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Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
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Finite graphite systems having a zigzag edge exhibit a special edge state. The corresponding energy bands
are almost flat at the Fermi level and thereby give a sharp peak in the density of states. The charge density in
the edge state is strongly localized on the zigzag edge sites. No such localized state appears in graphite systems
having an armchair edge. By utilizing the graphene ribbon model, we discuss the effect of the system size and
edge shape on the special edge state. By varying the width of the graphene ribbons, we find that the nanometer
size effect is crucial for determining the relative importance of the edge state. We also have extended the
graphene ribbon to have edges of a general shape, which is defined as a mixture of zigzag and armchair sites.
Examining the relative importance of the edge state for graphene ribbons with general edges, we find that a
non-negligible edge state survives even in graphene ribbons with less developed zigzag edges. We demonstrate
that such an edge shape with three or four zigzag sites per sequence is sufficient to show an edge state, when
the system size is on a nanometer scale. The special characteristics of the edge state play a large role in
determining the density of states near the Fermi level for graphite networks on a nanometer scale.
[S0163-182696)11048-1

I. INTRODUCTION that the tubular circumferential vectéalso called the chiral
vector in the literaturecritically controls whether the elec-
Graphite-related materials have long been a subject of intronic state is metallic or insulating. These studiesmoelec-
terest. Recent attention has focused on porous carbons higen networks of nanometer dimensions show that the char-
cause of their large specific surface a(88A). For example, acteristic = electronic structure of carbon materials is
some activated carbon fibe(ACF'’s) show extremely high essentially controlled by the network structuresf carbon,
SSA (up to 3000m?/g) corresponding to a high affinity for i.e., the topology of the mobiler electrons.
gas adsorptioh.Materials having such high SSA’s, with a  Some recent studies on carbon nanottBedso suggest
huge exposed graphite surface, are good targets for applicthat there might exist a new kind of nanotube. The newly
tions, such as filters and capacitors. One of the most excitingroposed structural model is not simply a cylindrical form,
current interests in porous carbons is as an alternative m@&s the ordinary nanotube is considered to be, but a quite
dium for high-capacity lithium ion batterie$. defective form having a lot of edge dislocations. It should be
In spite of the many possible applications of porous carnoted that these nanotubes may also have other defects in
bons, the basic understanding of the functionality of thesé¢heir 7 electron networks. One such defect is edge In
materials has not yet been achieved. Even their structure ylindrical tubules, carbon atoms all bond to three neighbor-
not clearly understood. For ACF’s, nothing more than aing carbons as in a graphite sheet. Defective nanotubes, how-
simple structural model consisting of an assembly of minuteever, may have some edge sites where there are only two
graphite fragments has been propo3dflach fragment is neighboring carbons. Since the mobiteelectrons are situ-
considered to have a size of 2—3 nm in plane and 3-4 turated in topologically different circumstances at edge sites,
bostratically stacked layers, based on observed Raman spdbeir 7 electronic states may be affected significantly.
tra and x-ray diffraction measuremeft3iny graphite frag- The existence of defective nanotubes introduces a new
ments of a nanometer length are termed micrographitegategory ofs electronic systems which may also be appli-
which are believed to be the main components of porougable to some porous carbons, i.e., nanometer-sized graphite
carbons. fragments with edges. The precise structure of porous car-
We cannot fully understand the functionality of these car-bons is far from being understood at present, because of their
bon materials without knowing the structure from a micro-high degree of disorder. Porous carbons may have dangling
scopic view, i.e., the structure as a networksgf carbon bondssp® bonded carbons, and functional groups, all affect-
fragments. Studies on fullerene molecules tell us that théng their functionality. However, they also have some nano-
topological structure of asp? carbon network critically con-  scale regions where the crystal structure of graphite is well
trols its 7r electronic structure and functionality as a material.developed. We thus propose that porous carbons may have
In the closed cages of fullerene molecules, the relative armany edge sites on the periphery of their micrographite con-
rangement of the 12 pentagonal rings, which act as pentagstituents.
nal defects in the graphite network, generates a variety of Our attention in the present work focuses on nanometer-
7 electronic states. Carbon nanotubes further demonstratgeale = electronic systems which are confined by edges.
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FIG. 1. The network skeleton of an armchair ribb&= 10) (a)
and a zigzag ribbonN=5). (b) The edge sites are indicated by
solid circles on each side. Periodic boundary conditions are as-
sumed for the edges. The arrows indicate the translational directions

of the graphene ribbons. K
Such graphite networks may have an electronic structure a*|
which is somewhat different from that of bulk graphite, since K

quite a large fraction of the carbon atoms sit on the edge.

There are two basic shapes for graphite edges, namely, . )
armchair and zigzag edges. Some theoretical Wdton the FIG. 2. Energy band structute) and unit cells in real spade)
electronic structure of finite-sized graphite systems, either a%fd reciprocal spade) of 2D graphite. The vectorsanda* (z and
molecules or as one-dimensional systems, has shown that) relate to armchaifzigzag ribbons(see textin (b) and(c). The =
graphite networks with zigzag edges have a localiedge valence and conduction bands make contact at the degeneracy point
stateat the Fermi level, but those with armchair edges have®
no such state. The edge structure of a real micrographite
fragment is naturally considered to be more irregular anctach side. Throughout this paper, the dangling bonds on the
complicated. The main purpose of this paper is to examinedge sites are all assumed to be terminated by hydrogen at-
whether or not the edge state survives in finite-sized graphitems, and the dangling bonds make no contribution to the
structures with general edge shapes, where the edges can dlectronic state near the Fermi level.
described as mixtures of both armchair and zigzag sites. To To calculate the electronic states for the ribbon, we em-
study the relationship between theelectronic structure and ploy a tight-binding band calculation within the Ekel ap-
the edge shape, we consider a series of one-dimensiongfoximation, in order to focus our attention on the relation-
graphene ribbons systematically, as a function of the edggnip petween ther electronic structure and the edge shape.

shape. By examining the electronic structure of graphene ribryansfer integrals between the nearest-neighbor sites are all
bons of different widths, we obtain the size effect of the edgeyot 4t ¢ for simplicity. Although electron-electron and

Sta_}_ehgneIzcr;?onrﬁgngfﬁjrcflffeleaf raphene ribbons havin armelectron-phonon interactions are also important in real sys-
. . : grapher g ar tems, we do not consider these interactions in the present
chair and zigzag edges is reviewed in Sec. I, emphasizin

the mathematical nature of the edge state. In Sec. lll, W%\/ork, since we aim herg FO rgveal the intrinsic dlfference n
develop the electronic structure of graphene ribbons wit e 7 electronic state originating from the topological nature

general edge shapes, giving special emphasis to the size &I_the various ribbon edges.

fect on a nanometer scale. Section IV is devoted to discus- We Start with the band structure of a two-dimensional
sions of the edge state in graphene ribbons. (2D) graphite sheet, since the corresponding band structure

of graphene ribbons can be predicted from that of the 2D
graphite sheet, which is a zero gap semiconductor, as shown
in Fig. 2(@). The upper and lower bands are degenerate at a
single pointK in the Brillouin zone(BZ), and at eactK

In this section we review the electronic structure of point, the electronic bands(k) show a lineark dispersion
graphene ribbons with armchair and zigzag edges. We carelation. The real and reciprocal spaces of 2D graphite are
cut a graphene sheet along a straight line as shown in Fig. depicted in Figs. @) and Zc). Taking a rectangular real
to illustrate the two prototype edge shapes, namely, the arnspace unit cell, as shown in Figi®, makes the BZ fold into
chair edgdFig. 1(a)] and the zigzag eddéig. 1(b)] with a  a rectangle, which is half as large as the hexagonal BZ
difference of 30° in the axial direction between the two edgeshown in Fig. 2(c). The unit vectora (z) denotes the trans-
orientations. Figure 1 thus shows the two basic graphenktional axis of an armchaiizigzag ribbon, and the shorter
ribbons which are defined as one-dimensional graphite netlongep side of the rectangular BZ is the one-dimensional
works confined by a pair of parallel armché&nigzag edges BZ of armchair(zigzag ribbons. The global band structure
on both sides. of graphene ribbons having armchétnigzag edges is then

The ribbon widthN denotes the number of dimer lines for predicted by projecting that of 2D graphite onto the corre-
armchair ribbons and the number of zigzag lines for zigzagponding axis* (z*) using the zone-folding technique. The
ribbons. The edge sites are emphasized by solid circles dinear dispersion relations stemming from the origital

1. GRAPHENE RIBBONS WITH ARMCHAIR
AND ZIGZAG EDGES
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FIG. 4. Calculated band structurds(k) of zigzag ribbons
[N=4 (a), N=5 (b), andN=6 (c)], calculated band structure of a
FIG. 3. Calculated band structutgk) of armchair ribbons of  zigzag ribbon(d), and the projected band structure of 2D graphite
various widthdN=4 (a), 5 (b), and 6(c)], calculated band struc- onto a zigzag axi¢e). See the caption of Fig. 3.
ture of an armchair ribbon o=30 (d), and the projected band
structure of 2D graphite onto an armchair afes Dashed lines in
(e) indicate the boundary of the first BZ where the zone-folding
technique should be applied.

bands atk= = does not originate from the intrinsic band
structure of 2D graphite, and the corresponding wave func-
tions are completely localized on the edge sites. These two
point are expected to appear aroukd 0 (|k|=2#/3) for  special center bands get flatter with increasing ribbon width.
armchair(zigzag ribbons. We show the band structure for the zigzag ribbdh=30)

The calculated band structures of armchair ribbons aréogether with the projected band structure of 2D graphite in
shown in Figs. 8&)—3(c), for three different ribbon widths. Figs. 4d) and 4e). A pair of almost flat bands appears
The wave numbek is normalized by the primitive transla- within the region of 2r/3<|k|< m where the bands sit in the
tion vector of each graphene ribbon, and the endfgis  very vicinity of the Fermi level. No such flat band is ex-
scaled by the transfer integralthroughout this paper. The pected for the projected band structure of 2D graphite. As
top of the valence band and the bottom of the conductiorseen in Fig. 4d) the second lowest conduction band shows a
band are located &t=0, as expected. It is interesting to note dip near|k|=2/3, where the highest valence band below
that the ribbon width critically controls whether the system isthe center bands shows a rise, approaching closer to each
metallic or insulating. As shown in Fig.(), the system is other asN increases, thereby reproducing the electronic state
metallic whenN=3M —1, whereM is an integer. This pe- around the originaK point in 2D graphite.
riodicity can be mathematically understood by regarding the By examining the charge density distribution, we find that
system ak=0 as a ladder network and the wave function the electronic states in the almost flat bands correspond to a
is obtained analytically* For the insulating ribbons, the di- state localized on the zigzag ed§eé?® We then derive an
rect gap decreases with increasing ribbon width and tends tanalytic expression for the electronic wave functions for the
zero in the limit of very largeN. In Fig. 3d), we show the edge state by considering a semi-infinite graphene sheet with
calculated band structure of an armchair ribbdh=30) to-  a zigzag edgé! The analytic form of the wave function is
gether with the band structure of 2D graphite projected ontalepicted in Fig. 5.
an armchair axi§Fig. 3(e)]. It is seen that the projected band  Considering the translational symmetry, we can start
structure of 2D graphite is almost reproduced by that of aonstructing the analytic solution for the edge state by

wide armchair ribbon. letting the Bloch components of the linear combina-
For zigzag ribbons, however, a remarkable new featuréion of atomic orbitals (LCAO) wave function be
arises in the band structure, as shown in Figg)-4(c). ...,ek(~D glkn gk(+1) = on successive edge sites,

Here we see that the highest valence band state and the lowheren denotes a site location on the edge. Then the math-
est conduction band state for the zigzag ribbons are alwaysmatical condition necessary for the wave function to be ex-
degenerate ak= 7, though the degeneracy is expected toact for E=0 is that the total sum of the components of the
appear atk| =2#/3 on the basis of the projected band struc-complex wave function over the nearest-neighbor sites
ture of 2D graphite. We find that the degeneracy of the centeshould vanish. In Fig. 5, the above condition is as follows:
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FIG. 6. The flatness index for the center bangsof a zigzag
ribbon vs the ribbon widthN. The flathess index approaches a
maximum of 1/3 adN goes to infinity.

FIG. 5. An analytic form of the edge state for a semi-infinite i o
graphene sheet with a zigzag edge, which is emphasized by bofnd then examine the edge-shape effect by considering the
lines. Each carbon site is specified by a location indegn the ~ graphene ribbon to have a general edge shape which is de-
zigzag chain and by a chain order index from the edge. The fined as a mixture of zigzag and armchair sites.
magnitude of the charge density at each site, such gsandz, is
obtained analyticallysee text The radius of each circle is propor-

tional to the charge density on each site, and the drawing is made A. Size dependence on the edge state

for k=7#/9. In a semi-infinite graphene sheet with a zigzag edge, a
perfectly flat energy band appears in the range of

ek(1) 4 glkny =0, elknt k(=1 y=0, and 2w/3<|k|<w. The wave function is entirely localized at

x+y+z=0. Therefore, the wave function componemts K=, but it penetrates into the inner sites, kashifts away

y, and z are found to be[—2cosk/2)]e*(""¥2  from =. In zigzag ribbons, the wave function penetration

[—Zcos(</2)]eik(”*1’2), and [_2005(42)]2@“, respec- from both edges results in a small gap in the range of
tively. We can thus see that the charge density is propor2m/3<|k|<sr. Since an infinitesimak deviation froms can
tional to [2cosk/2)]?™ at each non-nodal site of theth ~ make a gap, no flat band exists in the strict sense. The pen-
zigzag chain from the edge. Then the convergence conditiofitrating wave function, however, decays exponentially on
of | —2cosk/i2)|<1 is required, for otherwise the wave func- successive inner zigzag chains. The magnitude of the gap at
tion would diverge in a semi-infinite graphene sheet. Thisa specifick point therefore depends on the ribbon width. As
convergence condition defines the regionr/2<|k|<= shown in Fig. 4, the wider the ribbon, the larger the range of
where the flat band exists. Now we can see that the resultaktvalues over which the bands are almost flat.

nonbonding orbital is a wave function, which penetrates The almost flat bands near the Fermi level are expected to
from the edge sites to the inner sites, decaying by a dampingive rise to a remarkably sharp peak in the density of states,
factor of —2cosk/2) per zigzag chain. In Fig. 5, the radius Where the charge density is extremely localized on the edge
of each circle is proportional to the charge density, and th&ites. It should be noted, however, that only the pair of center
drawing is made folk=7=/9. The edge state of a semi- bands contribute to the localized state, and only in the region
infinite graphene sheet is a special state that analytically corf 27/3<|k|<. All of the other N—2 bands, except for
nects the localized state lat= 7 and the delocalized state at the two center bands, tend to reproduce the band structure of
|k|=2/3, which is nothing but the electronic state of 2D 2D graphite, as projected onto the zigzag direction. The im-
graphite at the Fermi level. portance of the edge state should thus be measured in a nor-
malized way.

We quantitatively evaluate the relative magnitude of the
edge state by introducing the flatness indgxand »,, de-

We demonstrated in the previous section that zigzag ribfined asn.=ng_o/nc and 7,=ng~o/n,, whereng is the
bons show a localized edge state at the Fermi level. Considdumber of the states witkE~0 andn (n,) is the total
ering a semi-infinite graphene sheet with a zigzag edge, waumber of states in the centéall) bands. In Fig. 6, the
showed the mathematical features of the edge state. In thfiatness index for the pair of center banggis plotted for
section we show how the edge state affects the electronigigzag ribbons having various widths. In computing and
structure of real nanoscale graphite systems, such as thosm, the electronic states withE|<0.002 are treated as
occurring in porous carbons. Since those real graphite sy&=~0. The flatness index. monotonically increases as the
tems have a rather complicated structure, we have to conibbon gets wider. It is expected thaj, will converge to
sider many factors which could affect the properties of thel/3, corresponding to the range ofr®3<|k|<= where a
edge state. In the following subsections we discuss the sigserfectly flat band appears in the first BZ of a semi-infinite
nificant parameters which control the properties of the edgg@raphene sheet.
state, i.e., the system size and edge shape surrounding theWe next plot the flatness index for all the bangg to
graphite network. We first examine the size dependence afvaluate the relative importance of the edge state within the
the edge state by taking the ribbon width as a size parametenqtal electronic structure of a zigzag ribbgRig. 7). The

Ill. GRAPHENE RIBBONS WITH GENERAL EDGES



17 958 NAKADA, FUJITA, DRESSELHAUS, AND DRESSELHAUS 54

0025 T ()
% pe_se s
g . o4 o4 b1
a o %, g9 9 LSS 2
0.015- % ] b BB (0) L HL b B
o X ¢ od” od b LI D
g T 5 N FHE D Bd pE b
0010 o - 950000 =Sl
00051 M (b) . .. !‘Q'
~ pe ol p 1 S0
LIPS
0.000F——————————————— ... ..
0 5 10 15 20 25 30 35 40 45 50

3 seies

FIG. 7. The flatness index for all the bangg vs ribbon width
N. FIG. 9. The unit cells and edge vectors of general ribbons. The
edge sites are denoted by solid circles, and the corresponding zig-

. . . ) . zag ratior ;4 is (a) 0.25,(b) 0.60, and(c) 0.70 (see text
flatness indexy, increases at first, corresponding to the in-

crease iny.. The flatness index;, reaches a maximum
aroundN =7, where the zigzag ribbon is about 1.3 nm wide
and diminishes after that with further increaseNinThe rate
of the decrease is approximately proportional td4.0We can
thus see that the significance of the special edge state disap-
pears in a graphene sheet where the ribbon width becomes
infinitely large. This ensures the continuity of our model As demonstrated in the previous section, zigzag ribbons
from the finite graphene ribbons to a 2D graphite sheetof a nanoscale size show a singular edge state at the Fermi
When the ribbon width is about a few nm, however, approxi-level. On the other hand, armchair ribbons with a difference
mately 2% of the total number af electronic states is con- of 30° in the axial direction have no such localized state at
centrated in the vicinity oE=0. all. The edge structure in a real micrographite is naturally
The localized states make a remarkably sharp peak in thi@ther irregular and complicated. It is therefore important to
density of states near the Fermi level, because the intrinsilvestigate the conditions under which the edge state sur-
band structure of 2D graphite has only a very few states neaflves for more realistic edge terminations. To analyze the
the Fermi level. In Fig. 8, the density of states of the Zigzadelatlonshlps be;ween the edge shape and.the electronic s?ate
ribbons (N=6, 11, and 51are depicted. The corresponding In a more practical model, we next examine the electronic

ribbon widths are about 1.1, 2.2, and 10.6 nm, respectively?trlJCture of graphene ribbons having more general edge

It is clear from Fig. 8 that the relative importance of the edgeShapes’ which can be represented as a mixiure of zigzag and

: ; hair sites.
state strongly depends on the ribbon width. The edge state gme . . .
very important when the ribbon width is of nanoscale size. Our model for a general graphene ribbon is described by a

Even for a ribbon of about 10 nm widttNE51), a non- pair of parallel edge vectors, which connect identical carbon
negligible peak in the density of states is obserE’ b Fig rings on each edge, and the unit cell exhibits translational
8(c)], which is comparable to the van Hove singularity atSymmetry. The unit cells of some general ribbons, defined in
E— ;3 0. The weight of the edge state in the normalizeqaccordance with this model, are depicted together with a pair
density of states, however, diminishes proportionally td 1/ of edge vectors in Fig. 9. This pair of edge vectors forms a

when the ribbon extends to even largénvalues. This dem- parallelogram, and those hexagons whose centers are located

. . _inside the parallelogram constitute the unit cell of the
onstrates that nanoscale graphite fragments can show SIr]g(}jraphene ribbon. The axial direction of an edge vector deter-
mines the edge shape, and the distance between the edge

vectors determines the ribbon width, which parametrizes the

lar electronic states at the Fermi level through the presence
'of zigzag sites, giving rise to an effect that is not present in
bulk graphite at all.

B. Effect of edge shape

(@) (b) (© size factor of the finite graphite systems.
N=6 N=11 N=51 By varying the direction of the edge vector from (frm-
30 30 1 3 chain to 30° (zigzag, we examine systematically whether
B 2.0 E 201 12 ] and how the edge state survives in general graphene ribbons.
1.0 101 ] 1.0 ] To specify the edge shape, let us define the zigzag ratio

0.0
-1.0
-2.0
-3.0

0.0 b 0.0
10 b -1.0

. r,ig as the number of the zigzag sites relative to the total
i number of the edge sites. As seen in Fig. 1, the armchair
20k 1 Lo edge is specified by a pair of sequential edge sites lying in
’ ’ between the threefold-coordinated sites, and the zigzag edge
DOS(E) 3.0 DOS(E) - 30 DOS(E) is specified by a single edge site enclosed by a pair of
threefold-coordinated sites. Denoting an armcHaigzag
site by the lettea (z), we can express the edge structure of
FIG. 8. Density of state$DOS) of zigzag ribbons of different a graphene ribbon by a permutationsoéndz. In Fig. 9, the
widths: (a) N=6, (b) N=11, and(c) N=51. edge sites are emphasized by solid circles. The edge structure
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FIG. 10. The flatness index for the total bangsvs zigzag ratio DOS(E)

r,ig for general ribbons oN=6,7,11.

FIG. 12. (a) The unit cell of a general graphene ribbon of
N=11. The zigzag sites are indicated by solid circl&.The cor-
responding density of stat¢é®0OS). The edge state is observed as a
non-negligible peak in the DOS at the Fermi level.

is expressed a&) zaaa (b) zzaza and(c) zzzazzazza
and the corresponding zigzag ratigy is therefore(a) 0.25,
(b) 0.60, and(c) 0.70.

In Fig. 10, the flatness index for the total bangg is
plotted versus the zigzag ratig;y for general ribbons of
N=6,7,11, showing thay, for the total band structure de- 12(a)] and the corresponding density of staf€sg. 12b)].
pends orr . It is clear that the insertion of armchair sites The zigzag sites are emphasized by solid circles in Fig.
into a zigzag edge directly reduces, for the total band 12(a), and the sequences of zigzag sites are interrupted by
structure, since the armchair edge makes no contribution tgrmchair sites, so that the ribbon in Fig.(d2has at most
the flat band state. The tail seen in the=7 plot below  three zigzag sites in a sequence, which may be representative
r,ig~0.7 is considered to be influenced by the metallic arm-yf real micrographite fragments. As seen in Fig(th2how-

chair ribbon of that width. The flatness index for the total gyer. the ribbon shows a non-negligible peak in the density
band structurep, also depends on the ribbon width. In the ¢ states at the Fermi level.

relatively narrow ribbonsN==6), 7, rapidly decreases with
decreasing ,i5, and those ribbons with,;<0.8 show no
state withE~0. In the wider ribbons, however;, decreases
more slowly. We can see in Fig. 10 that even those ribbons ] i
having more than 1/3 of their edge sites as armchair sites L€t us now discuss an important feature of the edge state,
show enough flatness to cause a notable edge state, if thégmely, the localization of the wave function. We see from
have a ribbon widttN~10, i.e., a ribbon width of a few nm. FIg. 5 that the wave function in the edge state is mostly
In the present scheme for generating a general edge strul@calized on the edge sites. Our next interest is whether and
ture by introducing a pair of edge vectors, each armchair sit§oW the localized wave function survives in graphene rib-
is inserted rather uniformly. The zigzag ratig, therefore ~PONS having general edge shapes. We examine the net charge

has the following relation to the average number of sequen@ensity in the edge state, i.e., the charge density distribution
tial zigzag sites seg; in the electronic states witfie|<0.002. We then find that the

charge density in the edge state is strongly localized on the
(1) zigzag sites even for the graphene ribbons having small zig-

zag sequences fragmented by armchair sites. In Fig. 13, the
In Fig. 11, the flatness index for the total band structygyés ~ maximum charge density in the edge state at a zigzag site is
plotted versus seg. It is seen that only three or four zigzag plotted versus the average number of sequential zigzag sites
sites in a sequence are enough to show a non-negligible ed@seq;,] for graphene ribbons wittiN=6 and N=11. The
state, when the ribbon is a few nm in width. As an example,
we depict the unit cell of a graphene ribbon wiilk= 11 [Fig.

C. Localization of wave functions

1/seqg=[1/r5g] — 1.
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FIG. 13. The maximum charge density on the zigzag sites vs the
average number of sequential zigzag sites;géor graphene rib-
bons ofN=6,11. The arrows indicate the corresponding value for
pure zigzag ribbons.

FIG. 11. The flatness index for all the bangg vs the average
number of sequential zigzag sites ggdor general ribbons of
N=6,7,11.
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widths, which are treated as parameters specifying the edge
shape and system size, respectively. Examining the relative
magnitude of the edge state, we find that a non-negligible
edge state still survives in graphene ribbons with less devel-
oped zigzag edges. It is remarkable to note that only three or
four zigzag sites per sequence are enough to show an edge
state in these graphene ribbons. The size effect of the edge
state is of great significance, since the relative importance of
the edge state should vanish in bulk graphite. From the dis-
cussion regarding Fig. 7, zigzag ribbons with=10* are
expected to show a flatness index for the total band structure
1, Which is about 1/100 as large as that for tHe=51 rib-

FIG. 14. Charge density distribution in the edge state, where th&on. Ribbons witiN~10* are ~2.4 um in width. We thus
electronic states withE|<0.02 are regarded as belonging to the conclude that graphite networks of a nanometer length are
edge state. the best candidates to exhibit the special edge state.

Among the many carbon materials of interest, those such
arrows show the corresponding value for the pure zigzags porous carbons, which are considered to be made up from
ribbons withN=6 andN=11. The maximum charge density micrographites, are particularly interesting, since they may
for both ribbons overshoot the corresponding pure zigzadpave a lot of edge sites on the periphery of their micrograph-
value, but this is due to the numerical method we employedite constituents. As we demonstrated, the mathematically
When the system size is relatively smal£6), graphene pure zigzag edge is not necessarily required to show an edge
ribbons having less than four zigzag sites in a sequence hawate. Less developed edges with three or four zigzag sites
no edge state withE~0. The wider graphene ribbons per sequence are enough to exhibit a non-negligible edge
(N=11 and 2.5 nm in widthwith the same edge shape can state. Itis naturally supposed that some of the micrographites
show some edge state, where the charge density is fairlj @ real system may have such edge structures, where a
localized on the zigzag sites. From Fig. 13, we can see thatrongly localized charge density distribution such as shown
four or five zigzag sites per sequence are enough to exhibif Fig. 14 is expected.
an edge state for graphene ribbons on a nanometer scale. It is Because of the quite disordered structure of candidate car-
also demonstrated that in the edge state fithO a net bon systems such as porous carbons, measurements of their
charge of more than 0.1 per zigzag site is localized on th&lectronic properties have not yet been fully carried out.
zigzag sites, which may be detected experimentally by techSome interesting observations of their electronic and mag-
niques such as scanning tunnel microsc¢gyM). netic properties are strongly related to their dangling bonds

In the above discussions, the criterion [#|<0.002 or metal impurities. However, we propose an additional pos-
works well to tell whether or not the electronic state is to besibility that thes electrons by themselves can also exhibit a
regarded a&~0. In connection with experimental measure- special electronic state near the Fermi level, which may af-
ments such as those using the STM technique, howevefect the electronic properties. The edge state, stemming from
electronic states over a much wider range will inevitably bethe topology of ther electron networks, may be observed as
observed together. We therefore depict in Fig. 14 the nestates localized on the edge sites by some experimental tech-
charge density in the edge state, where the electronic staté#jues, if the microscopic structure is well describedby
with |[E|=<0.02 are treated as part of the edge state. In thi€lectron systems on a nanometer scale.
figure, it is demonstrated that these graphene ribbons show a
strongly localized charge density distribution on the zigzag
sites, in spite of the deficiency of a well-developed zigzag
edge. It is also expected that the localized charge density The authors are grateful to Dr. K. Kusakabe of Institute
shown in Fig. 14 could be detected in real graphite materialSor Solid State Physics, and K. Wakabayashi of University of
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