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Theory of optical-phonon limited hot-electron transport in quantum wires

N. A. Zakhleniuk,* C. R. Bennett, N. C. Constantinou, B. K. Ridley, and M. Babiker
Department of Physics, University of Essex, Colchester, Essex, CO4 3SQ, United Kingdom

~Received 11 December 1995; revised manuscript received 10 June 1996!

We present a kinetic theory of a nonequilibrium electron gas in a one-dimensional circular quantum wire
interacting with acoustic and polar optical phonons. Besides these scattering mechanisms we also include an
elastic interaction with interface roughness for the electron momentum relaxation. We have solved the Boltz-
mann kinetic equation analytically and obtained different distribution functions for a one-dimensional electron
gas. A detailed kinetic analysis of the limiting case of the electron gas interacting solely with optical phonons
is undertaken and the distribution function is found when this system can be described in a self-consistent way.
Our analytical results are in good agreement with previous numerical studies of a similar system using Monte
Carlo techniques. As an application of the developed theory we have calculated the electric-field dependences
of electron mobility and average energy for different parameters of the quantum wire. It is shown that at high
lattice temperature the electron mobility is a nonmonotonous function of the applied electric field and has its
maximum value at intermediate electric fields when the transition from acoustic-phonon-limited to optical-
phonon-limited transport takes place.@S0163-1829~96!01747-X#
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I. INTRODUCTION

The quantization of the electron motion in systems of
duced dimensionality, such as quasi-one-dimensional~1D!
quantum wires~QWI’s!, brings about different features i
the electron kinetics compared with the usual thr
dimensional~3D! electron systems with the same mater
parameters. The decrease of the electron density of s
with increasing energy in a 1D QWI causes a reduction
the number of possible final states in momentum space
any electron transition at high energies. One consequen
that many of the interactions of a one-dimensional gas w
the thermal bath become ineffective and this results in
enhanced electron mobility.1

If an external electric field is applied the electrons pe
etrate into the high-energy region. The main mechanis
which are responsible for electron energy relaxation are
interactions with acoustic and optical phonons, whose r
tive contributions depend on the lattice temperatureT and
the strength of the applied electric fieldF. Here we will deal
with the situation when the lattice temperatureT is small
compared with the characteristic optical-phonon ene
\vL , i.e.,T0!\vL ~for brevity we writeT0 for kBT where
kB is the Boltzmann constant!. In GaAs the LO phonon en
ergy is 36.25 meV. The acoustic phonon scattering of a
electron gas has peculiarities2–5 due to the quantization o
the electron motion and this manifests itself in the elect
kinetics through the appearance of a characteristic en
Ec5Ax0m* vs

2W0, whereW0 is the quantum energy of th
ground state,m* is the electron effective mass,vs is the
sound velocity in the material, andx0 is a constant which
depends on the shape of the quantizing potential. The be
ior of the nonequilibrium electron system is quite differen5

at high~T0.Ec! and low~T0,Ec! lattice temperatures with
respect to this characteristic energyEc . For instance, in a
GaAs QWI with transverse sizeL''100 Å,Ec53 meV>35
K, i.e., the value of the characteristic energy correspond
540163-1829/96/54~24!/17838~12!/$10.00
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the normal range of lattice temperature and electron ener
for kinetic phenomena.

At high lattice temperatures the electron-acoustic-phon
interaction has a quasielastic character for the majority of
electrons at any strength of the electric field. The scatter
rate in this case always decreases when the electron en
increases, following the energy dependence of the elec
density of states. This means that the electron free path
creases with increasing electron energy. As a result, in
presence of an external electric field, the total energy of
1D electron gas gained from the electric field increases m
rapidly than its loss due to the quasielastic interaction w
acoustic phonons. The average energy balance betwee
1D electron system and the thermal bath is then broken;
electrons increase their energy indefinitely and no ste
state is established. This is the electron runaway effect.6 In
order to stabilize the electron system it is necessary to t
into account an effective mechanism for energy relaxat
other than the acoustic-phonon interaction. One possibilit
to use the strongly inelastic interaction with optical phono
Another consists of taking into account the transition of t
electrons into the continuum~nonquantized! classical region
of energy.7 Both of the possibilities mentioned above for th
stabilization of a 1D electron system are important un
different conditions.

In an infinitely deep well with a transverse sizeL''100
Å, we have for the energy of the ground stateW05110 meV.
The intersubband difference isDW;3/2W05165 meV,
which is 4–5 times that of the optical-phonon energy. T
means that the interaction of a 1D electron with optic
phonons is more important than the transition of electro
into the classical range of energy due to the effect of
electric field. Moreover, in the classical range of energy
electron energy is large compared with the optical-phon
energy and so this interaction becomes quasielastic, like
interaction with acoustic modes. However, due to the la
value of the electron-optical-phonon coupling constant co
pared to that for acoustic modes, the interaction with opti
17 838 © 1996 The American Physical Society
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54 17 839THEORY OF OPTICAL-PHONON LIMITED HOT- . . .
phonons will be more effective in controlling the energy r
laxation of the electrons. As a result, at very high elec
fields, when the electrons penetrate into the classical en
region, we can ignore the interaction with acoustic phono
This regime corresponds to the optical-phonon-limited el
tron kinetics at high electric fields.

To realize the acoustic-phonon-limited electron kinetic
is necessary to use a thick QWI where, within the elect
energy interval which corresponds to the energy\vL , there
are several electron subbands. Then, under the influenc
the electric field, the electrons will populate the upper s
bands before interacting with optical phonons, and we
ignore this latter contribution to the electron energy rela
ation. Estimations show us that the relevant width of a Q
for this case is within the rangeL''350–450 Å.

The situation is as follows. At high lattice temperature
W0.T0.Ec , when 1D electrons populate only the first su
band at equilibrium, their kinetic properties in a strong ele
tric field will be determined by the energy relaxation due
the interaction with acoustic and optical phonons for a t
QWI with L'<200 Å and only by the interaction with acou
tic phonons for a thick QWI withL'>400 Å. The case
which corresponds to the thick QWI was investigated in R
7. In this paper we will develop a kinetic theory of hot ele
trons in a thin QWI at high lattice temperatures and w
show that the interaction with optical phonons will suppre
the runaway effect in a strong electric field. Our aim here
to derive analytic expressions for the distribution functio
which arise and to calculate the electric-field dependenc
different kinetic coefficients for the 1D electron gas in
QWI under the above conditions.

We now turn to the case of low lattice temperatures.
this regime the electron-acoustic phonon interaction ha
strong inelastic character within a wide range of elec
fields.5 The scattering rate now increases very rapidly w
increasing electron energy and the behavior of the none
librium 1D electron gas is quite different compared with th
in the high lattice temperature case. In particular,
electron-acoustic-phonon interaction at low lattice tempe
tures turns out to be strong enough to establish a steady
for the electron system at arbitrarily strong electric fields;
runaway effect occurs. This case was investigated in deta
Ref. 5 where only the first subband approximation was us
It was shown that at high electric fields the electron-acous
phonon interaction changes character again and beco
quasielastic. The mean electron energy increases with
creasing electric field, and ultimately the electrons penet
into the high-energy region where the interaction with op
cal phonons becomes important, just as it did for high latt
temperatures. In the present paper we will investigate
kinetic properties of the 1D electrons in the case where
interaction is with both acoustic and optical phonons at l
lattice temperatures.

The paper is organized as follows. In the next section
describe the electron states and the phonon coupling te
for a cylindrical QWI. In Sec. III the relevant collision op
erators for the Boltzmann equation are found and in Sec
the limiting case of purely optical phonons is analyzed
detail. In Sec. V the distribution function is found for th
total action of acoustic and optical phonons with the effe
of interface roughness taken into account. Finally, in Sec.
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the mobility and average electron energy are presented
a summary in Sec. VII.

II. ELECTRON PROPERTIES
AND SCATTERING MECHANISMS

In this paper we consider a wire of GaAs of circular cro
section with radiusR and lengthLz , which is embedded in
AlAs. The assumption of a cylindrical quantum wire is n
only convenient from a mathematical point of view, but al
has practical relevance as cylindrical wires have been fa
cated with radii as small as 160 Å.8

The carriers are assumed to be confined by an infi
potential which gives a total wave function, in cylindric
coordinates (r ,f,z), of the form

Cmnkz
~r ,f,z!5

1

AV0

eimfeikzzcmn~r ! r,R, ~2.1!

whereV05pR2Lz is the volume of the QWI,Cmn(r ) is the
radial wave function,m is the azimuthal quantum numbe
~m50,61,62..!, n is the radial quantum number~n
51,2,3...!, andkz is the axial electron wave vector. The ra
dial wave function for a circular cross section is

cmn~r !5
1

Jm11~bmn!
JmS bmn

r

RD . ~2.2!

In ~2.2! bmn is thenth zero of the Bessel function of the firs
kind Jm~b!. The electron energy spectrum is given b
Emn(kz)5E(kz)1\2/2m* (bmn/R)

2, where E(kz) is the
electron kinetic energy.

The transition probability from the initial electron sta
~kz ,n! to the final state (kz8 ,n8) due to an interaction with a
phonon with wave vectorq is given by Fermi’s golden rule

Wnn8~kz ,kz8 ,q!5
2p

\
uCqu2Gnn8

2
~qr !dk

z8 ,kz7qz

3Fnq1 1

2
6
1

2G
3d@En8~kz8!2En~kz!6\vq#, ~2.3!

where the upper~lower! sign corresponds to emission~ab-
sorption! of the phonon,nq5@exp(\vq/T0)21#21 is the pho-
non occupation number andn[(m,n). Only bulk LA
and polar optical modes are treated here wherevq5vsq
is the long-wavelength approximation for the acoust
mode dispersion andvq5vL is the dispersionless optica
phonon frequency. For acoustic and optical phonons,
coupling constants areCq

ac5 iJaA\q/2rvsV0 and Cq
op5

2 i /qAe2\vL/2«0V0(1/«`21/«s), respectively. HereJa is
the deformation acoustic potential,r is the density of the
material,«` and«s are the high- and low-frequency dielectr
constants, and«0 is the permitivity of free space. Strictly we
should consider both GaAs hybrid optical modes and Al
interface modes. In 2D systems it is known that the diff
ence between rates calculated with these modes and c
lated assuming a bulklike spectrum is not tremendou
large. We will assume this to be the case for a QWI.
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17 840 54N. A. ZAKHLENIUK et al.
Gnn8(qr) is the form factor which takes into account th
electron confinement in the 1D QWI. For the cylindrical ca

Gnn8~qr !5
2

R2 E
0

R

Jum2m8u~qrR!cm8n8
* ~r !cmn~r !r dr .

~2.4!

Unfortunately the radial wave function in~2.2! does not
yield an analytical result for the form-factor in~2.4!. Since
we are only interested in the first subband approximation,
may employ the approximate ground-state radial wave fu
tion proposed in Ref. 9, viz.C01(r )')(12r 2/R2), which
gives the corresponding ground-state ene
W056\2/2m*R2 and the approximation to ~2.4!,
G0101(qr)548J3(qrR)/(qrR)

3. These expressions give u
the electron energy spectra and the electron interaction
acoustic and optical phonons which we shall use in
analysis.

III. THE BOLTZMANN EQUATION

The stationary-state electron distribution functionf (kz) is
defined by the Boltzmann kinetic equation

2
e

\
Fz

d f~kz!

dkz
5 Î f ~kz!, ~3.1!

with collision operatorÎ f (kz) which, for a nondegenerat
electron gas, can be represented by the general form

Î f ~kz!5 (
kz ,q

@W~kz8 ,kz ,q! f ~kz8!2W~kz ,kz8 ,q! f ~kz!#.

~3.2!

We have omitted here and everywhere below the subb
indices for all quantities since we assume the first subb
approximation.

Let use specify the assumptions and approximati
which we shall use in our kinetic analysis. First of all w
assume that the electron energy relaxation is controlled
the interaction with both acoustic and optical phonons.
the electron momentum relaxation, as well as including
acoustic phonons and the interaction with optical phono
we take into account the elastic interaction with the interfa
roughness of the QWI; the contribution of this form of sc
tering becomes important for small radii. The general co
sion operator in~3.2! has the same form for this type o
scattering if we putq50.

Another assumption concerns the character of the elec
phonon interaction. In this paper we will assume that
electrons interact quasielastically with acoustic phonons
strongly inelastically with optical phonons. It was shown
Ref. 5 that for this to be realized

A3m* vs2W0,E~kz!, T0,\vL , ~3.3!

for an arbitrary electric fieldFz .
The low lattice temperature case which can be defined

T0,A3m* vs2W0, ~3.4!

is more complicated compared with that for high lattice te
peratures. Within a wide range of electric fields the 1D el
trons predominantly interact with only the acoustic phono
which is now a strongly inelastic interaction; the electr
e
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distribution function has a sharp anisotropic shape. The c
prehensive analytical analysis for this case was carried ou
Ref. 5.

The electron distribution function,f (kz), can be split into
symmetric,f s(E), and antisymmetric,f a(E) parts given by

f s,a~kz!5
1

2
@ f ~kz!6 f ~2kz!#, ~3.5!

and the Boltzmann equation then has the form,

2
e

\
Fz

d fs,a~kz!

dkz
5 Î f a,s~kz!. ~3.6!

In accordance with the approximations discussed abo
we can write the following expressions for the collision o
erators in~3.6! as

Î f a~kz!52 f a~kz!
1

t~E!
1 Î opf a~kz!, ~3.7!

Î f s~E!5 Î acf s~E!1 Î opf s~E!, ~3.8!

where 1/t(E) is the electron momentum relaxation rat
which includes both the elastic acoustic phonon and
interface roughness contributions, i.e.,t21(E)5tac

21(E)
1t ir

21(E). For interface roughness we obtain

1

t ir~E!
5
4p3/2\3b01

4 D2L

«s
2m* 2R6 N~E!e22m* E/\2L2

, ~3.9!

whereN(E) is the one dimensional electron density of sta
for a single spin, given byN(E)5Am* /2p2\2E. The pa-
rametersD andL for the interface roughness scattering a
the average radial depth and lateral length of the uneven
along the QWI, respectively.

For acoustic-phonon scattering the momentum relaxa
time in the elastic approximation is given by5

1

tac„E~kz!…
5

pJa
2

rvsV0
(
q
G11
2 ~qr !~2nq11!

3F12S 11
qz
kz

D Gd@E~kz1qz!2E~kz!#.

~3.10!

For the cylindrical quantum wire we obtain

1

tac~E!
5

18Ja
2T0

5rvs
2\R2 N~E!, ~3.11!

if the equipartition approximation for acoustic phonons
applied, viz.,nq'T0/\vsq. At low temperatures, when th
zero-point lattice approximation can be used, i.e.,nq'0, we
obtain for the acoustic-phonon-scattering rate

1

tac~E!
5

Ja
2

2rvs
N~E!E

0

`

G2~qr !S qr21 8m*E
\2 D 1/2qrdqr .

~3.12!

To calculate the symmetric collision operator for the ele
tron acoustic-phonon interaction in the quasielastic appro
mation, we average the total symmetric operator with

Î acf s~E!5
* Î acf s„E~kz!…d@E~kz!2E#dkz

*d@E~kz!2E#dkz
, ~3.13!
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and expand the fulld function

d@E~kz1qz!2E6\vsq#'F17\vsq
d

dE

1
1

2
~\vsq!2

d2

dE2G
3d@E~kz!2E#. ~3.14!
s

After some algebra similar to Ref. 5, we obtain the fin
form for the symmetric operator as

Î acf s~E!5
1

N~E!

d

dE FN2~E!SA~E! f s~E!1B~E!
d fs~E!

dE D G .
~3.15!

The coefficientsA(E) andB(E) are given by
the
e,
A~E!5
m*Ja

2

r\ E
0

`

G2~qr !F\2qr
2

2m*
12EGqrdqr , ~3.16!

B~E!5
m*Ja

2

r\R2

(
kz ,q

G2~qr !
\2q2

2m*
\vsq~2nq11!d@E~kz!2E#d@E~kz1qz!2E#

(
kz ,qz

d@E~kz!2E#d@E~kz1qz!2E#

. ~3.17!

By making use of the approximate form of the form factor in~2.4!, we obtain forA(E),

A~E!5
12\Ja

2

rR4 S 9E

5W0
11D . ~3.18!

B(E) can be found for the high lattice temperatures in~3.3!, when we can use the equipartition approximation, and for
low lattice temperatures in~3.4!, when we can use the zero-point approximation. We obtain for high lattice temperatur

B~E!5T0A~E!, ~3.19!

and for low lattice temperature,

B~E!5
\2vsJa

2

8r E
0

`

G2~qr !@qr
31~qr

214kz
2!3/2#qrdqr . ~3.20!

We can obtain expressions for the symmetric and antisymmetric part of the collision operatorÎ opf (kz),

Î opf s~E!5G0@N~E1\vL!@ f s~E1\vL!~nL11!2 f s~E!nL#ga
1~E!1N~E2\vL!@ f s~E2\vL!nL2 f s~E!~nL11!#ge

2~E!#,
~3.21!

Î opf a~kz!5G0@N~E1\vL!@ f a~k0
1!~nL11!ga

2~E!2 f a~kz!nLga
1~E!#

1N~E2\vL!@ f a~k0
2!nLge

2~E!2 f a~kz!~nL11!ge
1~E!##, ~3.22!
ax-
ad-
n-
the

e

a
the

r

where G05e2/4«0(1/«`21/«s), g a,e
6 (E)5g(q a,e

1 )6g a
1

3(q a,e
2 ), and

g~q!5E
0

` G2~qr !

qr
21q2

qrdqr

'F 48

~qR!3G
2F162

~qR!2

96
1

~qR!4

640
2I 3~qR!K3~qR!G .

~3.23!

Here I n(z) and Kn(z) are modified Bessel function
and qa

652A2m*E/\26k0
1 , qe

65A2m*E/\27k0
2 , k0

6

5A2m* (E6\vL)/\
2.
IV. KINETIC ANALYSIS
FOR PURELY OPTICAL-PHONON SCATTERING

Including optical-phonons scattering as a possible rel
ation mechanism for the electron system requires some
ditional justification. Due to the interaction with dispersio
less optical phonons, electrons change their energy by
constant amount\vL . For an arbitrary initial electron distri-
bution which is different from zero within the energy rang
DE, whereDE,\vL , the electron population will only be
nonzero within the energy intervalsDE1 j\vL , wherej50,
1, 2, 3..., if the only interaction is with optical phonons. As
result no electron thermalization takes place and even in
absence of external fields the steady-state solution~if it ex-
ists! is far from the Maxwellian distribution.@This is true for
any relation betweenDE and \vL ~we used the above fo
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clarity!.# In other words, the system is nonergodic. What
the mathematical evidence of this nonegodicity? For
equilibrium steady state, the distribution is governed by
equationsÎ opf s(E)5 Î opf a(kz)50. These are linear differ
ence equations of the first order10 which have the form

f s~E1\vL!~nL11!2 f s~E!nL50, ~4.1!

f a~kz
1!~nL11!ga

2~E!2 f a~kz!nLga
1~E!50. ~4.2!

By using the methods in Ref. 10, we obtain the obvio
solution f a(kz)50 and

f s~E1 j\vL!5ws~E!e2 j ~\vL /T0!, 0<E<\vL ,

j50,1,2... . ~4.3!

Here,ws(E) is an arbitrary function.
Note that, in general, the solution in~4.3! undergoes a

discontinuity at the pointsE50, \vL . In fact, we obtain

f s~\vL!5ws~\vL!, j50, E5\vL ,

f s~\vL!5ws~0!e2\vL /T0, j51, E50. ~4.4!

Only in the particular case when

ws~\vL!5ws~0!e2\vL /T0, ~4.5!

is the distribution function in~4.3! continuous everywhere
The Maxwellian distribution function is just a particular s
lution because it is in agreement with~4.1! and possesses th
property in~4.5!. This is a very important point. In any rea
physical system there are other mechanisms besides op
phonons and these modes will be dispersive. For the ste
state these other mechanisms will establish a Maxwel
distribution, so that if we switch on the optical-phonon inte
action in the system, the Maxwellian distribution will not b
destroyed. Thus to define the solution it is necessary to kn
the function ws(E). The electron-optical-phonon syste
does not produce this function in a self-consistent way
this is the evidence of nonergodicity of the system. It me
that different initial electron distributions give different fin
results.

Furthermore, let us prepare some initial electron distri
tion at the moment of timet50, which is defined as
f s(E,t50)5 f s

0(E). The equation which describes the tim
evolution of this initial distribution in the absence of an e
ternal field is

] f s~E,t !

]t
5 Î opf s~E,t !. ~4.6!

This is a first-order differential difference equation.11 In ac-
cordance with the general theory of this type of equation
order to find a solution it is necessary to know the funct
f s(E,t), within the elementary interval, atall times of the
evolution of the process. In other words, for the solution
~4.6!, it is not enough to know the initial condition. It follow
from ~4.6! that the functionf s(E,t) within the next elemen-
tary interval@\vL , 2\vL# is given by
e
e

s

cal
dy
n
-

w

d
s

-

n

f

f s~E1\vL ,t !5
1

nL11 F 1

G0N~E1\vL!ga
1~E!

] f s~E,t !

]t

1nL f s~E,t !G . ~4.7!

As one can see the functionf s(E1\vL ,t) for the above
interval can be found only if we know the functionf s(E,t)
within the elementary interval@0,\vL# for all time t. Physi-
cally, this means that the electron-optical-phonon syst
does not produce its evolution in time self-consistently a
the question about the final steady state remains open.

In the presence of external fields the situation is m
complicated. Instead of one differential difference equat
we will have a system of two coupled first-order different
difference equations for the functionsf s(E,t) and f a(E,t),
but the problem of time evolution of the initial electron di
tribution will be retained.

Carrying out the above analysis shows us that in the g
eral case no steady-state electron distribution exists for
interaction solely with optical phonons. Moreover, this
true for any dimension, 3D, 2D, or 1D.

The 1D electron optical phonon system was studied
Ref. 12 using the Boltzmann equation where steady-s
nonequilibrium and equilibrium electron distributions we
found. This is clearly in disagreement with our conclusi
above. The reason for the disagreement is as follows.
corresponding kinetic equations for the distribution functi
for 0<E<\vL in this case are given by~3.6! with ~3.21!
and ~3.22!,

2
e

\
Fz

d fs~E!

dkz
5G0N~E1\vL!@ f a~k0

1!~nL11!ga
2~E!

2 f a~kz!nLga
1~E!#, ~4.8!

2
e

\
Fz

d fa~kz!

dkz
5G0N~E1\vL!@ f s~E1\vL!~nL11!

2 f s~E!nL#ga
1~E!. ~4.9!

These equations coincide with~31a! and ~31b! in Ref. 12.
We can find from these equations the functionsf s(E1\vL)
and f a(E1\vL) if, and only if, we know the functions
f s(E)[ws(E) and f a(E)[wa(E) within the first interval.
After this we can findf s(E) and f s(E) within the intervals
[ j\vL ,( j11)\vL]. But there is nothing to tell us what th
original two functions are. Hence, the initial system of Eq
~4.8! and ~4.9!, in principle, does not allow us to obtain a
unique solution.

To avoid this fundamental problem it was suggested
Ref. 12 to use, besides the system of Eqs.~4.8! and~4.9!, the
detailed balance conditions given by~4.1! and~4.2! which is
~33! in Ref. 12. Note that for the antisymmetric functio
f a(E) this equation has to include additional multipliers as
is in ~4.2!. This suggestion produces a basic change in
solution. The point is that the detailed balance conditions
not only a simple correlation between different element
intervals but that these areadditional equationsin the prob-
lem.
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From ~4.1! we obtain Î opf s(E)50 and ~4.9! gives
f a(kz)5const as obtained in Ref. 12 in~34!. Substituting
f a(E) into the right-hand side of~4.8! gives the first-order
differential equation

2
e

\
Fz

d fs~E!

dkz
5 Î op@ f a~kz!5const#. ~4.10!

We can substitute into~4.10! the solution of the balance
equation~4.1! given by~4.3!. As a result it gives a differen
tial equation for the functionws(E) which can be easily
solved. This scheme was essentially that used in Ref. 12,
as we have pointed out, this cannot give a unique solutio
the system of Eqs.~4.8!, ~4.9!. A simple way to check this is
to analyze the equilibrium solution, Eq.~40! obtained in Ref.
12, with the nonequilibrium solution, Eq.~37!, by putting
F→0. If we putF50 in the initial Equations~4.8! and~4.9!,
we obtain the solutionsf a(kz)50 and~4.3!. If we follow the
method of Ref. 12 and apply this limiting condition to~4.10!,
we obtain the so-called singular disturbed different
equation13 because the main derivative in the equation c
tains a small parameter. In the limit~4.10! is
Î op@f a(kz)5const#50, i.e., the equation undergoes a radic
change because the functionf s(E) disappears from the equa
tion. In accordance with the general theory of singular p
turbed differential equations,13 this means that the limiting
transitionF→0 solution of~4.10! will translate into the equi-
librium solution of the initial equations,~4.8! and ~4.9! at
F50, only in some very particular cases. Since the equi
rium solution within the region 0<E<\vL given by~40! in
Ref. 12 can only be extended in the regionE>\vL by using
the detailed balance condition, which is anadditional equa-
tion, this is not one of these particular cases.

There is only one particular situation when it is possib
to use a self-consistent model resulting in a unique solu
of ~4.8! and~4.9!. This is the case of low lattice temperatur
T0!\vL , and strong electric field. Here we only deal wi
two elementary energy intervals, where the field has to b
the range

A2m* \vL

etel
,uFzu,

A2m* \vL

etop
. ~4.11!

Here tel is a scattering time with respect to any elastic~or
quasielastic! interaction andtop is the optical-phonon emis
sion time.

Due to the low temperature we can put in~3.21! and
~3.22! nL50 and due to~4.11! we can put

f ~kz!50, if
E~kz!>2\vL ,
E~kz!>\vL ,

kz.0,
kz,0. ~4.12!

We assume here thatFz52sign(kz)F, i.e., the electric field
pushes electrons along the positive direction of thekz axis.

The low-temperature condition breaks the connection
tween the j th and ~j11!th elementary intervals of energ
through the optical-phonon absorption process, but there
mains the connection in the opposite direction, between
~j11!th and j th intervals, through the spontaneous emiss
process of optical phonons. By means of the last proc
kinetic balance is established for the nonequilibrium el
ut,
of

l
-

l

r-

-

n

in

-

e-
e
n
s,
-

trons within j elementary intervals of energy. The conditio
from ~4.12! eliminates the infinite chain of the differentia
difference equations.

For only two elementary intervals we obtain from~3.6!
with ~3.21! and ~3.22!,

2
e

\
Fz

d fs~E!

dkz
5G0N~E1\vL!ga

2~E! f a~k0
1!,

~4.13!

2
e

\
Fz

d fa~kz!

dkz
5G0N~E1\vL!ga

1~E! f s~E1\vL!,

~4.14!

for 0<E(kz)<\vL , and

2
e

\
Fz

d fs~E!

dkz
52G0N~E2\vL!ge

1~E! f a~kz!,

~4.15!

2
e

\
Fz

d fa~kz!

dkz
52G0N~E2\vL!ge

1~E! f s~E!,

~4.16!

for \vL<E(kz)<2\vL . The solution of these equations
described in the Appendix where~A3!–~A9! give a full so-
lution of the problem for the discussed case.

A similar situation was investigated by Magnusson14 for
electrons in a quantizing magnetic field. Our solution do
not agree with Magnusson’s result because of the differ
boundary conditions used. Another reason for this differe
is the expressions for the functionsg a,e

6 (E). In Ref. 14 it was
assumed thatg a,e

2 (E)50 andg a,e
1 (E)5const. In our case, a

follows from Fig. 1, the functionsg a,e
2 (E) andg a,e

1 (E) have
approximately the same order of magnitude. Also within t
actual energy range we can put these functions equal
constant as their dependence on energy is much slower c
pared with the energy dependence of the density of sta
With these approximations the integration in~A3!–~A7! can
be carried out analytically, and we obtain the solutions

FIG. 1. The functionsga
1(E) ~chained line! andga

2(E) ~dotted
line! for a wire of circular cross section as a function of energy. T
solid line is 1/E21/2 which is proportional to the density of states
one dimension.
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f s~E!5 f s~\vL!F11
aF

2

aF
1 ~11& !2aF

1

2
aF

2

aF
1 S ukzu1Akz21k0

2

k0
D 2aF

1G , ~4.17!

f a~kz!5sign~kz! f s~\vL!F11~11& !2aF
1

2S ukzu1Akz21k0
2

k0
D 2aF

1G , ~4.18!

for 0<E(kz)<\vL , and

f s~E!5sign~kz! f a~kz!5 f s~\vL!F ukzu1Akz22k0
2

k0
G2aF

1

,

~4.19!

for \vL<E(kz)<2\vL . Here we have introduced the not
tion a F

651/p(m*G0/e\F)ḡ a
6, whereḡ a

6 are averaged val
ues. For the circular QWI numerical calculation giv
ḡ a

151.57 andḡ a
250.59. For the energy rangeE>\vL , we

have used the relationg e
6(E)5g a

6(E2\vL). These solu-
tions are shown in Fig. 2 for a low and high electric field

V. COMBINATION OF ACOUSTIC-
AND OPTICAL-PHONON SCATTERING

In accordance with the model discussed in detail in S
III, the Boltzmann kinetic equation for the distribution fun
tion within the energy range defined in~3.3! has the form

2
e

\
Fz

d fs~E!

dkz
52

f a~kz!

t~E!
1G0N~E1\vL!ḡ a

2 f a~k0
1!,

~5.1!

2
e

\
Fz

d fa~kz!

dkz
5

1

N~E!

d

dE FN2~E!SA~E! f s~E!

1B~E!
d fs~E!

dE D G
1G0N~E1\vL!ḡ a

1 f s~E1\vL!.

~5.2!

We take the distribution function within the energy regi
E(kz)>\vL to be defined by~4.15! and ~4.16!. This means
that in that region the optical-phonon scattering is mu
stronger than for the acoustic phonons or the interface rou
ness scattering, which is true if the electrons do not penet
deeply into the region just above the threshold energy
\vL . For this case the distribution function within the ener
region\vL<E(kz)<2\vL is given in ~4.19!. Note that the
inclusion of acoustic-phonon scattering in the Boltzma
equation removes the problem of the nonergodicity for
electron system discussed in Sec. IV.

Equation~5.1! gives us the solution for the antisymmetr
distribution function,
c.

h
h-
te
at

n
e

f a~kz!5
et~E!

\
Fz

d fs~E!

dkz
1G0t~E!N~E1\vL!ḡ a

2 f a~k0
1!.

~5.3!

By substitutingf a(kz) from ~5.3! into ~5.2!, we obtain a
second-order differential equation forf s(E),

2
1

N~E!

d

dE H FB~E!N2~E!1S eFzp\ D 2 t~E!

N~E!G d fs~E!

dE

1A~E!N2~E! f s~E!J
5G0N~E1\vL!ḡ a

1 f s~E1\vL!

1
eFz
p\

G0

N~E!
ḡ a

2
d

dE
@t~E!N~E1\vL! f a~k0

1!#.

~5.4!

The inhomogeneous part on the right-hand side of this eq
tion describes the effect of optical-phonon scattering on

FIG. 2. The distribution functionf s(E) ~solid line! and f a(E)
~dotted line! for purely optical-phonon scattering at low temperatu
as a function of energy for a wire of circular cross section w
radius 100 Å and linear electron density of 105 cm21 at ~a! a very
low field, F→0, and~b! a high field,F51000 V cm21.
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symmetric distribution function. With the distribution func
tions from~4.19!, the last equation can be directly integrat
to give

FB~E!N2~E!1S eFzp\ D 2 t~E!

N~E!G d fs~E!

dE
1A~E!N2~E! f s~E!

5G~E!, ~5.5!

where

G~E!52
eFz
p\

@ f s~E1\vL!

1G0ḡ a
2t~E!N~E1\vL! f a~k0

1!#1G0,

~5.6!

andG0 is the first integration constant.
To solve ~5.5! it is necessary to find the solution of th

homogeneous equation@G(E)50# to give the function
f̃ s(E),

f̃ s~E!5expH 2E
0

E

A~E8!FB~E8!

1S eFzp\ D 2 t~E8!

N3~E8!G21

dE8J . ~5.7!

The function f̃ s(E) is in fact the solution of the Boltzman
equation in the absence of optical-phonon scattering~to
I
ca
as
ing
n

or
e-

tri

s

within an arbitrary multiplying constant!. In the general case
the relaxation timet(E) in ~5.7! can include any arbitrary
elastic-scattering mechanisms.

The final solution of~5.5! is

f s~E!5 f̃ s~E!HG12E
E

\vL G~E8!

f̃ s~E8!
FB~E8!N2~E8!

1S eFz
p\

D 2 t~E8!

N~E8!
G21

dE8J ~5.8!

whereG1 is the second integration constant.
As one can see the solution in~5.8! includes three inte-

gration constants which areG0, G1, and f s(\vL). To find
these constants we will use the matching conditions for b
symmetric@from ~4.19! and ~5.8!# and antisymmetric@from
~4.19! and~5.3!# distribution functions at the optical-phono
energyE(kz)5\vL . The third constant can be found from
the normalization condition,

2E
0

`

N~E! f s~E!dE5n0 , ~5.9!

wheren0 is the linear density of electrons. We obtain th
following expressions for the constantsG0 andG1,
G15
f s~\vL!

f̃ s~\vL!
, ~5.10!

G05 f s~\vL!3
A~\vL!N2~\vL!1

eFz
p\ S 11

G0

A2
N~\vL!t~\vL!ḡ a

2D ~11A2!2aF
1

2
p\

eFz
A~\vL!N2~\vL!

N~\vL!

t~\vL!
S dLn f̃sdE D

E5\vL

21

3S 12
G0

A2
N~\vL!t~\vL!ḡ a

2~11A2!2aF
1D 4 . ~5.11!
on
ent
la-
de-
de-

n-
ring
Our

ned
-

m-
The constantf s(\vL) is found from~5.9!.
The expressions in~5.3!, ~5.8!, ~5.10!, and ~5.11! give a

full description of the electron distribution in a 1D QW
under the total action of acoustic- and optical-phonon s
tering. It is noteworthy that this electron distribution w
obtained without any simplifying assumptions concern
the boson occupation number for the acoustic phono
which is included in the coefficientsA(E) andB(E) in the
above expressions.

The resultant distribution function is shown in Fig. 3 f
four electric fields. For higher electric fields, which corr
spond to the range defined in~4.11!, the electron distribution
is controlled solely by optical-phonon scattering. The dis
bution function for this case is shown in Fig. 3~d!. It can be
seen from Fig. 3~a! that a Maxwellian distribution is found a
t-

s,

-

expected at very low electric fields whichturns overas the
field is increased to ultimately retrieve the optical-phon
results. Our analytical results are in qualitative agreem
with the results in Ref. 15 obtained by Monte Carlo simu
tion, but we did not obtain a steep slope on the energy
pendence of the distribution function at low energies as
scribed there@see Fig. 3~b! for the same electric fieldF5200
V cm21#. The physical explanation for this difference co
sists in the different energy dependences of the scatte
rates at low energies used in Ref. 15 and in our paper.
expressions in~3.9! and~3.12! for the momentum relaxation
rates due to interaction with acoustic phonons are obtai
within the energy range defined in~3.3!. Using these depen
dences at low energies, wheret21(E)'N(E)'E21/2, gives
much higher values for the momentum relaxation rate co
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FIG. 3. The distribution functionf s(E) ~solid line! and f a(E) ~dotted line! for the total action of elastic interface roughness scatter
acoustic scattering, and optical-phonon scattering at a temperature of 50 K for the same parameters as Fig. 2 at~a! a very low field,F→0,
~b! F5200 V cm21, ~c! F5500 V cm21, and~d! a high field,F51000 V cm21. The parameters for the interface roughness scattering
L520 Å andD53 Å.
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pared with the true dependence, which givest21(E)'const
at low energies~see Refs. 5 and 15!. As a result, the elec
trons scattered into the low-energy region by means of em
sion of an optical phonon will undergo more intensive sc
tering from the acoustic phonons resulting in a slow diffus
motion in the momentum space near the pointkz50. This
gives some accumulation of electrons within the low-ene
region, i.e., an increased value of the distribution functi
However, these distinctions of the distribution functio
within the small energy region are not important for the c
culation of the average characteristics of the electron ga
follows from Fig. 3 that the majority of the electrons a
distributed within the energy region defined in~3.3!.

At higher electric fields, when penetration of electro
above the optical-phonon threshold becomes a factor,
gradient of the distribution function at low energy chang
its sign from negative to positive, Figs. 3~c!, 3~d!. This is
because the electric field is strong enough to push an elec
deeply into the second region [E(kz).\vL] before it emits
an optical phonon. As a result the maximum flow of ele
trons in energy space due to the spontaneous emissio
optical phonons is shifted from zero energy to some fin
value. Since the electron penetration is not too deep~this is a
restriction of our model! this energy value is small. It corre
sponds to the maximum value of the distribution function
Fig. 3~c!.
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VI. HOT-ELECTRON MOBILITY
AND AVERAGE ENERGY

As an application of the developed kinetic theory we ha
calculated some macroscopic characteristics of the
electron gas in a QWI.

The electron mobility is given by

m5
1

p\F E
0

`

f a~ ukzu!dEY E
0

`

N~E! f s~E!dE. ~6.1!

The average electron energy is equal to

Ē5E
0

`

E1/2f s~E!dEY E
0

`

E21/2f s~E!dE. ~6.2!

To calculatem and Ē we carried out the numerical inte
gration in ~6.1! and ~6.2!. For that we used the distributio
functions~5.3! and~5.8! below and~4.19! above the optical-
phonon energy.

Figure 4 shows the mobility for two different radii of th
QWI. The case of only optical-phonon scattering produc
near constant drift velocities so the electric-field depende
of the mobility obeys the law 1/F. Including interface rough-
ness and acoustic scattering produces a nonmonotonou
havior of the mobility as a function of electric field. At low
electric fields~but these fields are high enough to deviate
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electron system far from equilibrium! the electron mobility is
controlled by the acoustic phonons and interface roughn
scattering, the latter being more important as the radiu
decreased. The electrons do not reach the optical-phonon
ergy so this interaction is ineffective. The momentum rela
ation rate in this case decreases with increasing energy@see
~3.9! and ~3.11!#. When an electric field is applied it pushe
the electrons into a higher-energy region resulting in an
crease of the electron mobility. The current-voltage char
teristics obey a superlinear behavior at these electric field
superlinear region for similar conditions was also obtained
Ref. 15 by a Monte Carlo simulation. For higher elect
fields the electrons reach the optical-phonon energy thr
old which, due to the intensive spontaneous emission of
tical phonons, slows their further gain in energy. The el
tron mobility decreases with increasing electric field sin
the drift velocity here approaches saturation~this is a char-
acteristic feature of the optical-phonon-scattering case!.

At low lattice temperatures, defined in~3.4!, the field de-
pendence of the electron mobility is different. At low electr
fields, when acoustic-phonon-scattering dominates, the e
tron mobility decreases with increasing electric field and
current-voltage characteristics have a sublinear behav
This case is investigated in Ref. 5. At higher electric fie
the electrons interact with both optical and acoustic phono
however the latter become ineffective when the field
creases. The electric-field dependence of the mobility for
range of fields allowed by~3.3! at zero temperature,F.400
V cm21, is close to that in Fig. 4.

The average energy as a function of electric field is p
sented in Fig. 5 for the high lattice temperature case. At
lattice temperature the situation is similar to that which ta
place for the electron mobility: for electric fieldsF.400
V cm21 the corresponding curves coincide with those
high lattice temperatures.

VII. SUMMARY

In this paper we presented a kinetic theory of a noneq
librium electron gas in a circular QWI interacting with bu

FIG. 4. The mobility as a function of electric field for electron
experiencing elastic interface roughness scattering, acoustic sc
ing, and optical-phonon scattering at a temperature of 50 K i
wire of circular cross section with radiusR550 Å ~chained line!
andR5100 Å ~dotted line!. The solid line is the mobility of elec-
trons interacting with just optical phonons for both radii which
the high-field limit for the other two lines. The inset is the mobili
at low fields for the wire of radiusR5100 Å.
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acoustic and optical phonons. The lattice temperature is s
gested to be small compared with the optical-phonon ene
which is less than the energy separation between the e
tronic ground state and the first excited state. The theory
be easily generalized to include any other elastic-scatte
mechanisms. As a demonstration of this we included
elastic electron interaction with interface roughness.

The Boltzmann kinetic equation was solved analytica
and we obtained different distribution functions. With in
creasing electric field the efficiency of electron scattering
acoustic phonons decreases and the contribution of
optical-phonons scattering becomes critically important. T
strong inelastic character of this interaction prevents the e
trons penetrating into the high-energy region and stops
runaway effect for the one-dimensional electron gas. At h
enough electric fields the electron distribution is controll
solely by the interaction with optical phonons.

We carried out detailed kinetic analysis of the particu
case when the 1D electrons only interact with polar-opti
phonons. For general conditions this system is nonergo
and cannot be described self-consistently. We have sh
that only at low lattice temperatures and high enough elec
fields can one use a model which gives a self-consistent
lution and we obtained this solution analytically. This sol
tion is the limit of the distribution function under the actio
of both acoustic and optical phonons for high electric fiel

As an application of the developed theory we calcula
the mobility and average energy of the 1D electrons. W
investigated their electric field dependences for different
rameters of the QWI. It was found that the field depende
of the mobility is nonmonotonous at high lattice tempe
tures. At low electric field the mobility is defined by th
interaction with acoustic phonons and interface roughne
Due to the decreasing efficiency of the scattering of both
these mechanisms with increasing energy the electron mo
ity increases with increasing electric field and reache

ter-
a

FIG. 5. The average energy as a function of field for electro
experiencing elastic interface roughness scattering, acoustic sc
ing, and optical-phonon scattering at a temperature of 50 K i
wire of circular cross-section with radiusR550 Å ~chained line!
andR5100 Å ~dotted line!. The high-field limits, which are elec
trons interacting with just optical phonons, are given by the so
line for R550 Å and the dashed line forR5100 Å. The increase in
the average energy with electric field for the last case is due
small penetration of the electrons above the optical-phonon en
threshold.
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maximum. The maximum corresponds to the electric fi
when electrons begin to interact with optical phonons. Af
this the mobility decreases with increasing electric field. T
field at which this maximum occurs depends on the size
the QWI since both acoustic-phonon and interface roughn
scattering have a strong dependence on this. When the ra
of the QWI decreases there is a decrease in mobility and
increase in the electric field corresponding to the maximu

The average electron energy increases very rapidly a
termediate electric fields when the electrons interact ma
with acoustic phonons and the interface roughness,
changes slowly at high electric fields when the electrons
teract predominantly with optical phonons. The effect of d
creasing the radius of the QWI is similar to that for mobilit
Since the electron mobility decreases for smaller radii,
efficiency of the electron heating drops as well and, a
result, the average electron energy decreases as the c
sectional area becomes smaller for the same electric fie
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APPENDIX

In this appendix we find the solutions of~4.13!–~4.16!.
We start by finding the equal solutions of~4.15! and ~4.16!,
given by

f s,a~kz!5C1 expS 2
\G0

eF E
k0

kz
N@E~kz8!2\vL#

3ge
1~E~kz8!!dkz8D 6C2

3expS \G0

eF Ek0
kz
N@E~kz8!2\vL#

3ge
1
„E~kz8!…dkz8D , ~A1!

where the upper sign corresponds to the symmetric,
lower sign to the antisymmetric function, andC1,2 are the
integration constants.

Since due to~4.12! the total distribution functionf (kz)50
within the regionE(kz).\vL , kz,0, this gives additional
conditions for the functions in~A1! @see~3.5!#, viz.,
d
r
e
f
ss
ius
an
.
n-
ly
ut
-
-

e
a
ss-

o

e

f s~E!5 H f a~kz!,
2 f a~kz!,

kz.0
kz,0. ~A2!

Substituting the functions from~A1! into ~A2! results in
C250 and

f s~E!5 f a~kz!

5C1 expS 2
\G0

eF E
k0

kz
N@E~kz8!2\vL#

3ge
1
„E~kz8!…dkz8D , ~A3!

for \vL<E(kz)<2\vL , kz.0. Herek05A2m*vL /\. The
function f a(kz) with kz,0 can be found by using the secon
condition in ~A2!.

With the functions from~A1! it is very easy to find solu-
tions of ~4.13! and ~4.14!. We obtain

f s~E!5
\G0

eF
C1E

0

ukzu
N@E~kz8!1\vL#ga

2
„E~kz8!…

3expS 2
\G0

eF E
k0

Akz8
2
1k0

2

N@E~kz9!2\vL#

3ge
1
„E~kz9!…dkz9D dkz81C3 , ~A4!

f a~kz!5sign~kz!
\G0

eF
C1E

0

ukzu
N@E~kz8!1\vL#

3ga
1
„E~kz8!…

3expS 2
\G0

eF E
k0

Akz8
2
1k0

2

N@E~kz9!2\vL#

3ge
1
„E~kz9!…dkz9D dkz81C4 , ~A5!

for 0<E(kz)<\vL . HereC3,4 are integration constants.
The expressions in~A3!–~A5! include three constantsC1,

C3, andC4, which can be found from the matching cond
tions at the optical-phonon energy,kz5k0 , for both the sym-
metric and antisymmetric functions, and from the normaliz
tion condition. This gives
C35 f s~\vL!F12
\G0

eF E
0

k0
N@E~kz8!1\vL#ga

2
„E~kz8!…expS 2

\G0

eF E
k0

Akz8
2
1k0

2

N@E~kz9!2\vL#ge
1
„E~kz9!…dkz9D dkz8G ,

~A6!

C45 f s~\vL!F12
\G0

eF E
0

k0
N@E~kz8!1\vL#ga

1
„E~kz8!…expS 2

\G0

eF E
k0

Akz8
2
1k0

2

N@E~kz9!2\vL#ge
1
„E~kz9!…dkz9D dkz8G ,

~A7!

where we have also putC15 f s(\vL), which is the normalization constant. The expressions in~A3!–~A7! give a full solution
of the problem for the discussed case.
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