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Tunneling studies of two-dimensional states in semiconductors with inverted band structure:
Spin-orbit splitting and resonant broadening
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The results of tunneling studies of the energy spectrum of two-dimeng@Dgaktates in a surface quantum
well in a semiconductor with inverted band structure are presented. The energy dependence of quasimomentum
of the 2D states over a wide energy range is obtained from the analysis of tunneling conductivity oscillations
in a quantizing magnetic field. The spin-orbit splitting of the energy spectrum of 2D states, due to inversion
asymmetry of the surface quantum well, and the broadening of 2D states at the energies, when they are in
resonance with the heavy hole valence band, are investigated in structures with different strengths of the
surface quantum well. A quantitative analysis is carried out within the framework of the Kane model of the
energy spectrum. The theoretical results are in good agreement with the tunneling spectroscdSptiasa.
182996)07324-9

[. INTRODUCTION wells. The lack of inversion symmetry in this case leads to
the spin splitting of the 2D subbands le#: 0 due to spin-

A specific feature of a semiconductor with inverted en-0rbit coupling even without a magnetic field. This phenom-
ergy band structure is the absence of an energy gap betwe8R0N for 2D electron states has been studied extensively in
conduction and valence bands. These bands are the tvggmiconductors wittEy>0°"'*In such materials the con-
branches of the fourfoldf's band. The states of tHeg band ~ duction band is the twofold degeneratgband and the spin-
are classified by the projection of the angular momenturr?rb't interaction can be taken into account within perturba-

14 . . .
J=3/2 onto the direction of quasimomentukn The states tion: theory:™ ~ As mentpned abpve, in _ inverted
with a projection of+ 1/2 are conduction band states here-Semiconductors the conduction band is one of branches of

after referred to as the spin states of an electron. The theI'g band and the spin-orbit coupling has been considered

band, which is a conduction band in ordinar semiconductorgrom the onset”
’ y This work is devoted to the investigation of the energy

3Rp5 2R6 \psi H H
A”B* andA”B” with an open gap, is the light hole band, and spectrum of 2D states in the surface quantum well in the

lies below the degeneracy point for the energy differencgy,erteq semiconductor Hg,cd,Te using tunneling spectros-

=gle—Erl . . K -
E,=E ¢—E 8-. - ) .copy in a quantizing magnetic field. This method was used
Such peculiarities of the band structure of inverted semisg, the first time in an investigation of the 2D states in an

conductors lead to some special features of the energy spegias surface accumulation layer by Tsui in Ref. 16. Since
trum of spatially confined systems, based on these semicofhen, 2D states in a large variety of semiconductors, e.g.,
ductors. Thus, it was predicted theoretichlthat so-called GaAs!? InSb® and InAs® were studied by tunneling spec-
interface two-dimensiona(2D) states can exist near the troscopy in a magnetic field. However, there are only a few
boundary of an inverted semiconductor even without an attunneling experiments on structures based on inverted
tractive electrostatic potential. It was shown in a number osemiconductor&?°
theoretical and experimental articte8that these states play Unlike traditional methodggalvanomagnetic phenomena,
a key part in forming the energy spectrum of 2D states involt-capacitance experimentsvhich give information about
heterostructures and superlattices based on inverted semicahe carriers at the Fermi energy, this method allows one to
ductors. obtain information about the energy dependence of the qua-
The absence of a forbidden gap in the inverted semiconsimomentum of carriers over a wide range of energies, both
ductors leads to the fact that at negative enerdieseafter for empty and occupied states. In this work we have also
we measure energy from the degeneracy point of hband  used a refinement of tunneling spectroscopy that allowed us
in the volume the 2D states in the surface quantum well areto investigate 2D states at energies, which are given by the
resonant with the heavy hole valence band and, thereforepplied bias, for different quantum well strengths.
broadening should be present in this energy range. Such ef- In the present article, in contrast to previous
fects have been discussed for narrow gap semiconductorgublications?® we report on results obtained on tunnel
However, in these materials, 2D electron states at energiesructures with a larger strength of the surface potential well.
less than the energy of the top of the valence band are sep@ihe preparation of such tunnel structures has been made pos-
rated from the heavy and light hole states by a barrier and theible by the use of Yb as a metal electrode, which has a low
width of this barrier is proportional to the forbidden gap. So,work function. This allows us to observe both spin branches,
the effect of the resonance broadening in ordinary semiconwhich are split by the spin-orbit interaction, and 2D states at
ductors should differ from that in gapless semiconductors. large negative energies where they are in resonance with the
Of special interest are 2D systems in asymmetric quantunzalence band.
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portunity to determine the energy dependence of the quasi-
momentum for the bulk states over a wide energy r&ige.

The tunneling current to 2D states at bids magnetic
field B, and temperaturg=0 is

M  insulator SC

Ep+eV
jZD(V):fE 920(E—Ep,B)D(E,V)dE, v
F

eV>0 T E Iy
T — |°E whereg,p(E—Eq,B), Eg, D(E,V) stand for the density of
7/5,0 F 2D states, the energy of the bottom of the 2D subband, and
A the barrier tunneling transparency, respectively. An applied
s Ts . ) -
/\ voltage not only shifts the Fermi quasilevels of the metal and
semiconductor relative to each other but also changes the

surface quantum welland thereforeEy) and barrier trans-

FIG. 1. Energy diagram of a metaM()-insulator—inverted-  parency as well. Thus the tunneling conductivity for tunnel-
semiconductofSC) tunnel junction with a surface quantum well for jng to 2D states is

a biasv>0.
o _ _djap

The article is organized as follows. In Sec. Il some fea- T20= Gy
tures of the tunneling spectroscopy of 2D states in a quan-
tizing magnetic field are considered. The experimental de- :QZD(E—EO,B)D(E,V)|EF+E\,
tails and innovations in the tunneling spectroscopy method
are given in Sec. lll. In Sec. IV, experimental results ob- Ert+eV/dgyp(E—Eg,B)
tained for the tunnel structures with different strengths of the + fEF TD(E’V)
surface potential well are presented and analyzed. Section V
is devoted to the theoretical description of the energy spec- dD(E,V)
trum of 2D states in a surface quantum well of an inverted +0an(E— Eo,B)d—V)d ()

semiconductor. The basic equations used in the calculations _ o o
of resonant 2D states are spelled out. A comparison betweelo a first approximation, the variation @f,p(E—Eo,B)
experiment and theory is discussed in Sec. VI, and, finallywith bias is due to changes Hy, and relationship between

conclusions are made in Sec. VII. Eo and V is linear, i.e. Eo(V)=Eyx(0)+aV and
0o0(E—Eq,B)=0,p0(E—E((V),B). This results in the ex-
Il. OSCILLATIONS OF THE TUNNELING pression

CONDUCTIVITY IN A MAGNETIC FIELD
020=D(E,V)gonl E-Eo(V),Blle _+ev

In principle, the bias dependence of the tunneling conduc-

tivity of a metal-insulator—semiconductor structure contains +aD (V) g E— Eo(V),Blle +ev
information on the energy spectrum of both 3D and 2D states —
that may exist in the surface quantum well of the semicon- —aD(V)gan  E—Eo(V),Blle,

ductor. The investigations of tunneling conductivity oscilla-
tions in a magnetic field permit one to obtain the most reli-
able information on the energy spectrum, because in this
case it is possible to determine directly the positions of the _
Landau levels and energy intervals between them. whereD (V) is the mean value dD(E,V). A magnetic field
Different types of oscillations of the tunneling conductiv- B|[n (n is the normal to the surfagejuantizes the energy
ity may occur in the metal-insulator—semiconductor structurespectrum of 2D states argbp, becomes an oscillatory func-
with 2D states localized in the surface quantum wiiy. 1).  tion of B andE. One can see from expressiof) that two
The tunneling current in such a structure is the sum of thdypes of conductivity oscillation should occur in a magnetic
current due to tunneling to 20j4p) and to 3D (3p) states. field.
The oscillations ofr;p=dj3p/dV versus magnetic field and (i) In the first type, oscillations arise whenever a Landau
bias have been considered earfier”® The maxima inogp  level of 2D states is aligned with the energy+eV [the
occur when the metal Fermi level is aligned with one of thefirst and the second terms in E@)]. If the surface potential
bulk Landau levels of the semiconductor. These oscillationglepends only slightly o, then the positions of these oscil-
are periodic in the reciprocal magnetic field with the period lations allow one to immediately determine the energy spec-
trum of the 2D states by the same procedure as for 3D states
2me [see Eq(1)]. As B—0 the fan chart of these oscillations is
A(Ept+eV)= m' 1) extrapolated to the energy of the bottom of the 2D subband.
(i) In the second type, oscillations appear whenever a
where Er is the semiconductor Fermi energy andLandau level of the 2D states is aligned with the energy
S(EEteV) is the extreme cross section of the isoenergyEg [the third term in Eq(4)]. AsB—0 the fan chart of these
surface at the energ+eV. In semiconductors with an oscillations is extrapolated to the bias at which the 2D carri-
isotropic spectrunS(E) = wk?(E). This gives one the op- ers(but not statesdisappear, i.e., to the bias for which the

(E\V)

Ep+eV dD
+f 920l E—Eo(V),B] av dE, (4
Er
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TABLE |. Parameters of investigated structures.

Structure  x  E4 (meV) m, (10°mg) Np—Np (107 cm™®) Ep (meV) g (meV)® L (10 °cm)?

10-1 0.125 —70x5 6.25 60 —15+5 2755 1.0
10-2 0.125 —70x5 6.25 60 —15£5 2705 1.0
10-3 0.125 —70x5 6.25 60 —15£5 240+5 0.95
10-4 0.125 —-70x5 6.25 60 —15£5 230+5 0.92
10-5 0.125 —70+5 6.25 60 —15£5 2105 0.88
10-6 0.125 —70+5 6.25 60 —15+5 1805 0.8
11-1 0.115 —90*+5 8.0 20 —10+5 2005 15
12-1 0.105 —110£5 9.75 8 —8=£3 275:5 2.75
13-7 0.095 —125+5 11.5 5 —5*2 2605 2.85

&The values are given fov=80 mV for the 10-1 to 11-1 structures, and fé=0 mV for other structures.

bottom of the 2D subband becomes higher than the semicomaetal-insulator—semiconductor structures based on inverted
ductor Fermi level. The amplitude of these oscillations issemiconductors.

proportional to the rate of variation d&, with bias («). The traditional modulation procedure was used for mea-
When a=0 or E,>Eg, these oscillations are absent andsuring the differential conductivity and its derivative
only oscillations of the first type will be observed. do/dV. In some cases a refined method was #8dd.par-

We are not concerned with oscillations of the fourth termallel with a small(about 1 mVf alternative voltage with fre-
in Eq. (4), because an oscillating function is an integrand,quencyf=670 Hz and direct bia¥, impulses with a period
and, therefore, the amplitude of oscillations of this term isT>1/f and durationt<<1/f were imposed across the tunnel
small. contact(Fig. 2). These impulses lead to a change in the elec-
Up to now we have not considered possible oscillations ofric charge of the localized states which occur in the insulator
D(E,V) in a magnetic field. The effects of these oscillationsor at the insulator-semiconductor boundary. If the relaxation
might be dominant in tunnel structures with a monocrystaltime of these states far exceeflsthese impulses result in an
barrier. For such a barrier the decay constant of the wavincrease or decreagdepending on sign of the impulgesf
function in an insulator is rigidly determined by the energy.the strength of the surface potential well. Thus, measure-
Therefore, small oscillations of the surface potengigiFig. = ments taken during the interval between impulses make it
1) give rise to significant oscillations dD(E,V). Oscilla- possible to get information about the energy spectrum of the
tions of ¢ as well as oscillations of the third term in Ed) 2D states with energi:+ eV but for a different strength of
occur whenever a Landau level of the 2D states is alignethe surface potential well.
with the energyEr.'® An analysis of the expressio(B)
shows that the second type of oscillations will be predomi-

nantly observed in such structures. We believe that the oscil- IV. EXPERIMENTAL RESULTS

lations of this kind were observed in HgTe/kgCd,Te Let us consider first the results obtained from the mea-

heterostructure®! surements of the tunnel structures prepared on the most
heavily doped samplé€Table ). The oscillation curves for

. EXPERIMENTAL DETAILS such structures are simpler and therefore easier to interpret.

Typical magnetic field dependences of the oscillatory part of
the derivative of the tunneling conductivity with respect to
voltage at different biases are presented in Fig. 3. Oscilla-

The differential conductivityyy=dj/dV as a function of
bias and magnetic field in metal-insulator HgCd,Te
(0.08<x<0.13) structures was investigated in magnetic
fields up b 6 T at thetemperature of 4.2 K. Tunnel junctions
were fabricated on monocrystallipeHg, _,Cd, Te with the
concentration of uncompensated acceptoid,—Np
=(2.5-60)x 10"cm 3. The doping level was determined
from an analysis of galvanomagnetic phenomena in the tem-
perature range 1.5—-70 K. Ultraviolet illumination for 5-15
min in dry air was used to form a thin oxide, which served as
a tunneling barrier. Then a metallic electro@€b) was
evaporated through a mask. Several tunnel contacts prepared
on each sample were investigated. The parameters of the
tunnel structures are listed in the Table I. It is assumed that
the surface electric field in these structures arises from the
work function difference of Yb and the semiconductor. time

The resistance of our structures is 0.1-£1 &nd is deter-
mined mainly by the barrier transparency because the resis- FIG. 2. Voltage which is applied to a tunnel junction. The volt-
tance associated with the transition of electrons between 2Bge is a sum of a dc biag, an ac modulation voltage with ampli-
and bulk states of the semiconductor is significantly less inudeV,,, and impulses with amplitud; .

voltage
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r re 10-1. . . .
structure 10 FIG. 5. The results of Fourier transformation of the tunneling

. . ) ~_ curves plotted in Fig. 3. A shoulder on a low-field peak for a bias of
tions are observed for both orientations of magnetic field1oo mv for B||n corresponds to tunneling to the bulk Landau lev-

B|ln andBLn. The positions of the maxima aPj/dV? for  ¢ls.
B|In in the B, V coordinates are plotted in Fig. 4. It is clear

that with B|[n, every oscillation curve in Fig. 3 is a convo- the magnetic field and, therefore, the oscillations of the tun-
lution of several components and therefore it is difficult toneling conductivity are due to tunneling to Landau levels of
follow the maxima positions of each component in Fig. 4.pylk states only. Hence, open circles in Fig. 6 correspond to
For better distinction a Fourier transformation of the oscilla-the energy spectrum of the bulk states. The experimental
Flon curves is carried out. .AS shown in Flg 5 Bt n there data are in good agreement with [Eé() dependence calcu-

is only one fundamental field and f@n two fundamental |ated within the Kane model. Therefore using parameters
fields occur in the oscillation curveéa shoulder, whose po- p=8x 1078 eV cm, A= (whereA, is the energy differ-
sition coincides with the maximum position BiLn, is re-  ence between valence batig and split-off I'; band we
solved at some biasesNow one can separate each compO-determined the values d, and the effective mass on the
nent peak, take the inverse Fourier transform, and follow th@ottom of the conduction bandh, for all the structures
positions of the oscillation maxima of any one of the oscil-(Taple ). Extrapolation of this curve tk=0 gives the semi-

lation components independently. The curves in Fig. 4 wergonduyctor Fermi energfE-=—eV, (Fig. 6), which is also
obtained in this way and it can be seen that they adequatelyjyen in the Table I.

describe all the experimental data. o For B||n, oscillations are connected mainly with tunneling
As mentioned abovéEq. (1)] the period of oscillations {5 2p states localized in the surface quantum well of the
A= Bf‘l is determined by the value of quasimomentum. Bias
dependences & for both orientations of magnetic field are
plotted in Fig. 6. 1601 T ' 3140

. . o*
For B1 n, the spectrum of 2D states is not quantized by 140 1120
) 1207 4100
140 - __ 100 lso =
[ S I _ 80 9
120 F £ w0 160 %
L g B ] 9
100 | = 8 {20 @
— i 0 [ )
> 80} 120
E 1 20
bl 50 100 150 4 0
g 60 eVs bias (mV)
5 3 0 I 1 1 1 1 1
40 0 2 4 6 8 10 12 14
I 2 1012 a2
20l k“ (10 cm™)
0 . L . L . "1 . é ' FIG. 6. Bias dependences ki for the structure 10-1. Open and
1 2 3 full circles represent the experimental data Barn and B|n, re-
B (T) spectively. The upper curve is the dispersion law of the bulk elec-

trons, calculated in the framework of the Kane model with param-
FIG. 4. The positions of the maxima of th¥j/dV? versusB etersEg=—70 meV,P=8X 10 8 eV cm. The other curves are the
curves for the structure 10-1 f&{|n. The curves are obtained in the result of theoretical calculations for the 2D states described in Sec.
way described in the text. V. The inset shows the bias dependencepgf
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FIG. 7. Angular dependence of fundamental magnetic fields for V; (V)

the structure 10-1, measured V&&= 80 mV. Dashed line indicates
the cos®) ! dependence. Open and full circles relate to tunneling  FIG. 8. A quasimomentum of 2D states as a function of the
to the bulk and 2D states, respectively. amplitude of impulses for a bias =80 mV, which corresponds

) o ] ) to the energyE=Er+eV=65 meV, for the structure 10-1. The
semiconductor. This is evident from the typical angular de-yashed line shows the valueld of the bulk electrons for the same
pendence Of the fundamental fle|(fsg 7) The reasons f0r energy. Solid curves are mere|y a guide for the eye.
some deviation from the classical angle dependence

- i
B(©)=B(0)/cos(®), where® is the angle betweeB and 10-6 structures, in which (k*)?<2x10%m 3, the only

, di d in Ref. 20. At®>20° th . :
n, were discussed in © © onek™® branch of 2D states exists. The bias dependence of

®-independent maximum, which results from tunneling toth . ¢ t 2D states f f th rruct
bulk Landau levels, is resolved in the Fourier transform' € quasimomentum of 2L states for one of these structures
(structure 10-%over all bias ranges is shown in Fig. 10.

(open circles in Fig. X Thus, Fig. 6 shows that two branches | O

of 2D states exist in this structure and lat-0 they are The more complicated oscillation curves fBfin were
extrapolated to the biag,>0. This means that there are no observed for t““r?e' structures prepared_ on lesser doped
2D states below the Fermi level, i.e., 2D electrons are abseﬁf‘mples' The maxima positions¥h B coordinates are plot-

and therefore only oscillations of the first tygsee Sec. ) ted in Fig. 11 for str.ucture_lzl—l - An inspection of Fig. 11
can be observed. shows that two main oscillation types are observed. The

There are two possibilities for the explanation of thesemaXima of these oscillations shift in opposite directions rela-
jve toV as the magnetic field is varied. The behavior of the

two branches; they are the ground and excited subbands gye » :
2D states or they are two branches of the ground subbar@xima positions with angle shows that both types of the
split by the spin-orbit interaction in the asymmetric quantum

well. An estimation of the difference between the energies of 7

the ground and excited subbandskat0 shows that for G| S

structures based on a heavily doped semiconductor with a & 6 ::g; Ak

small effective masésee Table)l this value should be more gl yi03

than 50—100 meV\a comparison will be given in more detail = m 10-4

in Sec. V). This value far exceeds the experimental one (\: 4 A10-5

(Fig. 6). Thus two branches of the 2D states in structure 10-1  x ¢ 106

(Fig. 6) correspond to two different spin branches of the N<'. T

ground subband which is split by spin-orbit interaction. o2t

Hereafter supercriptst and — refer to different spin >

branches. Analogous experimental results have been ob- r

tained for the 11-1 structure. 0 z r——
The structure 10-1 was also measured with voltage im- 2 3 4 5 7 8 9 10

6

2 12 -2

pulses which change the surface poter{sake preceding sec- (k)" (10°% cm™)
tion) and shift the 2D branches relative to the bulk states. . .

; : - _ . FIG. 9. The differences\(k*)? and A(k™)? as a function of

Figure 8 shows this shift (=80 mV versus the amplitude k*)2 for different structuresy =80 mV. Points for structure 10-1

of the impulses. The distances between the branches of the b btained diff litud ¢ impul Solid

2D states and bulk stat$(k+")2=(k+'_)2—k2 Versus ave been obtained at different amplitudes of impulses. Soli
) bulk curves are the result of numerical calculations carried out with pa-

quasimomentum of the lower branch of the 2D St&&)f  \ameters listed in the table and different band offset values:

are plotted in Fig. 9. The results for the 10-2 to 10-6 Strucp_ =2 ev,D,=1 eV for curve 1,D,=5 eV,D,=1 eV for curve
tures, which differ by the value of the surface potential, are; andb.=1 eV, D,=1 eV for curve 3. Curve 4 and the dashed
also shown in Fig. 9. It can be seen that whéti)? de-  curve are the results of exact and approxinfateaccordance with
creases as the result of reduction in the surface potential, tiRef. 31 calculations with zero boundary conditions for the second
upper branch of the 2D states is pushed into the continuuntomponent of the wave function. The upper curve is the same for
i.e., these localized 2D states disappear, and for the 10-3 tbe calculations with different parameters.
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FIG. 10. Bias dependences kﬁ for structure 10-4. Open and FIG. 12. The bias dependenceske)ffor structure 12-1. SymbOlS
full circles represent the experimental data Rxn andBJn, re- show the experimental data: the open and full circles correspond to
spectively. The upper curve is the dispersion law of the bulk electhe bulk and 2D states, respectively. The dotted curve is the disper-
trons, calculated in the framework of the Kane model with param-Sion law of the bulk electrons, calculated in the framework of the
etersE = —70 meV,P=8x10"8 eV cm. The other curve is the Kane model with parameter;=—110 meV andP=8x10°
result of theoretical calculations for the 2D states described in Se€V ¢m. The solid curves are the theoretical bias dependences of

V. The inset shows the bias dependencergf k?(Er+eV) (curves I', 0%, and 0) andk?(E) (curvesaandb).
The inset shows the bias dependencepgf The hatched regions

oscillations are connected with 2D states. Taking the Fourief"®W the broadening of the 2D energy levels.

transform one can determine the fundamental fields, and us-

ing Eq. (1) one can calculate the quasimomentum of the2D Subband, which is split by spin-orbit interaction, and one
states responsible for the oscillations at any lifig. 12.  Pranch of the excited subband are observed for the structure

The oscillations forBL n as well as those for the structure 12-1(Fig. 12. Such interpretation will be confirmed in Sec.
10-1 are due to tunneling to the Landau levels of the bulkv!- Both types of oscillations connected with tunneling into

states. Thus the open circles in Fig. 12 are the energy spedP States and analogous to Fig. 12, the bias dependence of
trum of the bulk states. The™1 0, and 0" branches cor- the quasimomentum, were clearly observed in the structure

respond to oscillations of the first type, i.e., to oscillations13-7 also. o
arising whenever the Landau levels of the 2D states coincide 't iS significant that at negative biases up\te- —30 mV

with the energyEr+eV. The branches and b relate to W€ observe oscillations of the first type, which occur when-
oscillations of the second type, i.e., to oscillations which€Ver the Landau levels of 2D states coincide with the energy

arise whenever Landau levels of 2D states coincide with th&r+€V. At these energies the 2D states in the surface quan-
energyEg ; therefore branches'Qb and 0 ,a intersect at UM well of the inverted semiconductor are in resonance with

V=0 (Fig. 12. The decrease of the quasimomentum at thdhe valence band states. However, in spite of this fact broad-
energyE=E, with VV (branchesa,b) is a result of the de- ening of the 2D states is not large enough to destroy the

creasing concentration of 2D electrons due to a reduction dfScillation picture. To our knowledge, this is the first experi-
the depth of the surface potential well as bias is increaseliental observation of 2D states which lie significantly below
(inset in Fig. 12. We reason that two branches of the ground!® toP of the valence band.

V. THEORETICAL MODEL

80
60 [ W y To describe the energy spectrum of 2D systems in wide
gap semiconductors, the one-band approximation is usually

40 ; ) .
used. In this case the energy spectrum is parabolic. Such an

20 approach gives good results, because typical energies of 2D
S of states in wide-gap systems are much less than the energy
£ 20k gap. In asymmetric quantum systelesg., in surface quan-
> tum wellg, as a result of spin-orbit interaction, splitting of
40 the energy spectrum arises even without an external mag-
-60 - netic field. It is common practice to interpret the experimen-

.80 F tal data in this case using the Bychkov-Rashba moddie
: ‘ et spin-orbit interaction is described here by one additional
term, included in the dispersion law. It is linear in respect to
guasimomentum, and contains a new parameter, which has
FIG. 11. Fan chart diagram for structure 12-B#n orientation.  to be calculated independently.
The solid curves are merely a guide for the eye. The one-band model is inapplicable in the case of 2D

3
B(T)
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states in narrow gap and inverted semiconductors. The strong
interaction between the conduction and valence band makes
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insulator inverted

it necessary to employ a multiband Hamiltonian in calcula- semiconductor
tions of the energy spectrum of 2D systems. It is well known
that the energy spectrum @?B® semiconductors can be
described by the Kane Hamiltonian. Because the Dirac
Hamiltonian, which is simpler for calculations, gives the
same energy spectrum for electrons in the volume as the
Kane Hamiltonian, the Dirac model is also widely used for
calculations of the energy spectrum of 2D systems in such
materials(see Refs. 11 and 27 and references therélow-
ever, this is not quite correct. It was demonstrated in Ref. 4
that parameters of the energy spectrum of 2D electrons ob-
tained with the Dirac and Kane models are radically differ-
ent. The Kane model was used in our previous article on the
energy spectrum of 2D electrons in HgTe/HgCd,Te
Eggg;gsg;gwﬁg@ J}?:r;c?(rjeelaigu(r:];?ceurle?t];opnosmz)s]: t&:eerr?;rgi FIQ. 13. Model of an insulator—invgrted—semiconductor struc-

. . - 97ture with a surface quantum well used in the calculations.
spectrum of 2D systems near the oxide-semiconductor inter-
face.

There is difficulty in choosing the boundary conditions atculated dependence of the energy of the ground 2D subband
the oxide-semiconductor interface, because the energy ba/f the value oD, , while the value oD is fixed (for details
structure of oxide is unknown. The interaction with remoteS€€ Ref. 2% The splitting of the 2D subband into two
bands is usually neglected in the Kane model, when it is useBranches 0 and 0 results from spin-orbit interaction. It is
for finding the spectrum of 2D electron states. Then theFléarly seen that the zero boundary condition used in Ref. 31
Schralinger equation is the system of ordinary differentialis @ limiting caseD,—« and the limit is reached very
equations, and traditional boundary conditiof# (=0 at the slowly. The_ results obtained in the above_r_nodel come close
interface lead in this approximation to the existence of ato the solution of the zero boundary condition problem only

unique solution: the wave function is equal to zero over al@tD,>100ev. _ .
space?® The approach discussed above neglects the interaction

One way out of this dilemma is to reduce the system ofwith remote bands which corresponds to infinite heavy hole
ordinary differential equations to one equation of second ormass. This is suitable for calculation of the energy spectrum

der which corresponds to one component of the wave funcf 2D electrons only for positive energies. When the energy

component®?°-31This is a good approximation for 2D elec- tinuous spectrum of the heavy hole valence band. It is im-
tron states in wide gap semiconductors, in which one com-
ponent of the wave function is much greater than the other.
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However, all the components are of the same order of mag- 140 I
nitude in narrow gap and inverted semiconductors, and addi- 120 —\
tional arguments are needed as to why only one component s
has to go to zero at the semiconductor-oxide interface. 100 |

Another approach has been suggested by Sobkowicz in < so-
Ref. 28. Here, the assumption is made that the band structure @ I
of the insulator is similar to that of the semiconductor. The & 60 L
only difference is the value of the energy gap, which is much W I
greater for an insulator than that for a semiconductor. More- 40 -
over, the conditiorD.,D,>E (whereD., D, are conduc- I ot
tion and valence band offsets, respectiyaslgems to be natu- 0 T
ral, because neither electrons nor holes have to be emitted . w B
from the semiconductor. Figure 13 presents schematically 0 1 10 100
the model band structure for the case of inverted semicon- D, (V)

ductors. Because the electrostatic potential is constant at

z<—d an_d z>L, th? exact wave _funCtlons are known in FIG. 14. The dependence of the energy of two branches of the
these regions. In Fh's case the glgenvalue _problem can bg ground subband &=3x10° cm! on the valence band offset
solved exactly using the techniques of direct numerical 5 e whileD, is kept constanb.=1 eV. The dashed lines are the

: (24
Integration: _ energies of the branches calculated under zero boundary conditions
Thus in the framework of this model one can understandor the second component of the wave function at the insulator—

which insulator parameters correspond to the zero boundafverted-semiconductor interface. The calculations have been car-
condition for the second component of the wave functionried out with parameter€,=—70 meV, P=8x10 ¢ eV cm,
(see expressiond) and (9) which follow] used in Ref. 31. N,—Np=6x10® cm 3, p,=240 meV, and for parabolic surface
This can be understood from Fig. 14, which shows the calguantum well.
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portant to take remote bands into consideration in the calcuence band’g and the split-offl"; band is very large. In this
lation of the energy spectrum in this energy range, becausgase, the Kane Hamiltonian is &x@ matrix. We choose the
the tunneling of the carriers from the space charge layer tdirectionz to be normal to the interface, and the direction of
the volume of a semiconductor can lead both to a change ithe carrier motion along. Then the Hamiltonian can be
the energy and a broadening of the 2D states. block diagonalized into two 83 Hamiltonians for two

To calculate the energy spectrum of 2D states taking regroups of states. The Hamiltonian matrix for the first group
mote bands into consideration, the usual assumption h3s yefined by

been made, that the energy differentg between the va-

2 k J
in/opl -2 = Els+eop(z
i \/;P > az) ®(2)
72 &2
+ _ _ 2_ 7
H™= om Y1 ky (922) 0 ’ (5)
i
- —Pk 0 E's+eq(2)
N

Toam MUY o2

whereE"s andE"s are the energies of corresponding band y1h2

edges,y; is the parameter that describes the interaction with (E— EFG)( E—E's+ W(kﬁ k2) | =5PA(Ki+K2).

the remote bands, andz) is the electrostatic potential. The @)
valuesP and vy, are assumed to be the same for both the ) )
semiconductor and insulator. The Hamiltoniein for the ~ The second type corresponds to the heavy particle and is
second group of states is obtained fra#i by replacing 0

ky by —k,. Thus, the Schidinger equation

H* ¥ =E*W¥ (6) — Pk .
\p(h)(kwkz): \/5 eikyy+ikzz (9)

is a system of differential equations of second order, which 2 ik

determines two branches of the energy spectrum correspond- 3P( k,+ 7y>

ing to two groups of states. The eigenvectors in the insulator

and the volume of the semiconductor are known, because

¢(2)=const atz<—d and z>L. There are two types of [°f the energy

eigenvectors. The first type corresponds to a light particle y 12

and is E=E"s+ W(k§+ k2). (10)

52K2 The wave function in the insulatoP, can be written as a

E+y,——Els linear combination of*(™ and ¥,

2m
W=k, — k) +CU (K, —k), (11
2 ik
y . .
\If“)(ky,kz): \[gp( k,— _> etz (7) whereC is some as yet unknown multiplier. Here only the

2 terms that diminish at—o are given.
In the regionz>L the wave function is given by

Pk Wso=CaW M (ky k) + Co¥ Dk kL)

ol -

+CaWM(ky, — kM) +C ¥ Dk, —k). (12)

where the energy for fixe#l, andk, is obtained from the In Egs.(11) and(12), k¥, k" stand for the quasimomen-
equation tum components perpendicular to the interface, which for
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any givenk, andE are determined fron(8) and(10), respec-

tively. Because only normalized solutions are of interest . 6 1
here, the coefficien€, in (12) has to be zero. So, we can K'=3.3x10" cm
now state the problem, which can be numerically calculated: ™ E=8.3 meV
at a fixed energy one needs to find a valueCofor z<—d = L
such that subsequent numerical integration of the Schro 3
dinger equation throughout the region of the potential results @ ; . ; . r
in a zero value folC,. s 0 2 4
The behavior of the potential(z) in a semiconductor is < k*=2.75x10°% cm
determined from the Poisson equation for the charge density, > E=-19.2 meV
p(z)=—€|Na—Np|LI(L-2)
EF T T T v T
—e> fE 9(E)|¥(E,2)|*dE, (13 0 2 4
I

z (10%cm)
where the summation runs over all occupied 2D subbands.
E; denotes the energy of the bottom of fite subband. The FIG. 15.|®|* versusz curves for resonanfower figure and
second term describes the contribution of the electrons locaronresonantupper figur¢ 2D states. The parameters used are in
ized in the quantum well. In the absence of 2D electidnis  the text.
situation occurs in the 10-1 to 11-1 structyrethe second ] )
term in(13) is equal to zero, and the Poisson equation can b&€nce of the electrostatic potentialp(z) and the

solved exactly. Thew(2) is parabolic, semiconductor-insulator interface, treated as a scattering po-
tential,
: [@S(l—Z/L)Z, O<z<L 14 [
o 0, z>L, 920% —;\2 ' (15)

where . . . .
whereA is the amplitude of | at z>L and the integration

2kKkgps |12 runs over the space charge Ia_yer region. _

m) ) Figure 16 shows the density of states corresponding to

A D two groups of states, calculated for different values of qua-
and « is the dielectric constant. For the structures with asimomentumk (in the following, k meansk,). It can be
concentration of 2D electrons comparable M, Np)xL  clearly seen that the width of the maxima rapidly increases
(as in structures 12-1 and 13;®ne needs to calculate the with decreasing quasimomentum values. A peculiar feature
potential self-consistently. We use here the assumption made that the width of the maxima corresponding to thée 0
in Ref. 24, namely, at the calculations of the charge densitpranch is greater than that of the (ranch at the same
distribution we suppose that the wave function is energy inenergy. This means that the tunneling of 2D electrons to the
dependent (E,z) =V (Eg,2). valence band states is more effective for states of the 0O

Let us now consider peculiarities of the 2D states resultbranch. Atk=0 the 2D energy levels become well defined
ing from resonance with the heavy hole band. All the resultegain®
demonstrated in this section have been obtained with the The dispersion lanE(k) of 2D electrons calculated for
following parameter valuesE,=—110 meV,P=8X 108  the described model with the above parameters is presented
eVcm,y;=2,Na—Np=1x10"® cm 3, k=20, and a para- in Fig. 17. AtE>0 the results coincide with those obtained
bolic dependence ap(z) with =275 mV.D,=2 eV and  without considering the remote bands. At negative energies
D,=1 eV are usedthe choice of these values will be justi- When the 2D states are resonant, the energy levels are broad.
fied in the next section The calculations show that the This broadening is shown in Fig. 17 as hatched regions. The
variation of the value of interface widtt in the range 5-50
A does not have a practical effect on the energy spectrum of
2D states. 293 X02 528

Figure 15 shows the dependence of¥(z)|? for two

¢s=¢(0), L=(

! — -20p=———275 E x5 EI
energy values, corresponding to nonresondat-Q) and 2 . :
resonant E<0) 2D electron states. It is clearly shown that £ 25 173
the wave function does not decay in the semiconductor re- 3 4o} 55 ? 141

. . . . [0
gion (z>L) at negative energies. This means that the charge g k'=1.0x10% cm™
carriers from the space charge layer may go into the volume K*=2.0x10° om”!
of the semiconductor; its wave function is transformed from -60
an electron into a heavy hole wave function in the process. 0 20 40 60 800 20 40 60 80

To find the broadening of the 2D energy levels associated
with such a resonance, one may turn to the scattering theory,
namely, Levinson’s theored?:*2 This allows a calculation ~ FIG. 16. The density of resonant 2D states for different quasi-
of a density of states, added to the valence band by the presromentum values for 0 (a) and 0" (b) branches.

density of states (arb. units)
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FIG. 17. The dispersion law of the 2D states localized in a FIG. 18. The energy of the bottoms of the ground and first
surface quantum well. Two subbands split by spin-orbit interactionexcited 2D subbands as a function of surface quantum well depth,
are shown. The hatched regions show the broadening of the 2Balculated with parameters of structure 10-1.
energy levels. The 2D states of thé ®ranch are distroyed in the
rangek?=(0.3—3.0)x 10> cm 2 due to the high probability of rametersD., D,, and bias dependence of should first be
tunneling into the heavy hole states of the volume of the invertecdetermined. The experimental results for the structures 10-1
semiconductor. to 10-6 provide a way of estimating the paramet@gsand

D, independent okpg(V). In reality, we can calculate the
width of these regions is defined here as the half width of thep, relationships of the quasimomentum for the upper
peak of the density of 2D statésee Fig. 16 In the narrow k™ (¢¢) and lowerk™ (¢s) branches of the 2D states at a
range ofk®=(0.3—3)x 10" c¢m™ 2, the width of the density fixed energy. Then eliminatings we obtain ak~ versus
of states peak is very large, i.e., the 2D states are practically" dependence which is shown in thék™ )2, (k*)? co-
destroyed in this range. ordinates in Fig. 9 for different values &, andD,. The

Earlier, the resonance broadening of 2D states was disnspection of Fig. 9 shows that the results are not very sen-
cussed in Ref. 28 for narrow gap semiconductors and in Rekitive to D, and D, as long asD. and D,>E4 and
31 for semiconductors with an inverted spectrum. In thesg ~D, . But whenD,>D_ and especially in the case when
articles the tunneling to light hole states was taken into ach =, which corresponds to the zero boundary condition
count, but tunneling to heavy hole states was neglected. Ifor the second component of the wave function, the results of
such an approximation the broadening of 2D states in inthe calculation significantly deviate from the experimental
verted semiconductors occurs only at the energy less thawsults. On first sight it seems to be surprising that the au-
E"s in the bulk of the semiconductor. As shown above, thethors of Ref. 31 were able to explain the experimental results
tunneling to the heavy hole states is effective and this proon the spin-orbit splitting of the 2D energy spectrum using
cess has to be taken into account in inverted semiconductorsuch a boundary condition. An analysis of this article shows
that this is due to using the approximatguasiclassical
method of solving of eigenvalue problem in Ref. 31. Indeed,
as is seen from Fig. 9, the results of the approximate calcu-

Let us begin with the discussion of experimental resultdations(dashed ling differ significantly from the exact solu-
obtained for the tunneling structures 10-1 to 11-1, based otions (line 4), but they are in better agreement with the ex-
heavily doped materials. perimental data.

As mentioned above, there are two ways to understand the Figure 9 shows that the more suitable parameters are
presence of two branches in the energy spectrum of the 2D.=2 eV,D,=1 eV, and they will be used for the analysis
states in the 10-1 structure. They are either ground and exf the results for all tunnel structures.
cited 2D subbands or two spin-split states of the ground 2D We have calculated the bias dependence of the quasimo-
subband. The calculations carried out in the framework ofmentum of the lower spin branch over the entire bias range
the above model shovsee Fig. 18that as the surface po- for structure 10-1, using the surface potentialas a fitting
tential increases, the excited subbankat0 appears only paramete(inset in Fig. §. With this ¢,(V) relationship we
when the energy of the ground subband is less thd®0 have calculated the position of the upper spin branch of the
meV (this value only slightly depends on the valuesyf 2D stateqgFig. 6). One can see the good agreement with spin
andD,). This is in contradiction with the experimental re- splitting over the whole energy range. Notice thatat0 the
sults presented in Fig. 6. Indeed, extrapolating the experienergy of the 2D states coincides with the energy of the
mental curves tdk=0 results in an energy difference be- bottom of the conduction band, i.e., the binding energy of the
tween these branches that does not exceed 10 meV. Thu&D states ak=0 is equal to zero. This is a specific feature of
these two branches of the 2D states are two spin branches thfe 2D states in an inverted semiconductor for weak quantum
the 2D subband split by spin-orbit interaction. well strengths.

For quantitative analysis of the experimental data, the pa- Curve 1 in Fig. 9 shows that the upper spin states must

VI. DISCUSSION
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disappear, whem (k*)? for the lower spin branch is less states have been obtained from an analysis of oscillations of
than 4x 10 cm 2, which corresponds to a small surface tunneling conductivity in a magnetic field, but the calcula-
potential o< 230 meV. Actually for the 10-3 to 10-6 struc- tions were carried out without a magnetic field. For the com-
tures only one spin branch exists over the whole energyarison of the calculated results with the experimental data,
range. This is illustrated by Fig. 10, which shows the energythe assumption was used that the quasiclassical rule for the
versus quasimomentum curve for one of these structdf®s quantization of the energy spectrum of 2D states in a mag-
4). It can be clearly seen that the model employed describesetic field was fulfilled. To check this assumption, calcula-
the experimental data for these structures well. tions of the Landau levels were also carried out. It was
Let us inspect the results for the structure 1@&Flg. 12.  shown that except for the low surface potential values, when
Contrary to structures of the first tyg@0-1 to 11-), there  the energy difference between 2D and bulk states with the
are 2D electrons in this structure. Their concentration can bgame quasimomentum was small, the quasiclassical rule for
determined from the bias dependencesofor oscillations  quantization in magnetic fields was fulfilled with good accu-
of the second typébranchesa andb in Fig. 12. The con-  racy. Some results of these calculations and analysis of the

. . . _ 2 72 _
centration is varied fzronmz[%—l.Sx 10 em 2 atV=—60  peculiarities of the behavior of 2D Landau levels were dis-
mV to n,p=1.0x102 cm 2 at V=50 mV. An estimation cussed in Ref. 20.

of the density of uncompensated acceptors in the space
charge region gives a value of aboux 202 cm™?2, which

is of the same order of magnitude rag,; therefore the self-
consistency of the potential has to be included in the calcu-
lation. Knowing the density of 2D electrons at different bi-
ases(see Sec. IY and using a self-consistent procedure we

have calculated the bias dependence of the surface potential ) )
(inset in Fig. 12. One can see that, for the structure 12-1 The energy spectrum of 2D states localized in a surface

is close to that of the structure 10-1 but due to the loweduantum well in an inverted semiconductor was studied by
doping level(Table ) the width of the potential well is sig- tunneling spectroscopy in a quantizing magnetic field. In the
nificantly larger, so that the strength of the potential well isinvestigated structures the strength of the potential well
also larger and more than one 2D subband is localized ifnainly depends on the width of the well, which is controlled
such a well. Using this relationship betweeg and bias we by the doping level: it increases when the acceptor concen-
have calculated the quasimomenta of 2D states over the etration decreases. Two different cases were observed in our
tire energy rangécurves 1", 0~, and 0" in Fig. 12. Curves  structures.
aandbin Fig. 12 present the calculated values of the quasi- In the structures based on heavily doped material only the
momenta for both spin states at the eneEyyEr. As can  ground 2D subband exists and its bottom coincides with the
be seen, there is good agreement for both types of oscillsottom of the conduction band. Thus, prtype material
tions over the whole bias range. Thus, both spin branches @here are no 2D electrons and only empty 2D states exist. At
the ground ZD -Subband and lower Spin branch Of the eXCiteﬂ;& 0, the 2D ground subband is Sp“t by Spin_orbit interac-
subband exist in the surface quantum well of this structure tion. |n structures with a larger potential well strength, both
As was mentioned abovSec. V), the 2D states should gpin pranches are observed, whereas in other structures the

broaden at negative energy due to resonance with the valengener gpin states are pushed into the continum and only the
band. This broadening is shown in Fig. 12 as well as in Figyjer spin branch is observed

17 by hatched regions. One can see that at the bias where | | the structures based on materials  with
oscillations were observed experimentally, broadening doe, _N~<10" cm~3. the strenath of the potential well is so
not exceed 5 meV, i.e., it is less than the cyclotron energy in A P ' '9 P 1al WeTLIS S

the investigated semiconductors at the magnetic fields, Whellgrge that the grqund and ex0|ted.2D subbands exist in these
oscillations were detected(1 T). With a more negative structures. In this case, both spin branches of the ground

bias, the broadening becomes significantly larger and this il;bband and only the lower spin branch of the excited sub-

a possible reason why we do not observe oscillations at the¥"d are observed. In these structures the bottom of the
biases. ground subband lies significantly lower than the bottom of

Two comments are necessary in closing this section.  the conduction band and the 2D states are in resonance with

At first sight it may seem that the model of the insulatorthe valence band over a wide energy range. The fact that
used for calculations of the energy spectrum of 2D states i@scillations relating to tunneling to such states are observed
our structures is forced. What actually happens is that thishows that the resonance broadening is not large and the 2D
model imposes some relationships between the componergtates are not destroyed at these energies.
of the wave function at the interface. Any insulator consid- Theoretical calculations carried out in the framework of
ered in the framework of theP method imposes some rela- the Kane model describe well all the peculiarities of the en-
tionships between the components too. The only point isergy spectrum and spin-orbit splitting of 2D states in in-
then, what relationships it imposes. In inverted and narrowerted semiconductors. Theoretical calculations which take
gap semiconductors the amplitudes of all the components atie finite value of the heavy hole effective mass into account
about of the same value; therefore a widely used zero boundiave shown that the broadening of 2D states due to reso-
ary condition for one of the components of the wavenance with the heavy hole valence band is large only over a
functiont®?°~31seems to be artificial. narrow range of quasimomentum values. This is consistent

All the experimental results on the energy spectrum of 2Dwith the results of our tunneling experiments.

VII. CONCLUSION
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