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Influence of polytypism on thermal properties of silicon carbide
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We present calculations of thermal properties of tie 84, 4H, and 2 polytypes of silicon carbidéSiC).
The underlying lattice-dynamical properties are calculated within a generalized bond-charge model which
gives also correct phonon eigenvectors. In the case of the zinc-blende structure the results are checked by
comparison with those @b initio density-functional calculations. Explicitly, we determine the free energy, the
specific heat, the Debye temperature, and the Debye-Waller factors. The influence of the polytypism, in
particular of the anisotropy in the hexagonal cases, is studied in detail. The theoretical results are in good
agreement with available experimental data. A temperature-dependent axial next-nearest-neighbor Ising model
is derived. Consequences are discussed for the polytypism and the thermodynamics of the different SiC phases.
[S0163-18296)11627-1

[. INTRODUCTION the temperature dependence of spot intensities in many dif-
fraction spectroscopies, such as x-ray diffraction or neutron
The growing interest in the semiconductor silicon carbidescattering. The heat capacity, in particular for low tempera-
(SiC) is related to applicative and scientific reasons. SiC igures where it may be directly related to the Debye tempera-
an attractive material for electronic devices in high-ture, characterizes the dynamical and thermal properties of
temperature and high-power applications because of its largée crystal in an averaged manner.
band gap, large thermal conductivity, high breakdown volt- In this paper we present calculations of thermal properties
age, and of its outstanding mechanical and chemical stabibf 3C, 6H, 4H, and 24 SiC polytypes using a generalized
ity. SiC, which is the only known naturally stable group-IV bond charge model to describe the lattice dynarhiGur
compound, exhibits a very pronounced polytypism. Morecomputations include thermodynamic functions, i.e., free en-
than 200 crystalline modifications have been determined tergy and entropy, heat capacity, and autocorrelatinaan
date! Zinc-blende(3C) SiC, with pure cubic stacking of square displacement®f atomic displacements. We study
Si-C double layers in thg111] direction, and wurtzite the influence of the polytypism on these quantities, in par-
(2H) SiC, with pure hexagonal stacking [8001] direction, ticular the influence of hexagonality and anisotropy. More-
are the most extreme polytypes. The other polytypes represver, we discuss the thermodynamical stability of the poly-
sent hexagonalH) and rhombohedralR) combinations of types. For that purpose a linear Ising spANNNI) model
these stacking sequences witSi-C bilayers in the primi- With temperature-dependent parameters is introduced. Com-
tive cell2 The polytypes lie very close together in energy andparison with experimental data is performed for the specific
possess similar lattice constaite. For example, the most heat at constant volume and the Debye-Waller factors. In the
common polytypes G, 6H, 4H, and M differ only by  case of & SiC the quality of the bond-charge-model results
about 0.1% in the lattice constaat The indirect band gap is directly checked by comparing with first-principles density
varies between 2.4 e\8C) and 3.3 eV(2H).6 On the other  functional calculation$:'°
hand, the lattice-dynamical properties are rather siilar.
Apart from the folding of _the phonon modes the strongegt Il. CALCULATIONAL METHOD
effect is related to the anisotropy of the long-range electric
field accompanying the excitation of polar optical phonons. A generalization of the adiabatic bond-charge model
TheI" point phonon frequencies vary within an interval of 5 (BCM) is used to calculate the phonon frequencigéy) as
cm™ ! versus the polytypes. However, a remarkable redistriwell as the corresponding eigenvect@¥jq) within the
bution in the density of states of the optical phonon modesiarmonic approximatioh.The BC model contains 1(Q16)
has been found. free parameters for the cubicexagonalcase. These param-
The knowledge of the temperature dependence of physkters have been fitted to reproduce the first-order Raman fre-
cal quantities is important for many equilibrium properties.quencies. In the BC model, an atom is described by a
This holds especially for the Helmholtz free energy, whichcharged ion, whereas the bonds are replaced by massless
governs the whole thermodynamics. Important informationbond charges. These charges interact via central and angular
about the polytypism of the material system as well as thdorces up to second-nearest neighbors. The BC model is cho-
growth conditions of the various polytypes may be derivedsen, since it describes reasonably not only the phonon fre-
within the harmonic approximation, even if the relevance ofquencies but also the phonon eigenvectors as shown in Ref.
an equilibrium theory is restricted to low temperatt@he 7. As shown in Refs. 9—13 the anharmonic corrections up to
displacement-displacement correlation functions describe théne second order in the cubic and first order in the quartic
temperature-dependent motion of the ions in the crystalanharmonic coupling constants for homopolar and heteropo-
They also determine the Debye-Waller factors and, hencdar semiconductors are rather small for thermal properties
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like free energy and entropy or specific heat at constant vol- (a)

ume up to the temperature T2, whereby the temperature 02216 ST T T
T* =fhwmax/Kg corresponds to the maximum frequency of I .
the phonon spectrum. Therefore, for temperatures below 700 S //
K the anharmonic contributions to the thermal properties of 7 =~ 02212 .
SiC considered here can be safely neglected. The thermal §
properties for which anharmonic contributions at every tem- £
perature are not negligible, such as the linear expansion co- & ¢z} . i
efficient or the difference of the specific heat at constant g P
volume and constant pressure, are not considered here. The ™ e
correct description of the phonon eigenvectors is crucial for /
the investigation of the displacement-displacement correla- 0RR0 0 2000 6000 8000
tions of atoms. The correlation of atomic displacements
u(«l) andu(x’l") is defined as
(b) 01495 . : — . . —
Uk K1) = e TS n(wy(q)+ 5 ) | '
IR TV N w2 T 0.1490r -
n
X e5* (| k" i yald(R =Ry ; |
o (Jaeg (jae : (1) T otsesf i
whereM . is the atomic mass of theth atom,R, is a Bravais @ ______________________
lattice vector, n(w)=[expfiw/kgT)—1] ! is the average &'? 01480 --777 7
phonon occupation numbéBose functiof, andN denotes v
the number of unit cells in the crystal. 0.1475 L
Whereas in the case ofZ3SiC (F43m space group sym- 0 2000 4000 6000 8000
metry) all atomic positions are fixed by the cubic lattice con- Number of § points

stanta, the knowledge of the lattice constardsandc as

well as ofn/2 internal free parameters is necessary to fix the

atomic position in the case of hexagomaH polytypes FIG. 1. Convergence of the lattice contribution to the free en-
(P6;mc space group symmetryHowever, the atomic relax- €rdy per SiC pair with respect to the number gpfpoints in the
ations from their ideal positions inH SiC polytypes are irreducible part of the Brillouin zone for@ (solid line) and H SiC
very small* Moreover, their influence on the lattice dynami- (dashed lingatT=0 K () andT=500 K (b).

cal and dielectric properties is negligibfe Therefore, we

neglect these relaxations and fix the equilibrium atomic po- Cv(T)=Z kB(ﬁwJ(Q))Z exp(hw;(q)/kgT)
Gl

sitions by experimental values afandc taken from Ref. 15. kgT [exp(fiw;(q)/kgT)— 1%
The free energy of any polytype is described by 4
A denseg-point sampling is crucial to achieving the de-
F(T,V)=Fg(T,V)+Fy(T,V), (2)  sired accuracy in the energy differences. The special-point

technique of Monkhorst-Pack is used to perform the integra-
tion over the irreducible part of the Brillouin zor®2z).1°
Fvib(TuV):E Eﬁw]-(q) Because the energy differences between tht_a pol_ytypes are
a1 |2 rather small, we sample exactly the sauppoints in the
g-space of all the structures. Therefore, the zinc-blende
_ o structure is specified in terms of the hexagonal unit (Il
TkeTIn[1-exp(—hoj(@/ksD]f. () H). We choose the same meshpoints (34x 34) in the
plane of hexagonal layers for all structures but different
In our calculations, we replace the electronic contributionnumbers ofg-point layers along the stacking direction; 24,
Fo(T,V) by its static limit, i.e., the corresponding internal 16, 12, and 8 layers for the-2 3H, 4H, and 6 structure,
energy of the valence electrons of the sysfehsince the respectively. This choice corresponds to 4624 special points
electronic entropy is negligibly small in the interesting tem-for the ZH structure. The convergence of the free energy of
perature range. The lattice contribution is described by théhe cubic® and the wurtzite B structure with respect to the
sum over a set of independent harmonic oscillators with freg-point sampling is shown in Fig. 1. Whereas the differences
quenciesw;(q). The entropy of the vibrating lattice follows of the free energy between the SiC structures are of the order
from the free energy aS,i,= — (dF.i,/dT)y . Its knowledge of 0.1 meV, the errors in the energy differences using these
allows the calculation of the internal energy according tofinite g-point sets are estimated to be about 0.01 meV per
Uvib=Fuibt TSiip,- Apart from extremely low temperatures, Si-C pair. A dense mesh of special points is in particular
the internal energy of the lattice also defines the heat capadecisive for the calculations of the correlation functions. At
ity at constant volume of the crystal byCy(T) low temperatures the correlation functions are proportional
=(dU,/dT)y . From Eq.(3) one obtains for the heat capac- to the inverse eigenfrequencies, in the high-temperature limit
ity even to the square of the inverse eigenfrequencies. Because
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of the linearg-dependence of the acoustic-mode frequencies, (a)
a formal singularity appears at tHe point [see Eq.(1)].
However, transforming thg-sum into an integral over the
BZ, it becomes evident that this seeming singularity is re-
moved by theg?-dependence of the space element. Never-
theless a rather dense mesh of the special points is needed to
obtain well converged results. Therefore, for the calculation
of the displacement-displacement correlation functions we
have increased the density of the mesh points in the region I
around thel’ point by a factor 3. SN
In order to control the results obtained within the BCM, 1100 1180 - 1200 _
we compare them with those obtained using a first-principles 0 400 800 1200
method>° In the ab initio method the dynamical matrix is
derived by calculating the response of the electrons to atomic
displacements and static electric fields using density- (b) 0 . . : .
functional perturbation theoryDFPT). Our calculations are
performed within the local-density approximatidrtDA) us-
ing soft norm-conserving pseudopotentials. The dimension
of the plane-wave basis set at a givgpoint in the first BZ
is fixed by a kinetic-cutoff energy of 40 Ry. This cutoff
energy corresponds to about 450 plane waves per atom. Un-
fortunately, DFPT is computationally very demanding due to
the necessity of calculating the electron-density response to a
phonon perturbation. Therefore, a calculation of the full pho-
non spectra cannot be done for polytypes with many atoms -4 . L . L .
in the unit cell, i.e., for 61 SiC. Consequently, we restrict the 0 400 800 1200
ab initio calculations to the @ polytype with two atoms in Temperature (K)
the unit cell.

o
T
1

F(T) (eV/Si—C)

AF,(T) (meV/Si—C)

FIG. 2. () The calculated free energy of theC3SiC lattice
using a bond-charge modékolid line) and ab initio density-
A. Thermodynamics functional theory(dashed ling (b) Differences of the free energy of
the nH polytypes with respect to theC3value. F2 — F3C (solid

line), Fyi— F35 (dotted ling, andFSH —F3¢ (dashed ling

Ill. RESULTS

The thermodynamics of the vibrating crystal lattices is
governed by the Helmholtz free enerdy,,(T,V), which
depends on the temperature and the volume. The Helmholtz
free energy of 8 SiC calculated within the BCM as well as For a discussion of the polytype stabilization by the vi-
using the DFPT is plotted in Fig.(@ versus temperature. In brating lattice only the differences of the lattice contributions
the temperature range considered the discrepancy betweemthe total energy are substantial. Such differences with re-
the results of both approaches to the harmonic lattice dynanspect to the free energy of the zinc-blende structure of SiC
ics is rather small. Therefore, we conclude that within theare plotted for the hexagonal polytypesi 64H, and H
harmonic approximation the BCM is applicable not only to with increasing percentage hexagonalitpf 33%, 50%, and
the lattice-dynamical but also to the thermal properties ofLl00% in Fig. Zb). Despite the smallness of the absolute
SiC. The lattice contribution to the total free energy showsvalues of the lattice contribution to the total free energy per
the behavior being typical for all crystal lattices. We observeSi-C pair, the differenceAF,;, approach the same order of
an excellent agreement with a previous calculatiowhere  magnitude, i.e., several meV, as the differences of the static
a valence-overlap shell model was used to describe the pheoetal internal energy-° In the low temperature region the
non frequencies. In the low temperature region, the zeromain contribution is due to the variation of the zero-point
point vibration of the lattice is the most important contribu- vibrational internal energy. For higher temperatures there is
tion to the free energ¥,,(T,V); In this temperature region also a contribution from the entropy variatifsee Fig. 8)].
the free energy is almost independent of temperature, as cafowever, the entropy contribution does not change the order
be seen in Fig. @). Although the absolute value of the free of the static energy of the investigated polytypes, but rather
energy at low temperatures is rather snf@lll% compared enlarges the differences among them. In contrast to the dif-
to the static total energy;® it becomes important for the ferences in the one-phonon density of stdte& do not ob-
thermal stability. In the high temperature region the entropyserve a clear trend with the percentage hexagonality. In gen-
contribution— TS, governs the free energy as indicated byeral, the(lattice) free energies are lower for the hexagonal
the almost linear temperature dependence and the negatilattices than for the cubic one. We explain this fact by the
free-energy values in this temperature range. The entropy afeneral tendency that the limiting frequencies slightly de-
3C SiC is plotted in Fig. 89). Whereas in the low tempera- crease with rising hexagonality. This is clearly shown for the
ture region the entropy exhibits an exponential increase, theone-center optical phonon frequenéies well as for the
entropy has approximately a logarithmical dependence fobebye temperaturésee discussion belgwSuch a trend de-
higher temperatures. creases the free energy in the average. On the other hand,
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TABLE I. Interaction parameters); (meV) of the ANNNI

| | model for different temperatures and different electronic contribu-

10 ' ' i tions to the total free energy taken from Refs. 3-5.

Ji J2 J3

Reference [3] [4] [5] [3] [4] [5]1 [3] [4] [5]

static value 4.80 1.08 2.33 -2.93 -2.45-3.49 -0.45-0.18 0.25
T 0K 4.49 0.76 2.02 -3.23-2.75-3.79 -0.47 -0.19 0.24
] 400 K 4.38 0.66 1.91 -3.34 -2.86 -3.90 -0.48 -0.21 0.22
800 K 4.10 0.37 1.63 -3.60 -3.13 -4.16 -0.52 -0.24 0.18
1200 K 3.79 0.07 1.32 -3.90 -3.42 -4.46 -0.55-0.28 0.15

8 PR B
1100 1150

Suis(T) (ks/Si-C)

0 400 800 1200

(b) 3 ' ' ' ined as different arrangements of cubic or hexagonal Si-C
bilayers? This one-dimensional character of the stacking dif-
ferences suggests the description of the differences in terms
of an axial next-nearest neighbor IsiigNNNI) model®
where thd th cubic(hexagonalbilayer is represented by the
pseudospin upri=+1 and downg;=—1. This model has
been already successfully applied to the discussion of poly-
typism of silicon carbide neglecting the contributions of the
vibrating lattice'®=?! In a simplified version the total free
energy of the system per Si-C pair may be represented by

AS,i(T) (1072 kg/Si—C)

0 400 800 1200

F(T)=Fo(T)~

S|

n o
> > Jjoioiij, 6)
i=1j=1

Temperature (K)

FIG. 3. (a) The entropy of the @ SiC lattice within the bond- where|j runs over the interacting bilayers. The lalehc-
charge modelsolid line) and ab initio density-functional theory counts for the bilayers in the unit cell of theH polytype.
(dashed ling (b) Differences of the entropy of theH polytypes  More complicated interactions, such as four-spin terms, are
with respect to the @ value. S — S (solid line), Siij —Sjs (dot-  negligible and therefore have been left out for transparency.
ted ling, and Sy — Sii; (dashed ling The parameters; are the interaction energies of two bilay-

ers. The largest teriy(T) in Eq. (5) represents the energy
within the hexagonal polytypesHs 4H, and H there is  of the crystal without interaction of the bilayers. Assuming
visible a nearly parabolic dependence of the free energy othat the long-range interactions are small we restrict the
the hexagonality, although the variations are smaller than thg-sum up to third neighborsj € 3).
differences to the G values. The lowest free energy is ob-  In order to derive the interaction parametéysve replace
served for H (h=50%), whereas the values forH6 the total free energl(T) at a given volume in Eq5) by the
(h=33% and H (h=100% are nearly identical. Conse- sum of the lattice contribution and the total internal energy
quently, the vibrating lattice strengthens the tendency for thef the electron$=® The entropy of the electronic system as
stabilization of the # polytype in the thermodynamic equi- well as the configurational contribution, which is related to
librium. This happens surprisingly not only for low tempera- the arrangement of boundaries between bilayers belonging to
tures but also for higher temperatures. Our results for thelifferent spins, are not taken into accodihExplicitly, dif-
vibrational contributions to the Helmholtz free energy areferences are considered, i.eF,y—F3c=2J;+2J3,
somewhat in contrast to those of Chegigall’ Chenget al.  Fyq—Fzc=J,+2J,+J3, and Fgy—Fac=2J;+ 2J,+2J;.
found differences of the phonon free energies that are on€he results of a fitting procedure for thk paramaters is
order of magnitude smaller. The reason may be related to thgiven in Table I.
fact that the same valence-overlap shell model parameters The variation of the parameters starting from three differ-
derived for cubic SiC are applied to the other hexagonaknt static total energy calculatiohs may be traced back to
polytypes. In this manner only differences in the geometricathree facts(i) The atomic relaxation taken into account by
structure are taken into account but effects related to th&ackell et al* remarkably reduces the nearest-neighbor in-
long-range electric field, which give rise to the anisotropy ofteractionJ; . (i) The ab initio calculation of Chenget al®
the lattice-dynamical properties and the splittings of the zondavors the &1 polytype instead of theH one. (iii) A much
center phonon frequencies, are neglected. larger energetical difference betwee@ &nd H is calcu-
lated by Karchet al.®> and Chenget al2 The introduction of
the phonon free energy reduces all interaction parameters.
We observe a tendency for a reductionlef J,, andJ; and,

Geometrically the polytypes differ by the stacking alongrespectively, a shift towards more negative values. That
the cubic[111] or the equivalent hexagon0001] direction.  means, that the vibrating lattice reduces the attractive char-
Along this particular direction all polytypes may be imag- acter of the nearest-neighbor interactions. Thereby the effect

B. Temperature-dependent ANNNI model
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FIG. 4. Phase diagram of the ANNNI model. The stability re- L,’
gions of the four polytypes considered are indicated. The phases Q 12
obtained starting from thab initio results of Refs. 3—-5 are indi- &
cated by diamonds, circles, and squares, respectively. Open sym- ? 8
bols, without the lattice contribution to the free energy; black sym- =
bols, with phonon free energy. From left to right increasing :
temperature§ =0, 400, 800, and 1200 K are considered. L2 4
S
. . L <
on the second-nearest-neighbor interaction is rather small. 0

The phonon influence ody, andJ; is more important, espe- 0 T 00 80 1200
cially starting from theab initio results of Ref. 5. In this
particular casds, i.e., the third-nearest-neighbor interaction
will be repulsive for layers of equal pseudospin.

The phase diagram of the described ANNNI model in-

cluding the phonon contributions is plotted in Fig. 4. We (dashed ling The experimental results of the specific heat at con-

chose the rati0§3”2,and‘]1/‘]2 as coordinates. In .the S€- stant pressure taken from Ref. 24 are indicated by diamonds and
lected parameter region two multiphase degeneracies aPPE@fosses. The inset shows the behavior at low temperaimedif-

For J;=0 andJ,=—2J, the phases of low hexagonality ferences of the heat capacity nH polytype with respect to the
3C, 6H, and H degenerate. For the more unrealistic paramsc yalue. C2H—C3° (solid line), C&H—C3C (dotted ling, and

eter configuration; = J,=J; a triple point of the hexagonal c8—c3¢ (dashed ling
phases under consideration appears. When the lattice contri-

butions to the total free energies are neglected, the results of -
the threeab initio calculations appear close to the first triple Proaches reproduce i€ law for the low temperature limit
point. After inclusion of the lattice free energy the calculateg@nd agree with the experimental data in the temperature
phases appear much more in the stability region of the hex2nge between 50 and 800 K excellently. The dewaﬂqns for
agonal phases. This tendency away from the cubic phase higher temperatures are due to the fact that the experimental
increased with rising temperature. This result confirms thélata were measured at constant pressure. Therefore the an-
paradoxical situatioff that SiC appears to prefer to grow in harmonic effects, which become important for high tempera-
cubic form, more than in any other, in spite of the fact thattures gnd are not taken into account in the calculations, cause
this is never the stable structure. Surprisingly, we observe i€ differences. The excellent agreement betwgnand
stabilization of the ¥ polytype with an increase of the tem- Cv below 800 K show on the other hand, that the harmonic
perature. Although our estimates show also a tendency t8PProximation prowdgs realistic results in this temperature
increase the ratid;/J, and thereby to approach thed6 region. Since the optical phonon frequencies gorre_spond to a
stability region, in the framework of the ANNNI model we temperature of_ ab_out 1400 K, the Dqung-Pet!t limit has not
cannot reproduce the results of the experim&ftsyhich been reached |n3|de_ the plotted temperature_ !nterval.

indicate that 61 is the stable form at high temperatures and _ The almost identical course of the specific heat of the
probably 44 at low temperatures. However, the experimentaldifferent polytypegsee Fig. $)] can be connected with the

picture is not completely clegsee Ref. 28 almost identical free energy of these polytygésg. 2(b)].
This similarity holds especially for very lowT(< 100 K) and

higher temperaturesT¢600 K). The largest deviations be-

tween the specific heat of the cubic and hexagonal phases of
The constant volume specific heay(T) of 3C SiC cal-  roughly 1% appear at about 200 K.

culated within the framework of BCM and DFT is plotted in ~ However, the small variations between the heat capacities

Fig. 5@ versus temperature and compared with availableof the polytypes considered give rise to different Debye tem-

experimental dat4’ The BCM data agree very well with the perature®d ,(T), which were derived from the Debye equa-

correspondingab initio ones. Moreover, both theoretical ap- tion for the specific heat,

Temperature (K)

FIG. 5. (a) Specific heat capacity per Si-C pair as a function of
temperature calculated within the BC modsblid line) and DFPT

C. Heat capacity and Debye temperature
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FIG. 6. Debye temperatur®p(T) of 3C SiC. Diamonds and FIG. 7. Mean-square displacement of carbon and silicon atoms

crosses indicate Debye temperatures estimated from experiment@i 3C SIC versus temperature. Solid line, BC model; dotted line,
specific heat resultéRef. 24. The dot atT=0 K denotes a calcu- DFPT. The averaged values measured t8r&C at room tempera-

lated value: see text. ture are indicated as dofRef. 28.
T \3[epmim xie temperature at 0 K, whereas the values for the hexagonal
Cy(T)= 18ks(— f ————dx, (6) structures are somewhat smaller and among themselves simi-
Op(T)/) Jo (e°-1)

lar in quantity. However, no clear trend with hexagonality,
as, e.g., for the band gap or for tlhepoint frequencies, is

L S X perceptible. B and 641 SiC have nearly the same Debye
shown in Fig. 6. Similarly to other tetrahedrally Coord'natedtemperatures, while M SiC shows a somewhat smaller

f:g'g?g&ﬂgtgz}gggncﬂave;?:éﬁg i?]x?rllzlttse ;raetrhaet{”sér(r):gio r\]/alue. This behavior as a function of the hexagonality fol-
P N p p 910M,\vs that of the sound velocitiésThe folding of the acoustic

22{?}’;&%@;?&?:?:%% Ig\r/]vet:rgre:rg]ti?é \r'\gtqoixggl:nr:gnf%anches of @ along the[111] direction into the hexagonal
' P 9 rillouin zone causes the flattening of the branches near the

K the theoretical values are somewhat smaller. This could bg | - | boundary. In the average, this also gives rise to a low-

a consequence of the fact that the sound velocities are . .
slightly underestimated within the BCKAin Table Il we list ir)'rr;gp ;’rfl ;g‘ﬁ aﬁgy&;e?upbﬁgagﬂg O/'; tggcgﬁ’éa?eoginp?s;isbg‘

Efﬁ;ﬁeﬁi?peéftture; c;lcg:(a:te?_ri }iji?fg?er?c?gs }E;?V;;Qﬁ th related to the decrease of the zone-center optical frequéncies
polytyp ' ith hexagonality. When the Debye temperatures are calcu-

Debye temperatures of cubic SiC and the hexagonal phas? ed or measured at higher temperatures, the differences be-

at room temperature are rather small. This result agrees well cen the polytypes vanish, as shown in Table Il for room
with the experimental daf4:>> To get reasonable values for temperature :

the Debye temperatures arauf@ K very dense meshes of
g-points are needed to perform the integration over the Bril-

louin zone. Therefore we applied another method, which D. Displacement-displacement correlations
overcomes the high numerical effort for calculating the pho-  The most important autocorrelation functions are the vi-

non frequencies at very densgpoint meshes. In order to brational amplitudes of the atomic mean-square displace-
calculate the value®(0) we determined the mean sound ments. They follow from expressioril) setting |=1",

velocity by averaging the gradient of the acoustic brancheg=«’, anda= g,
over a sphere lying very close around th@oint. We found,

in agreement with previous calculations for other matefls, h

that the Debye temperature@K lies higher thar®p(T) i (Ua(«l))= N[V >
the high temperature regionC3SiC has the largest Debye Sl

using a root-finding procedure. The results f& $iC are

1
w;i(q)

1
n(w;(q))+§

lex(ja)|>. (@)

_ As a consequence of the translational symmetry there is no
TABLE II. Debye temperature®)p(T) (K) of SiC polytypes  dependence on the indéof the unit cell in Eq.(7). Figure
sion () for 300 K, respectively. silicon atoms, the so-called Debye-Waller factérior 3C
SiC, versus temperature. They are independent of the Carte-

sC 6H 4 2H sian directiona, due to the cubic symmetry of the crystal.
Theory (0 K) 1232 1205 1211 1208 The increase with rising temperature indicates the mecha-
Theory (300 K) 1126 1123 1120 1122  hism, which is related to lattice expansion in a real crystal. In
Expt. (300 K) 11232 1126° . . the low temperature limit the vibrational amplitude of the
lighter carbon atom is larger than that for the silicon atom. In
®Reference 24. this region, the results obtained within BCM and DFPT

bReference 25. agree excellently. This holds also with respect to room-
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FIG. 8. Fluctuations of the mean square displacements of carbon
(left pane) and silicon(right pane) atoms innH SiC with respect Temperature (K)
to the X SiC values. The mean-square displacements are averaged
with respect to the inequivalent positions in the unit cell and the FIG. 9. Thez-z—displacement correlation function of the first-
Cartesian directions. Solid lineH2 dashed line, H; and dotted (solid line), second<{dotted ling, third- (short dashed line fourth-
line, 6H. (long dashed ling and fifth-nearestdot dashed lineneighbor at-

oms in X SiC.

temperature data from x-ray diffraction measuremé&heor
room temperature the carbdgilicon) atom is displaced in

| 1aCE mean-square displacements of the carbon atoms are smaller
the average by about 0.0%0.051) A from its equilibrium

e ) in 6H and H, but larger in 4. Considering the mean
position. For higher temperatures, both curves approach ea%}31uare displacements, we can therefore suppose that the Si-C

other. However, this tendency IS overestimated within thqattice of H should be more expanded with temperature than
BCM. We observe even a crossing at about 700 K. In gengnose of €. 6H. and H SiC

eral, the temperature increase is slightly overestimate We have also examined the deviations of the mean-square
within the harmonic approximation, because the anharmonic 9

contributions, which lower the values of the phonon frequen—d'Spl""c_eme”ts for tha/? meq.uwalent C and Si atom; n t.he
cies, are not taken into account. The deviations between r&H unit cell and the inequivalent displacement directions
sults of BCM and DFPT are larger than in the case of fregP@rallel and perpendicular to tieeaxis from the & values.
energy or heat capacity. This is due to the need of the eigefidowever, these deviations are of the order of 1% compared
vectors in the computation of the autocorrelation functiong© the averaged values, indicating a rather small anisotropy
[see Eq.(7)]. Actually we have found that in the case of 3 and almost vanishing inequivalence of the atoms in the hex-
C SiC the agreement of the eigenvectors from BCM andagonalnH structures. These findings are somewhat in con-
DFPT (Ref. 7) is excellent along the high-symmetry direc- trast to x-ray measurements foH @SiC 2% which seem to be
tionsI'X andI'L in the BZ. Nevertheless, there are small only explainable with fluctuations between the inequivalent
deviations, especially in low-symmetry directions. Theseatoms that are one order of magnitude larger.
small deviations become important for higher temperatures The displacement-displacement correlation functions of
and acoustic modes because of the weighting factodifferent atoms are much smallésy about a factor 1)0than
[wj(q)]*2 of the square of the eigenvectors. the autocorrelation functions. As an example, the functions
Because of the sensitivity of the displacement-(u,(x)u,(«’)) up to fifth nearest neighbor atoms
displacement correlation to the exact values of the eigenveas’ =1, ... ,5with respect to a carbon ator=0 situated at
tors and eigenfrequencies, we only compute deviations of ththe origin of coordinates are plotted in Fig. 9 fo€ &BiC
mean square displacements in the hexagonal polytyples 6 versus temperature. The calculation has been performed
4H, and H with respect to the @ values within the BCM.  within a hexagonal unit cell. It is known that besides the
First, we consider the mean square displacements averagérst- and second-nearest-neighbor interaction, the interaction
over the different space directions and the geometrically inalong the zigzag chains in cubji@10] directions, including
equivalent atoms. the origin and the fifth neighbor atom, is the most important
In order to represent the influence of polytypism on theone. This has been already shown for siliédhis expec-
Debye-Waller factors we show in Fig. 8 the differences oftation is also confirmed for@ SiC, as can be seen from Fig.
the mean square displacements for the different carbon ar@ The correlations between atoms 0 and 5 are stronger than
silicon atoms in thenH unit cell with respect to the zinc- those between 0 and 3 or 0 and 4, because these atoms are
blende values. We observe a similar dependence on the polyot in the plane containing the Si-C zigzag chain. Always
types as found for the free energy, entropy, and Debye tenthree (four) bonds are needed to reach the atom 3 @¢#4)5
perature. The results for théd4polytype are quite different starting from atom 0. However, only in the case of the 0-5
compared to those oft2 and @1 considering thermal prop- correlation are all these bonds arranged in one plane. Equiva-
erties. Whereas in the case of silicon atoms the averagddnt calculations for the hexagonal polytypes have yielded
displacements of 2, 6H, and X are nearly the same, the similar results, but no trend with the hexagonality could be
averaged silicon displacements i 4seem to be always observed. Moreover, also in the case éf 3iC the correla-
larger than in the other polytypes. Moreover, the averagetions of neighboring atoms are practically identical with
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those of & SiC. This is somewhat surprising since atom 5ment with experiment. The Debye temperatures derived from
belongs in the wurtzite structure to a twisted bilayer of at-the specific heat give only a weakly pronounced trend with
oms. the percentage hexagonality at very low temperatures. More-
over, the differences of the Debye temperatures ofrtHe
IV. SUMMARY SiC polytypes decrease rapidly with increasing temperature.
_ _ This fact agrees well with experimental findings fa€ and
We have presented calculations of thermal properties ofH sic. The mean square displacements are very interesting
cubic and hexagonal silicon carbide polytypes using a gen the context of x-ray or neutron scattering, where they enter
eralized bond-charge model which describes the underlying,e pepye-wWaller factor. Their absolute values agree well
lattice dynamics. More in detail, thermodynamical functionsyith room temperature experimental data. We find a rela-
such as free energy and entropy as well as heat capacity a§gely small variation of the mean-square displacement with
displacement-displacement correlations have been CO”S'?'éspect to the geometrically inequivalent atoms in the hex-
gred. In order to check the reliability of the .model calcula-agona| unit cell. The same holds for the anisotropy of the
tions, we have compared all results for the zinc-blende polyyiprational amplitudes. In general, these variations are rather
type I SiC with those obtained within b initio density-  smal| due to the small anisotropy of the hexagonal polytypes
functional method, where the response of the system tgt sic under normal conditions.
atomic displacements and external fields is self-consistently
calculated. The studies of the thermodynamics of the poly- ACKNOWLEDGMENT
types has been completed with an ANNNI model using
temperature-dependent coefficients. This model allows the This work has been supported by the Deutsche Fors-
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