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The results of tunneling studies of the energy spectrum of two-dimensional~2D! states in a surface quantum
well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum
of the 2D states over a wide energy range is obtained from the analysis of tunneling conductivity oscillations
in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion
asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in
resonance with the heavy hole valence band, are investigated in structures with different strengths of the
surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the
energy spectrum. The theoretical results are in good agreement with the tunneling spectroscopy data.@S0163-
1829~96!07324-9#

I. INTRODUCTION

A specific feature of a semiconductor with inverted en-
ergy band structure is the absence of an energy gap between
conduction and valence bands. These bands are the two
branches of the fourfoldG8 band. The states of theG8 band
are classified by the projection of the angular momentum
J53/2 onto the direction of quasimomentumk. The states
with a projection of61/2 are conduction band states, here-
after referred to as the spin states of an electron. TheG6

band, which is a conduction band in ordinary semiconductors
A3B5 andA2B6 with an open gap, is the light hole band, and
lies below the degeneracy point for the energy difference
Eg5EG62EG8.

Such peculiarities of the band structure of inverted semi-
conductors lead to some special features of the energy spec-
trum of spatially confined systems, based on these semicon-
ductors. Thus, it was predicted theoretically1 that so-called
interface two-dimensional~2D! states can exist near the
boundary of an inverted semiconductor even without an at-
tractive electrostatic potential. It was shown in a number of
theoretical and experimental articles2–8 that these states play
a key part in forming the energy spectrum of 2D states in
heterostructures and superlattices based on inverted semicon-
ductors.

The absence of a forbidden gap in the inverted semicon-
ductors leads to the fact that at negative energies~hereafter
we measure energy from the degeneracy point of theG8 band
in the volume! the 2D states in the surface quantum well are
resonant with the heavy hole valence band and, therefore,
broadening should be present in this energy range. Such ef-
fects have been discussed for narrow gap semiconductors.
However, in these materials, 2D electron states at energies
less than the energy of the top of the valence band are sepa-
rated from the heavy and light hole states by a barrier and the
width of this barrier is proportional to the forbidden gap. So,
the effect of the resonance broadening in ordinary semicon-
ductors should differ from that in gapless semiconductors.

Of special interest are 2D systems in asymmetric quantum

wells. The lack of inversion symmetry in this case leads to
the spin splitting of the 2D subbands atkÞ0 due to spin-
orbit coupling even without a magnetic field. This phenom-
enon for 2D electron states has been studied extensively in
semiconductors withEg.0.9–14 In such materials the con-
duction band is the twofold degenerateG6 band and the spin-
orbit interaction can be taken into account within perturba-
tion theory.14 As mentioned above, in inverted
semiconductors the conduction band is one of branches of
theG8 band and the spin-orbit coupling has been considered
from the onset.15

This work is devoted to the investigation of the energy
spectrum of 2D states in the surface quantum well in the
inverted semiconductor Hg12xCdxTe using tunneling spectros-
copy in a quantizing magnetic field. This method was used
for the first time in an investigation of the 2D states in an
InAs surface accumulation layer by Tsui in Ref. 16. Since
then, 2D states in a large variety of semiconductors, e.g.,
GaAs,17 InSb,18 and InAs,19 were studied by tunneling spec-
troscopy in a magnetic field. However, there are only a few
tunneling experiments on structures based on inverted
semiconductors.8,20

Unlike traditional methods~galvanomagnetic phenomena,
volt-capacitance experiments!, which give information about
the carriers at the Fermi energy, this method allows one to
obtain information about the energy dependence of the qua-
simomentum of carriers over a wide range of energies, both
for empty and occupied states. In this work we have also
used a refinement of tunneling spectroscopy that allowed us
to investigate 2D states at energies, which are given by the
applied bias, for different quantum well strengths.

In the present article, in contrast to previous
publications,8,20 we report on results obtained on tunnel
structures with a larger strength of the surface potential well.
The preparation of such tunnel structures has been made pos-
sible by the use of Yb as a metal electrode, which has a low
work function. This allows us to observe both spin branches,
which are split by the spin-orbit interaction, and 2D states at
large negative energies where they are in resonance with the
valence band.
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The article is organized as follows. In Sec. II some fea-
tures of the tunneling spectroscopy of 2D states in a quan-
tizing magnetic field are considered. The experimental de-
tails and innovations in the tunneling spectroscopy method
are given in Sec. III. In Sec. IV, experimental results ob-
tained for the tunnel structures with different strengths of the
surface potential well are presented and analyzed. Section V
is devoted to the theoretical description of the energy spec-
trum of 2D states in a surface quantum well of an inverted
semiconductor. The basic equations used in the calculations
of resonant 2D states are spelled out. A comparison between
experiment and theory is discussed in Sec. VI, and, finally,
conclusions are made in Sec. VII.

II. OSCILLATIONS OF THE TUNNELING
CONDUCTIVITY IN A MAGNETIC FIELD

In principle, the bias dependence of the tunneling conduc-
tivity of a metal-insulator–semiconductor structure contains
information on the energy spectrum of both 3D and 2D states
that may exist in the surface quantum well of the semicon-
ductor. The investigations of tunneling conductivity oscilla-
tions in a magnetic field permit one to obtain the most reli-
able information on the energy spectrum, because in this
case it is possible to determine directly the positions of the
Landau levels and energy intervals between them.

Different types of oscillations of the tunneling conductiv-
ity may occur in the metal-insulator–semiconductor structure
with 2D states localized in the surface quantum well~Fig. 1!.
The tunneling current in such a structure is the sum of the
current due to tunneling to 2D (j 2D) and to 3D (j 3D) states.
The oscillations ofs3D[d j3D /dV versus magnetic field and
bias have been considered earlier.21–23 The maxima ins3D
occur when the metal Fermi level is aligned with one of the
bulk Landau levels of the semiconductor. These oscillations
are periodic in the reciprocal magnetic field with the period

D~EF1eV!5
2pe

c\S~EF1eV!
, ~1!

where EF is the semiconductor Fermi energy and
S(EF1eV) is the extreme cross section of the isoenergy
surface at the energyEF1eV. In semiconductors with an
isotropic spectrumS(E)5pk2(E). This gives one the op-

portunity to determine the energy dependence of the quasi-
momentum for the bulk states over a wide energy range.22,23

The tunneling current to 2D states at biasV, magnetic
field B, and temperatureT50 is

j 2D~V!5E
EF

EF1eV

g2D~E2E0 ,B!D~E,V!dE, ~2!

whereg2D(E2E0 ,B), E0 , D(E,V) stand for the density of
2D states, the energy of the bottom of the 2D subband, and
the barrier tunneling transparency, respectively. An applied
voltage not only shifts the Fermi quasilevels of the metal and
semiconductor relative to each other but also changes the
surface quantum well~and thereforeE0) and barrier trans-
parency as well. Thus the tunneling conductivity for tunnel-
ing to 2D states is

s2D[
d j2D
dV

5g2D~E2E0 ,B!D~E,V!uEF1eV

1E
EF

EF1eVS dg2D~E2E0 ,B!

dV
D~E,V!

1g2D~E2E0 ,B!
dD~E,V!

dV DdE. ~3!

To a first approximation, the variation ofg2D(E2E0 ,B)
with bias is due to changes inE0 , and relationship between
E0 and V is linear, i.e. E0(V)5E0(0)1aV and
g2D(E2E0 ,B)5g2D(E2E0(V),B). This results in the ex-
pression

s2D5D~E,V!g2D@E2E0~V!,B#uEF1eV

1aD̄~V!g2D@E2E0~V!,B#uEF1eV

2aD̄~V!g2D@E2E0~V!,B#uEF

1E
EF

EF1eV

g2D@E2E0~V!,B#
dD~E,V!

dV
dE, ~4!

whereD̄(V) is the mean value ofD(E,V). A magnetic field
Bin (n is the normal to the surface! quantizes the energy
spectrum of 2D states andg2D becomes an oscillatory func-
tion of B andE. One can see from expression~4! that two
types of conductivity oscillation should occur in a magnetic
field.

~i! In the first type, oscillations arise whenever a Landau
level of 2D states is aligned with the energyEF1eV @the
first and the second terms in Eq.~4!#. If the surface potential
depends only slightly onV, then the positions of these oscil-
lations allow one to immediately determine the energy spec-
trum of the 2D states by the same procedure as for 3D states
@see Eq.~1!#. As B→0 the fan chart of these oscillations is
extrapolated to the energy of the bottom of the 2D subband.

~ii ! In the second type, oscillations appear whenever a
Landau level of the 2D states is aligned with the energy
EF @the third term in Eq.~4!#. AsB→0 the fan chart of these
oscillations is extrapolated to the bias at which the 2D carri-
ers ~but not states! disappear, i.e., to the bias for which the

FIG. 1. Energy diagram of a metal (M )-insulator–inverted-
semiconductor~SC! tunnel junction with a surface quantum well for
a biasV.0.
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bottom of the 2D subband becomes higher than the semicon-
ductor Fermi level. The amplitude of these oscillations is
proportional to the rate of variation ofE0 with bias (a).
When a50 or E0.EF , these oscillations are absent and
only oscillations of the first type will be observed.

We are not concerned with oscillations of the fourth term
in Eq. ~4!, because an oscillating function is an integrand,
and, therefore, the amplitude of oscillations of this term is
small.

Up to now we have not considered possible oscillations of
D(E,V) in a magnetic field. The effects of these oscillations
might be dominant in tunnel structures with a monocrystal
barrier. For such a barrier the decay constant of the wave
function in an insulator is rigidly determined by the energy.
Therefore, small oscillations of the surface potentialws ~Fig.
1! give rise to significant oscillations ofD(E,V). Oscilla-
tions ofws as well as oscillations of the third term in Eq.~4!
occur whenever a Landau level of the 2D states is aligned
with the energyEF .

16 An analysis of the expression~3!
shows that the second type of oscillations will be predomi-
nantly observed in such structures. We believe that the oscil-
lations of this kind were observed in HgTe/Hg12xCdxTe
heterostructures.24

III. EXPERIMENTAL DETAILS

The differential conductivitysd5d j /dV as a function of
bias and magnetic field in metal-insulator Hg12xCdxTe
(0.08,x,0.13) structures was investigated in magnetic
fields up to 6 T at thetemperature of 4.2 K. Tunnel junctions
were fabricated on monocrystallinep-Hg12xCdxTe with the
concentration of uncompensated acceptorsNA2ND
5(2.5260)31017cm23. The doping level was determined
from an analysis of galvanomagnetic phenomena in the tem-
perature range 1.5–70 K. Ultraviolet illumination for 5–15
min in dry air was used to form a thin oxide, which served as
a tunneling barrier. Then a metallic electrode~Yb! was
evaporated through a mask. Several tunnel contacts prepared
on each sample were investigated. The parameters of the
tunnel structures are listed in the Table I. It is assumed that
the surface electric field in these structures arises from the
work function difference of Yb and the semiconductor.25

The resistance of our structures is 0.1–1 kV and is deter-
mined mainly by the barrier transparency because the resis-
tance associated with the transition of electrons between 2D
and bulk states of the semiconductor is significantly less in

metal-insulator–semiconductor structures based on inverted
semiconductors.

The traditional modulation procedure was used for mea-
suring the differential conductivity and its derivative
ds/dV. In some cases a refined method was used.26 In par-
allel with a small~about 1 mV! alternative voltage with fre-
quencyf5670 Hz and direct biasV, impulses with a period
T@1/ f and durationt!1/f were imposed across the tunnel
contact~Fig. 2!. These impulses lead to a change in the elec-
tric charge of the localized states which occur in the insulator
or at the insulator-semiconductor boundary. If the relaxation
time of these states far exceedsT, these impulses result in an
increase or decrease~depending on sign of the impulses! of
the strength of the surface potential well. Thus, measure-
ments taken during the interval between impulses make it
possible to get information about the energy spectrum of the
2D states with energyEF1eV but for a different strength of
the surface potential well.

IV. EXPERIMENTAL RESULTS

Let us consider first the results obtained from the mea-
surements of the tunnel structures prepared on the most
heavily doped sample~Table I!. The oscillation curves for
such structures are simpler and therefore easier to interpret.
Typical magnetic field dependences of the oscillatory part of
the derivative of the tunneling conductivity with respect to
voltage at different biases are presented in Fig. 3. Oscilla-

TABLE I. Parameters of investigated structures.

Structure x Eg ~meV! mn (102m0) NA2ND (1017 cm23) EF ~meV! ws ~meV!a L (1026cm)a

10-1 0.125 27065 6.25 60 21565 27565 1.0
10-2 0.125 27065 6.25 60 21565 27065 1.0
10-3 0.125 27065 6.25 60 21565 24065 0.95
10-4 0.125 27065 6.25 60 21565 23065 0.92
10-5 0.125 27065 6.25 60 21565 21065 0.88
10-6 0.125 27065 6.25 60 21565 18065 0.8
11-1 0.115 29065 8.0 20 21065 20065 1.5
12-1 0.105 211065 9.75 8 2863 27565 2.75
13-7 0.095 212565 11.5 5 2562 26065 2.85

aThe values are given forV580 mV for the 10-1 to 11-1 structures, and forV50 mV for other structures.

FIG. 2. Voltage which is applied to a tunnel junction. The volt-
age is a sum of a dc biasV, an ac modulation voltage with ampli-
tudeVm , and impulses with amplitudeVi .
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tions are observed for both orientations of magnetic field,
Bin andB'n. The positions of the maxima ofd2 j /dV2 for
Bin in theB, V coordinates are plotted in Fig. 4. It is clear
that withBin, every oscillation curve in Fig. 3 is a convo-
lution of several components and therefore it is difficult to
follow the maxima positions of each component in Fig. 4.
For better distinction a Fourier transformation of the oscilla-
tion curves is carried out. As shown in Fig. 5 forB'n there
is only one fundamental field and forBin two fundamental
fields occur in the oscillation curves~a shoulder, whose po-
sition coincides with the maximum position atB'n, is re-
solved at some biases!. Now one can separate each compo-
nent peak, take the inverse Fourier transform, and follow the
positions of the oscillation maxima of any one of the oscil-
lation components independently. The curves in Fig. 4 were
obtained in this way and it can be seen that they adequately
describe all the experimental data.

As mentioned above@Eq. ~1!# the period of oscillations
D5Bf

21 is determined by the value of quasimomentum. Bias
dependences ofk for both orientations of magnetic field are
plotted in Fig. 6.

For B'n, the spectrum of 2D states is not quantized by

the magnetic field and, therefore, the oscillations of the tun-
neling conductivity are due to tunneling to Landau levels of
bulk states only. Hence, open circles in Fig. 6 correspond to
the energy spectrum of the bulk states. The experimental
data are in good agreement with theE(k) dependence calcu-
lated within the Kane model. Therefore using parameters
P5831028 eV cm,D05` ~whereD0 is the energy differ-
ence between valence bandG8 and split-off G7 band! we
determined the values ofEg and the effective mass on the
bottom of the conduction bandmn for all the structures
~Table I!. Extrapolation of this curve tok50 gives the semi-
conductor Fermi energyEF52eV0 ~Fig. 6!, which is also
given in the Table I.

ForBin, oscillations are connected mainly with tunneling
to 2D states localized in the surface quantum well of the

FIG. 3. d2 j /dV2 versusB curves at different biases for the
structure 10-1.

FIG. 4. The positions of the maxima of thed2 j /dV2 versusB
curves for the structure 10-1 forBin. The curves are obtained in the
way described in the text.

FIG. 5. The results of Fourier transformation of the tunneling
curves plotted in Fig. 3. A shoulder on a low-field peak for a bias of
100 mV forBin corresponds to tunneling to the bulk Landau lev-
els.

FIG. 6. Bias dependences ofk2 for the structure 10-1. Open and
full circles represent the experimental data forB'n andBin, re-
spectively. The upper curve is the dispersion law of the bulk elec-
trons, calculated in the framework of the Kane model with param-
etersEg5270 meV,P5831028 eV cm. The other curves are the
result of theoretical calculations for the 2D states described in Sec.
V. The inset shows the bias dependence ofws .
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semiconductor. This is evident from the typical angular de-
pendence of the fundamental fields~Fig. 7!. The reasons for
some deviation from the classical angle dependence
B(Q)5B(0)/cos(Q), whereQ is the angle betweenB and
n, were discussed in Ref. 20. AtQ.20° the
Q-independent maximum, which results from tunneling to
bulk Landau levels, is resolved in the Fourier transform
~open circles in Fig. 7!. Thus, Fig. 6 shows that two branches
of 2D states exist in this structure and atk→0 they are
extrapolated to the biasV0.0. This means that there are no
2D states below the Fermi level, i.e., 2D electrons are absent
and therefore only oscillations of the first type~see Sec. II!
can be observed.

There are two possibilities for the explanation of these
two branches; they are the ground and excited subbands of
2D states or they are two branches of the ground subband
split by the spin-orbit interaction in the asymmetric quantum
well. An estimation of the difference between the energies of
the ground and excited subbands atk50 shows that for
structures based on a heavily doped semiconductor with a
small effective mass~see Table I! this value should be more
than 50–100 meV~a comparison will be given in more detail
in Sec. VI!. This value far exceeds the experimental one
~Fig. 6!. Thus two branches of the 2D states in structure 10-1
~Fig. 6! correspond to two different spin branches of the
ground subband which is split by spin-orbit interaction.
Hereafter supercripts1 and 2 refer to different spin
branches. Analogous experimental results have been ob-
tained for the 11-1 structure.

The structure 10-1 was also measured with voltage im-
pulses which change the surface potential~see preceding sec-
tion! and shift the 2D branches relative to the bulk states.
Figure 8 shows this shift atV580 mV versus the amplitude
of the impulses. The distances between the branches of the
2D states and bulk statesD(k1,2)25(k1,2)22kbulk

2 versus
quasimomentum of the lower branch of the 2D state (k1)2

are plotted in Fig. 9. The results for the 10-2 to 10-6 struc-
tures, which differ by the value of the surface potential, are
also shown in Fig. 9. It can be seen that when (k1)2 de-
creases as the result of reduction in the surface potential, the
upper branch of the 2D states is pushed into the continuum,
i.e., these localized 2D states disappear, and for the 10-3 to

10-6 structures, in whichD(k1)2<231012cm23, the only
one k1 branch of 2D states exists. The bias dependence of
the quasimomentum of 2D states for one of these structures
~structure 10-4! over all bias ranges is shown in Fig. 10.

The more complicated oscillation curves forBin were
observed for tunnel structures prepared on lesser doped
samples. The maxima positions inV, B coordinates are plot-
ted in Fig. 11 for structure 12-1 . An inspection of Fig. 11
shows that two main oscillation types are observed. The
maxima of these oscillations shift in opposite directions rela-
tive toV as the magnetic field is varied. The behavior of the
maxima positions with angle shows that both types of the

FIG. 7. Angular dependence of fundamental magnetic fields for
the structure 10-1, measured atV580 mV. Dashed line indicates
the cos(Q)21 dependence. Open and full circles relate to tunneling
to the bulk and 2D states, respectively.

FIG. 8. A quasimomentum of 2D states as a function of the
amplitude of impulses for a bias ofV580 mV, which corresponds
to the energyE5EF1eV565 meV, for the structure 10-1. The
dashed line shows the value ofk2 of the bulk electrons for the same
energy. Solid curves are merely a guide for the eye.

FIG. 9. The differencesD(k1)2 andD(k2)2 as a function of
(k1)2 for different structures,V580 mV. Points for structure 10-1
have been obtained at different amplitudes of impulses. Solid
curves are the result of numerical calculations carried out with pa-
rameters listed in the table and different band offset values:
Dc52 eV,Dv51 eV for curve 1,Dc55 eV,Dv51 eV for curve
2, andDc51 eV, Dv51 eV for curve 3. Curve 4 and the dashed
curve are the results of exact and approximate~in accordance with
Ref. 31! calculations with zero boundary conditions for the second
component of the wave function. The upper curve is the same for
the calculations with different parameters.
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oscillations are connected with 2D states. Taking the Fourier
transform one can determine the fundamental fields, and us-
ing Eq. ~1! one can calculate the quasimomentum of the
states responsible for the oscillations at any bias~Fig. 12!.
The oscillations forB'n as well as those for the structure
10-1 are due to tunneling to the Landau levels of the bulk
states. Thus the open circles in Fig. 12 are the energy spec-
trum of the bulk states. The 11, 02, and 01 branches cor-
respond to oscillations of the first type, i.e., to oscillations
arising whenever the Landau levels of the 2D states coincide
with the energyEF1eV. The branchesa and b relate to
oscillations of the second type, i.e., to oscillations which
arise whenever Landau levels of 2D states coincide with the
energyEF ; therefore branches 01,b and 02,a intersect at
V50 ~Fig. 12!. The decrease of the quasimomentum at the
energyE5EF with V ~branchesa,b) is a result of the de-
creasing concentration of 2D electrons due to a reduction of
the depth of the surface potential well as bias is increased
~inset in Fig. 12!. We reason that two branches of the ground

2D subband, which is split by spin-orbit interaction, and one
branch of the excited subband are observed for the structure
12-1 ~Fig. 12!. Such interpretation will be confirmed in Sec.
VI. Both types of oscillations connected with tunneling into
2D states and analogous to Fig. 12, the bias dependence of
the quasimomentum, were clearly observed in the structure
13-7 also.

It is significant that at negative biases up toV5230 mV
we observe oscillations of the first type, which occur when-
ever the Landau levels of 2D states coincide with the energy
EF1eV. At these energies the 2D states in the surface quan-
tum well of the inverted semiconductor are in resonance with
the valence band states. However, in spite of this fact broad-
ening of the 2D states is not large enough to destroy the
oscillation picture. To our knowledge, this is the first experi-
mental observation of 2D states which lie significantly below
the top of the valence band.

V. THEORETICAL MODEL

To describe the energy spectrum of 2D systems in wide
gap semiconductors, the one-band approximation is usually
used. In this case the energy spectrum is parabolic. Such an
approach gives good results, because typical energies of 2D
states in wide-gap systems are much less than the energy
gap. In asymmetric quantum systems~e.g., in surface quan-
tum wells!, as a result of spin-orbit interaction, splitting of
the energy spectrum arises even without an external mag-
netic field. It is common practice to interpret the experimen-
tal data in this case using the Bychkov-Rashba model.9 The
spin-orbit interaction is described here by one additional
term, included in the dispersion law. It is linear in respect to
quasimomentum, and contains a new parameter, which has
to be calculated independently.

The one-band model is inapplicable in the case of 2D

FIG. 10. Bias dependences ofk2 for structure 10-4. Open and
full circles represent the experimental data forB'n andBin, re-
spectively. The upper curve is the dispersion law of the bulk elec-
trons, calculated in the framework of the Kane model with param-
etersEg5270 meV,P5831028 eV cm. The other curve is the
result of theoretical calculations for the 2D states described in Sec.
V. The inset shows the bias dependence ofws .

FIG. 11. Fan chart diagram for structure 12-1 atBin orientation.
The solid curves are merely a guide for the eye.

FIG. 12. The bias dependences ofk2 for structure 12-1. Symbols
show the experimental data: the open and full circles correspond to
the bulk and 2D states, respectively. The dotted curve is the disper-
sion law of the bulk electrons, calculated in the framework of the
Kane model with parametersEg52110 meV andP5831028

eV cm. The solid curves are the theoretical bias dependences of
k2(EF1eV) ~curves 11, 01, and 02) andk2(EF) ~curvesa andb!.
The inset shows the bias dependence ofws . The hatched regions
show the broadening of the 2D energy levels.
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states in narrow gap and inverted semiconductors. The strong
interaction between the conduction and valence band makes
it necessary to employ a multiband Hamiltonian in calcula-
tions of the energy spectrum of 2D systems. It is well known
that the energy spectrum ofA2B6 semiconductors can be
described by the Kane Hamiltonian. Because the Dirac
Hamiltonian, which is simpler for calculations, gives the
same energy spectrum for electrons in the volume as the
Kane Hamiltonian, the Dirac model is also widely used for
calculations of the energy spectrum of 2D systems in such
materials~see Refs. 11 and 27 and references therein!. How-
ever, this is not quite correct. It was demonstrated in Ref. 4
that parameters of the energy spectrum of 2D electrons ob-
tained with the Dirac and Kane models are radically differ-
ent. The Kane model was used in our previous article on the
energy spectrum of 2D electrons in HgTe/Hg12xCdxTe
heterostructures.24 There are a number of points to be made
before applying this model in calculations of the energy
spectrum of 2D systems near the oxide-semiconductor inter-
face.

There is difficulty in choosing the boundary conditions at
the oxide-semiconductor interface, because the energy band
structure of oxide is unknown. The interaction with remote
bands is usually neglected in the Kane model, when it is used
for finding the spectrum of 2D electron states. Then the
Schrödinger equation is the system of ordinary differential
equations, and traditional boundary conditions (uCu50 at the
interface! lead in this approximation to the existence of a
unique solution: the wave function is equal to zero over all
space.28

One way out of this dilemma is to reduce the system of
ordinary differential equations to one equation of second or-
der which corresponds to one component of the wave func-
tion and to use zero boundary conditions only for this
component.10,29–31This is a good approximation for 2D elec-
tron states in wide gap semiconductors, in which one com-
ponent of the wave function is much greater than the other.
However, all the components are of the same order of mag-
nitude in narrow gap and inverted semiconductors, and addi-
tional arguments are needed as to why only one component
has to go to zero at the semiconductor-oxide interface.

Another approach has been suggested by Sobkowicz in
Ref. 28. Here, the assumption is made that the band structure
of the insulator is similar to that of the semiconductor. The
only difference is the value of the energy gap, which is much
greater for an insulator than that for a semiconductor. More-
over, the conditionDc ,Dv@E ~whereDc , Dv are conduc-
tion and valence band offsets, respectively! seems to be natu-
ral, because neither electrons nor holes have to be emitted
from the semiconductor. Figure 13 presents schematically
the model band structure for the case of inverted semicon-
ductors. Because the electrostatic potential is constant at
z,2d and z.L, the exact wave functions are known in
these regions. In this case the eigenvalue problem can be
solved exactly using the techniques of direct numerical
integration.24

Thus in the framework of this model one can understand
which insulator parameters correspond to the zero boundary
condition for the second component of the wave function
~see expressions~7! and ~9! which follow# used in Ref. 31.
This can be understood from Fig. 14, which shows the cal-

culated dependence of the energy of the ground 2D subband
on the value ofDv , while the value ofDc is fixed~for details
see Ref. 24!. The splitting of the 2D subband into two
branches 01 and 02 results from spin-orbit interaction. It is
clearly seen that the zero boundary condition used in Ref. 31
is a limiting caseDv→` and the limit is reached very
slowly. The results obtained in the above model come close
to the solution of the zero boundary condition problem only
at Dv.100 eV.

The approach discussed above neglects the interaction
with remote bands which corresponds to infinite heavy hole
mass. This is suitable for calculation of the energy spectrum
of 2D electrons only for positive energies. When the energy
of 2D states is negative, they are in resonance with the con-
tinuous spectrum of the heavy hole valence band. It is im-

FIG. 13. Model of an insulator–inverted-semiconductor struc-
ture with a surface quantum well used in the calculations.

FIG. 14. The dependence of the energy of two branches of the
2D ground subband atk533106 cm21 on the valence band offset
value whileDc is kept constantDc51 eV. The dashed lines are the
energies of the branches calculated under zero boundary conditions
for the second component of the wave function at the insulator–
inverted-semiconductor interface. The calculations have been car-
ried out with parametersEg5270 meV, P5831028 eV cm,
NA2ND5631018 cm23, ws5240 meV, and for parabolic surface
quantum well.
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portant to take remote bands into consideration in the calcu-
lation of the energy spectrum in this energy range, because
the tunneling of the carriers from the space charge layer to
the volume of a semiconductor can lead both to a change in
the energy and a broadening of the 2D states.

To calculate the energy spectrum of 2D states taking re-
mote bands into consideration, the usual assumption has
been made, that the energy differenceD0 between the va-

lence bandG8 and the split-offG7 band is very large. In this
case, the Kane Hamiltonian is a 636 matrix. We choose the
directionz to be normal to the interface, and the direction of
the carrier motion alongy. Then the Hamiltonian can be
block diagonalized into two 333 Hamiltonians for two
groups of states. The Hamiltonian matrix for the first group
is defined by

H151
EG61ew~z! iA2

3
PS ky2 2

]

]zD i

A2
Pky

iA2

3
PS 2

ky
2

2
]

]zD EG81ew~z!

2
\2

2m
g1S ky22 ]2

]z2D 0

2
i

A2
Pky 0 EG81ew~z!

2
\2

2m
g1S ky22 ]2

]z2D
2 , ~5!

whereEG6 andEG8 are the energies of corresponding band
edges,g1 is the parameter that describes the interaction with
the remote bands, andw(z) is the electrostatic potential. The
valuesP and g1 are assumed to be the same for both the
semiconductor and insulator. The HamiltonianH2 for the
second group of states is obtained fromH1 by replacing
ky by 2ky . Thus, the Schro¨dinger equation

H6C5E6C ~6!

is a system of differential equations of second order, which
determines two branches of the energy spectrum correspond-
ing to two groups of states. The eigenvectors in the insulator
and the volume of the semiconductor are known, because
w(z)5const atz,2d and z.L. There are two types of
eigenvectors. The first type corresponds to a light particle
and is

C~ l !~ky ,kz!5S E1g1

\2k2

2m
2EG8

A2

3
PS kz2 iky

2 D
i

A2
Pky

D eikyy1 ikzz ~7!

where the energy for fixedky and kz is obtained from the
equation

~E2EG6!SE2EG81
g1\

2

2m
~ky

21kz
2! D5 2

3P
2~ky

21kz
2!.

~8!

The second type corresponds to the heavy particle and is

C~h!~ky ,kz!5S 0

2
i

A2
Pky

A2

3
PS kz1 iky

2 D D eikyy1 ikzz ~9!

for the energy

E5EG81
g1\

2

2m
~ky

21kz
2!. ~10!

The wave function in the insulatorC I can be written as a
linear combination ofC (h) andC ( l ),

C I5C~h!~ky ,2kz
~h!!1CC~ l !~ky ,2kz

~ l !!, ~11!

whereC is some as yet unknown multiplier. Here only the
terms that diminish atz→` are given.

In the regionz.L the wave function is given by

CSC5C1C
~h!~ky ,kz

~h!!1C2C
~ l !~ky ,kz

~ l !!

1C3C
~h!~ky ,2kz

~h!!1C4C
~ l !~ky ,2kz

~ l !!. ~12!

In Eqs. ~11! and ~12!, kz
( l ) , kz

(h) stand for the quasimomen-
tum components perpendicular to the interface, which for
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any givenky andE are determined from~8! and~10!, respec-
tively. Because only normalized solutions are of interest
here, the coefficientC4 in ~12! has to be zero. So, we can
now state the problem, which can be numerically calculated:
at a fixed energy one needs to find a value ofC for z,2d
such that subsequent numerical integration of the Schro¨-
dinger equation throughout the region of the potential results
in a zero value forC4 .

The behavior of the potentialw(z) in a semiconductor is
determined from the Poisson equation for the charge density,

r~z!52euNA2NDuLq~L2z!

2e( E
Ei

EF
g~E!uC~E,z!u2dE, ~13!

where the summation runs over all occupied 2D subbands.
Ei denotes the energy of the bottom of thei th subband. The
second term describes the contribution of the electrons local-
ized in the quantum well. In the absence of 2D electrons~this
situation occurs in the 10-1 to 11-1 structures!, the second
term in~13! is equal to zero, and the Poisson equation can be
solved exactly. Thenw(z) is parabolic,

w~z!5H ws~12z/L !2, 0<z<L

0, z.L,
~14!

where

ws5w~0!, L5S 2kk0ws

e~NA2ND! D
1/2

,

and k is the dielectric constant. For the structures with a
concentration of 2D electrons comparable to (NA2ND)3L
~as in structures 12-1 and 13-7!, one needs to calculate the
potential self-consistently. We use here the assumption made
in Ref. 24, namely, at the calculations of the charge density
distribution we suppose that the wave function is energy in-
dependentC(E,z)5C(EF ,z).

Let us now consider peculiarities of the 2D states result-
ing from resonance with the heavy hole band. All the results
demonstrated in this section have been obtained with the
following parameter values:Eg52110 meV,P5831028

eV cm,g152,NA2ND5131018 cm23, k520, and a para-
bolic dependence ofw(z) with ws5275 mV.Dc52 eV and
Dv51 eV are used~the choice of these values will be justi-
fied in the next section!. The calculations show that the
variation of the value of interface widthd in the range 5-50
Å does not have a practical effect on the energy spectrum of
2D states.

Figure 15 shows thez dependence ofuC(z)u2 for two
energy values, corresponding to nonresonant (E.0) and
resonant (E,0) 2D electron states. It is clearly shown that
the wave function does not decay in the semiconductor re-
gion (z.L) at negative energies. This means that the charge
carriers from the space charge layer may go into the volume
of the semiconductor; its wave function is transformed from
an electron into a heavy hole wave function in the process.
To find the broadening of the 2D energy levels associated
with such a resonance, one may turn to the scattering theory,
namely, Levinson’s theorem.28,32. This allows a calculation
of a density of states, added to the valence band by the pres-

ence of the electrostatic potentialw(z) and the
semiconductor-insulator interface, treated as a scattering po-
tential,

g2D}
* uC~z!u2dz

A2 , ~15!

whereA is the amplitude ofuCu at z.L and the integration
runs over the space charge layer region.

Figure 16 shows the density of states corresponding to
two groups of states, calculated for different values of qua-
simomentumk ~in the following, k meansky). It can be
clearly seen that the width of the maxima rapidly increases
with decreasing quasimomentum values. A peculiar feature
is that the width of the maxima corresponding to the 01

branch is greater than that of the 02 branch at the same
energy. This means that the tunneling of 2D electrons to the
valence band states is more effective for states of the 01

branch. Atk50 the 2D energy levels become well defined
again.33

The dispersion lawE(k) of 2D electrons calculated for
the described model with the above parameters is presented
in Fig. 17. AtE.0 the results coincide with those obtained
without considering the remote bands. At negative energies
when the 2D states are resonant, the energy levels are broad.
This broadening is shown in Fig. 17 as hatched regions. The

FIG. 15. uCu2 versusz curves for resonant~lower figure! and
nonresonant~upper figure! 2D states. The parameters used are in
the text.

FIG. 16. The density of resonant 2D states for different quasi-
momentum values for 01 ~a! and 02 ~b! branches.
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width of these regions is defined here as the half width of the
peak of the density of 2D states~see Fig. 16!. In the narrow
range ofk25(0.323)31012 cm22, the width of the density
of states peak is very large, i.e., the 2D states are practically
destroyed in this range.

Earlier, the resonance broadening of 2D states was dis-
cussed in Ref. 28 for narrow gap semiconductors and in Ref.
31 for semiconductors with an inverted spectrum. In these
articles the tunneling to light hole states was taken into ac-
count, but tunneling to heavy hole states was neglected. In
such an approximation the broadening of 2D states in in-
verted semiconductors occurs only at the energy less than
EG6 in the bulk of the semiconductor. As shown above, the
tunneling to the heavy hole states is effective and this pro-
cess has to be taken into account in inverted semiconductors.

VI. DISCUSSION

Let us begin with the discussion of experimental results
obtained for the tunneling structures 10-1 to 11-1, based on
heavily doped materials.

As mentioned above, there are two ways to understand the
presence of two branches in the energy spectrum of the 2D
states in the 10-1 structure. They are either ground and ex-
cited 2D subbands or two spin-split states of the ground 2D
subband. The calculations carried out in the framework of
the above model show~see Fig. 18! that as the surface po-
tential increases, the excited subband atk50 appears only
when the energy of the ground subband is less than2100
meV ~this value only slightly depends on the values ofDc
andDv). This is in contradiction with the experimental re-
sults presented in Fig. 6. Indeed, extrapolating the experi-
mental curves tok50 results in an energy difference be-
tween these branches that does not exceed 10 meV. Thus,
these two branches of the 2D states are two spin branches of
the 2D subband split by spin-orbit interaction.

For quantitative analysis of the experimental data, the pa-

rametersDc , Dv , and bias dependence ofws should first be
determined. The experimental results for the structures 10-1
to 10-6 provide a way of estimating the parametersDc and
Dv independent ofws(V). In reality, we can calculate the
ws relationships of the quasimomentum for the upper
k2(ws) and lowerk1(ws) branches of the 2D states at a
fixed energy. Then eliminatingws we obtain ak2 versus
k1 dependence which is shown in theD(k1,2)2, (k1)2 co-
ordinates in Fig. 9 for different values ofDc andDv . The
inspection of Fig. 9 shows that the results are not very sen-
sitive to Dc and Dv as long asDc and Dv.Eg and
Dc'Dv . But whenDv.Dc and especially in the case when
Dv5`, which corresponds to the zero boundary condition
for the second component of the wave function, the results of
the calculation significantly deviate from the experimental
results. On first sight it seems to be surprising that the au-
thors of Ref. 31 were able to explain the experimental results
on the spin-orbit splitting of the 2D energy spectrum using
such a boundary condition. An analysis of this article shows
that this is due to using the approximate~quasiclassical!
method of solving of eigenvalue problem in Ref. 31. Indeed,
as is seen from Fig. 9, the results of the approximate calcu-
lations~dashed line! differ significantly from the exact solu-
tions ~line 4!, but they are in better agreement with the ex-
perimental data.

Figure 9 shows that the more suitable parameters are
Dc52 eV,Dv51 eV, and they will be used for the analysis
of the results for all tunnel structures.

We have calculated the bias dependence of the quasimo-
mentum of the lower spin branch over the entire bias range
for structure 10-1, using the surface potentialws as a fitting
parameter~inset in Fig. 6!. With this ws(V) relationship we
have calculated the position of the upper spin branch of the
2D states~Fig. 6!. One can see the good agreement with spin
splitting over the whole energy range. Notice that atk50 the
energy of the 2D states coincides with the energy of the
bottom of the conduction band, i.e., the binding energy of the
2D states atk50 is equal to zero. This is a specific feature of
the 2D states in an inverted semiconductor for weak quantum
well strengths.

Curve 1 in Fig. 9 shows that the upper spin states must

FIG. 17. The dispersion law of the 2D states localized in a
surface quantum well. Two subbands split by spin-orbit interaction
are shown. The hatched regions show the broadening of the 2D
energy levels. The 2D states of the 01 branch are distroyed in the
rangek25(0.323.0)31012 cm22 due to the high probability of
tunneling into the heavy hole states of the volume of the inverted
semiconductor.

FIG. 18. The energy of the bottoms of the ground and first
excited 2D subbands as a function of surface quantum well depth,
calculated with parameters of structure 10-1.
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disappear, whenD(k1)2 for the lower spin branch is less
than 431012 cm22, which corresponds to a small surface
potentialws,230 meV. Actually for the 10-3 to 10-6 struc-
tures only one spin branch exists over the whole energy
range. This is illustrated by Fig. 10, which shows the energy
versus quasimomentum curve for one of these structures~10-
4!. It can be clearly seen that the model employed describes
the experimental data for these structures well.

Let us inspect the results for the structure 12-1~Fig. 12!.
Contrary to structures of the first type~10-1 to 11-1!, there
are 2D electrons in this structure. Their concentration can be
determined from the bias dependences ofk2 for oscillations
of the second type~branchesa andb in Fig. 12!. The con-
centration is varied fromn2D51.331012 cm22 at V5260
mV to n2D51.031012 cm22 at V550 mV. An estimation
of the density of uncompensated acceptors in the space
charge region gives a value of about 231012 cm22, which
is of the same order of magnitude asn2D ; therefore the self-
consistency of the potential has to be included in the calcu-
lation. Knowing the density of 2D electrons at different bi-
ases~see Sec. IV! and using a self-consistent procedure we
have calculated the bias dependence of the surface potential
~inset in Fig. 12!. One can see thatws for the structure 12-1
is close to that of the structure 10-1 but due to the lower
doping level~Table I! the width of the potential well is sig-
nificantly larger, so that the strength of the potential well is
also larger and more than one 2D subband is localized in
such a well. Using this relationship betweenws and bias we
have calculated the quasimomenta of 2D states over the en-
tire energy range~curves 11, 02, and 01 in Fig. 12!. Curves
a andb in Fig. 12 present the calculated values of the quasi-
momenta for both spin states at the energyE5EF . As can
be seen, there is good agreement for both types of oscilla-
tions over the whole bias range. Thus, both spin branches of
the ground 2D subband and lower spin branch of the excited
subband exist in the surface quantum well of this structure.

As was mentioned above~Sec. V!, the 2D states should
broaden at negative energy due to resonance with the valence
band. This broadening is shown in Fig. 12 as well as in Fig.
17 by hatched regions. One can see that at the bias where
oscillations were observed experimentally, broadening does
not exceed 5 meV, i.e., it is less than the cyclotron energy in
the investigated semiconductors at the magnetic fields, where
oscillations were detected (B.1 T!. With a more negative
bias, the broadening becomes significantly larger and this is
a possible reason why we do not observe oscillations at these
biases.

Two comments are necessary in closing this section.
At first sight it may seem that the model of the insulator

used for calculations of the energy spectrum of 2D states in
our structures is forced. What actually happens is that this
model imposes some relationships between the components
of the wave function at the interface. Any insulator consid-
ered in the framework of thekP method imposes some rela-
tionships between the components too. The only point is,
then, what relationships it imposes. In inverted and narrow
gap semiconductors the amplitudes of all the components are
about of the same value; therefore a widely used zero bound-
ary condition for one of the components of the wave
function10,29–31seems to be artificial.

All the experimental results on the energy spectrum of 2D

states have been obtained from an analysis of oscillations of
tunneling conductivity in a magnetic field, but the calcula-
tions were carried out without a magnetic field. For the com-
parison of the calculated results with the experimental data,
the assumption was used that the quasiclassical rule for the
quantization of the energy spectrum of 2D states in a mag-
netic field was fulfilled. To check this assumption, calcula-
tions of the Landau levels were also carried out. It was
shown that except for the low surface potential values, when
the energy difference between 2D and bulk states with the
same quasimomentum was small, the quasiclassical rule for
quantization in magnetic fields was fulfilled with good accu-
racy. Some results of these calculations and analysis of the
peculiarities of the behavior of 2D Landau levels were dis-
cussed in Ref. 20.

VII. CONCLUSION

The energy spectrum of 2D states localized in a surface
quantum well in an inverted semiconductor was studied by
tunneling spectroscopy in a quantizing magnetic field. In the
investigated structures the strength of the potential well
mainly depends on the width of the well, which is controlled
by the doping level: it increases when the acceptor concen-
tration decreases. Two different cases were observed in our
structures.

In the structures based on heavily doped material only the
ground 2D subband exists and its bottom coincides with the
bottom of the conduction band. Thus, inp-type material
there are no 2D electrons and only empty 2D states exist. At
kÞ0, the 2D ground subband is split by spin-orbit interac-
tion. In structures with a larger potential well strength, both
spin branches are observed, whereas in other structures the
upper spin states are pushed into the continum and only the
lower spin branch is observed.

In the structures based on materials with
NA2ND,1018 cm23, the strength of the potential well is so
large that the ground and excited 2D subbands exist in these
structures. In this case, both spin branches of the ground
subband and only the lower spin branch of the excited sub-
band are observed. In these structures the bottom of the
ground subband lies significantly lower than the bottom of
the conduction band and the 2D states are in resonance with
the valence band over a wide energy range. The fact that
oscillations relating to tunneling to such states are observed
shows that the resonance broadening is not large and the 2D
states are not destroyed at these energies.

Theoretical calculations carried out in the framework of
the Kane model describe well all the peculiarities of the en-
ergy spectrum and spin-orbit splitting of 2D states in in-
verted semiconductors. Theoretical calculations which take
the finite value of the heavy hole effective mass into account
have shown that the broadening of 2D states due to reso-
nance with the heavy hole valence band is large only over a
narrow range of quasimomentum values. This is consistent
with the results of our tunneling experiments.
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