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Edge state in graphene ribbons: Nanometer size effect and edge shape dependence
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Finite graphite systems having a zigzag edge exhibit a special edge state. The corresponding energy bands
are almost flat at the Fermi level and thereby give a sharp peak in the density of states. The charge density in
the edge state is strongly localized on the zigzag edge sites. No such localized state appears in graphite systems
having an armchair edge. By utilizing the graphene ribbon model, we discuss the effect of the system size and
edge shape on the special edge state. By varying the width of the graphene ribbons, we find that the nanometer
size effect is crucial for determining the relative importance of the edge state. We also have extended the
graphene ribbon to have edges of a general shape, which is defined as a mixture of zigzag and armchair sites.
Examining the relative importance of the edge state for graphene ribbons with general edges, we find that a
non-negligible edge state survives even in graphene ribbons with less developed zigzag edges. We demonstrate
that such an edge shape with three or four zigzag sites per sequence is sufficient to show an edge state, when
the system size is on a nanometer scale. The special characteristics of the edge state play a large role in
determining the density of states near the Fermi level for graphite networks on a nanometer scale.
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I. INTRODUCTION

Graphite-related materials have long been a subject o
terest. Recent attention has focused on porous carbons
cause of their large specific surface area~SSA!. For example,
some activated carbon fibers~ACF’s! show extremely high
SSA ~up to 3000m2/g) corresponding to a high affinity fo
gas adsorption.1 Materials having such high SSA’s, with
huge exposed graphite surface, are good targets for app
tions, such as filters and capacitors. One of the most exc
current interests in porous carbons is as an alternative
dium for high-capacity lithium ion batteries.2

In spite of the many possible applications of porous c
bons, the basic understanding of the functionality of th
materials has not yet been achieved. Even their structu
not clearly understood. For ACF’s, nothing more than
simple structural model consisting of an assembly of min
graphite fragments has been proposed.3 Each fragment is
considered to have a size of 2–3 nm in plane and 3–4
bostratically stacked layers, based on observed Raman s
tra and x-ray diffraction measurements.4 Tiny graphite frag-
ments of a nanometer length are termed micrograph
which are believed to be the main components of por
carbons.

We cannot fully understand the functionality of these c
bon materials without knowing the structure from a micr
scopic view, i.e., the structure as a network ofsp2 carbon
fragments. Studies on fullerene molecules tell us that
topological structure of ansp2 carbon network critically con-
trols itsp electronic structure and functionality as a materi
In the closed cages of fullerene molecules, the relative
rangement of the 12 pentagonal rings, which act as pent
nal defects in the graphite network, generates a variety
p electronic states. Carbon nanotubes further demons
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that the tubular circumferential vector~also called the chiral
vector in the literature! critically controls whether the elec
tronic state is metallic or insulating. These studies onp elec-
tron networks of nanometer dimensions show that the ch
acteristic p electronic structure of carbon materials
essentially controlled by the network structure ofsp2 carbon,
i.e., the topology of the mobilep electrons.

Some recent studies on carbon nanotubes5,6 also suggest
that there might exist a new kind of nanotube. The new
proposed structural model is not simply a cylindrical form
as the ordinary nanotube is considered to be, but a q
defective form having a lot of edge dislocations. It should
noted that these nanotubes may also have other defec
their p electron networks. One such defect is anedge. In
cylindrical tubules, carbon atoms all bond to three neighb
ing carbons as in a graphite sheet. Defective nanotubes, h
ever, may have some edge sites where there are only
neighboring carbons. Since the mobilep electrons are situ-
ated in topologically different circumstances at edge sit
their p electronic states may be affected significantly.

The existence of defective nanotubes introduces a n
category ofp electronic systems which may also be app
cable to some porous carbons, i.e., nanometer-sized gra
fragments with edges. The precise structure of porous
bons is far from being understood at present, because of
high degree of disorder. Porous carbons may have dang
bonds,sp3 bonded carbons, and functional groups, all affe
ing their functionality. However, they also have some nan
scale regions where the crystal structure of graphite is w
developed. We thus propose that porous carbons may h
many edge sites on the periphery of their micrographite c
stituents.

Our attention in the present work focuses on nanome
scalep electronic systems which are confined by edg
17 954 © 1996 The American Physical Society
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54 17 955EDGE STATE IN GRAPHENE RIBBONS: NANOMETER . . .
Such graphite networks may have an electronic struct
which is somewhat different from that of bulk graphite, sin
quite a large fraction of the carbon atoms sit on the edge

There are two basic shapes for graphite edges, nam
armchair and zigzag edges. Some theoretical work7–11on the
electronic structure of finite-sized graphite systems, either
molecules or as one-dimensional systems, has shown
graphite networks with zigzag edges have a localizededge
stateat the Fermi level, but those with armchair edges ha
no such state. The edge structure of a real micrograp
fragment is naturally considered to be more irregular a
complicated. The main purpose of this paper is to exam
whether or not the edge state survives in finite-sized grap
structures with general edge shapes, where the edges ca
described as mixtures of both armchair and zigzag sites.
study the relationship between thep electronic structure and
the edge shape, we consider a series of one-dimensi
graphene ribbons systematically, as a function of the e
shape. By examining the electronic structure of graphene
bons of different widths, we obtain the size effect of the ed
state on a nanometer scale.

The electronic structure of graphene ribbons having ar
chair and zigzag edges is reviewed in Sec. II, emphasiz
the mathematical nature of the edge state. In Sec. III,
develop the electronic structure of graphene ribbons w
general edge shapes, giving special emphasis to the size
fect on a nanometer scale. Section IV is devoted to disc
sions of the edge state in graphene ribbons.

II. GRAPHENE RIBBONS WITH ARMCHAIR
AND ZIGZAG EDGES

In this section we review the electronic structure
graphene ribbons with armchair and zigzag edges. We
cut a graphene sheet along a straight line as shown in Fi
to illustrate the two prototype edge shapes, namely, the a
chair edge@Fig. 1~a!# and the zigzag edge@Fig. 1~b!# with a
difference of 30° in the axial direction between the two ed
orientations. Figure 1 thus shows the two basic graph
ribbons which are defined as one-dimensional graphite n
works confined by a pair of parallel armchair~zigzag! edges
on both sides.

The ribbon widthN denotes the number of dimer lines fo
armchair ribbons and the number of zigzag lines for zigz
ribbons. The edge sites are emphasized by solid circles

FIG. 1. The network skeleton of an armchair ribbon (N510) ~a!
and a zigzag ribbon (N55). ~b! The edge sites are indicated b
solid circles on each side. Periodic boundary conditions are
sumed for the edges. The arrows indicate the translational direct
of the graphene ribbons.
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each side. Throughout this paper, the dangling bonds on
edge sites are all assumed to be terminated by hydroge
oms, and the dangling bonds make no contribution to
electronic state near the Fermi level.

To calculate the electronic states for the ribbon, we e
ploy a tight-binding band calculation within the Hu¨ckel ap-
proximation, in order to focus our attention on the relatio
ship between thep electronic structure and the edge shap
Transfer integrals between the nearest-neighbor sites ar
set at t for simplicity. Although electron-electron an
electron-phonon interactions are also important in real s
tems, we do not consider these interactions in the pre
work, since we aim here to reveal the intrinsic difference
thep electronic state originating from the topological natu
of the various ribbon edges.

We start with the band structure of a two-dimension
~2D! graphite sheet, since the corresponding band struc
of graphene ribbons can be predicted from that of the
graphite sheet, which is a zero gap semiconductor, as sh
in Fig. 2~a!. The upper and lower bands are degenerate
single pointK in the Brillouin zone~BZ!, and at eachK
point, the electronic bandsE(k) show a lineark dispersion
relation. The real and reciprocal spaces of 2D graphite
depicted in Figs. 2~b! and 2~c!. Taking a rectangular rea
space unit cell, as shown in Fig. 2~b!, makes the BZ fold into
a rectangle, which is half as large as the hexagonal
shown in Fig. 2~c!. The unit vectora ~z! denotes the trans
lational axis of an armchair~zigzag! ribbon, and the shorte
~longer! side of the rectangular BZ is the one-dimension
BZ of armchair~zigzag! ribbons. The global band structur
of graphene ribbons having armchair~zigzag! edges is then
predicted by projecting that of 2D graphite onto the cor
sponding axisa* ~z* ! using the zone-folding technique. Th
linear dispersion relations stemming from the originalK

s-
ns

FIG. 2. Energy band structure~a! and unit cells in real space~b!
and reciprocal space~c! of 2D graphite. The vectorsa anda* ~z and
z* ! relate to armchair~zigzag! ribbons~see text! in ~b! and~c!. The
valence and conduction bands make contact at the degeneracy
K.
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point are expected to appear aroundk50 (uku52p/3) for
armchair~zigzag! ribbons.

The calculated band structures of armchair ribbons ar
shown in Figs. 3~a!–3~c!, for three different ribbon widths.
The wave numberk is normalized by the primitive transla-
tion vector of each graphene ribbon, and the energyE is
scaled by the transfer integralt throughout this paper. The
top of the valence band and the bottom of the conductio
band are located atk50, as expected. It is interesting to note
that the ribbon width critically controls whether the system is
metallic or insulating. As shown in Fig. 3~b!, the system is
metallic whenN53M21, whereM is an integer. This pe-
riodicity can be mathematically understood by regarding th
system atk50 as a ladder network,12 and the wave function
is obtained analytically.11 For the insulating ribbons, the di-
rect gap decreases with increasing ribbon width and tends
zero in the limit of very largeN. In Fig. 3~d!, we show the
calculated band structure of an armchair ribbon (N530) to-
gether with the band structure of 2D graphite projected ont
an armchair axis@Fig. 3~e!#. It is seen that the projected band
structure of 2D graphite is almost reproduced by that of
wide armchair ribbon.

For zigzag ribbons, however, a remarkable new featur
arises in the band structure, as shown in Figs. 4~a!–4~c!.
Here we see that the highest valence band state and the lo
est conduction band state for the zigzag ribbons are alwa
degenerate atk5p, though the degeneracy is expected to
appear atuku52p/3 on the basis of the projected band struc
ture of 2D graphite. We find that the degeneracy of the cente

FIG. 3. Calculated band structureE(k) of armchair ribbons of
various widths@N54 ~a!, 5 ~b!, and 6 ~c!#, calculated band struc-
ture of an armchair ribbon ofN530 ~d!, and the projected band
structure of 2D graphite onto an armchair axis~e!. Dashed lines in
~e! indicate the boundary of the first BZ where the zone-folding
technique should be applied.
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bands atk5p does not originate from the intrinsic band
structure of 2D graphite, and the corresponding wave func-
tions are completely localized on the edge sites. These two
special center bands get flatter with increasing ribbon width.
We show the band structure for the zigzag ribbon (N530)
together with the projected band structure of 2D graphite in
Figs. 4~d! and 4~e!. A pair of almost flat bands appears
within the region of 2p/3<uku<p where the bands sit in the
very vicinity of the Fermi level. No such flat band is ex-
pected for the projected band structure of 2D graphite. As
seen in Fig. 4~d! the second lowest conduction band shows a
dip nearuku52p/3, where the highest valence band below
the center bands shows a rise, approaching closer to each
other asN increases, thereby reproducing the electronic state
around the originalK point in 2D graphite.

By examining the charge density distribution, we find that
the electronic states in the almost flat bands correspond to a
state localized on the zigzag edge.10,13 We then derive an
analytic expression for the electronic wave functions for the
edge state by considering a semi-infinite graphene sheet with
a zigzag edge.11 The analytic form of the wave function is
depicted in Fig. 5.

Considering the translational symmetry, we can start
constructing the analytic solution for the edge state by
letting the Bloch components of the linear combina-
tion of atomic orbitals ~LCAO! wave function be
. . . ,eik(n21),eikn,eik(n11), . . . on successive edge sites,
wheren denotes a site location on the edge. Then the math-
ematical condition necessary for the wave function to be ex-
act forE50 is that the total sum of the components of the
complex wave function over the nearest-neighbor sites
should vanish. In Fig. 5, the above condition is as follows:

FIG. 4. Calculated band structuresE(k) of zigzag ribbons
@N54 ~a!, N55 ~b!, andN56 ~c!#, calculated band structure of a
zigzag ribbon~d!, and the projected band structure of 2D graphite
onto a zigzag axis~e!. See the caption of Fig. 3.
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eik(n11)1eikn1x50, eikn1eik(n21)1y50, and
x1y1z50. Therefore, the wave function componentsx,
y, and z are found to be @22cos(k/2)#eik(n11/2),
@22cos(k/2)#eik(n21/2), and @22cos(k/2)#2eikn, respec-
tively. We can thus see that the charge density is prop
tional to @2cos(k/2)#2m at each non-nodal site of themth
zigzag chain from the edge. Then the convergence cond
of u22cos(k/2)u<1 is required, for otherwise the wave fun
tion would diverge in a semi-infinite graphene sheet. T
convergence condition defines the region 2p/3<uku<p
where the flat band exists. Now we can see that the resu
nonbonding orbital is a wave function, which penetra
from the edge sites to the inner sites, decaying by a dam
factor of22cos(k/2) per zigzag chain. In Fig. 5, the radiu
of each circle is proportional to the charge density, and
drawing is made fork57p/9. The edge state of a sem
infinite graphene sheet is a special state that analytically c
nects the localized state atk5p and the delocalized state a
uku52p/3, which is nothing but the electronic state of 2
graphite at the Fermi level.

III. GRAPHENE RIBBONS WITH GENERAL EDGES

We demonstrated in the previous section that zigzag
bons show a localized edge state at the Fermi level. Con
ering a semi-infinite graphene sheet with a zigzag edge,
showed the mathematical features of the edge state. In
section we show how the edge state affects the electr
structure of real nanoscale graphite systems, such as t
occurring in porous carbons. Since those real graphite
tems have a rather complicated structure, we have to c
sider many factors which could affect the properties of
edge state. In the following subsections we discuss the
nificant parameters which control the properties of the e
state, i.e., the system size and edge shape surroundin
graphite network. We first examine the size dependenc
the edge state by taking the ribbon width as a size param

FIG. 5. An analytic form of the edge state for a semi-infin
graphene sheet with a zigzag edge, which is emphasized by
lines. Each carbon site is specified by a location indexn on the
zigzag chain and by a chain order indexm from the edge. The
magnitude of the charge density at each site, such asx, y, andz, is
obtained analytically~see text!. The radius of each circle is propor
tional to the charge density on each site, and the drawing is m
for k57p/9.
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and then examine the edge-shape effect by considering
graphene ribbon to have a general edge shape which is
fined as a mixture of zigzag and armchair sites.

A. Size dependence on the edge state

In a semi-infinite graphene sheet with a zigzag edge
perfectly flat energy band appears in the range
2p/3<uku<p. The wave function is entirely localized a
k5p, but it penetrates into the inner sites, ask shifts away
from p. In zigzag ribbons, the wave function penetrati
from both edges results in a small gap in the range
2p/3<uku,p. Since an infinitesimalk deviation fromp can
make a gap, no flat band exists in the strict sense. The
etrating wave function, however, decays exponentially
successive inner zigzag chains. The magnitude of the ga
a specifick point therefore depends on the ribbon width. A
shown in Fig. 4, the wider the ribbon, the larger the range
k values over which the bands are almost flat.

The almost flat bands near the Fermi level are expecte
give rise to a remarkably sharp peak in the density of sta
where the charge density is extremely localized on the e
sites. It should be noted, however, that only the pair of cen
bands contribute to the localized state, and only in the reg
of 2p/3<uku<p. All of the other 2N22 bands, except for
the two center bands, tend to reproduce the band structu
2D graphite, as projected onto the zigzag direction. The
portance of the edge state should thus be measured in a
malized way.

We quantitatively evaluate the relative magnitude of t
edge state by introducing the flatness indexhc andha , de-
fined ashc5nE'0 /nc andha5nE'0 /na , wherenE'0 is the
number of the states withE'0 and nc (na) is the total
number of states in the center~all! bands. In Fig. 6, the
flatness index for the pair of center bandshc is plotted for
zigzag ribbons having various widths. In computinghc and
ha , the electronic states withuEu<0.002 are treated a
E'0. The flatness indexhc monotonically increases as th
ribbon gets wider. It is expected thathc will converge to
1/3, corresponding to the range of 2p/3<uku<p where a
perfectly flat band appears in the first BZ of a semi-infin
graphene sheet.

We next plot the flatness index for all the bandsha to
evaluate the relative importance of the edge state within
total electronic structure of a zigzag ribbon~Fig. 7!. The

ld

de

FIG. 6. The flatness index for the center bandshc of a zigzag
ribbon vs the ribbon widthN. The flatness index approaches
maximum of 1/3 asN goes to infinity.
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flatness indexha increases at first, corresponding to the i
crease inhc . The flatness indexha reaches a maximum
aroundN57, where the zigzag ribbon is about 1.3 nm wid
and diminishes after that with further increase inN. The rate
of the decrease is approximately proportional to 1/N. We can
thus see that the significance of the special edge state di
pears in a graphene sheet where the ribbon width beco
infinitely large. This ensures the continuity of our mod
from the finite graphene ribbons to a 2D graphite she
When the ribbon width is about a few nm, however, appro
mately 2% of the total number ofp electronic states is con-
centrated in the vicinity ofE50.

The localized states make a remarkably sharp peak in
density of states near the Fermi level, because the intrin
band structure of 2D graphite has only a very few states n
the Fermi level. In Fig. 8, the density of states of the zigz
ribbons (N56, 11, and 51! are depicted. The correspondin
ribbon widths are about 1.1, 2.2, and 10.6 nm, respective
It is clear from Fig. 8 that the relative importance of the ed
state strongly depends on the ribbon width. The edge sta
very important when the ribbon width is of nanoscale siz
Even for a ribbon of about 10 nm width (N551), a non-
negligible peak in the density of states is observed@see Fig.
8~c!#, which is comparable to the van Hove singularity
E563.0. The weight of the edge state in the normaliz
density of states, however, diminishes proportionally to 1N
when the ribbon extends to even largerN values. This dem-
onstrates that nanoscale graphite fragments can show si

FIG. 7. The flatness index for all the bandsha vs ribbon width
N.

FIG. 8. Density of states~DOS! of zigzag ribbons of different
widths: ~a! N56, ~b! N511, and~c! N551.
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lar electronic states at the Fermi level through the presen
of zigzag sites, giving rise to an effect that is not present
bulk graphite at all.

B. Effect of edge shape

As demonstrated in the previous section, zigzag ribbo
of a nanoscale size show a singular edge state at the Fe
level. On the other hand, armchair ribbons with a differen
of 30° in the axial direction have no such localized state
all. The edge structure in a real micrographite is natura
rather irregular and complicated. It is therefore important
investigate the conditions under which the edge state s
vives for more realistic edge terminations. To analyze th
relationships between the edge shape and the electronic s
in a more practical model, we next examine the electron
structure of graphene ribbons having more general ed
shapes, which can be represented as a mixture of zigzag
armchair sites.

Our model for a general graphene ribbon is described b
pair of parallel edge vectors, which connect identical carb
rings on each edge, and the unit cell exhibits translation
symmetry. The unit cells of some general ribbons, defined
accordance with this model, are depicted together with a p
of edge vectors in Fig. 9. This pair of edge vectors forms
parallelogram, and those hexagons whose centers are loc
inside the parallelogram constitute the unit cell of th
graphene ribbon. The axial direction of an edge vector det
mines the edge shape, and the distance between the e
vectors determines the ribbon width, which parametrizes t
size factor of the finite graphite systems.

By varying the direction of the edge vector from 0°~arm-
chair! to 30° ~zigzag!, we examine systematically whethe
and how the edge state survives in general graphene ribbo
To specify the edge shape, let us define the zigzag ra
r zig as the number of the zigzag sites relative to the to
number of the edge sites. As seen in Fig. 1, the armch
edge is specified by a pair of sequential edge sites lying
between the threefold-coordinated sites, and the zigzag e
is specified by a single edge site enclosed by a pair
threefold-coordinated sites. Denoting an armchair~zigzag!
site by the lettera (z), we can express the edge structure o
a graphene ribbon by a permutation ofa andz. In Fig. 9, the
edge sites are emphasized by solid circles. The edge struc

FIG. 9. The unit cells and edge vectors of general ribbons. T
edge sites are denoted by solid circles, and the corresponding
zag ratior zig is ~a! 0.25, ~b! 0.60, and~c! 0.70 ~see text!.
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is expressed as~a! zaaa, ~b! zzaza, and ~c! zzzazzazza,
and the corresponding zigzag ratior zig is therefore~a! 0.25,
~b! 0.60, and~c! 0.70.

In Fig. 10, the flatness index for the total bandsha is
plotted versus the zigzag ratior zig for general ribbons of
N56,7,11, showing thatha for the total band structure de
pends onr zig. It is clear that the insertion of armchair site
into a zigzag edge directly reducesha for the total band
structure, since the armchair edge makes no contributio
the flat band state. The tail seen in theN57 plot below
r zig'0.7 is considered to be influenced by the metallic ar
chair ribbon of that width. The flatness index for the to
band structureha also depends on the ribbon width. In th
relatively narrow ribbons (N56), ha rapidly decreases with
decreasingr zig, and those ribbons withr zig<0.8 show no
state withE'0. In the wider ribbons, however,ha decreases
more slowly. We can see in Fig. 10 that even those ribb
having more than 1/3 of their edge sites as armchair s
show enough flatness to cause a notable edge state, if
have a ribbon widthN'10, i.e., a ribbon width of a few nm

In the present scheme for generating a general edge s
ture by introducing a pair of edge vectors, each armchair
is inserted rather uniformly. The zigzag ratior zig therefore
has the following relation to the average number of sequ
tial zigzag sites seqzig:

1/seqzig5@1/r zig#21. ~1!

In Fig. 11, the flatness index for the total band structureha is
plotted versus seqzig. It is seen that only three or four zigza
sites in a sequence are enough to show a non-negligible
state, when the ribbon is a few nm in width. As an examp
we depict the unit cell of a graphene ribbon withN511 @Fig.

FIG. 10. The flatness index for the total bandsha vs zigzag ratio
r zig for general ribbons ofN56,7,11.

FIG. 11. The flatness index for all the bandsha vs the average
number of sequential zigzag sites seqzig for general ribbons of
N56,7,11.
to
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12~a!# and the corresponding density of states@Fig. 12~b!#.
The zigzag sites are emphasized by solid circles in Fi
12~a!, and the sequences of zigzag sites are interrupted
armchair sites, so that the ribbon in Fig. 12~a! has at most
three zigzag sites in a sequence, which may be representa
of real micrographite fragments. As seen in Fig. 12~b!, how-
ever, the ribbon shows a non-negligible peak in the dens
of states at the Fermi level.

C. Localization of wave functions

Let us now discuss an important feature of the edge sta
namely, the localization of the wave function. We see from
Fig. 5 that the wave function in the edge state is most
localized on the edge sites. Our next interest is whether a
how the localized wave function survives in graphene rib
bons having general edge shapes. We examine the net cha
density in the edge state, i.e., the charge density distributi
in the electronic states withuEu<0.002. We then find that the
charge density in the edge state is strongly localized on t
zigzag sites even for the graphene ribbons having small z
zag sequences fragmented by armchair sites. In Fig. 13,
maximum charge density in the edge state at a zigzag site
plotted versus the average number of sequential zigzag si
@seqzig# for graphene ribbons withN56 andN511. The

FIG. 12. ~a! The unit cell of a general graphene ribbon of
N511. The zigzag sites are indicated by solid circles.~b! The cor-
responding density of states~DOS!. The edge state is observed as a
non-negligible peak in the DOS at the Fermi level.

FIG. 13. The maximum charge density on the zigzag sites vs t
average number of sequential zigzag sites seqzig for graphene rib-
bons ofN56,11. The arrows indicate the corresponding value fo
pure zigzag ribbons.
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arrows show the corresponding value for the pure zig
ribbons withN56 andN511. The maximum charge densit
for both ribbons overshoot the corresponding pure zig
value, but this is due to the numerical method we employ
When the system size is relatively small (N56), graphene
ribbons having less than four zigzag sites in a sequence
no edge state withE'0. The wider graphene ribbon
(N511 and 2.5 nm in width! with the same edge shape ca
show some edge state, where the charge density is f
localized on the zigzag sites. From Fig. 13, we can see
four or five zigzag sites per sequence are enough to ex
an edge state for graphene ribbons on a nanometer scale
also demonstrated that in the edge state withE'0 a net
charge of more than 0.1 per zigzag site is localized on
zigzag sites, which may be detected experimentally by te
niques such as scanning tunnel microscopy~STM!.

In the above discussions, the criterion ofuEu<0.002
works well to tell whether or not the electronic state is to
regarded asE'0. In connection with experimental measur
ments such as those using the STM technique, howe
electronic states over a much wider range will inevitably
observed together. We therefore depict in Fig. 14 the
charge density in the edge state, where the electronic s
with uEu<0.02 are treated as part of the edge state. In
figure, it is demonstrated that these graphene ribbons sh
strongly localized charge density distribution on the zigz
sites, in spite of the deficiency of a well-developed zigz
edge. It is also expected that the localized charge den
shown in Fig. 14 could be detected in real graphite materi
such as porous carbons.

IV. DISCUSSION

In the present paper we studied systematically thep elec-
tronic structure of nanometer-scaled graphite networks ut
ing the model of graphene ribbons with various edge sha
We first showed the mathematical feature of the edge s
which is seen as special localized states near the Fermi
in the graphite networks with a zigzag edge. The edge s
stems not from bulk graphite nor the dangling bonds,
from the topology of thep electron networks with a zigza
edge. The graphite networks with an armchair edge, the o
prototype edge shape of graphite, also exhibit no such lo
ized state. We thus studied thep electronic structure of
graphene ribbons having various edge vectors and rib

FIG. 14. Charge density distribution in the edge state, where
electronic states withuEu<0.02 are regarded as belonging to t
edge state.
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widths, which are treated as parameters specifying the e
shape and system size, respectively. Examining the rela
magnitude of the edge state, we find that a non-neglig
edge state still survives in graphene ribbons with less de
oped zigzag edges. It is remarkable to note that only thre
four zigzag sites per sequence are enough to show an
state in these graphene ribbons. The size effect of the e
state is of great significance, since the relative importanc
the edge state should vanish in bulk graphite. From the
cussion regarding Fig. 7, zigzag ribbons withN'104 are
expected to show a flatness index for the total band struc
ha which is about 1/100 as large as that for theN551 rib-
bon. Ribbons withN'104 are;2.4 mm in width. We thus
conclude that graphite networks of a nanometer length
the best candidates to exhibit the special edge state.

Among the many carbon materials of interest, those s
as porous carbons, which are considered to be made up
micrographites, are particularly interesting, since they m
have a lot of edge sites on the periphery of their microgra
ite constituents. As we demonstrated, the mathematic
pure zigzag edge is not necessarily required to show an e
state. Less developed edges with three or four zigzag s
per sequence are enough to exhibit a non-negligible e
state. It is naturally supposed that some of the micrograph
in a real system may have such edge structures, whe
strongly localized charge density distribution such as sho
in Fig. 14 is expected.

Because of the quite disordered structure of candidate
bon systems such as porous carbons, measurements of
electronic properties have not yet been fully carried o
Some interesting observations of their electronic and m
netic properties are strongly related to their dangling bo
or metal impurities. However, we propose an additional p
sibility that thep electrons by themselves can also exhibi
special electronic state near the Fermi level, which may
fect the electronic properties. The edge state, stemming f
the topology of thep electron networks, may be observed
states localized on the edge sites by some experimental t
niques, if the microscopic structure is well described byp
electron systems on a nanometer scale.
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