<50, which covers the cases of the experimental practice 22 _
and even beyond that. In such a parameter range, the HF In r ] x=0
potential is negative at all wave vectays-qq and reaches §
its lowest value neag=q, (see Fig. 2 of Ref. 6 One can B(x)= Kr(i) rR.=<|x|<2R “4
guess then that the lowest-energy CDW is the one with the 2R.)T € ¢
largest possibléunder the condition§36) and(37)] value of 0, Ix|>2R.,

|A(goX)|. The CDW having this property consists of alter-

nating stripes with filling factors/y(x)=0 and =1 [Fig.  whereK’ is the complete elliptic integral of the first kirfd.
1(b)]. Within the class of unidirectional CDW'’s we are con- The plot of B(x) is shown schematically in Fig. 5. One can
sidering now, this guess turns out to be correct. Howeversee that it has a steplike discontinuity »at 2R, already
due to the anharmonism of such a solution, the optimal spamentioned in Sec. Il. In fact, at;~1, B(x) is very nearly
tial periodA of the CDW is slightly larger than2/qy and is  boxlike, B(x)~0®(2R.—|x|) and Eq.(15) follows.

equal to Using Egs.(41) and(42), we find forE,:
A=2.TR;. (39 fiwe [2Re r( A
= dxB(x)sgn x— —| +E, 45
NonzeroA(q) for this solution are given by 9 7R Jo (x)sg 4 h (45)
. 2 [y which with the help of Eq(43) can be transformed into
A(gx)= A—sm 7Aq (39
f rs [A/8R.dk
providedq is an integer multiple of Z/A. Eg~fwc| 0.013+ —f — | +E,. (46)
\/577 s K

Let us now derive Eq(5) for the pseudogap. Clearly,
Ey=2|€(0)|. To calculatee(0) we could, in principle, use  after the substitutionh =2.7R,, one recovers Eq5). [The
Egs.(32) and(33) to sum the series in E¢37). However, 0 gmal number in the parentheses of E4p) is the result of a
establish the connection with Sec. II, we will switch to real , ;merical evaluation of a certain integral. To obtain E).
space. Define a 1D HF potential, it was disregarded.

1 Let us now calculate the cohesive eneffy. (4)]. When
UHF(X)EL_f dqeiquHF(q), (40) rs is not mgch smaller than unit)B(x_) remains apprpxi-
y mately boxlike, and, consequently(x) in the vy(x)=1 in-

thene(x) will be related tovy(x) in a way similar to Eq(9):  tervals has an essentially triangular cufg. 4). Using Eq.
(10), we then arrive at

dx’ _
€(x)= f ?uHF(X_X )on(x) =N, (41 ESDW= — 3 (Eg+Ep), (47)
wherea is given by Eq.(16). which leads to Eq(4).
At large N the potentialu,=(x) can be approximated by Note that at smallerg, rs~0.1, the cusp ire(x) deviates

from the triangular form. This is illustrated in Fig. 6, where
e(x) for rg=0.1, N=30 is shown. In this figure one can see

how
eff _ c _
Unr(X) =857 2R B(X) ~aEqo(x), 42 the bending of the initially straight lines of Fig. 4.
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practical value. The next four paragraphs are devoted to a
purely theoretical issue of the CDW structure at truly small
0.005 ¢ 1 r. Uninterested readers can skip these paragraphs.
We expect that the reduction of beyondr? leads to a
0.0 further increase in the number of stripes per period. It is
important also that these stripes will be of unequal width,
such that after a coarse-grain averaging of the filling factor
-0.005 ¢ vn(X), it would appear approximately sinusoid&ig. 7(c)].
. . To understand this let us go back to thespace.
-R, 0 R, In the limit rg<r} and N>rs_2, the exchange potential
Ugy(q) is on average much smaller than the Hartree potential
FIG. 6. €(x) for re=0.1, N=30. uTh(g) for Re*<q<(Rcrs) ~* [see Eqs(29) and (33)], so
the total HF potential is negative in smajlintervals cen-
This bending is due to the deviation &(x) from the tered at the zeros ofiy(q). The absolute minimum of
ideally flat-top box, or in physical terms, due to the HartreeUpg(q) is still situated neag=qq. If one chooses the wave
term in the interaction. The Hartree interaction reduces th&ector of the principle harmonic to bg,, already the next
slope of e(x), or the magnitude of the directed inward the harmonic of the boxlike profilgj=3q, will correspond to a
stripes “electric field” —(de/dx)X. The magnitude of the large positiveli,=(q). Hence, to minimize the energy of the
field is equal to system all such unfavorable harmonics must be suppressed.
In other words, the CDW may be only slightly anharmonic.
In a simplified description, the spatial distribution of the fill-
2B 2 —B(0)|. (48) ing factor is sinusoidal, and has the amplitude and the
) ) ~ spatial period 2r/qg. Let us find the cohesive energy of the
at the stripe boundary=A/4 (or, more precisely, at a dis- stripe phase at giveny. Since the filling factor is approxi-
tance~ag from the boundary Equation(48) enables one to  mately sinusoidal irx, in formula (34) we have to retain
find the range of s where the simple CDW profile with one gnly two terms withg,= = qq for which |A(g)|= vy . Tak-
stripe per period remains stable. Indeed, there is a criticahg advantage of E¢(33), we arrive at the estimate
value ofr¢ at which the electric field near the stripe boundary
vanishes. Using Eq$38), (44), and(48), one arrives at

€(x)/ hw,

de  fio
dx 27°R,

1-wy
2

ECOW_ _ 2N N %

coh — 4 \/577

r§=2\/§ex;{—2K’
The last term was obtained by a more accurate procedure

for the criticalrs. At rg=r* , the original stripe breaks into based on the sum rule
three smaller ones: the central one, almost as wide as the
original stripe, and two narrow onésf width ~ag) on the
sides[Fig. 7(b)]. Note that this transformation resembles the
edge reconstruction of quantum dStéhe decrease af; in
this analogy is equivalent to the steepening of the quanturwhich is just another way to derive E([L8).
dot confining potential In fact, the functionyy(x) is more complicated. First,

Sincer ;=0.06 is rather difficult to reach under the terres-there are deviations from the pure sinusoidal form in narrow
trial conditions, only the boxlike solution and E@) have a  regions centered at the extremagf(x). In these regions
vn(X) is flattened, such that it reaches zéoo one not at
single points but in small intervals of Second, even with

E,. (50

I's

~0.06 (49

4RC)

> |A(Q)2=rn(1-wy), (51)
gq#0

(a) M) these corrections, the simple sinusoidaligf(x) is not the
I | | | ,—I complete answer yet bgcause, taken literally, _it_ contradicts
Eq. (36). Indeed, according to E¢36), the local filling fac-
_A 0 A X tor can be only one or zero whereas we just argued that
2 Yx) 2 vn(X) takes intermediate values as well. The contradiction is

() resolved by the fine structure of the CDW. Namely, the
I'” ”’I ”l__“lﬂ |'H |'| CDW profile consists of many narrow boxgSg. 7(c)], and
appears sinusoidal only after the coarse-grain averaging. To
0 x find the characteristic width of such boxes we have to ana-
Ux) lyze the HF potential more carefully. It is easy to see that at
wave vectorsg>1/R.r¢, the exchange potential becomes

(©
Hﬂﬂﬂﬂ\ﬂiu/ﬂﬂﬁﬂﬂ\[u larger than the average of the oscillating Hartree potential
A 0
2

(Sl
(=g

A X [Egs.(29) and(33)]. Therefore, in this range af there are
3 many harmonics, which need not be suppressed. Thus, the
typical distance between the boxes is of the order of
FIG. 7. The local filling factor in the stripe CDW pattern for &= \/EI’SRC. The appearance of the scajein the ground-
differentrg. (@) rg>rs, (b) re~r¥, (o) re<r¥. state structure is not accidental. It is related to the fact that
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FIG. 8. (@ The optimal distanceA,, between neighboring
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follows the formula

2R,

A= T3 Ay

(54

whose meaning is that the neighboring “bubbles” barely
interact with each other.

At vy=v¥~0.39, the cohesive energies of the stripe and
the “bubble” phases become equdfig. 8b)]. At smaller
vy, the “bubble” phase replaces the “stripes.” Arguments
can be given that this transition is of first order.

The dominance of the “bubble” phase over the “stripes”
at smallvy allows a simple geometrical interpretation. Re-
call that at smallvy, the “bubbles” barely interact with each
other. The situation in the stripe phase is similar: the optimal
period is very close to\=2R./(1—vy), So that only the
particles within the same stripe interact with each other.
Given this, the cohesive energy is determined by the interac-
tions of particles within a single stripgéor the stripe phase
or within a single “bubble” (for the “bubble” phase. In the
stripe phase, each patrticle interacts with all the particles
within the area &;X AV_N:SRgv_N. In the “bubble” phase,
the corresponding area isr2=23R?vy, i.e., roughly a
factor of 2 smaller. Thus, in the “bubble” phase the particles
avoid each other more effectively, and this phase should be
more energetically favorable. It is possible to further elabo-

¢ is nothing more than the range of the exchange potentiaiate upon this way of reasoning and to show that for the

Ue(r) in real space[at r>¢ ug(r) rapidly decreases:
Uex(F)=1/r2].

B. “Bubble” phase

We will consider only the largé¢ limit where R;>1 and,
therefore, both the period of the bubble lattice and the radiu
of the “bubbles” are much larger than the magnetic length.
In this case we can still use the concept of the local filling
factor, but now it depends on bothandy coordinates. The
filling factor vy(X,y) is assumed to be unity inside the
“bubbles” and zero everywhere else. The “bubbles” form a
triangular lattice. The relation between the lattice constan
A and the radius,, of the “bubbles” is

=

2

Mo
Ay

(52

interaction potential53), the ratio of the cohesive energies
of the two phases tends to 1.7 ag—0 in agreement with
data of Fig. &).

On the intuitive level, the “bubble” phase is expected to
appear asvy decreases because of the imminent Wigner
crystallization at sufficiently smalty . Indeed, the WC is a
Barticular case of the “bubble” phase with,=1, where
ne is the number of particles in one “bubble.” When

vn>1/N, ng is large and can be found from
=

"o~ 2n
following from Eq. (52). As vy becomes smallem, de-
creases. Eventually, &~ 1/N, n, reaches the value of one
and the “bubble” state becomes the ordinary WC. Thus, the
“bubble” phase appears as a natural intermediate state be-

Ap\2
_b> NVN.

R, (59

t

Similar to the case of stripes, we will use an asymptoticyyeen the stripe phase and the WC.

expression for the HF potential,

hw, O(2R.—T)
nLUHF(r)*ZﬂBRC JaRZ_r2 +Enn.—6(n], (83
C

valid atr,~1 andr smaller than severd®.. One possible
way to obtain this equation is to start from the formula for
u‘ﬂfF in g space(see Sec. )land then perform its 2D Fourier
transform.

With the help of Eqs(52) and (53), for every givenvy

Equation(55) implies that in the interval N<vy=<3 the
optimal number of electrons in one “bubble” is larger than
one; i.e., the “bubble” phase is more energetically favorable
than the WC. This issue is discussed in more detail in Ap-
pendix B.

So far, we have been discussing the cagel. We ex-
pect that with decreasing;, the original “bubbles” break
into smaller ones, similar to the case of the strigeigs. 1b)
and 7c)]. The characteristic distance between neighboring
bubbles is of the order of~ Arg. Such smaller “bubbles”

we have numerically calculated the cohesive energy of theontain fewer electrons each; therefore, the transition to the

“bubble” phase as a function ok ,,. This way we have been
able to determine the optimal value &f,, which is plotted
in Fig. 8(@). Note that atry=0.1 the optimal period closely

WC phase occurs at larger filling facto_N~1/(Nr§).
Section IV is devoted to numerical simulations, which
confirm the formation of the stripe and “bubble” phases.
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IV. NUMERICAL STUDY

In Sec. Il we showed that the electron liquid at the upper
partially filled LL is unstable against the CDW formation. At
not too small(“realistic” ) rg, the CDW instability is rather
strong and it causes the uniform electron liquid to break into
occupied and empty domairigig. 1). It is difficult to find
the optimal shape of such domains analyticafyand to
study this question we resorted to numerical simulations, de-
scribed below.

The trial wave function used in our finite-size modeling is
given by Eq.(3) where the centerR, are chosen from the
sites of the triangular lattice. The lattice constant is equal to
(47r//3)Y4 in physical units. Hence, the fully populated

lattice corresponds to the average dengity2l ?), i.e., to - o & ;
the filling factor vy=1. Denote byn; €{0,1} the occupancy . 882
of theith site. Let us derive the expression for the cohesive S ;. L4 PR
energy of the trial state in terms of . Py & % &
We begin by examining a state with a single occupied site ® § &
at the origin. This state bares the name of the coherent & & ) <
state®® The following properties of such a state are important & v B
for us. First, the probability density distribution, i.e., the o a5 8 o
square of the absolute value of the wave funcign) of the ¥ a o m w
coherent state is given by & & &
N ) } 'f «

1 r2\N 2512
|¢(f)|2=m(ﬁ) e "2, (56)

It has a sharp maximum at=y2N+1I=R., i.e., at the
location of the classical cyclotron orbit. The characteristic
width of the maximum in the radial direction is Thus, the
picture of the electron localized within a narrow ring natu-
rally appearqdsee Sec.)l

Second, using Eq56), the order parametgéEq. (28)] of
a single coherent state can be calculated easily. It is equal to

. (57

1 1.,
xby

Third, two coherent states centered at poiRi{sand R,
separated by a distance-|R,— R,|, have a very high degree
of orthogonality ifr>1. [This is owing to oscillating phase
factors not shown in Eq(56)]. The overlapA(r) between

FIG. 9. The CDW patterns produced by our numerical simula-
tions vﬂh the parametens= \/5/3, N_=1O for three different val-
ues ofry: (@ vn=13 (b) 1n=1, (0) TN= 2

two such states is given by has the transparent meaning of the interaction energy of two
r2 coherent states whose centers are separated by the distance
A(r)EKCRlCLz)lZ:eXF{ — W) (58 r. In the actual simulations, we replacggdg(r) by
As a result, with high accuracy, the order parameter of the _ gnr(r)
. ) " Gpe(r) (61)
HF state (3) of two electrons is simply additive: 1-A(r)

A(r)=A.(r—R)+A.(r—R,). This holds for a many-
electron state as well, provided that the guiding center sep
ration in each pair of electrons exceddsUsing Eqs.(34)
and(57), we arrive at

Jo take into account a nonzero overl&gr). In fact, the
overlap is not too small only for nearest lattice sites, for
which A~0.027%
In the simulations the lattice had the form of a parallelo-
1 o Ty gram (see Fig. 9 and contained a total of 5050 sites. In
Ecor= NE L(Ni=vN)Gue(Ri—R)(nj—vy) ] — 7Eex, every run, the goal of the simulations was to minimize the
el #]j . . . .
(59 e_nergy(59) with respect to dlffe_rent _conﬁgur_aions _of the
given number of the occupied sites, i.e., at giugn Since
whereN, is the total number of electrons, and the quantitythe total number of such configurations is enormous even for
gue(r), defined through its Fourier transform, a relatively small lattice, the true ground state is extremely
hard to find. Fortunately, the HamiltonidB9) is exactly of
Tue(q) =Tpe(q e T4 12, (60)  the form studied in the context of electrons localized at
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charged impurities in doped semiconductdrsind we can
employ some techniques of finding the approximate solution,
developed in that field.

Our computational procedure starts from some initial con-
figuration of the occupied site@isually a random one At
each step the configuration is changed in favor of a new one My \/ l \f 4
with a lower energy. Ideally, the algorithm has to contain ©
many stages with different rules to pick up the new configu-
ration at each stage. At the first stage the new configuration
differs from the previous one by the position of only one
occupied site; at the second stage, by the positions of the
two, and so on. We, however, restricted ourselves to the first \/ ' \fv
stage only. Presumably, it already gives a good approxima-
tion to the ground state. The site to move is chosen according FIG. 10. The evolution of the peak in the differential conduc-
to the following procedure. First, we calculate the potentialdivity G(V) as the magnetic field increas¢a) Shubnikov—de Haas

(@) G (b) G

¢; of all the lattice sites, regime. (b) Spin-unresolved QHE regiméc) Spin-resolved QHE
regime.
aEcoh —
a=Ner :jEi Gue(R—Ry(nj—wy), (62 V. TUNNELING PROPERTIES
and find the occupied siiewith the highest potential. Then ~ In Sec. Il we found that the one-particle DOS consists,
we scan all the vacant sitgs calculating the quantity roughly, of the two Van Hove singularities at the extremes of
the spectrurTEzt%Eg with Eg4 given by Eq.(5). Experi-
OEi_j=€— €~ Gue(R—Ry), (63)  mentally, the DOS can be probed by the double-well tunnel-

which is the change in the system energy upon the relocatioing experiments”*® We derive the expression for the tun-
g Y gy up Heling conductance as a function of the voltage difference

of the occupied sité to the vacant sitg. The relocation 'S " petween the two wells and then compare this expression with
performed on the vacant site with the largest positive,

OE;i_;. If all 5E;_; for the giveni are negative, then we try the experimental results of Ref. 18.

1o relocat th iod sitin th E In the tunneling experiments of Refs. 18 and 17 two
0 refocate another occupied Siter the same manner. EVen- - _54q_&_thick high-mobility GaAs quantum wells, each con-
tually, if the pair of an occupied site and a vacant sit¢

) . X . taining the 2DEG, are separated by an®&,_,As barrier
\évilittfésposmve OF;.; cannot be found, the algorithm termi- ¢\ iqih apout 150 A . The experiment consists in measur-

Th ts of th lculati ith th t ing the low-temperature current-voltage characteristics of the
© resulls ot the clachi ations with “the - parametersy, pie-well system in the magnetic field applied perpendicu-
re=12/3,N=10, andvy= 3,3,1s are shown in Fig. 9. In Fig.

4 > lar to the 2D planes. The results of the experimdiitss-
9(a) one can see that afy= ; the stripe pattern forms. The {4iaq by Fig. 1Dsuggest the following scheméA) At suf-

deviations from the ideal picture of identical parallel stripesgiciently " weak magnetic fields the differential conductivity
are mainly due to the incommensurability of the lattice con- _ 4}/qv exhibits a single peak centered at zero bias volt-

stant with the optimal CDW period. Other factors working in age[Fig. 10a)]. The form of the peak is consistent with a
the same direction are the finite size of the lattice and the faqzorentzian-type dependence lobn V:18

that the algorithm is able to find only an approximation to the
ground state. For the same reasons, it is difficult to pinpoint | oT
the transition to thg “bubble” phase. However, we can put v D(eV)TFz’
some bounds on it. For example, [dt=10, the transition

occurs within the m;nerval 08vy<0.4(in agreement with e reT s the tunneling peak width arid is some constant.
our earlier estimatey =0.39). At smallervy, the pattern of () At Jarger magnetic fields the peak broadens and a small
isolated “bubbles” becomes_fully developed, see Fih)9 depression irG as a function oV at V=0 develops. Thus,

We found that bloth the distance between the “bubbles”iq dependendd(V) has two maximaFig. 10b)]. (C) With
(Ap~3.3R. at vy=73) and the average number of electrons{yther increase in the magnitude of the magnetic field, both
in one “bubble” ne~3v\yN are in agreement with the e total width of the feature and the distarieg, between

asymptotical laws given by E455) and the data of Fig. 8. {he two maxima increases. The latter distance appears to be
As vy goes downn, becomes smaller, and, at sufficiently |inear in magnetic field,

small filling factor (v~ 0.1 forN=10), the “bubbles” con-

sist of only single occupied sites. At this moment the distinc- Ewn=0.4F o, ; (65)

tion between the CDW and the WC disappears. At even

smaller vy, the occupied sites become more disthfig.  see Fig. 1(x).

9(0)]. We are interested mainly in regime C where the magnetic
Summarizing the results discussed in this section, we sefield is not too weak. Nevertheless, for the sake of complete-

that our numerical simulations give an additional piece ofness, we will discuss the other two reginjé&) and(B)] as

evidence in favor of the proposed CDW ground state. In Seavell. We associate the existence of the three different re-

V we discuss the one-particle DOS of the CDW state and itgimes [(A), (B), and (C)] with different relations among

relation to the recent tunneling experimetits. three energy scaleiw., y, andEg,~riw.. They charac-

(64)
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terize the strength of the magnetic field, the LL broadeningThe Born approximation and, consequently, E6§4) are

due to the disorder, and the strength of the electron-electrovalid if U<Avg/d, which is the same as>n;. In the op-

interactions, respectively. posite casen<n;, one has to use the quasiclassical approxi-
(A) Shubnikowde Haas regimeThis regime corresponds mation, which leads to

to the condition w.<<y, where the dominating energy scale

is due to the disorder. In this case the role of the electron- 2w (E—Ey)?

electron interactions reduces mainly to the screening of the Aro(E) = U exy — 2U? (69)
impurity potential. Denote the screened potential\lggr). ,

The tunneling properties of the system can be adequatefi" the spectral function and

analyzed within a simple model of noninteracting electrons | JaD (eV)?

in zero magnetic field subjected to the external potential _:Lexr{__z_ (70)
W(r). Such a theory leading to formu(&4) was developed v U 4U

by Zheng and MacDonafif.In the simplest case where the o 1o tunneling current. Technologically, it is currently pos-
two wells have identical densities, amounts of disorder, ani

h he di in th ls | | h | ible to change both andn; in a given sample. The former
where the disorder in the wells is uncorrelated, the results ay be done by applying a voltage to gates located nearby

Zheng and MacDonald can be understood from a welly,e’qantum welld® and the latter by special techniques of
known formula (see, e.g., Shrieffer, Scalapino, andihe sample’'s cooldow# Hence, it is possible to see the
Wilsor™): crossover from Eq(64) to Eq. (70) experimentally. In this
e dE connection we mention a.relatioldz(h/.r) Jn/n;, which
l=—3> |-|-kp|2j —AL(E)AR (E+eV) ensures that the change in the tunneling peak width from
koo 27 P y=#l7 (atn>n;) to y=U (atn<n,) is continuous’ Con-
cluding the consideration of regime A, note that in terms of
transport measurements, it corresponds to the Shubnikov—-de
Haas effect, which is reflected in the name of this regifhe.
Since the data of Ref. 18 appear to agree with (©4),

X[f(E)—f(E+eW)]. (66)

In this formulaT,, is the tunneling matrix elemend,,(E)
is the spectral density for ener@; momentunt:k, and spin ; ¢ o X
o. The superscripté. and R stand for the left and right C€orresponding tm>n;, we will assume this inequality to
wells. Finally, f(E) is the Fermi-Dirac distribution function. hold in the following. In this case, regime A can tebme-

Equation(66) shows that the tunneling experiments measurdVhat arbitrarily defined aswer<. _
the convolution of the wells’ spectral functions. (B) Spin-unresolved quantum Hall effect reginwhen

The most important assumption for the derivation of Eq.[h€ magnetic field is increased, we switch from regimgto

(64) (and for the resonant character of zero-bias tunneling if€9iMme(B), wherey<fiw. yet y>E,,. It corresponds to the
spin-unresolved quantum Hall effe¢QHE) in transport

general is that the momentum is conserved during tunneling, ' .

e.g., that| Ty.|2 8, . If, following Ref. 32, one now takes measurements. The LL’s with differeht are now well de-

advélntage gf the gorn,approximation ex;;ression fined; however, the disorder is still strong enough to cause
the collapse of the spin splitting of the LL spin subbafftis.

72/ 7 Hence, the ground state is not spin polarized, and the CDW

5 5 (67 at the upper LL does not appear yet.
(E-E0"+(h/27) As in regime(A), the interaction among electrons can be
treated on the mean-field level, and the main interaction ef-
fect is the screening of the impurity potential. It can be
shown that the screening is performed largely by the elec-
trons occupying the lower completely filled LL's and the
screened potential/(r) is changed little from itself in zero

Ale( E) =

for the spectral function, one then recovers Eggd) with
I'=A/r. Here, 7 is the quantum lifetime and
E =%2%k?/2m. As noted above, Eq64) describes the ex-
perimental results rather weft:*234 However, before we
proceed to the case of stronger magnetic figidgime(B)], 0
we note that in dirtier samples one should observe a differerﬂeld' . . .

(V) dependence, owing to the fact that the Born approxi- .In regime (B), the shape of the tunneling peak is deter-
mation breaks down. We will show that the disorder broad-m'ned by the convolution of the upper LL DOS of the wo

enin of the LL’s, and, consequently, the tunnelin eakwe”S' To ShO.W. this, in Eq(66) we switch from ((X.’ky) to
widtr?,ycan be much larger thdﬂg. To ()j/o so, we will r?egd (X,n) (the guiding center coordinate and the LL indleap-

to make several definitions first. In the studied samples th esentation. The basis states in this represe_ntation are given
disorder is presumably due to randomly positioned ionize y _Eq.(14). At zero temperature the expression for the tun-
donors. In this case the correlation length of the disordepe“ng current becomes
potential is of the order of spacer width which can easily e
be of the order of 1000 A. Let be the 2D electron gas | = %gTzZ
(2DEGQ density, andn; be the density of randomly posi- Xner
tioned donors. Itis easy to calculate then that the root-meanrhjs equation allows two simplifications. First, at bias volt-
square(rms) value of the screened disorder potential in theages|e\/|<hwc we have to retain only the terms with
plane of the 2DEG is equal % n=N in the sum. Second, it is easy to understand that
Axno(E) does not depend on either or X. Instead of
7\ *2e?ag\n; Axno(E), it is more convenient to use another quantit
UE\/W: _) . XNod =/ . q 4
8 d g(E), which depends only ok:

eVdE L R
o 27 Ak EZeVIAT(E).  (TD)

(68)
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1 gularities separated by a pseudogap of the ordet of As
9(E) =5 Axns(E).- (72 for the tunneling current, it is related to the DOS by
Clearly,g(E) is the DOS at the upper LL. In agreement with mDhw, [V
our statement above we find that I=— fo dEg(E—eV)g(E), (795
7Dhw, [V . .
=2 = f dEg(E—eV)g(E), (73)  which differs from Eq.(73) by a factor of 2 due to the fact
0

that the spin degeneracy is lifted. We show below that at
i.e., that the tunneling current is determined by the convolumoderateN, the differential conductandg(V) exhibits two

tion of the DOS in the two wells. The factor of two in Eq. Sharp maxima separated by a pseudogap whose width we
(73) accounts for the spin degeneracy. The condiaig the ~ denote byEy,, [Fig. 10c)].

same as in Eq64). Equation(75) shows that the tunneling current is deter-
The characteristic widthy of LL's has a square-root de- Mined by the DOS. In a disorder-free system the DOS is
pendence on the magnetic fiéfd, given by

_Js h _ 2712
y=\ o —. (74 9(E)= 2 da—E), (76)

Owing to the convolution, the width of the tunneling peak is

a factor of 2 larger thary. As for the shape of the tunneling

peak, it depends on the relation between the magnetic leng

| and the correlation lengtti of the disorder potenti&?
There is still one more issue to address when considering _

regime (B). In the experiment, one can see a small depres- A. Stripe phase

sion inG(V) in the vicinity of zero biagFig. 10b)]. Such a In this case the energy levels are given &y e(ia), a

depression cannot be explained within the model where thgefined by Eq(16), which in the limitL,— leads to

electron-electron interactions are treated on the mean-field

€, being the energy levels in the self-consistent HF potential
(x,¥). We will consider the stripe and “bubble” phases
parately.

level. We think that the observed depression is a manifesta- del 1

tion of a correlation effect, namely, the Coulomb gapt 2 | gl |E|<3Eq

present, the theory of the Coulomb gap is developed only for 9(E)=—+ X (77)
strongly localized, i.e., almost classical particles. The 0, |E|>3 E,.

guantum-mechanical effects have been studied numerically
within the Hartree-Fock approximatid. It is not clear We will start with the case of a theoretical interelit>1,
whether or not the ideas of the classical Coulomb gap are athere the DOS is schematically shown in Fig. 2. In the first
all applicable to the system we are studying now. If they doapproximation,g(E) vanishes a{E|<3E, and |E|>3E,,
a naive estimate for the characteristic width of the depressioand so does the tunneling current at bias voltdg&<Ej,
will be the energy of the Hartree interaction at the distance oand|eV|>E,. More precisely, afeV|<E;,, the current first
the order of the magnetic length This energy is larger than precipitously drops towardg=0 by a factor of the order of
En but smaller thanE,,. For a better estimate, a deeper N? and then decreases more slowly untiMat 0 it vanishes
understanding of the Coulomb gap in the QHE regime isentirely. Clearly, at largeN the differential conductivity
required. G(V) at|eV|<Ej and|eV|>E, is very small. Now examine
(C) Spin-resolved QHE regim&his regime is realized at the intermediate range @V.
even stronger magnetic fields whetg becomes larger than At eV==*3(E +Ey) andeV==xEg, G exhibits sharp
y.*° The electron-electron interactions are now the most immaxima associated with the presence of the delta functions in
portant, while the disorder can be treated as a weak pertug(E). Thus,G has four maxima as a function &f, and the
bation. distance between the furthermost ones i, 2
Depending on how large the ratidn; is, the evolution of Now let us see how these results are modified by a weak
the thermodynamical and transport properties of the systemisorder. Recall that the impurity potent)l(r) is strongly
undergoes one or multiple stages as the magnetic field inscreened by the electron gas. In general, it is necessary to
creases. To avoid complexity, let us consider only the casknow how such a screening is achieved. For simplicity, we
ni<n<n;/a®, wherea=E 4 /fo.. will discuss only the case of high magnetic fields where
The transition from regiméB) to regime(C) is associated R <d. In this case the screening is performed by long-range
with several dramatic chang&First, the LL’s become spin  fluctuations of the electron density at the upper LL. We can
split and in transport measurements one should see spigay that there is a random distribution of the local filling
resolved conductivity peaks. Second, the nature of screeningctor vy, described by the probability densitp(vy).

changes. Now it is performed mainly by the upper LL and itClearly, in our modeP(wy) is close to the normal distribu-
is stronger than in zero magnetic field. As a result, the amijgn

plitude of the random potential drops by a factor of the order
of a, andy— avy. Thus, in this regime the disorder is addi- (rn—7m)?
tionally suppressed. Third, at the upper spin subband the NT PN

P(v )=—exp{— (78
CDW appears. As a result, the DOS acquires Van Hove sin- N V2mdv 2(6v)?
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. . i pseudogap with the range E,<eV<E, where G(V) is
@) small. As for the larger energy scdlg, it describes the total
width of the tunneling peak.

The described picture applies to the case of Iatgéiow-
ever, experimentally accessible (1<N=4) are not large.
For suchN we calculateds(V) numerically. As an example,
the results foN=3 are shown in Fig. 1(b) where one can
see two sharp maxima i8(V). We found thate,, can be
satisfactorily fitted to a linear la,,,~0.4i w.. We recall
that this expression is obtained fog=13. In general,E
() \ ' ' decreases more or less linearly ag becomes smaller. At

vy=1/N this dependence becomes sublinear. Eventually,
Euwn Vanishes altogether a=0.

-0.05 0.0 0.05

B. “Bubble” phase

) . L In this case to obtain the DO%Q. (76)] one has to find
0.2 0.0 0.2 the self-consistent HF potentia(x,y) and then solve the
Schralinger equation with this potential to find the energy
levelse;. As in any periodic system, they will form energy
bands. Certainly, the stripe phase we studied above is also

eriodic, and, therefore, its DOS also has a band structure.

owever, in the case of the stripe pattern there is only one
(partially occupied band, so mentioning the band structure
would have been superfluous. On the contrary, for the
“bubble” phase there are several bands, and their total num-
ber depends on the number of flux quanta penetrating a unit
cell of the lattice formed by the “bubbles.” When this num-

FIG. 11. The differential conductivitys as a function of the
bias voltageV. eV (horizontal axek is in units of Aw.. (a)
N>1, (b) N=3. The other parameters used in generating thes
graphs are =1, vy= % and 6v=0.05. The calculations are made
for the stripe phase.

The characteristic spreadv of such a distribution can be
related ton;, in its turn related to the width of the tunneling

peakl’=#/7 in zero magnetic field: ber is not a rational fraction, the band structure becomes a
fractal set akin to the celebrated Hofstadter “butterfly.”

) n; V2 (e kd) (Bl 7) However, a small amount of disorder will smear such subtle

(6v) :—\/ﬁ(n,_d)z = Te (hwg)? (79 details in the DOS, leaving only some robust features. The

latter can be easily analyzed whbhis large and the quasi-
classical approximation is adequate.
Recall that every “bubble” resides in a potential well
L created by the HF interaction. Neglect at first the possibility
g(E):f dvnP(vn)Go( v E), (80) of tunneling into the nglghborlng _Wells, t_hen the spectrqm is
0 discreet and the quantized energieare simply the energies
of the constant energy contours in the self-consistent poten-
wheregqy(vy ,E) is the DOS in a disorder-free system for the tial €(x,y), enclosing an integer number of flux quanta. The
filling factor vy . The energyE is referenced with respect to difference between the largest and the smaligss of the
the Fermi level. order of the potential well depth. The tunneling causes the
It is clear that the disorder causes smearing of all shargpreading of such discreet levels into the energy bands.
features in the DOS. Consequently, the main effect of thedowever, at largeN their widths are exponentially small.
disorder is the removal of the singularities g{E) at the Indeed, these widths have the same order of magnitude as the
extremes of the spectrum. In fact, these singularities have averlap of two coherent states separated by the period of the
very small weighfequal to the fraction of the CDW period “bubble” lattice, i.e., by the distance of the ordeRz3>1.
wheree(x) =const, see Fig. B As a result of such a smear- Hence, at largé\ the DOS can be approximated by a set of
ing, the sharp maxima i5(V) disappear. The remaining narrow peaks and our predictions for the tunneling experi-
feature has the total spread dEgand it is as followgFig. ~ ments are as follows. In a sufficiently clean sample, the dif-
11(a)]. At |eV[<Ey, G(V)=~0; at Ey<|eV|<3(En+Ey), ferential conductivity exhibits many peaks. The distance in
the differential conductivity is positive and approximately energy between the furthermost peaks is of the ordegof
constant. AeV|~ 3(Ep+ Eg). G(V) drops sharply, crosses (as in the case of the stripe patterAlso, similar to the case
zero, and becomes equal to a negative constant with aboof stripes, there exists a gap of widthER centered at zero
the same absolute value. Finally, |atV|=E4, G(V) rises  bias. However, unlike in the case of stripes, the current is not
rapidly to reach zero. In the limit of large, E;>E,, and so  just strongly suppressed gV|<Ej, but vanishes exactly
G(V) does not exhibit any sharp maxima. The smallbecause in this case this is a true gap, not a pseudogap. This
“bumps” visible in Fig. 11(a) are the only reminders of the concludes our analysis of reginf€).
distinct Van Hove singularities of the clean case. Clearly, in  Previously, the conclusion about the existence of the tun-
the dirty case our definition of the tunneling pseudogap beneling gap with the width B, was reached in Refs. 9 and
comes very unnatural. It is more logical to associate thel9. However, their predictions for the overall shape of the

The DOS is given by
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DOS are different from ours. Unlike the broad feature withtotally washed out at experimentally accessible temperatures
the overall widthE>E;, we derive, their results are that the and amounts of disorder. Therefore, it is more reasonable to
DOS consists of just two narrow peaks. Thus, the energgssume that the CDW in the two wells are uncorrelated as we
scaleEy does not appear in their DOS. did above.

Recently, Levitov and Shyté? also argued that the tun- A more important effect is the enhancement of the dielec-
neling conductance is represented by two narrow peaks. Létic constant. It can be shown that for the double-well system
us again us€&,,, to denote the distance between the peaks irthe single-well dielectric constant(q) [Eq. (22)] gets re-
G(V). In our notations, the result of Levitov and Shytov is placed by a larger value of

Eun=2Eex- 81 2ab—[1—g(q) 1]
t e s<q>ee(q>e62qb_[[l_i((?)1]]. (82

By E. in this formula, we mean the exchange gap for the

spin excitations in one well for the double-well system. It For example, ab=0 the dielectric constant roughly doubles.
differs from the one given by Eﬂjl), derived for an isolated The stronger Screening leads to decreasEth_

well, by arguments of the logarithmgThis originates from Finally, there is also a so-called excitonic shift, which
the difference in the screening properties of a single-well anéccounts for the interaction between the negatively charged
of the double-well systerntsee below] As for a single-well  tunneling electron and the positively charged hole it leaves
system,E,, is linear in field at largeN. Formula(81) was  pehind. The excitonic shift reduce,,, as well. For ex-
derived in Ref. 20 under an assumption that the dynamics odmple, in the limiting case= 0, E,,,, vanishes altogether. In
the SyStem can be described by fluctuations of the Ferrr}-bractice, however, one has the inequaw«bch, and
surface. Apparently, in this approach the discreteness of thihe aforementioned effects cause a small correctioBfq

LL’s is lost. It is not accidental then tha,,,, as given by  oyr estimate of such a correction is as follows:
Eq. (81), does not depend on the filling, of the upper LL.

At the same time, it is clear that such dependence does exist. IN(2Nr.Jag/b) mr. al
Indeed, consider they<1/N case where the ground state is g, (h)=E,, () w, STE = B

a dilute WC. This system can be treated semiclassically with N 122 b

the result that the tunneling gap is equal to twice the energy (83

difference of a vacancy and an interstitial, which is of the

order of the Hartree interaction on the distance between near-

est neighbors. This energy is much smaller tl&gR, and,

moreover, vanishes altogether in the limig— 0. More gen- In this paper we showed that, in the framework of the

erally, it can be shown thd,,, never exceedsE.,, and Hartree-Fock approximation, the ground state of the 2D elec-

Eq. (81) holds only in the limitvy— +0 in one well, while  tron gas in a weak magnetic field is a CDW at the upper

vny—1—0 in the other. It does not hold in the case of equalpartially filled LL. Both the cohesive energy per electron at

densities it was proposed for. the upper LL and the characteristic width of the LL's have
Concluding this section, we discuss briefly the proximitythe scale of the exchange-enhanced spin splitting of the up-

effects, important if the separatidnbetween the two wells per LL. This energy is smaller thahw, for rg¢<1, and thus,

is comparable wittag~100 A . If we go again through the the LLs are not destroyed by the electron-electron interac-

derivation of Eq.(75), keeping in mind that we are examin- tion.

ing regime (C) now, it is easy to realize that we, in fact, As the magnetic field decreases, the fraction of electrons,

assumed that any reasonable amount of the disorder woulgarticipating in the CDW, goes to zero, so that at zero mag-

be sufficient for the self-averaging 8fyx in the sample and netic field the density is uniform.

that the phases of the CDW in the two wells are uncorrelated. The existence of the CDW leads to the pseudogap in the

We also ignored the interaction between the tunneling elecone-particle DOS centered at the Fermi energy. The calcu-

tron and the hole it leaves behiffiLet us examine how lated width of the pseudogap seems to be in a good agree-

such effects can modify our results. ment with the width of the pseudogap observed in the tun-
Ideally, when the two wells are brought close togetherneling conductance of the double-well syst&n.

the CDW patterns existing in each well should lock in the The CDW at the upper LL strongly affects the low-

antiphase to reduce the Hartree energy of the system. Thigmperature transport properties of the 2D gas. Due to the

can be understood with the example of the limiting case opinning of the CDW by disorder, the dissipative conductivity

the two wells located next to each other. In this case thexx has narrow peaks at half-integer fillings even in high-

Hartree energy is reduced to zero because the charge osdihobility heterostructures. At higher temperatures the depin-

lations in one well are compensated by the charge oscillaring of the CDW becomes possible. The effect of this phe-

tions in the other, and the total charge no longer oscillateshlomenon on the transport properties remains to be studied.

This effective suppression of the Hartree potential wouldAt the moment, we can only estimate the temperafyrat

lead to an increase in the optimal CDW period. Correspondwhich the CDW melts into a perfectly uniform electron lig-

ingly, in the expressior{46) for E; one has to use larger uid. In the spirit of Ref. 2, this estimate is

A; ie., E4 tends to increase. However, the phase locking

energy, or the difference in energy for the antiphase and kgTe=vn(1— 0 )Uexo)- (84

in-phase arrangements turns out to be small for the param-

eters of Ref. 18. We expect that this phase locking effect i#t r~1, we can use the asymptotical formy&8) to get

VI. CONCLUSION
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1
kBTC( VN=§) ~0.02% .+ 0.06E},. (85)

Above T, the pinning effects disappear completely; the
peaks ino, become wide; the plateaus ir, become nar-
row. At N=5, Eq. (85 gives T,~0.0% w. in reasonable
agreement with experimental dafz®
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see Eq(B12) below. Combining the last two equations, we
obtain Eq.(43).

APPENDIX B: WIGNER CRYSTAL REVISITED

In this appendix we calculate the cohesive endg of
the HF WC state and then compare it with the cohesive en-
ergy ESOW of the CDW state. As explained in Sec. IlI, our
CDW state differs from the WC at 1|>§(r§) =vy=3. We will
show that in this entire rangeSPW<ENC: je., the CDW

coh coh
state is indeed more energetically favorable. The qualitative

Nelson, and I. M. Ruzin are greatly appreciated. We argy.guments in favor of this statement were given in Sec. Il.
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APPENDIX A: DERIVATION OF EQ. (43

Using Eqgs.(22), (29), (30), and(40), we find

B hwcfw dyF?(r/1?) AL
Ue(X) = L, Jo Trr/e— k)’ (A1)
r=x°+y>. (A2)

We will use the following asymptotic formula foF(q),
which can be derived by the saddle-point integration in Eq
(25), using the WKB approximation for the wave functions
(14) in the integrand:

[ 2 s
F(a)= qupgcos{¥ + kFRcarcsir<21kF) - ﬂ
(A3)
where
s=1-(a/2ke)?. (Ad)

This formula is valid forqR;, (2ks — q)R.>N?'3. Note that
it agrees with Eq(31) but has a broader region of validity
towards largey.

By means of this formula, Eq86) can be transformed
into

ahw; [ JarRP—x2 dy
Uex(X) = Wchf Remx — +ad(x)Ey,
cJo r\/4Rc2 re(l+r/é)

(A5)

which can be rewritten as

ahwe (\[arZ-2 dy
uEff X)=aodo(X)E,+ Cf ¢ ——
ex( ) ( ) h 772 0 \/m

X( 1 1 )
VY2 e \Hy? )

On the other hand, the Hartree part fag<|x|<cR., ¢
being a number of order unity, can be approximated by

2 ([ Jar2_42
uaff(x):_f 4RC X dy
L, Jo

(AB)

e?ag
>— +const;
ar K\/4RC2—X -y

(A7)

Earlier, the cohesive energy'’ of the WC has been
calculated in Ref. 9. Fory<1/N our results agree with Ref.
9. At largervy, they differ.

To calculateE‘c"éﬁ we have to find the set af(q) corre-
sponding to the WC state, and then substitute them into the
general formulg34). Using Eq.(57), the additivity of order
parametefsee Sec. Y, and the Poisson summation formula,

it is easy to obtain that nonzerad(q) correspond to the
wavevectors of the reciprocal lattice of the WC

1 43 Amvgl
G;j=Qo|1+5), 51, Qo= Wl—, (B1)
for which q they are given by
_ 1
A(q)=vNex;{ —Zqzlz), (B2)

derived earlier in Ref. 3 for the WC at the lowest LL. Hence,
for the cohesive energy of the WC we obtain

_ 1
m%‘&o qu(qi,,-)exp( - Eqﬁjlz)- (B3)

1.vy=1/2

i
2

WC__
coh™

At vy=1/2 the contribution of the six shortest reciprocal
lattice vectors i,j)e{(*=1,0),(0+1),(1,-1),(-1,1)}
constitutes more than 97% of the syBB). Therefore, with
a good accuracy one can write

3 =
E\c/\éﬁzinLUHF(Qo)efﬂ‘csy (B4)
_ 2wl
Qo=1\/ ﬁl_' (B5)

Analyzing this expression, we discover a remarkable fact
thatEY' can be positive. In other words, the WC loses com-
petition even to the uniform electron liquid. Indeed, consider
the limit N>rs’2> 1. It follows from Eqgs.(32) and(33) that

at g~Qy~1~! the HF potential is dominated by thHeon-
negative Hartree potentiali,(q) exhibiting oscillations in

g. Roughly, the oscillating part dii;(q) is proportional to
sin(yR.). Since differentN correspond to different values of
sin(QyR), EY: oscillates as well. For example, if
sin(2QyR.)=—1, or, more precisely, i, is one of the zeros
of form factorF(q), the Hartree ternai, (Q,) is also zero. In

this caseE- has a minimum and its value is negative. On
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the other hand, iQ, coincides with a maximum ofF(q),
then the HF potential and, consequenEE)X‘{,ﬁ are both posi-
tive.

The quantity sin(®yR.) is a pseudorandom function of
N. Its average value within an intervile (rs’z,NmaX) tends
to zero asN,,—. Hence, roughly at every othét the
cohesive energfE!'s is positive and the WGat least, with
the triangular lattickat vy= 3 is absolutely unstable.

Nevertheless, there exilt at whichE''" is negative, and

the lower bound forEY"" can be found assuming th&,

intersecting. It is due to this sharp maximum the Fourier
transform of the HF potential oscillates with the period
1/(2R.).

Let us derive Eq(B9). First of all, note thaby(q) de-
viates fromuye(q) only atg=1"1 [Eq. (60)]; hence, in real
space these two potentials essentially coincide=alt. Sec-
ondly, the exchange potential.(r) decays rapidly at dis-
tancesr larger thang=/2rR. (see Sec. Il and soon be-
comes much smaller than the Hartree potential; therefore,

coincides with a zero of the Hartree potential. In this case rr(r)~un(r), r=¢. (B10)
Unr(Qo) = —Ue(Qo). Using Eqs(33) and(B4), one obtains  According to Eqs(29),
) how. E d’q
min{EXS w—O.OlWC—Zh. (B6) uH(r)=fWe'q'r5(q)F2(q). (B11)

This result should be compared with the energy of the CDWAt q yielding the dominant contribution to this integral,
state given by Eq(4). The last term in the two formulas are 7(q) can be replaced byre?ag+ (27)°E,8(q) [cf. Eq.
identical. In fact, it is common for any low-energy state at(17)]. Using also Eq(31) for F(q), we arrive at

the Nth LL at vy=1/N (see Sec. )l Therefore, we have to
compare only the remaining terms. These other terms are

wC

negative in bottEs, andESRY. In the limit N>r 2 ? we are

considering now, the absolute value of the term for the CDW
state is much larger than of that for the WC state. Hence, the

qu iq-rq2
2V (aR:) +E,

uH(r)~7re2an B

e%ag

CDW state is more energetically favorable. In addition to the =——F——*1En, (B12)
analytical arguments, we also compaiffs and ES2WV nu- mhr VARG

merically. We found thaESLY is always smaller thaiye.  which together with Eq(B10) leads to Eq(B9).

in the parameter range of interest:<N=<10 and Note thatuy(r) satisfies the relation

0.14<r¢<1.2. However, at such rather moderatethe dif-

ference between the two is not too largef the order of Ug(r)=n Tgr/1?), (B13)

5%).
) which follows from Eq.(30). One may wonder whyi.,(q)

2. vy<1/2
In this subsection we will consider only the limit

N>r;2> 1. In principle, we can continue using the general
formula (95). However, to give our analysis a new angle, we Eq. (33) is written. Using the relatior o

choose to use formuld9), which, in the case of the WC, is

as given by Eq(33) does not show the inverse square-root
singularity present i (r) according to Eq(B12). It is easy
to see, though, that the singularity in(q) is located at
g=2kg, which is beyond the limited range gf for which
=e?%ag/kl?, one

can verify that Eq.(B12) does agree with Eq33) in the
indicated range of.

Let us now return to the calculation of the cohesive en-
ergy of the WC. Depending on the lattice constagt one
can distinguish two possibilitiesag>2R, (vy<1/N) and
ag<2R. (1/N<wvy<3). In the former case the singular part
of gue(r) has no effect an&'' can be estimated with the
help of Eqg.(B8). In the latter case this standard procedure
fails. This case requires a more accurate treatment of the

lattice sitesR; in Eq. (B7) enclosed by the circle of radius

where the integration is performed over the area of theé?Rc: This can be done as follows. ,

Wigner-Seitz cell. This is how the results of Ref. 9 have been We divide the entire area of the circle into narrow con-

obtained. As long as the interaction potentigk(r) is suf- c<\aNn(;[r|c rings of widthér and then sum the contnbutmqs to

ficiently smooth ar=a,, a, being the lattice constant, this Econ from all rings. Denote byM(r) the number of lattice

procedure is correct. It can be shown, however, that at larggites in the ring with inner radius and outer radius + or.

N the potentialg,(r) is given by[compare with Eq(53)] Generally,M(r) is a pseudorandom function ofwith the
average value o (r)=2axr érvyn, . Clearly, the contribu-

nothing more than the standard lattice stifi:

1 PNl
E\c/\éﬁZER;O gnr(R)— 5

f d’rgue(r).  (B7)
The conventional estimate of such a lattice sum is

wNnL 1
Edon~ — > J dzrgHF(r)”_EgHF(ao), (B8)
ws

e2ag tion of the ring under consideration toEyy: is
Gur(r)~ Jipn 4R2—r2+Eh' r=¢ 2R.—r=l, 1gue(N)[M(r)=M(r)]. The largest contribution comes
¢ (B9) from rings withr ~2R; wheregyg(r) has the maximum. In

order for our procedure to make sense the rings must contain
i.e., it has a sharp maximum et 2R, corresponding to the at least one lattice site on average. On the other hand, the
separation at which the cyclotron orbits of the two states staraccuracy of the estimate is higher if the rings are as narrow
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ag/or

as possible. Hence, the width of the rinds has to be de- _
~ 2 Gi(NM(2R.—jor)

termined from the conditioM (2R.)~ 1, which yields (MinEgR)?

or~ad/(4mRy). (B14)

M(ZR)

= JdrgHF(ZR r). (B15

Since M(r) is pseudorandom, and the total number of
rings ~R./ér is finite, E‘c"éﬁ is also a pseudorandom quan-
tity In other words, for any givemy, the cohesive energy
EWS experiences fluctuations as a function of the ratio ag
R./ay, i.e., as a function oN. This is exactly the conclu- m}
sion we came to in the preceding subsection by using differ-
ent arguments. In can be verified that the root-mean-squafdecall that we are considering the casdl&/vy<3. As one
(rms) value of ELv: fluctuations is much Iarger than its aver- can see, at the upper limit it agre@sp to a numerical factor

Evaluating this integral with the help of E¢B9), we get

12
ﬂ) Int2

N (B16)

MINEfve~ hwc<

age value given by EqB8); therefore, mlliCoh can be esti-
mated as rms value &' taken with the negative sign. To

with the result obtained earlier forN— 5 [Eq. (B6)].
Finally, the results for differenty may be summarized in

proceed we need to know the statistical properties of thdhe following way:

pseudorandom quantitgM (r)=M(r)—M(r). This is an

interesting mathematical problem in itself. A related prob-
lem, namely, the fluctuations in the number of the square
lattice sites contained in a circle as a function of its radius,
was studied by many mathematicians starting in the last
century?® The complete solution has not yet been obtained.
However, extensive numerical data indicate that, provided

dr<ay, (i) the rms value oBM(r) is of orderM (r) and(ii)
the fluctuations iWM (r) anddM (r + Ar) can be considered
to be statistically independent&r <a,. In other words, the
distribution of the lattice sites within any ring of widtn,

resembles the completely random Poisson distribution. How-

f _ 1
rsveanN, NS 32
S
In(wyN3r 2) 1 — 1
CO
T, — < IMEC 1 ;. (B
(W) |nl/2(VNN), <VN< \/N
—\ 12
VN 1 1 1
— |n1/2(: , =]z
\( N VN \/N N2

ever, the fluctuations in any two such rings are correlated. At this point we can compare the energies of the WC and

Clearly, the ring R.,—ag<r<2R. gives the dominating
contribution to the fluctuations & because in this ring
One(r) reaches its maximum. This leads to the estimate

the CDW [Egs. (500 and (B17), respectively at
1/(Nr§)<vN<% where Eq.(50) holds. We see that the
CDW state wins over the WC in this entire interval.

1The Quantum Hall Effectedited by R. E. Prange and S. M.
Girvin (Springer-Verlag, New York, 1990

2H, Fukuyama, P. M. Platzman, P. W. Anderson, Phys. Rel9,B
5211(1979.

3D. Yoshioka and H. Fukuyama, J. Phys. Soc. 3#394(1979;
D. Yoshioka and P. A. Lee, Phys. Rev.B, 4986(1983.

‘R. B. Laughlin, Phys. Rev. Letb0, 1395(1983.

5S. L. Sondhi, A. Karlhede, S. A. Kivelson, and E. H. Rezayi,

Phys. Rev. B47, 16 419(1993.

6A. A. Koulakov, M. M. Fogler, and B. I. Shklovskii, Phys. Rev.
Lett. 76, 499(1996.

L. Belkhir and J. K. Jain, Solid State Commug¥, 107 (1995;
R. Morf and N. d’Ambrumenil, Phys. Rev. LetZ4, 5116
(1995.

8X.-G. Wu and S. L. Sondhi, Phys. Rev.®, 14 725(1995.

9. L. Aleiner and L. I. Glazman, Phys. Rev. %, 11 296(1995.

103, F. Janak, Phys. Ret74 1416(1969; T. Ando and Y. Ue-
mura, J. Phys. Soc. Jp85, 1456(1973.

In Ref. 9 this term inE., is neglected. It gives only a small
correction in the limitN>r_?>1 they considered.

12R. J. Nicholas, R. J. Haug, K. v. Klitzing, and G. Weimann, Phys.

Rev. B37, 1294(1988; A. Usher, R. J. Nicholas, J. J. Harris,
and C. T. Foxtonjbid. 41, 1129(1990.

135, Kivelson, C. Kallin, D. P. Arovas, and J. R. Schrieffer, Phys.

Rev. B36, 1620(1987).

14K. Maki and X. Zotos, Phys. Rev. B8, 4349(1983.

15For review, see M. Seul and D. Andelman, Scier&y, 476
(1995.

18R, C. Ashoori, J. A. Lebens, N. P. Bigelow, and R. H. Silsbee,
Phys. Rev. Lett64, 681(1990.

173. P. Eisenstein, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.
69, 3804(1992; Surf. Sci.305 393(1994).

18N, Turner, J. T. Nicholls, K. M. Brown, E. H. Linfield, M. Pep-
per, D. A. Ritchie, and G. A. C. Jondsinpublishegt K. M.
Brown, N. Turner, J. T. Nicholls, E. H. Linfield, M. Pepper, D.
A. Ritchie, and G. A. C. Jones, Phys. Rev58 15 456(1995.

19|, L. Aleiner, H. U. Baranger, and L. I. Glazman, Phys. Rev. Lett.
74, 3435(1995.

20, s. Levitov and A. V. ShytoWunpublishejl

2LA. L. Efros, Solid State Commur65, 1281 (1988; 67, 1019
(1989; 70, 253(1989.

2214, L. Stormer, K. W. Baldwin, L. N. Pfeiffer, and K. W. West,
Solid State CommurB4, 95 (1992.

23D, B. Chklovskii, B. I. Shklovskii, and L. I. Glazman, Phys. Rev.
B 46, 4026(1992; 46, 15 606E) (1992; D. B. Chklovskii, K.
A. Matveev, and B. I. Shklovskiibid. 47, 12 605(1993.

24D -H. Lee, Z. Wang, and S. Kivelson, Phys. Rev. L&, 4130
(1993; D. B. Chklovskii and P. A. Lee, Phys. Rev.4B, 18 060
(1993.



54 GROUND STATE OF A TWO-DIMENSIONAL ELECTRON ...

25|, s. Gradshtein and I. M. RyzhiRables of Integrals, Series, and
Products(Academic, Boston, 1994

26A. H. MacDonald and G. C. Aers, Phys. Rev3B, 2906(1986.

27|, V. Kukushkin, S. V. Meshkov, and V. B. Timofeev, Usp. Fiz.
Nauk 155 219 (1988 [Sov. Phys. Usp31, 511(1988].

28C. de C. Chamon and X. G. Wen, Phys. Revd® 8227 (1994

29To determine the order of the transition, we have considered an

alternative (second-order transitigrscenario, which is as fol-
lows. First, at certainy> vy, the width of the stripes acquires
a periodic modulation iry. As vy decreases, the amplitude of
the modulation increases. Eventually, @{=v},, the stripes

break into isolated “bubbles.” We have found, however, that

the modulation decribed above first arisesgt 0.375, which
is smaller tharwy=0.39 where the first-order transition occurs.

1871

over pointn~n;, the exponential dependence is to be observed
in the entire range of bias voltages.

38|n the “quantum” casen>n;, the Shubnikov—de Haas oscilla-

tions are described by the Dingle formulaépxxlpgx

o« —e~ "“c"cos@ry), which applies whenw.r<. (The tem-
perature is assumed to be low enough.the “quasiclassical”
case,n<n;, the QHE effect gives way to Shubnikov—de Haas
oscillations ath w.<wU. It is interesting to note that the con-
ventional Dingle law holds only at much weaker magnetic fields,
how.<(hvg/d). In the intermediate range,
(hveld)<hw.<U, the Dingle law is replaced by a different
formula (Ref. 39: 8p/py —e 27 VMo cos(r). Recently,
this dependence has been indeed found in the experiReit
Coleridge(private communicatior.

Thus, the second-order transition scenario is not realized. 39A. G. Aronov, E. Altshuler, A. D. Mirlin, and P. Vifele, Phys.
0strictly speaking, due to a nonzero overlap the energy of the Rev. B 52, 4708 (1999; A. D. Mirlin, E. Altshuler, and P.

system is not reduced to the sum of solely two-particle interac- Wolfle (unpublishegl

tion energies. However, this appears to be a small effeef. “OM. M. Fogler and B. I. Shklovskii, Phys. Rev. B2, 17 366

14).

31B. 1. Shklovskii and A. L. EfrosElectronic Properties of Doped
Semiconductor§Springer, New York, 1984

32|, Zheng and A. H. MacDonald, Phys. Rev48, 10 619(1993.

333, R. Shrieffer, D. J. Scalapino, and J. W. Wilkins, Phys. Rev.

Lett. 10, 336(1963.

343. Q Murphy, J. P. Eisenstein, L. N. Pfeiffer, and K. W. West,

Phys. Rev. B52, 14 825(1995.

35, Glozman, C. E. Johnson, and H.-W. Jiang, Phys. Rev. [Zdft.
594 (1995.

36E. Buks, M. Heiblum, and Hadas Shtrikman, Phys. Rev®
14 790(19949; E. Buks, M. Heiblum, Y. Levinson, and Hadas
Shtrikman, Semicond. Sci. Techn@l. 2031(1994.

(1995.

“IM. E. Raikh and T. V. Shahbazyan, Phys. Rev.4B 1522

(1993.

“If |<d, the theory of Raikh and ShahbazyéRef. 41 applies.

The LL’'s have a Gaussian forfsimilar to Eq.(69)]. In the
opposite casd>d, the SCBA(self-consistent Born approxima-
tion) is valid and the LL's have a semielliptic for(see Ref. 41
and references thergin

433 -R. Eric Yang and A. H. MacDonald, Phys. Rev. L&f, 4110

(1993.

“In strong magnetic fields, this effect has been experimentally

studied by J. P. Eisenstein, L. N. Pffeifer, and K. W. West, Phys.
Rev. Lett.74, 1419(1995.

3"The tails of the tunneling peak in both cases are neither Lorent®>L. P. Rokhinson, B. Su, and V. J. Goldman, Solid State Com-

zian nor Gaussian but rather
IN[G(V)/G(0)]~—eVy,. Here yo~U2?r/A. This asymptotical
behavior holds aeV> v, in the “quantum” casen>n; and at

eV>#/7in the “quasiclassical” casa<n; . Thus, at the cross-

very nearly exponential:

mun. 96, 309 (1995; L. P. Rokhinson and V. J. Goldm&nn-
published.

46See P. M. Bleher, Z. Cheng, F. J. Dyson, and J. L. Lebowitz,

Commun. Math. Physl54, 433(1993.



