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We present calculations of thermal properties of the 3C, 6H, 4H, and 2H polytypes of silicon carbide~SiC!.
The underlying lattice-dynamical properties are calculated within a generalized bond-charge model which
gives also correct phonon eigenvectors. In the case of the zinc-blende structure the results are checked by
comparison with those ofab initio density-functional calculations. Explicitly, we determine the free energy, the
specific heat, the Debye temperature, and the Debye-Waller factors. The influence of the polytypism, in
particular of the anisotropy in the hexagonal cases, is studied in detail. The theoretical results are in good
agreement with available experimental data. A temperature-dependent axial next-nearest-neighbor Ising model
is derived. Consequences are discussed for the polytypism and the thermodynamics of the different SiC phases.
@S0163-1829~96!11627-1#

I. INTRODUCTION

The growing interest in the semiconductor silicon carbide
~SiC! is related to applicative and scientific reasons. SiC is
an attractive material for electronic devices in high-
temperature and high-power applications because of its large
band gap, large thermal conductivity, high breakdown volt-
age, and of its outstanding mechanical and chemical stabil-
ity. SiC, which is the only known naturally stable group-IV
compound, exhibits a very pronounced polytypism. More
than 200 crystalline modifications have been determined to
date.1 Zinc-blende~3C) SiC, with pure cubic stacking of
Si-C double layers in the@111# direction, and wurtzite
~2H) SiC, with pure hexagonal stacking in@0001# direction,
are the most extreme polytypes. The other polytypes repre-
sent hexagonal (H) and rhombohedral (R) combinations of
these stacking sequences withn Si-C bilayers in the primi-
tive cell.2 The polytypes lie very close together in energy and
possess similar lattice constants.3–5 For example, the most
common polytypes 3C, 6H, 4H, and 2H differ only by
about 0.1% in the lattice constanta. The indirect band gap
varies between 2.4 eV~3C) and 3.3 eV~2H).6 On the other
hand, the lattice-dynamical properties are rather similar.7

Apart from the folding of the phonon modes the strongest
effect is related to the anisotropy of the long-range electric
field accompanying the excitation of polar optical phonons.
TheG point phonon frequencies vary within an interval of 5
cm21 versus the polytypes. However, a remarkable redistri-
bution in the density of states of the optical phonon modes
has been found.7

The knowledge of the temperature dependence of physi-
cal quantities is important for many equilibrium properties.
This holds especially for the Helmholtz free energy, which
governs the whole thermodynamics. Important information
about the polytypism of the material system as well as the
growth conditions of the various polytypes may be derived
within the harmonic approximation, even if the relevance of
an equilibrium theory is restricted to low temperatures.8 The
displacement-displacement correlation functions describe the
temperature-dependent motion of the ions in the crystal.
They also determine the Debye-Waller factors and, hence,

the temperature dependence of spot intensities in many dif-
fraction spectroscopies, such as x-ray diffraction or neutron
scattering. The heat capacity, in particular for low tempera-
tures where it may be directly related to the Debye tempera-
ture, characterizes the dynamical and thermal properties of
the crystal in an averaged manner.

In this paper we present calculations of thermal properties
of 3C, 6H, 4H, and 2H SiC polytypes using a generalized
bond charge model to describe the lattice dynamics.7 Our
computations include thermodynamic functions, i.e., free en-
ergy and entropy, heat capacity, and autocorrelation~mean
square displacements! of atomic displacements. We study
the influence of the polytypism on these quantities, in par-
ticular the influence of hexagonality and anisotropy. More-
over, we discuss the thermodynamical stability of the poly-
types. For that purpose a linear Ising spin~ANNNI ! model
with temperature-dependent parameters is introduced. Com-
parison with experimental data is performed for the specific
heat at constant volume and the Debye-Waller factors. In the
case of 3C SiC the quality of the bond-charge-model results
is directly checked by comparing with first-principles density
functional calculations.9,10

II. CALCULATIONAL METHOD

A generalization of the adiabatic bond-charge model
~BCM! is used to calculate the phonon frequenciesv j (q) as
well as the corresponding eigenvectorsek( jq) within the
harmonic approximation.7 The BC model contains 10~16!
free parameters for the cubic~hexagonal! case. These param-
eters have been fitted to reproduce the first-order Raman fre-
quencies. In the BC model, an atom is described by a
charged ion, whereas the bonds are replaced by massless
bond charges. These charges interact via central and angular
forces up to second-nearest neighbors. The BC model is cho-
sen, since it describes reasonably not only the phonon fre-
quencies but also the phonon eigenvectors as shown in Ref.
7. As shown in Refs. 9–13 the anharmonic corrections up to
the second order in the cubic and first order in the quartic
anharmonic coupling constants for homopolar and heteropo-
lar semiconductors are rather small for thermal properties
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like free energy and entropy or specific heat at constant vol-
ume up to the temperature 1/2T* , whereby the temperature
T*5\vmax/kB corresponds to the maximum frequency of
the phonon spectrum. Therefore, for temperatures below 700
K the anharmonic contributions to the thermal properties of
SiC considered here can be safely neglected. The thermal
properties for which anharmonic contributions at every tem-
perature are not negligible, such as the linear expansion co-
efficient or the difference of the specific heat at constant
volume and constant pressure, are not considered here. The
correct description of the phonon eigenvectors is crucial for
the investigation of the displacement-displacement correla-
tions of atoms. The correlation of atomic displacements
u(k l ) andu(k8l 8) is defined as

^ua~k l !ub~k8l 8!&5
\

AMkMk8

1

N(
q, j

1

v j~q! Fn„v j~q!…1
1

2G
3ea

k* ~ jq!eb
k8~ jq!eiq~Rl2Rl 8!, ~1!

whereMk is the atomic mass of thekth atom,Rl is a Bravais
lattice vector, n(v)5@exp(\v/kBT)21#21 is the average
phonon occupation number~Bose function!, andN denotes
the number of unit cells in the crystal.

Whereas in the case of 3C SiC (F4̄3m space group sym-
metry! all atomic positions are fixed by the cubic lattice con-
stanta, the knowledge of the lattice constantsa and c as
well as ofn/2 internal free parameters is necessary to fix the
atomic position in the case of hexagonalnH polytypes
(P63mc space group symmetry!. However, the atomic relax-
ations from their ideal positions innH SiC polytypes are
very small.4 Moreover, their influence on the lattice dynami-
cal and dielectric properties is negligible.14 Therefore, we
neglect these relaxations and fix the equilibrium atomic po-
sitions by experimental values ofa andc taken from Ref. 15.

The free energy of any polytype is described by

F~T,V!5Fel~T,V!1Fvib~T,V!, ~2!

Fvib~T,V!5(
q, j

H 12 \v j~q!

1kBTln@12exp„2\v j~q!/kBT…#J . ~3!

In our calculations, we replace the electronic contribution
Fel(T,V) by its static limit, i.e., the corresponding internal
energy of the valence electrons of the system,4,5 since the
electronic entropy is negligibly small in the interesting tem-
perature range. The lattice contribution is described by the
sum over a set of independent harmonic oscillators with fre-
quenciesv j (q). The entropy of the vibrating lattice follows
from the free energy asSvib52(]Fvib /]T)V . Its knowledge
allows the calculation of the internal energy according to
Uvib5Fvib1TSvib . Apart from extremely low temperatures,
the internal energy of the lattice also defines the heat capac-
ity at constant volume of the crystal byCV(T)
5(]Uvib /]T)V . From Eq.~3! one obtains for the heat capac-
ity

CV~T!5(
q, j

kBS \v j~q!

kBT
D 2 exp„\v j~q!/kBT…

@exp„\v j~q!/kBT…21#2
.

~4!
A denseq-point sampling is crucial to achieving the de-

sired accuracy in the energy differences. The special-point
technique of Monkhorst-Pack is used to perform the integra-
tion over the irreducible part of the Brillouin zone~BZ!.16

Because the energy differences between the polytypes are
rather small, we sample exactly the sameq-points in the
q-space of all the structures. Therefore, the zinc-blende
structure is specified in terms of the hexagonal unit cell~3
H). We choose the same mesh ofq-points ~34334! in the
plane of hexagonal layers for all structures but different
numbers ofq-point layers along the stacking direction; 24,
16, 12, and 8 layers for the 2H, 3H, 4H, and 6H structure,
respectively. This choice corresponds to 4624 special points
for the 2H structure. The convergence of the free energy of
the cubic3C and the wurtzite 2H structure with respect to the
q-point sampling is shown in Fig. 1. Whereas the differences
of the free energy between the SiC structures are of the order
of 0.1 meV, the errors in the energy differences using these
finite q-point sets are estimated to be about 0.01 meV per
Si-C pair. A dense mesh of special points is in particular
decisive for the calculations of the correlation functions. At
low temperatures the correlation functions are proportional
to the inverse eigenfrequencies, in the high-temperature limit
even to the square of the inverse eigenfrequencies. Because

FIG. 1. Convergence of the lattice contribution to the free en-
ergy per SiC pair with respect to the number ofq points in the
irreducible part of the Brillouin zone for 3C ~solid line! and 2H SiC
~dashed line! at T50 K ~a! andT5500 K ~b!.
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of the linearq-dependence of the acoustic-mode frequencies,
a formal singularity appears at theG point @see Eq.~1!#.
However, transforming theq-sum into an integral over the
BZ, it becomes evident that this seeming singularity is re-
moved by theq2-dependence of the space element. Never-
theless a rather dense mesh of the special points is needed to
obtain well converged results. Therefore, for the calculation
of the displacement-displacement correlation functions we
have increased the density of the mesh points in the region
around theG point by a factor 3.

In order to control the results obtained within the BCM,
we compare them with those obtained using a first-principles
method.9,10 In the ab initio method the dynamical matrix is
derived by calculating the response of the electrons to atomic
displacements and static electric fields using density-
functional perturbation theory~DFPT!. Our calculations are
performed within the local-density approximation~LDA ! us-
ing soft norm-conserving pseudopotentials. The dimension
of the plane-wave basis set at a givenq point in the first BZ
is fixed by a kinetic-cutoff energy of 40 Ry. This cutoff
energy corresponds to about 450 plane waves per atom. Un-
fortunately, DFPT is computationally very demanding due to
the necessity of calculating the electron-density response to a
phonon perturbation. Therefore, a calculation of the full pho-
non spectra cannot be done for polytypes with many atoms
in the unit cell, i.e., for 6H SiC. Consequently, we restrict the
ab initio calculations to the 3C polytype with two atoms in
the unit cell.

III. RESULTS

A. Thermodynamics

The thermodynamics of the vibrating crystal lattices is
governed by the Helmholtz free energyFvib(T,V), which
depends on the temperature and the volume. The Helmholtz
free energy of 3C SiC calculated within the BCM as well as
using the DFPT is plotted in Fig. 2~a! versus temperature. In
the temperature range considered the discrepancy between
the results of both approaches to the harmonic lattice dynam-
ics is rather small. Therefore, we conclude that within the
harmonic approximation the BCM is applicable not only to
the lattice-dynamical but also to the thermal properties of
SiC. The lattice contribution to the total free energy shows
the behavior being typical for all crystal lattices. We observe
an excellent agreement with a previous calculation,17 where
a valence-overlap shell model was used to describe the pho-
non frequencies. In the low temperature region, the zero-
point vibration of the lattice is the most important contribu-
tion to the free energyFvib(T,V); In this temperature region
the free energy is almost independent of temperature, as can
be seen in Fig. 2~a!. Although the absolute value of the free
energy at low temperatures is rather small~0.1%! compared
to the static total energy,3–5 it becomes important for the
thermal stability. In the high temperature region the entropy
contribution2TSvib governs the free energy as indicated by
the almost linear temperature dependence and the negative
free-energy values in this temperature range. The entropy of
3C SiC is plotted in Fig. 3~a!. Whereas in the low tempera-
ture region the entropy exhibits an exponential increase, the
entropy has approximately a logarithmical dependence for
higher temperatures.

For a discussion of the polytype stabilization by the vi-
brating lattice only the differences of the lattice contributions
to the total energy are substantial. Such differences with re-
spect to the free energy of the zinc-blende structure of SiC
are plotted for the hexagonal polytypes 6H, 4H, and 2H
with increasing percentage hexagonalityh of 33%, 50%, and
100% in Fig. 2~b!. Despite the smallness of the absolute
values of the lattice contribution to the total free energy per
Si-C pair, the differencesDFvib approach the same order of
magnitude, i.e., several meV, as the differences of the static
total internal energy.3–5 In the low temperature region the
main contribution is due to the variation of the zero-point
vibrational internal energy. For higher temperatures there is
also a contribution from the entropy variation@see Fig. 3~b!#.
However, the entropy contribution does not change the order
of the static energy of the investigated polytypes, but rather
enlarges the differences among them. In contrast to the dif-
ferences in the one-phonon density of states,7 we do not ob-
serve a clear trend with the percentage hexagonality. In gen-
eral, the~lattice! free energies are lower for the hexagonal
lattices than for the cubic one. We explain this fact by the
general tendency that the limiting frequencies slightly de-
crease with rising hexagonality. This is clearly shown for the
zone-center optical phonon frequencies7 as well as for the
Debye temperature~see discussion below!. Such a trend de-
creases the free energy in the average. On the other hand,

FIG. 2. ~a! The calculated free energy of the 3C SiC lattice
using a bond-charge model~solid line! and ab initio density-
functional theory~dashed line!. ~b! Differences of the free energy of
the nH polytypes with respect to the 3C value.Fvib

2H2Fvib
3C ~solid

line!, Fvib
4H2Fvib

3C ~dotted line!, andFvib
6H2Fvib

3C ~dashed line!.
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within the hexagonal polytypes 6H, 4H, and 2H there is
visible a nearly parabolic dependence of the free energy on
the hexagonality, although the variations are smaller than the
differences to the 3C values. The lowest free energy is ob-
served for 4H (h550%!, whereas the values for 6H
(h533%! and 2H (h5100%! are nearly identical. Conse-
quently, the vibrating lattice strengthens the tendency for the
stabilization of the 4H polytype in the thermodynamic equi-
librium. This happens surprisingly not only for low tempera-
tures but also for higher temperatures. Our results for the
vibrational contributions to the Helmholtz free energy are
somewhat in contrast to those of Chenget al.17 Chenget al.
found differences of the phonon free energies that are one
order of magnitude smaller. The reason may be related to the
fact that the same valence-overlap shell model parameters
derived for cubic SiC are applied to the other hexagonal
polytypes. In this manner only differences in the geometrical
structure are taken into account but effects related to the
long-range electric field, which give rise to the anisotropy of
the lattice-dynamical properties and the splittings of the zone
center phonon frequencies, are neglected.

B. Temperature-dependent ANNNI model

Geometrically the polytypes differ by the stacking along
the cubic@111# or the equivalent hexagonal@0001# direction.
Along this particular direction all polytypes may be imag-

ined as different arrangements of cubic or hexagonal Si-C
bilayers.4 This one-dimensional character of the stacking dif-
ferences suggests the description of the differences in terms
of an axial next-nearest neighbor Ising~ANNNI ! model,18

where thei th cubic~hexagonal! bilayer is represented by the
pseudospin ups i[11 and downs i[21. This model has
been already successfully applied to the discussion of poly-
typism of silicon carbide neglecting the contributions of the
vibrating lattice.19–21 In a simplified version the total free
energy of the system per Si-C pair may be represented by

F~T!5F0~T!2
1

n (
i51

n

(
j51

`

Jjs is i1 j , ~5!

where j runs over the interacting bilayers. The labeli ac-
counts for the bilayers in the unit cell of thenH polytype.
More complicated interactions, such as four-spin terms, are
negligible and therefore have been left out for transparency.
The parametersJj are the interaction energies of two bilay-
ers. The largest termF0(T) in Eq. ~5! represents the energy
of the crystal without interaction of the bilayers. Assuming
that the long-range interactions are small we restrict the
j -sum up to third neighbors (j53).
In order to derive the interaction parametersJj we replace

the total free energyF(T) at a given volume in Eq.~5! by the
sum of the lattice contribution and the total internal energy
of the electrons.3–5 The entropy of the electronic system as
well as the configurational contribution, which is related to
the arrangement of boundaries between bilayers belonging to
different spins, are not taken into account.17 Explicitly, dif-
ferences are considered, i.e.,F2H2F3C52J112J3 ,
F4H2F3C5J112J21J3 , andF6H2F3C5 2

3J11
4
3J212J3 .

The results of a fitting procedure for theJi paramaters is
given in Table I.

The variation of the parameters starting from three differ-
ent static total energy calculations3–5 may be traced back to
three facts.~i! The atomic relaxation taken into account by
Käckell et al.4 remarkably reduces the nearest-neighbor in-
teractionJ1 . ~ii ! The ab initio calculation of Chenget al.3

favors the 6H polytype instead of the 4H one.~iii ! A much
larger energetical difference between 3C and 2H is calcu-
lated by Karchet al.,5 and Chenget al.3 The introduction of
the phonon free energy reduces all interaction parameters.
We observe a tendency for a reduction ofJ1 , J2 , andJ3 and,
respectively, a shift towards more negative values. That
means, that the vibrating lattice reduces the attractive char-
acter of the nearest-neighbor interactions. Thereby the effect

FIG. 3. ~a! The entropy of the 3C SiC lattice within the bond-
charge model~solid line! and ab initio density-functional theory
~dashed line!. ~b! Differences of the entropy of thenH polytypes
with respect to the 3C value.Svib

2H2Svib
3C ~solid line!, Svib

4H2Svib
3C ~dot-

ted line!, andSvib
6H2Svib

3C ~dashed line!.

TABLE I. Interaction parametersJi ~meV! of the ANNNI
model for different temperatures and different electronic contribu-
tions to the total free energy taken from Refs. 3–5.

J1 J2 J3

Reference @3# @4# @5# @3# @4# @5# @3# @4# @5#

static value 4.80 1.08 2.33 -2.93 -2.45 -3.49 -0.45 -0.18 0.25
0 K 4.49 0.76 2.02 -3.23 -2.75 -3.79 -0.47 -0.19 0.24
400 K 4.38 0.66 1.91 -3.34 -2.86 -3.90 -0.48 -0.21 0.22
800 K 4.10 0.37 1.63 -3.60 -3.13 -4.16 -0.52 -0.24 0.18
1200 K 3.79 0.07 1.32 -3.90 -3.42 -4.46 -0.55 -0.28 0.15
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on the second-nearest-neighbor interaction is rather small.
The phonon influence onJ1 andJ3 is more important, espe-
cially starting from theab initio results of Ref. 5. In this
particular caseJ3 , i.e., the third-nearest-neighbor interaction
will be repulsive for layers of equal pseudospin.

The phase diagram of the described ANNNI model in-
cluding the phonon contributions is plotted in Fig. 4. We
chose the ratiosJ3 /J2 and J1 /J2 as coordinates. In the se-
lected parameter region two multiphase degeneracies appear.
For J350 and J1522J2 the phases of low hexagonality
3C, 6H, and 4H degenerate. For the more unrealistic param-
eter configurationJ15J25J3 a triple point of the hexagonal
phases under consideration appears. When the lattice contri-
butions to the total free energies are neglected, the results of
the threeab initio calculations appear close to the first triple
point. After inclusion of the lattice free energy the calculated
phases appear much more in the stability region of the hex-
agonal phases. This tendency away from the cubic phase is
increased with rising temperature. This result confirms the
paradoxical situation22 that SiC appears to prefer to grow in
cubic form, more than in any other, in spite of the fact that
this is never the stable structure. Surprisingly, we observe a
stabilization of the 4H polytype with an increase of the tem-
perature. Although our estimates show also a tendency to
increase the ratioJ3 /J2 and thereby to approach the 6H
stability region, in the framework of the ANNNI model we
cannot reproduce the results of the experiments,8,23 which
indicate that 6H is the stable form at high temperatures and
probably 4H at low temperatures. However, the experimental
picture is not completely clear~see Ref. 23!.

C. Heat capacity and Debye temperature

The constant volume specific heatCV(T) of 3C SiC cal-
culated within the framework of BCM and DFT is plotted in
Fig. 5~a! versus temperature and compared with available
experimental data.24 The BCM data agree very well with the
correspondingab initio ones. Moreover, both theoretical ap-

proaches reproduce theT3 law for the low temperature limit
and agree with the experimental data in the temperature
range between 50 and 800 K excellently. The deviations for
higher temperatures are due to the fact that the experimental
data were measured at constant pressure. Therefore the an-
harmonic effects, which become important for high tempera-
tures and are not taken into account in the calculations, cause
the differences. The excellent agreement betweenCp and
CV below 800 K show on the other hand, that the harmonic
approximation provides realistic results in this temperature
region. Since the optical phonon frequencies correspond to a
temperature of about 1400 K, the Dulong-Petit limit has not
been reached inside the plotted temperature interval.

The almost identical course of the specific heat of the
different polytypes@see Fig. 5~b!# can be connected with the
almost identical free energy of these polytypes@Fig. 2~b!#.
This similarity holds especially for very low (T,100 K! and
higher temperatures (T.600 K!. The largest deviations be-
tween the specific heat of the cubic and hexagonal phases of
roughly 1% appear at about 200 K.

However, the small variations between the heat capacities
of the polytypes considered give rise to different Debye tem-
peraturesQD(T), which were derived from the Debye equa-
tion for the specific heat,

FIG. 4. Phase diagram of the ANNNI model. The stability re-
gions of the four polytypes considered are indicated. The phases
obtained starting from theab initio results of Refs. 3–5 are indi-
cated by diamonds, circles, and squares, respectively. Open sym-
bols, without the lattice contribution to the free energy; black sym-
bols, with phonon free energy. From left to right increasing
temperaturesT50, 400, 800, and 1200 K are considered.

FIG. 5. ~a! Specific heat capacity per Si-C pair as a function of
temperature calculated within the BC model~solid line! and DFPT
~dashed line!. The experimental results of the specific heat at con-
stant pressure taken from Ref. 24 are indicated by diamonds and
crosses. The inset shows the behavior at low temperatures.~b! Dif-
ferences of the heat capacity ofnH polytype with respect to the
3C value. CV

2H2CV
3C ~solid line!, CV

4H2CV
3C ~dotted line!, and

CV
6H2CV

3C ~dashed line!.
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CV~T!518kBS T
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QD~T!/T x4ex

~ex21!2
dx, ~6!

using a root-finding procedure. The results for 3C SiC are
shown in Fig. 6. Similarly to other tetrahedrally coordinated
semiconductors, the curve for 3C SiC exhibits a rather strong
temperature variation, in particular in the temperature region
below room temperature. The agreement with experimental
data is reasonable. In the low temperature region around 100
K the theoretical values are somewhat smaller. This could be
a consequence of the fact that the sound velocities are
slightly underestimated within the BCM.7 In Table II we list
Debye temperatures calculated at 0 K and 300 K for the
considered polytypes of SiC. The differences between the
Debye temperatures of cubic SiC and the hexagonal phases
at room temperature are rather small. This result agrees well
with the experimental data.24,25To get reasonable values for
the Debye temperatures around 0 K very dense meshes of
q-points are needed to perform the integration over the Bril-
louin zone. Therefore we applied another method, which
overcomes the high numerical effort for calculating the pho-
non frequencies at very denseq-point meshes. In order to
calculate the valuesQD(0) we determined the mean sound
velocity by averaging the gradient of the acoustic branches
over a sphere lying very close around theG point. We found,
in agreement with previous calculations for other materials,26

that the Debye temperature at 0 K lies higher thanQD(T) in
the high temperature region. 3C SiC has the largest Debye

temperature at 0 K, whereas the values for the hexagonal
structures are somewhat smaller and among themselves simi-
lar in quantity. However, no clear trend with hexagonality,
as, e.g., for the band gap or for theG point frequencies, is
perceptible. 2H and 6H SiC have nearly the same Debye
temperatures, while 4H SiC shows a somewhat smaller
value. This behavior as a function of the hexagonality fol-
lows that of the sound velocities.7 The folding of the acoustic
branches of 3C along the@111# direction into the hexagonal
Brillouin zone causes the flattening of the branches near the
zone boundary. In the average, this also gives rise to a low-
ering of the Debye temperature of the hexagonal phases in
comparison with the cubic one. A second reason may be
related to the decrease of the zone-center optical frequencies7

with hexagonality. When the Debye temperatures are calcu-
lated or measured at higher temperatures, the differences be-
tween the polytypes vanish, as shown in Table II for room
temperature.

D. Displacement-displacement correlations

The most important autocorrelation functions are the vi-
brational amplitudes of the atomic mean-square displace-
ments. They follow from expression~1! setting l5 l 8,
k5k8, anda5b,

^ua
2~k l !&5

\

NMk
(
q, j

1

v j~q! Fn„v j~q!…1
1

2G uea
k~ jq!u2. ~7!

As a consequence of the translational symmetry there is no
dependence on the indexl of the unit cell in Eq.~7!. Figure
7 shows the mean square displacements of the carbon and
silicon atoms, the so-called Debye-Waller factors27 for 3C
SiC, versus temperature. They are independent of the Carte-
sian directiona, due to the cubic symmetry of the crystal.
The increase with rising temperature indicates the mecha-
nism, which is related to lattice expansion in a real crystal. In
the low temperature limit the vibrational amplitude of the
lighter carbon atom is larger than that for the silicon atom. In
this region, the results obtained within BCM and DFPT
agree excellently. This holds also with respect to room-

FIG. 6. Debye temperatureQD(T) of 3C SiC. Diamonds and
crosses indicate Debye temperatures estimated from experimental
specific heat results~Ref. 24!. The dot atT50 K denotes a calcu-
lated value; see text.

TABLE II. Debye temperaturesQD(T) ~K! of SiC polytypes
derived from the averaged sound velocities forT50 K and expres-
sion ~6! for 300 K, respectively.

3C 6H 4H 2H

Theory ~0 K! 1232 1205 1211 1208
Theory ~300 K! 1126 1123 1120 1122
Expt. ~300 K! 1123a 1126b - -

aReference 24.
bReference 25.

FIG. 7. Mean-square displacement of carbon and silicon atoms
of 3C SiC versus temperature. Solid line, BC model; dotted line,
DFPT. The averaged values measured for 6H SiC at room tempera-
ture are indicated as dots~Ref. 28!.
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temperature data from x-ray diffraction measurements.28 For
room temperature the carbon~silicon! atom is displaced in
the average by about 0.057~0.051! Å from its equilibrium
position. For higher temperatures, both curves approach each
other. However, this tendency is overestimated within the
BCM. We observe even a crossing at about 700 K. In gen-
eral, the temperature increase is slightly overestimated
within the harmonic approximation, because the anharmonic
contributions, which lower the values of the phonon frequen-
cies, are not taken into account. The deviations between re-
sults of BCM and DFPT are larger than in the case of free
energy or heat capacity. This is due to the need of the eigen-
vectors in the computation of the autocorrelation functions
@see Eq.~7!#. Actually we have found that in the case of 3
C SiC the agreement of the eigenvectors from BCM and
DFPT ~Ref. 7! is excellent along the high-symmetry direc-
tions GX and GL in the BZ. Nevertheless, there are small
deviations, especially in low-symmetry directions. These
small deviations become important for higher temperatures
and acoustic modes because of the weighting factor
@v j (q)#

22 of the square of the eigenvectors.
Because of the sensitivity of the displacement-

displacement correlation to the exact values of the eigenvec-
tors and eigenfrequencies, we only compute deviations of the
mean square displacements in the hexagonal polytypes 6H,
4H, and 2H with respect to the 3C values within the BCM.
First, we consider the mean square displacements averaged
over the different space directions and the geometrically in-
equivalent atoms.

In order to represent the influence of polytypism on the
Debye-Waller factors we show in Fig. 8 the differences of
the mean square displacements for the different carbon and
silicon atoms in thenH unit cell with respect to the zinc-
blende values. We observe a similar dependence on the poly-
types as found for the free energy, entropy, and Debye tem-
perature. The results for the 4H polytype are quite different
compared to those of 2H and 6H considering thermal prop-
erties. Whereas in the case of silicon atoms the averaged
displacements of 2H, 6H, and 3C are nearly the same, the
averaged silicon displacements in 4H seem to be always
larger than in the other polytypes. Moreover, the averaged

mean-square displacements of the carbon atoms are smaller
in 6H and 2H, but larger in 4H. Considering the mean
square displacements, we can therefore suppose that the Si-C
lattice of 4H should be more expanded with temperature than
those of 3C, 6H, and 2H SiC.

We have also examined the deviations of the mean-square
displacements for then/2 inequivalent C and Si atoms in the
nH unit cell and the inequivalent displacement directions
parallel and perpendicular to thec axis from the 3C values.
However, these deviations are of the order of 1% compared
to the averaged values, indicating a rather small anisotropy
and almost vanishing inequivalence of the atoms in the hex-
agonalnH structures. These findings are somewhat in con-
trast to x-ray measurements for 6H SiC,28 which seem to be
only explainable with fluctuations between the inequivalent
atoms that are one order of magnitude larger.

The displacement-displacement correlation functions of
different atoms are much smaller~by about a factor 10! than
the autocorrelation functions. As an example, the functions
^uz(k)uz(k8)& up to fifth nearest neighbor atoms
k851, . . . ,5with respect to a carbon atomk50 situated at
the origin of coordinates are plotted in Fig. 9 for 3C SiC
versus temperature. The calculation has been performed
within a hexagonal unit cell. It is known that besides the
first- and second-nearest-neighbor interaction, the interaction
along the zigzag chains in cubic@110# directions, including
the origin and the fifth neighbor atom, is the most important
one. This has been already shown for silicon.29 This expec-
tation is also confirmed for 3C SiC, as can be seen from Fig.
9. The correlations between atoms 0 and 5 are stronger than
those between 0 and 3 or 0 and 4, because these atoms are
not in the plane containing the Si-C zigzag chain. Always
three~four! bonds are needed to reach the atom 3 or 5~4!,
starting from atom 0. However, only in the case of the 0-5
correlation are all these bonds arranged in one plane. Equiva-
lent calculations for the hexagonal polytypes have yielded
similar results, but no trend with the hexagonality could be
observed. Moreover, also in the case of 2H SiC the correla-
tions of neighboring atoms are practically identical with

FIG. 8. Fluctuations of the mean square displacements of carbon
~left panel! and silicon~right panel! atoms innH SiC with respect
to the 3C SiC values. The mean-square displacements are averaged
with respect to the inequivalent positions in the unit cell and the
Cartesian directions. Solid line, 2H; dashed line, 4H; and dotted
line, 6H.

FIG. 9. Thez-z–displacement correlation function of the first-
~solid line!, second-~dotted line!, third- ~short dashed line!, fourth-
~long dashed line!, and fifth-nearest~dot dashed line! neighbor at-
oms in 3C SiC.
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those of 3C SiC. This is somewhat surprising since atom 5
belongs in the wurtzite structure to a twisted bilayer of at-
oms.

IV. SUMMARY

We have presented calculations of thermal properties of
cubic and hexagonal silicon carbide polytypes using a gen-
eralized bond-charge model which describes the underlying
lattice dynamics. More in detail, thermodynamical functions
such as free energy and entropy as well as heat capacity and
displacement-displacement correlations have been consid-
ered. In order to check the reliability of the model calcula-
tions, we have compared all results for the zinc-blende poly-
type 3C SiC with those obtained within anab initio density-
functional method, where the response of the system to
atomic displacements and external fields is self-consistently
calculated. The studies of the thermodynamics of the poly-
types has been completed with an ANNNI model using
temperature-dependent coefficients. This model allows the
discussion of the phase equilibrium of the polytypes 3C,
6H, 4H, and 2H and of tendencies for stabilization of dif-
ferent polytypes in dependence on temperature. The calcu-
lated heat capacity at constant volume is in excellent agree-

ment with experiment. The Debye temperatures derived from
the specific heat give only a weakly pronounced trend with
the percentage hexagonality at very low temperatures. More-
over, the differences of the Debye temperatures of thenH
SiC polytypes decrease rapidly with increasing temperature.
This fact agrees well with experimental findings for 3C and
6H SiC. The mean square displacements are very interesting
in the context of x-ray or neutron scattering, where they enter
the Debye-Waller factor. Their absolute values agree well
with room temperature experimental data. We find a rela-
tively small variation of the mean-square displacement with
respect to the geometrically inequivalent atoms in the hex-
agonal unit cell. The same holds for the anisotropy of the
vibrational amplitudes. In general, these variations are rather
small due to the small anisotropy of the hexagonal polytypes
of SiC under normal conditions.
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