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We present a kinetic theory of a nonequilibrium electron gas in a one-dimensional circular quantum wire
interacting with acoustic and polar optical phonons. Besides these scattering mechanisms we also include an
elastic interaction with interface roughness for the electron momentum relaxation. We have solved the Boltz-
mann kinetic equation analytically and obtained different distribution functions for a one-dimensional electron
gas. A detailed kinetic analysis of the limiting case of the electron gas interacting solely with optical phonons
is undertaken and the distribution function is found when this system can be described in a self-consistent way.
Our analytical results are in good agreement with previous numerical studies of a similar system using Monte
Carlo technigues. As an application of the developed theory we have calculated the electric-field dependences
of electron mobility and average energy for different parameters of the quantum wire. It is shown that at high
lattice temperature the electron mobility is a nonmonotonous function of the applied electric field and has its
maximum value at intermediate electric fields when the transition from acoustic-phonon-limited to optical-
phonon-limited transport takes pla¢&0163-18206)01747-X]

[. INTRODUCTION the normal range of lattice temperature and electron energies
for kinetic phenomena.

The quantization of the electron motion in systems of re- At high lattice temperatures the electron-acoustic-phonon
duced dimensionality, such as quasi-one-dimensighB) interaction has a quasielastic character for the majority of the
guantum wires(QWI's), brings about different features in electrons at any strength of the electric field. The scattering
the electron kinetics compared with the usual threerate in this case always decreases when the electron energy
dimensional(3D) electron systems with the same materialincreases, following the energy dependence of the electron
parameters. The decrease of the electron density of statéénsity of states. This means that the electron free path in-
with increasing energy in a 1D QWI causes a reduction ircreases with increasing electron energy. As a result, in the
the number of possible final states in momentum space fdpresence of an external electric field, the total energy of the
any electron transition at high energies. One consequence 1 electron gas gained from the electric field increases more
that many of the interactions of a one-dimensional gas witifapidly than its loss due to the quasielastic interaction with

the thermal bath become ineffective and this results in agCcoustic phonons. The average energy balance between the
enhanced electron mobility. 1D electron system and the thermal bath is then broken; the

If an external electric field is applied the electrons pen_electrons increase their energy indefinitely and no steady

etrate into the high-energy region. The main mechanismgt"’Ite IS estapl_|shed. This is the electrqn_ runaway efféct,
. . . order to stabilize the electron system it is necessary to take
which are responsible for electron energy relaxation are th

int ’ th i 4 optical oh h | fhto account an effective mechanism for energy relaxation
interactions with acoustic and optica’ phonons, Whose €lag,er than the acoustic-phonon interaction. One possibility is
tive contributions depend on the lattice temperatlirand

) - ) to use the strongly inelastic interaction with optical phonons.
the strength of the applied electric fietd Here we will deal  Anqther consists of taking into account the transition of the
with the situation when the lattice temperatureis small  gjectrons into the continuurfnonquantizeyiclassical region
compared with the characteristic optical-phonon energyyf energy’ Both of the possibilities mentioned above for the
ho, i.e., To<fiw_ (for brevity we writeT, for kgT where  stapjlization of a 1D electron system are important under
kg is the Boltzmann constantin GaAs the LO phonon en- different conditions.

ergy is 36.25 meV. The acoustic phonon scattering of a 1D |n an infinitely deep well with a transverse size~100
electron gas has peculiaritfés due to the quantization of A, we have for the energy of the ground stiltg=110 meV.

the electron motion and this manifests itself in the electronmhe intersubband difference iAW~ 3/2W,=165 meV,
kinetics through the appearance of a characteristic energyhich is 4—5 times that of the optical-phonon energy. This
E.= \/Xom*vSZWO, whereW, is the quantum energy of the means that the interaction of a 1D electron with optical
ground statem* is the electron effective mass, is the  phonons is more important than the transition of electrons
sound velocity in the material, ang, is a constant which into the classical range of energy due to the effect of the
depends on the shape of the quantizing potential. The behaelectric field. Moreover, in the classical range of energy the
ior of the nonequilibrium electron system is quite diffefent electron energy is large compared with the optical-phonon
at high(Ty,>E,) and low(T,<E_,) lattice temperatures with energy and so this interaction becomes quasielastic, like the
respect to this characteristic enerfy. For instance, in a interaction with acoustic modes. However, due to the large
GaAs QWI with transverse side, ~100 A,E,=3 meV=35 value of the electron-optical-phonon coupling constant com-
K, i.e., the value of the characteristic energy corresponds tpared to that for acoustic modes, the interaction with optical
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phonons will be more effective in controlling the energy re-the mobility and average electron energy are presented with
laxation of the electrons. As a result, at very high electrica summary in Sec. VII.

fields, when the electrons penetrate into the classical energy

region, we can ignore the interaction with acoustic phonons. Il. ELECTRON PROPERTIES

This regime corresponds to the optical-phonon-limited elec- AND SCATTERING MECHANISMS

tron kinetics at high electric fields. i ) . .
To realize the acoustic-phonon-limited electron kinetics it !N this paper we consider a wire of GaAs of circular cross

iS necessary to use a thick QWI where, within the eIectror‘?’ection with radiu£ and Iength.LZ,'which Is embec_ideq in
energy interval which corresponds to the enetay , there AlAs. The assumption of a cylindrical quantum wire is not

are several electron subbands. Then, under the influence ﬁply convenient from a mathematl_cal point of view, but also_
- . as practical relevance as cylindrical wires have been fabri-
the electric field, the electrons will populate the upper sub-

bands before interacting with optical phonons, and we calgfatGd with radii as small as 160°A.
9 P p ' The carriers are assumed to be confined by an infinite

ignore this latter contribution to the electron energy relax- . ; : : . L
agtion Estimations show us that the relevant width g%/ a QWIpotenpal which gives a total wave function, in cylindrical
’ coordinates I(, ¢,z), of the form

for this case is within the range, ~350—-450 A.

The situation is as follows. At high lattice temperatures, 1
Wy>Ty>E., when 1D electrons populate only the first sub- - Aimégik,z
band at equilibrium, their kinetic properties in a strong elec- Vrnne(1.,2) W enreT Ym(r) r<R, (2.1
tric field will be determined by the energy relaxation due to
the interaction with acoustic and optical phonons for a thirwhereVo=wRL, is the volume of the QWIW,,(r) is the
QW! with L, <200 A and only by the interaction with acous- radial wave functionm is the azimuthal quantum number
tic phonons for a thick QWI withL, =400 A. The case (M=0,+1,+2.), n is the radial quantum numbetn
which corresponds to the thick QWI was investigated in Ref.=1,2,3..), andk, is the axial electron wave vector. The ra-
7. In this paper we will develop a kinetic theory of hot elec- dial wave function for a circular cross section is
trons in a thin QWI at high lattice temperatures and will
show that the interaction with optical phonons will suppress e (1) = 3 (,3 L)
the runaway effect in a strong electric field. Our aim here is mn Jn+1(Bmn) MITMR)
to derive analytic expressions for the distribution functions
which arise and to calculate the electric-field dependence df (2.2) By is thenth zero of the Bessel function of the first
different kinetic coefficients for the 1D electron gas in akind Jn,(8). The electron energy spectrum is given by
QWI under the above conditions. Emn(k) =E(k,) +A%2m* (B,,/R)?, where E(k,) is the

We now turn to the case of low lattice temperatures. Inélectron kinetic energy.
this regime the electron-acoustic phonon interaction has a The transition probability from the initial electron state
strong inelastic character within a wide range of electric(k,,») to the final stateK; ,»") due to an interaction with a
fields® The scattering rate now increases very rapidly withphonon with wave vectoq is given by Fermi’s golden rule,
increasing electron energy and the behavior of the nonequi-
librium 1D electron gas is quite different compared with that , T 92
in the high lattice temperature case. In particular, the W, (Kz Kz Q)= 7 Cdl Gw'(qrwk;,kziqz
electron-acoustic-phonon interaction at low lattice tempera-
tures turns out to be strong enough to establish a steady state
for the electron system at arbitrarily strong electric fields; no
runaway effect occurs. This case was investigated in detail in
Ref. 5 where only the first subband approximation was used. X 8[E, (k) —E, (k) = hawgl, (2.3
It was shown that at high electric fields the electron-acoustic- ) .
phonon interaction changes character again and becom¥d1ere the uppetlower) sign corresponds tclle.mlssm(ab—
quasielastic. The mean electron energy increases with iCrPtion of the phononn,=[exp(i wy/Te) —1] “is the pho-
creasing electric field, and ultimately the electrons penetrat8o" occupation number and=(m,n). Only bulk LA
into the high-energy region where the interaction with opti-2"d polar optical modes are treated here whege-vq
cal phonons becomes important, just as it did for high latticdS the long-wavelength approximation for the acoustic-
temperatures. In the present paper we will investigate thg10de dispersion and= e is the dispersionless optical-
kinetic properties of the 1D electrons in the case where th@honon frequency. For acoustic and_optical phonoons, the
interaction is with both acoustic and optical phonons at lowcOUPling constants ar€"=i=,v%q/2pvsV, and Co=
lattice temperatures. —ilgVe*thw 12egVo(1le.,— 1leS), respectively. HereZ, is

The paper is organized as follows. In the next section wehe deformation acoustic potentigl, is the density of the
describe the electron states and the phonon coupling ternmaterial,e.,, andeg are the high- and low-frequency dielectric
for a cylindrical QWI. In Sec. lll the relevant collision op- constants, and, is the permitivity of free space. Strictly we
erators for the Boltzmann equation are found and in Sec. I\should consider both GaAs hybrid optical modes and AlAs
the limiting case of purely optical phonons is analyzed ininterface modes. In 2D systems it is known that the differ-
detall. In Sec. V the distribution function is found for the ence between rates calculated with these modes and calcu-
total action of acoustic and optical phonons with the effectdated assuming a bulklike spectrum is not tremendously
of interface roughness taken into account. Finally, in Sec. Vlarge. We will assume this to be the case for a QWI.

(2.2

11
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G,,/(q,) is the form factor which takes into account the distribution function has a sharp anisotropic shape. The com-
electron confinement in the 1D QWI. For the cylindrical caseprehensive analytical analysis for this case was carried out in

Ref. 5.
2 (R * The electron distribution functiori(k,), can be split into
Gur(@r)= R? fo Jim-m|(ArR) Wy (1) (1) AT symmetric,f4(E), and antisymmetricf ,(E) parts given by

(2.9

1
= — —+ —

Unfortunately the radial wave function i2.2) does not Fralka) =3 [Tk} =1 (=ko) ] @9
yield an analytical result for the form-factor i2.4). Since  4nq the Boltzmann equation then has the form,
we are only interested in the first subband approximation, we
may employ the approximate ground-state radial wave func- _ € dfsa(ky) _i (k,) (3.6
tion proposed in Ref. 9, viz¥ ,,(r)~v3(1—r?/R?), which ho? o dk, asine '
gives the corresponding ground-state energy
W,=64%/2m*R?> and the approximation to (2.4),
Go1oi(a,) =4815(q,R)/(q,R)3. These expressions give us
the electron energy spectra and the electron interaction wit

In accordance with the approximations discussed above,
we can write the following expressions for the collision op-
grators in(3.6) as

acoustic and optical phonons which we shall use in our - 1 .
analysis. Ifa(kz): - fa(kz) ﬁ"_lopfa(kz)r (37)
lIl. THE BOLTZMANN EQUATION HS(E) =1l adfs(E) +1opfs(E), (3.8

where 1#E) is the electron momentum relaxation rate,

The stationary-state electron distribution functidk,) is o . :
defined by the Boltzmann kinetic equation yvhlch includes both the el_astl_c acogstlcilphonorlland the
interface roughness contributions, i.er, (E)=7,(E)

e df(k A ++-YE). - )
_CF, (ko) _ (k). 3. 7., 1(E). For interface roughness we obtain
h dk, 1 47323 8% A2\
~ — 01 N(E)e72m* E/2A2 (3.9
with collision operatorl f(k,) which, for a nondegenerate 7i(E) ggm*ZR6 ' '

electron gas, can be represented by the general form . . . )
9 P y 9 whereN(E) is the one dimensional electron density of states

" _ / / / for a single spin, given b\N(E)= \m*/27?4°E. The pa-

If(kZ)_kzZq [W(k; ke, )T (k) =Wk kz . @) f(kz)]. rametersA and A for the interface roughness scattering are
(3.2  the average radial depth and lateral length of the unevenness

ong the QWI, respectively.

For acoustic-phonon scattering the momentum relaxation

e in the elastic approximation is given by

We have omitted here and everywhere below the subban%I
indices for all quantities since we assume the first subbangm
approximation. Y

Let use specify the assumptions and approximations 1 TR, E 2
which we shall use in our kinetic analysis. First of all we .dE(Ky))  pvsVo 5 G1a(ar)(
assume that the electron energy relaxation is controlled by

2ny+1)

the interaction with both acoustic and optical phonons. For d;
the electron momentum relaxation, as well as including the X|1=| 1+ k—zﬂé[E(ksz 92) —E(k)].
acoustic phonons and the interaction with optical phonons,
we take into account the elastic interaction with the interface (3.10
roughness of the QWI; the contribution of this form of scat- For the cylindrical quantum wire we obtain
tering becomes important for small radii. The general colli- 1 1822T

. . . —a'0
sion operator in(3.2) has the same form for this type of = >—> N(E), (3.11)
scattering if we pug=0. TadE)  5pvhR

Another assumption concerns the character of the electrog e equipartition approximation for acoustic phonons is

phonon interaction. In.this paper we will assume that thedpplied, viz.,ng=To/hveq. At low temperatures, when the
electrons interact quasielastically with acoustic phonons a”?ero-point lattice approximation can be used, g0, we

strongly inelastically with optical phonons. It was shown in gptain for the acoustic-phonon-scattering rate
Ref. 5 that for this to be realized

1 =55 w , 8m*E|?
— 2
VBM*02Wo<E(k,), To<fiw,, (3.3 rac(E)_vasN(E)fo G(an)| ar+ —2 q.dg; .
for an arbitrary electric fieldr, . (3.12

The low lattice temperature case which can be defined as 1, o0y jate the symmetric collision operator for the elec-

To<V3m*viW,, (3.4  tron acoustic-phonon interaction in the quasielastic approxi-

. ) ) ) ] mation, we average the total symmetric operator with
is more complicated compared with that for high lattice tem-

peratures. Within a wide range of electric fields the 1D elec- a _
trons predominantly interact with only the acoustic phonons, [ (E)= Nad S(E(k,)) AT E(k,) E]dkz,
which is now a strongly inelastic interaction; the electron as J8LE(k,) —E]dk,

(3.13
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and expand the fulb function

6[E(kz+qz)—Eifwsq]~[11ﬁv
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After some algebra similar to Ref. 5, we obtain the final
form for the symmetric operator as

sd d_E
1. f(E)= 14 N2(E)| A(E)f(E)+B(E) d1(E)
1 2 ac! S( _N(E) dE S( ( dE .
+5 (hvgQ)? =
2 dE (3.19
X8 E(k,)—E]. (3.14  The coefficientsA(E) andB(E) are given by
|
m* =2 . 2q2
_ =a 2 r
a-—22 |G (q»[—zm* +2E|q,dq, (316
h2q2
mem2 2, G0 Fa hvsa(2ng+ 1) oL E(k) ~EJ [ Ek,+0,) ~E]
B(E)=—r7 — (3.17)
phR
qu S[E(k) —E]S[E(k,+0,) —E]
By making use of the approximate form of the form facto(2x), we obtain forA(E),
12h22 [ 9E

B(E) can be found for the high lattice temperature$3r8), when we can use the equipartition approximation, and for the
low lattice temperatures if8.4), when we can use the zero-point approximation. We obtain for high lattice temperature,

B(E)=ToA(E),

and for low lattice temperature,

2., =2
a

B(E)=

U Ll *
s—sf G(an)la; +(ar +4k;) ¥, dg, .
p 0

(3.19

(3.20

We can obtain expressions for the symmetric and antisymmetric part of the collision oﬁggia(tb{),

Topf s(E)=To[N(E+ 7w )[ f(E+ o )(n +1)— f(E)n Jg; (E) + N(E—hw)[f{ E- Ao )n — f(E)(n +1)]g, (E)],

(3.21)

Topfa(k) =ToN(E+ha)[fa(kg)(n + 1)@, (E) —fo(k)n gy (E)]

+N(E—fwy)[fa(ko INLGe (E)— fa(k)(nL+1)ge (E)],

where FO:eZ/480(1/8°°_1/85)'gg,e(E):g(q;e)ig;
X(q;e)a and
= G%(qy)
g(Q)—fO qudqr
48 11 (gqR? (qR*
%[(qRﬁ [6_ 96 " eao '3(ARKs(AR)|.

(3.23

Here 1,(z) and K,(z) are modified Bessel functions
and q;=—\2m*E/A?=k{, qi=+2m*E/R’TK,y, K;

= 2m* (Ex o )2

(3.22

IV. KINETIC ANALYSIS
FOR PURELY OPTICAL-PHONON SCATTERING

Including optical-phonons scattering as a possible relax-
ation mechanism for the electron system requires some ad-
ditional justification. Due to the interaction with dispersion-
less optical phonons, electrons change their energy by the
constant amouniw, . For an arbitrary initial electron distri-
bution which is different from zero within the energy range
AE, whereAE<# w| , the electron population will only be
nonzero within the energy intervalsE + j# | , wherej =0,

1, 2, 3..., if the only interaction is with optical phonons. As a
result no electron thermalization takes place and even in the
absence of external fields the steady-state soluifoih ex-

istg) is far from the Maxwellian distributior.This is true for

any relation betweedAE and7%w, (we used the above for
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clarity).] In other words, the system is nonergodic. What is
the mathematical evidence of this nonegodicity? For the f{(E+%iw,t)=
equilibrium steady state, the distribution is governed by the

1 af(E,t)
FoN(E+%w )gs (E) 4t

n_+1

equationsl oof (E) =1 pf a(k,) =0. These are linear differ-
ence equations of the first ord®which have the form +n.fs(Eb)|. (4.7
f(E+how ) (n +1)—f4(E)n =0, (4.2

As one can see the functioh(E+#%w, ,t) for the above
N B N interval can be found only if we know the functidg(E,t)
fa(kz )(nL+1)g, (E)—fa(k)niga (E)=0. (4.2 within the elementary intervdDiw, ] for all time t. Physi-
i i ) _cally, this means that the electron-optical-phonon system
By using the methods in Ref. 10, we obtain the obviousyses not produce its evolution in time self-consistently and
solutionf,(k,) =0 and the question about the final steady state remains open.
) 3 _ithey ITo) In the presence of external fields the situation is more
fs(E+jfio ) =pg(E)e o0 O<Esfio, complicated. Instead of one differential difference equation
we will have a system of two coupled first-order differential
j=0,1,2... .(4.3  difference equations for the functiorig(E,t) and f,(E,t),
but the problem of time evolution of the initial electron dis-

Here, ¢4(E) is an arbitrary function tribution will be retained.
~Note that, in general, the solution i#.3) undergoes a Carrying out the above analysis shows us that in the gen-
discontinuity at the pointE=0, fw . In fact, we obtain eral case no steady-state electron distribution exists for the
interaction solely with optical phonons. Moreover, this is
fs(ho )=es(fiw ), j=0, E=hoL, true for any dimension, 3D, 2D, or 1D.
The 1D electron optical phonon system was studied in
f(fio )=ps0)e "/To  j=1 E=0. (4.4 Ref. 12 using the Boltzmann equation where steady-state
nonequilibrium and equilibrium electron distributions were
Only in the particular case when found. This is clearly in disagreement with our conclusion
above. The reason for the disagreement is as follows. The
os(fiw )= @40)e "L To, (4.5  corresponding kinetic equations for the distribution function

. o o ) for OSE<f7w_ in this case are given bgB.6) with (3.21)
is the distribution function in4.3) continuous everywhere. gnq(3.22,

The Maxwellian distribution function is just a particular so-

lution because it is in agreement wiih.1) and possesses the

property in(4.5). This is a very important point. In any real  _ d M
physical system there are other mechanisms besides optical % * dk;
phonons and these modes will be dispersive. For the steady —f (K “(E
state these other mechanisms will establish a Maxwellian a(kz)n ga (B)],
distribution, so that if we switch on the optical-phonon inter-

action in the system, the Maxwellian distribution will not be e dfy(ky)

destroyed. Thus to define the solution it is necessary to know ~ 7 Fz —g— =ToN(E+Ao )[fs(E+fe)(n +1)

the function ¢4(E). The electron-optical-phonon system z

does not produce this function in a self-consistent way and —fJ(E)n_]ga (E). (4.9

this is the evidence of nonergodicity of the system. It means

that different initial electron distributions give different final These equations coincide wit818 and (31b) in Ref. 12.
results. We can find from these equations the functidglE +7% w| )

Furthermore, let us prepare some initial electron distribuand f ,(E+#w,) if, and only if, we know the functions
tion at the moment of timet=0, which is defined as f(E)=o¢4(E) and f,(E)=¢,(E) within the first interval.
fo(E,t=0)=f2(E). The equation which describes the time After this we can findf(E) and f(E) within the intervals
evolution of this initial distribution in the absence of an ex-[j4w, ,(j +1)%w,]. But there is nothing to tell us what the
ternal field is original two functions are. Hence, the initial system of Egs.
(4.8 and (4.9), in principle, does not allow us to obtain a
unigue solution.

To avoid this fundamental problem it was suggested in
Ref. 12 to use, besides the system of E4sB) and(4.9), the
This is a first-order differential difference equatitnn ac-  detailed balance conditions given b4.1) and(4.2) which is
cordance with the general theory of this type of equation, inf33) in Ref. 12. Note that for the antisymmetric function
order to find a solution it is necessary to know the functionf,(E) this equation has to include additional multipliers as it
f4(E,t), within the elementary interval, atll times of the is in (4.2). This suggestion produces a basic change in the
evolution of the process. In other words, for the solution ofsolution. The point is that the detailed balance conditions are
(4.6), it is not enough to know the initial condition. It follows not only a simple correlation between different elementary
from (4.6) that the functionf((E,t) within the next elemen- intervals but that these agslditional equationsn the prob-
tary interval[fw,_, 2fiw, ] is given by lem.

=ToN(E+Aw)[ falke) (N +1)g; (E)

4.8

ot (E,1)
at

=T opfo(E.1). (4.6)
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From (4.1) we obtain fopfs(E)=O and (4.9 gives
fa(k,) =const as obtained in Ref. 12 i{84). Substituting
fo(E) into the right-hand side of4.8) gives the first-order

differential equation 4
3
e dfy(E) - )

s F, dk, =l od fa(k,)=const. (4.10 e o |
We can substitute int@4.10 the solution of the balance r
equation(4.1) given by (4.3). As a result it gives a differen- Tr
tial equation for the functionp(E) which can be easily
solved. This scheme was essentially that used in Ref. 12, but, -~ 0 “—=——— ‘ : :
as we have pointed out, this cannot give a unique solution of 0 02 0.4 0.6 0.8 1
the system of Eq<4.8), (4.9). A simple way to check this is E /hoy
to analyze the equilibrium solution, EGLO) obtained in Ref.
12, with the nonequilibrium solution, Eq37), by putting FIG. 1. The functiong; (E) (chained ling andg; (E) (dotted

F—0. If we putF=0 in the initial Equation$4.8) and(4.9), |ine) for a wire of circular cross section as a function of energy. The
we obtain the solution$,(k,) =0 and(4.3). If we follow the  sqjid line is 1E-¥2which is proportional to the density of states in
method of Ref. 12 and apply this limiting condition@®10,  gne dimension.

we obtain the so-called singular disturbed differential

equat'O'J'a because the main derivative in the equation conyrgns withinj elementary intervals of energy. The condition
fains a small parameter. In the limit(4.10 is  fom (4.12 eliminates the infinite chain of the differential
l o fa(k,) =consi=0, i.e., the equation undergoes a radical yifference equations.

change because the functiby{E) disappears from the equa- For only two elementary intervals we obtain fro®.6)
tion. In accordance with the general theory of singular peryyith (3.21) and(3.22,

turbed differential equation's, this means that the limiting

transitionF —0 solution of(4.10 will translate into the equi- e  dfy(E)

librium solution of the initial equations(4.8) and (4.9) at — =ToN(E+%Aw )g; (E)faky),

—F,—

F=0, only in some very particular cases. Since the equilib- h dk; 41

rium solution within the region €@E<# w, given by(40) in (4.13

Ref. 12 can only be extended in the reglee % w, by using df (k)

the detailed balance condition, which is additional equa- _ € alkz) _ +

tion, this is not one of these particular cases. ho % dk, FoN(E+fw)ga (B)T(E+AwL),
There is only one particular situation when it is possible (4.149

to use a self-consistent model resulting in a unique solution
of (4.8) and(4.9). This is the case of low lattice temperature, for 0<E(k;) <% o, and
To<fw,, and strong electric field. Here we only deal with

i i i e dfyE
:\r/]v: ri\lﬁg:_}entary energy intervals, where the field has to be in -2 F, ds(kZ ) = T N(E—fw)gl (E)fa(ky),
(4.195
V2m* o I |<\/2m*ﬁwl_ @12
, . .
o7 Sor 2E, T pNE - e0gl (BIE),
Here 7, is a scattering time with respect to any elagtc ‘ (4.1
quasielastit interaction andr,, is the optical-phonon emis-
sion time. for Aw <E(k,)<2Aw, . The solution of these equations is
Due to the low temperature we can put (®.21) and described in the Appendix whef&3)—(A9) give a full so-
(3.22 n_ =0 and due td4.11 we can put lution of the problem for the discussed case.
A similar situation was investigated by Magnus¥bfor
E(k)=2ho , k,>0, electrons in a quantizing magnetic field. Our solution does

f(k;)=0, if E(k)=hw,, k,<O0. (4.12 not agree with Magnusson’s result because of the different
boundary conditions used. Another reason for this difference
We assume here th&t,=—sign(k,)F, i.e., the electric field is the expressions for the functiogg .(E). In Ref. 14 it was
pushes electrons along the positive direction ofkheaxis. assumed thag ; .(E) =0 andg 5 o(E) =const. In our case, as
The low-temperature condition breaks the connection befollows from Fig. 1, the functiong , .(E) andg;,e(E) have
tween thejth and (j +1)th elementary intervals of energy approximately the same order of magnitude. Also within the
through the optical-phonon absorption process, but there rexctual energy range we can put these functions equal to a
mains the connection in the opposite direction, between theonstant as their dependence on energy is much slower com-
(j +1)th andjth intervals, through the spontaneous emissiorpared with the energy dependence of the density of states.
process of optical phonons. By means of the last proces$Vith these approximations the integration(i3)—(A7) can
kinetic balance is established for the nonequilibrium eleche carried out analytically, and we obtain the solutions
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ap ||k +KC+K3| T
— _'j_ (|Z|—ZO ’ (4.17 o 004 |- _
(225 ko ~
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N 0.02 + il
fa(ko) =signiky) fy(hoy)| 1+(1+v2) " oot L
—a o by e
K+ VIC+HiG| " a1 0 0.5 1 15 2
T ) ) (4.18 E/ho,
for 0<E(k)<#Aw , and
N
_ e+ VRE=IE]
fo(E)=signk,)fa(k,) =fo(fiw,) k—o : 0.07 e
(4.19 0.06 ' b
for Aw <E(k,)<2%w . Here we have introduced the nota- 0.05 .
tion af = Um(m*To/eh F)ga, where@f are averaged val- o 004 ; |
ues. For the circular QWI numerical calculation gives =, ;
g2 =1.57 andg; =0.59. For the energy range=f w, , we «* 003 -
have used the rt_alatipg§(E)=g§(E—ﬁw.L). These solu- 0.02 i
tions are shown in Fig. 2 for a low and high electric field.
0.01 -
V. COMBINATION OF ACOUSTIC- oY S S Y
AND OPTICAL-PHONON SCATTERING 0 0.5 1 1.5 2
E/hw
In accordance with the model discussed in detail in Sec. -
11, the Boltzmann kinetic equation for the distribution func- o _ o
(dotted ling for purely optical-phonon scattering at low temperature
e df(E) f.(k,) as a function of energy for a wire of circular cross section with
-, =22 +ToN(E+%w )g, falky), radius 100 A and linear electron density o X8n™! at (a) a very
h dk, 7(E) o low field, F—0, and(b) a high field,F =1000 V cm ™.
E) dfyE) _
e _dfak) 1 d7f., fky= T ALE) “f (ke
_Z i a(ky)= oT(E)N(E+7w)g, fa(kg).
(5.3
dfs(E)
+B(E) - . .
dE By substitutingf,(k,) from (5.3) into (5.2), we obtain a
— second-order differential equation féy(E),
+F0N(E+h&)L)gafS(E+ﬁO)L)
(5.2 1 eF,\2 7(E)| dfy(E
R . ———HB(E>N2<E>+(—Z) L
We take the distribution function within the energy region N(E) dE wh) N(E)] dE
E(k)=%w, to be defined by4.15 and(4.16. This means
that in that region the optical-phonon scattering is much +A(E)N2(E)fS(E)]
stronger than for the acoustic phonons or the interface rough-
ness scattering, which is true if the electrons do not penetrate “T-N(E+Zw Ya fAE+E
deeply into the region just above the threshold energy at oN( @)9atsl L)
fiw_ . For this case the distribution function within the energy eF, Iy __ d N
regionfw, <E(k,)<2%w, is given in(4.19. Note that the * % NE) 92 dE [T(E)N(E+7Tiow)fa(ky)].
inclusion of acoustic-phonon scattering in the Boltzmann
equation removes the problem of the nonergodicity for the (5.4

electron system discussed in Sec. IV.
Equation(5.1) gives us the solution for the antisymmetric The inhomogeneous part on the right-hand side of this equa-
distribution function, tion describes the effect of optical-phonon scattering on the
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symmetric distribution function. With the distribution func- within an arbitrary multiplying constantin the general case
tions from(4.19, the last equation can be directly integratedthe relaxation timer{E) in (5.7) can include any arbitrary
to give elastic-scattering mechanisms.

The final solution of(5.5) is
dfs(E)

B(E)NZ(E eF)* 7(E) A(E)N?(E)f4(E
] hoy G(E,) ’ 2 2
=G(B), (5.5 f(E)=1s(E)) G1— ~—— | B(E")N%(E")
E fs(E")
where
eF,\% nEN] !
eF, +| =2 dE’ (5.8
G(E)=——Jf(E+fw,) ah | N(E')
h
+Tog, (E)N(E+hw)fa(kg )]+ Go, whereG; is the second integration constant.
(5.6) As one can see the solution {6.8) includes three inte-
) o ) ' gration constants which a®,, G;, andf (% w,). To find
andGy is the first integration constant. these constants we will use the matching conditions for both

To solve (55) itis necessary to find the solution of the Symmetric[from (419 and (58)] and antisymmetri¢from
homogeneous equatiofG(E)=0] to give the function (4.19 and(5.3)] distribution functions at the optical-phonon
fs(E), energyE(k,) =% w, . The third constant can be found from
the normalization condition,

~ E
fs(E)zexp{ - fo A(E’)[B(E’)

2 T(E,)

Zf:N(E)fS(E)dEznO, 5.9
N3(E")

eF,
wh

-1
dE’J. (5.7

The function?s(E) is in fact the solution of the Boltzmann wheren is the linear density of electrons. We obtain the
equation in the absence of optical-phonon scatteffing following expressions for the constarg and G,

fs(hw)
) 19
Ao )N (o) + o2 1+5N(th)r(ﬁwL)g_— (1+2)
Th V2 a
wth N(fw ) dLnfs)

Go=Tfu(fiw,) —eFZA(th)NZ(ﬁwL)T(h—wL)( dE )E=ﬁ,wL (5.11

X 1—&N(ﬁwL)T(ﬁwL)?(l+ ﬁ)aE)

\/E a
|

The constanty(% w,) is found from(5.9). expected at very low electric fields whithrns overas the

The expressions if5.3), (5.9, (5.10, and(5.11) give a  field is increased to ultimately retrieve the optical-phonon
full description of the electron distribution in a 1D QW!I results. Our analytical results are in qualitative agreement
under the total action of acoustic- and optical-phonon scatwith the results in Ref. 15 obtained by Monte Carlo simula-
tering. It is noteworthy that this electron distribution was tion, but we did not obtain a steep slope on the energy de-
obtained without any simplifying assumptions concerningpendence of the distribution function at low energies as de-
the boson occupation number for the acoustic phononsscribed ther¢see Fig. 8) for the same electric fiel# =200
which is included in the coefficient&(E) andB(E) in the ~ V cm™1]. The physical explanation for this difference con-
above expressions. sists in the different energy dependences of the scattering

The resultant distribution function is shown in Fig. 3 for rates at low energies used in Ref. 15 and in our paper. Our
four electric fields. For higher electric fields, which corre- expressions if3.9) and(3.12 for the momentum relaxation
spond to the range defined (4.11), the electron distribution rates due to interaction with acoustic phonons are obtained
is controlled solely by optical-phonon scattering. The distri-within the energy range defined {8.3). Using these depen-
bution function for this case is shown in Figld3. It can be  dences at low energies, where*(E)~N(E)~E 2, gives
seen from Fig. @) that a Maxwellian distribution is found as much higher values for the momentum relaxation rate com-
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FIG. 3. The distribution functiorig(E) (solid line) andf,(E) (dotted ling for the total action of elastic interface roughness scattering,
acoustic scattering, and optical-phonon scattering at a temperature of 50 K for the same parameters asdrig.\v2at low field,F—0,
(b) F=200 V cm %, (c) F=500 V cni'%, and(d) a high field,F=1000 V cm L. The parameters for the interface roughness scattering are
A=20 A andA=3 A.

pared with the true dependence, which gived(E)~const VI. HOT-ELECTRON MOBILITY
at low energiegsee Refs. 5 and 15As a result, the elec- AND AVERAGE ENERGY
trons scattered into the low-energy region by means of emis- As an application of the developed kinetic theory we have
sion of an optical phonon will undergo more intensive scat- 5|0 jated some macroscopic characteristics of the hot-
tering from the acoustic phonons resulting in a slow diffusiveg|gctron gas in a QWI.

motion in the momentum space near the pdipt0. This The electron mobility is given by

gives some accumulation of electrons within the low-energy

region, i.e., an increased value of the distribution function. 1 w o

However, these distinctions of the distribution functions M= F fo fa(|kz|)dE/ fo N(E)fs(E)dE. (6.1
within the small energy region are not important for the cal-

culation of the average characteristics of the electron gas. the average electron energy is equal to

follows from Fig. 3 that the majority of the electrons are

distributed within the energy region defined(®.3).

At higher electric fields, when penetration of electrons E:fo El’sz(E)dE/ fo E"Y(E)dE. (6.2

above the optical-phonon threshold becomes a factor, the

gradient of the distribution function at low energy changes o calculatex andE we carried out the numerical inte-
its sign from negative to positive, Figs(c3, 3(d). This is  gration in(6.1) and (6.2). For that we used the distribution
because the electric field is strong enough to push an electrginctions(5.3) and(5.8) below and(4.19 above the optical-
deeply into the second regioie(k,)>%w | before it emits  phonon energy.

an optical phonon. As a result the maximum flow of elec-  Figure 4 shows the mobility for two different radii of the
trons in energy space due to the spontaneous emission Qfwl. The case of only optical-phonon scattering produces
optical phonons is shifted from zero energy to some finitenear constant drift velocities so the electric-field dependence
value. Since the electron penetration is not too défep is a  of the mobility obeys the law F. Including interface rough-
restriction of our modelthis energy value is small. It corre- ness and acoustic scattering produces a nonmonotonous be-
sponds to the maximum value of the distribution function inhavior of the mobility as a function of electric field. At low
Fig. 3(c). electric fields(but these fields are high enough to deviate the
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FIG. 4. The mobility as a function of electric field for electrons
experiencing elastic interface roughness scattering, acoustic scatter- FIG. 5. The average energy as a function of field for electrons
ing, and optical-phonon scattering at a temperature of 50 K in @xperiencing elastic interface roughness scattering, acoustic scatter-
wire of circular cross section with radit®=50 A (chained ling  ing, and optical-phonon scattering at a temperature of 50 K in a
andR=100 A (dotted ling. The solid line is the mobility of elec- Wwire of circular cross-section with radit®=50 A (chained ling
trons interacting with just optical phonons for both radii which is andR=100 A (dotted ling. The high-field limits, which are elec-
the high-field limit for the other two lines. The inset is the mobility trons interacting with just optical phonons, are given by the solid
at low fields for the wire of radiu®=100 A. line for R=50 A and the dashed line f&®=100 A. The increase in

o o the average energy with electric field for the last case is due to a
electron system far from equilibriunthe electron mobility is  small penetration of the electrons above the optical-phonon energy
controlled by the acoustic phonons and interface roughnesgresnold.

scattering, the latter being more important as the radius is

decreased. The electrons do not reach the optical-phonon eadcoustic and optical phonons. The lattice temperature is sug-
ergy so this interaction is ineffective. The momentum relax-gested to be small compared with the optical-phonon energy
ation rate in this case decreases with increasing erfeggy  which is less than the energy separation between the elec-
(3.9 and(3.11)]. When an electric field is applied it pushes tronic ground state and the first excited state. The theory can
the electrons into a higher-energy region resulting in an inpe easily generalized to include any other elastic-scattering
crease of the electron mobility. The current-voltage characmechanisms. As a demonstration of this we included the
teristics obey a superlinear behavior at these electric fields. Alastic electron interaction with interface roughness.
Superlinear region for Similar COI’lditionS was aISO Obtained in The Boltzmann Kkinetic equation was solved ana'ytica”y
Ref. 15 by a Monte Carlo simulation. For higher electric ang we obtained different distribution functions. With in-
fields the electrons reach the optical-phonon energy threshyeasing electric field the efficiency of electron scattering by
old which, due to the intensive spontaneous emission of 0p5¢qystic phonons decreases and the contribution of the

:'Cal phobnlc_)tnsaslows their I{Lrj]rther gain in Ei‘netrgy.f_Trde elecptical-phonons scattering becomes critically important. The
ron mobility decréases with increasing eectric he SlnCestrong inelastic character of this interaction prevents the elec-
the drift velocity here approaches saturatitins is a char-

acteristic feature of the optical-phonon-scattering rase trons penetrating into the high-energy region and stops the
At low lattice temperatures, defined (8.4), the field de- runaway effect for the one-dimensional electron gas. At high

pendence of the electron mobility is different. At low electric enough eIectrjc fieldg the .electrc'm distribution is controlled

fields, when acoustic-phonon-scattering dorﬁinates the eleg—OIer by the Interaction W'th. opt.|cal ph°r?°”s- .

tron r'nobility decreases with increasing electric field and the We carried out detailed kinetic _analy5|s O.f the partlcqlar
_ . ._case when the 1D electrons only interact with polar-optical

current-voltage characteristics have a sublinear behavio

This case is investigated in Ref. 5. At higher electric fieldsbhonons' For general conditions this system is nonergodic

the electrons interact with both optical and acoustic phonon and cannot be described self-consistently. We have shown
P P "Shat only at low lattice temperatures and high enough electric

however the Iatter_ be_come ineffective when the_ _f|eld Nfields can one use a model which gives a self-consistent so-
creases. The electric-field dependence of the mobility for th(f}ution and we obtained this solution analytically. This solu-

range of fields allowed b§3.3) at zero temperaturé; >400 tion is the limit of the distribution function under the action

T X
Vem™, is close to that in Fig. 4. . e of both acoustic and optical phonons for high electric fields.
The average energy as a function of electric field is pre- As an application of the developed theory we calculated

Sef?ted in Fig. 5 for the h_igh I_attic_:e temperature case. At IOV\fhe mobility and average energy of the 1D electrons. We

l;}g?: ]Eg:n&eera;ggtﬁgﬁ Srﬁggﬂg; '?O‘?rgllEétﬁ?ct?ie(;ﬁdv;izggakeSinvestigated their electric field dependences_ for different pa-

Vem™? the corresponding cur\}es coincide with those forrameters of.t_he_QWI. It was found that t_he f|elq dependence
high lattice temperatures of the mobility is nonmonotonous at hlgh Iatt_|ce tempera-
: tures. At low electric field the mobility is defined by the

VIl. SUMMARY interaction with acoustic phonons and interface roughness.

Due to the decreasing efficiency of the scattering of both of

In this paper we presented a kinetic theory of a nonequithese mechanisms with increasing energy the electron mobil-

librium electron gas in a circular QWI interacting with bulk ity increases with increasing electric field and reaches a
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maximum. The maximum corresponds to the electric field fa(k), Kk, >0

when electrons begin to interact with optical phonons. After fs(E):[ —f.(k), k<0 (A2)
this the mobility decreases with increasing electric field. The ane

field at which this maximum occurs depends on the size okypstituting the functions fronAl) into (A2) results in
the QWI since both acoustic-phonon and interface roughness, =0 and

scattering have a strong dependence on this. When the radius

of the QWI decreases there is a decrease in mobility and an f(E)="Ta(ky)
increase in the electric field corresponding to the maximum. AT
The average electron energy increases very rapidly at in- =C — O I NTE(KD =4
. . : ) 1 X = [E(ky)—fio ]
termediate electric fields when the electrons interact mainly e ko

with acoustic phonons and the interface roughness, but

changes slowly at high electric fields when the electrons in- x g (E(k.))d k’) (A3)

teract predominantly with optical phonons. The effect of de- € g

creasing the radius of the QWI is similar to that for mobility.

Since the electron mobility decreases for smaller radii, thdor 2w <E(k,)<2fw,, k,>0. Hereky=+2m* w, /%. The

efficiency of the electron heating drops as well and, as dunctionf,(k,) with k,<<O can be found by using the second

result, the average electron energy decreases as the crosendition in(A2).

sectional area becomes smaller for the same electric field.  With the functions from(Al) it is very easy to find solu-
tions of (4.13 and(4.14). We obtain
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APPENDIX
In this appendix we find the solutions ¢4.13—(4.16). + " " ,
We start by finding the equal solutions @.15 and (4.16), X ge (E(K7))dK; |dk;+Cg, (A4)
given by
AN
fsalks) =Cy exp( —e—,:of N[E(kz) —fiwy ] _ Ao . (Ikd ,
ko fa(ky) =signtk,) —= C4 . NLE(k;) +hw ]

XQQ(E(ké))d%)iCz X9, (E(k))

Al 72,2
Al'g (ke _ 270 [ VK tkg " _
Xexp( eFofk N[E(K)— o, ] ><exp( oF fko N[E(K)) —f o, ]
0

+ n " ’
xqé(E(k;»dk;), (A1) %8s Elidk; i+ Ca, (A9
where the upper sign corresponds to the symmetric, théor 0<E(k,) <% w, . HereC; 4 are integration constants.
lower sign to the antisymmetric function, ari , are the The expressions ifA3)—(A5) include three constant,,
integration constants. C;, andC,, which can be found from the matching condi-

Since due td4.12 thetotal distribution functionf(k,)=0 tions at the optical-phonon enerdy=Kk,, for both the sym-
within the regionE(k,)>#Aw, , k,<0, this gives additional metric and antisymmetric functions, and from the normaliza-
conditions for the functions ifAl) [see(3.5)], viz., tion condition. This gives

Al k Al ey + " ” ’
Co=falhwp) 1- =2 fO°N[E<k;>+th]ga(E(k;»exr{—e—F° | Y one ) - hoig; <E<kz>>dkz)dkz},
° (A6)
23 k Al 124k + " 1 ’
Co=falhiop) 1- =0 fo°N[E<k;>+th]g;<E<k;>>exp(—e—F" | e - g (E(kmdkz)dkz},
0
(A7)

where we have also p@; = f (% w ), which is the normalization constant. The expression&B)—(A7) give a full solution
of the problem for the discussed case.
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