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Exciton bound to an ionized donor impurity in semiconductor spherical quantum dots

B. Stébé, E. Assaid, F. Dujardin, and S. Le Goff
Laboratoire d’Optoe´lectronique et de Microe´lectronique Universite´ de Metz-Institut de Physique-Electronique et Chimie

1 Bd Arago, 57078 Metz Cedex 3, France
~Received 19 July 1996!

The effect of the quantum confinement on the electronic and optical properties of an exciton bound to an
ionized hydrogenic donor placed at the center of a semiconductor spherical microcrystal is studied theoretically
as a function of the sphere radiusR and the effective mass ratios of the electron and the hole. The valence-
and conduction-band offsets are assumed to be infinite. The ground-state energy is determined by Ritz’s
variational method. The influence of the confinement on the dipole absorption of the bound exciton is dis-
cussed in relation to the exciton absorption. We show that the quantum confinement gives rise to a ‘‘giant’’
oscillator strength per impurity, contrary to what happens in bulk materials where a ‘‘giant’’oscillator strength
results only in the case of a high doping. The ratio between the exciton and the bound-exciton oscillator
strengths may be close to unity in small microcrystals, contrary to the three-dimensional case where it is very
small. Thus bound-exciton lines are expected to be easier to observe in the former case.
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I. INTRODUCTION

The recent progress in crystal growth techniques
made it possible to realize zero-dimensional~0D! systems
such as clusters, quantum dots, and microcrystallites. Th
latter may be present as suspensions in colloidal liquids
embedded in a glass or rocksalt matrix, with very large
ergy gaps. In these systems, the ultimate quantum con
ment effects restrict the motions of the optically excited el
trons and holes in all the three space dimensions. A
consequence, the free particles’ energy levels are quant
and the Coulomb correlation effects and the optical abso
tion oscillator strengths are enhanced. For more details,
refer the reader to a recent review1 on the subject. As in the
three-dimensional semiconductors, optical excitations m
give rise to ‘‘exciton’’ (X) or ‘‘bound-exciton’’ ~BE! states,
which must now be interpreted as resonant electronic st
of the microcrystals, because there is no longer conserva
of the translation motion of the free particles. In 3D sem
conductors, the binding energies of BE complexes are g
erally low, and their existence depends sometimes on
cific stability conditions.2 However, in 0D semiconductors
because the overlapping between the wave functions of
electron and the hole becomes more important, the exc
and BE states are more bound than in the bulk. Moreove
the confinement potentials may be modeled by an infinit
deep potential well, the possible stability problem no long
occurs because in this case all the particles remain confi
in a finite space. So it is expected that the observation
bound excitons should be more easy in 0D semiconduc
than in 3D semiconductors.

In the present work we concentrate our study on
(D1,X) and the (A2,X) complexes. They result, respe
tively, from the binding of an exciton to an ionized hydr
genic donor or acceptor impurity. Their possible existen
was predicted in 1958 by Lampert.3 Their stability and bind-
ing energies in 3D semiconductors have been the subje
several theoretical studies within the effective mass appr
540163-1829/96/54~24!/17785~9!/$10.00
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mation as a function of the electron to hole effective ma
ratio s5me /mh . As a result, it appears4 that the (D1,X)
complex is stable ifs<sc50.454 and that the (A2,X) com-
plex is stable ifs>sc . Up to now, only few theoretica
studies have been devoted to the (D1,X) complex in low-
dimensional structures: variational determinations of
ground-state energies in two-dimensional semiconduct5

and semiconductor quantum wells~QW!,6,7 and a
variational-perturbation study in semiconductor micr
crystallites.8

In this paper we present a fully variational determinati
of the ground-state energy of the (D1,X) complex with a
hydrogenic donor impurity placed at the center of a semic
ductor spherical microcrystallite and determine the oscilla
strength for the optical absorption. In Sec. II we present
method of determination of the ground-state energy as w
as the absorption coefficient and the oscillator strength
Sec. III we present and discuss the results of our comp
tions.

II. THEORY

A. Ground-state energy

Let us consider an exciton (X) bound to an ionized hy-
drogenic donor impurity (D1) placed at the center of a sem
conductor spherical microcrystal embedded in a glassy
trix. We assume that the electron and the hole are comple
confined in the microcrystal by an infinite potential barrie
We neglect the effect of the polarization charge induced
the surface. In the case of the effective mass approxima
and assuming isotropic parabolic and nondegenerated b
the Hamiltonian of the (D1,X) complex is written:

H5T1V1Vw1eg[H1eg . ~1!

eg corresponds to the band-gap energy of the bulk semic
ductor. Afterwards we use as unit of length the 3D don
effective Bohr radiusaD5k\2/e2me and as unit of energy
17 785 © 1996 The American Physical Society
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\2/meaD
2 , which represents twice the absolute value of

3D donor ground-state energy. The dielectric constantk is
introduced in order to take into account the possible po
ization effects. The kinetic energy operatorT is then given
by

T52
1

2
De2

s

2
Dh[Te1sTh , ~2!

wheres5me /mh is the ratio of the effective masses of th
electron and the hole. For the ground state, it is sufficien
consider a wave function depending only on the three
tancesr e , r h , andr eh . Within these coordinates, the kinet
energy and Coulomb potential energy operators read

Te52
1

r e

]

]r e
2
1

2

]2

]r e
2 2

1

r eh

]

]r eh
2
1

2

]2

]r eh
2

2
r e
22r h

21r eh
2

2r er eh

]2

]r e]r eh
, ~3!

Th52
1

r h

]

]r h
2
1

2

]2

]r h
2 2

1

r eh

]

]r eh
2
1

2

]2

]r eh
2

2
r h
22r e

21r eh
2

2r hr eh

]2

]r h]r eh
, ~4!

V52
1

r e
1

1

r h
2

1

r eh
. ~5!

The total confinement potentialVw is written as follows, as-
suming infinitely deep electron and hole potential wells:

Vw5Vwe
1Vwh

, ~6!

Vwi
5H 0 if r i,R

` if r i>R.
~7!

The validity of this approximation depends on th
conduction- and valence-band offsets as well as on the ra
R. In the case of semiconductor microcrystals embedded
glass matrix, we can assume very large band offsets, so
this approximation is justified for all nonzeroR values. In the
case of finite band offsets, which corresponds to the cas
microcrystals surrounded by another semiconductor, our
proximation is justified only in the case of intermediate
small quantum confinement (R>1 a.u.). In all cases, whe
R becomes very large, our approximation is expected to l
to the ‘‘exact’’ 3D values, depending on the accuracy of o
wave function. However, whenR tends to zero, this ap
proximation may no longer be used, because it would lea
infinite energy values, whereas a finite potential well wou
lead to the finite 3D energy values corresponding to the w
material. Nevertheless, it must be stressed that for very
R values (R<125 nm!, the effective mass approximatio
becomes unjustified. So, it seems to us that the use of
infinite potential well approximation, which is consiste
with the use of the effective mass approximation, and wh
is expected to lead to reasonable energy values in the ca
practicalR values, appears to be a good compromise
e
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tween accuracy and computer time. Indeed, though the us
infinite potential wells does not consistently modify the an
lytic calculations, it decreases significantly the compu
time necessary to compute numerically all of the manifo
integrals needed.

The energy and the envelope wave function are soluti
of the effective Schro¨dinger equation:

HC5~e2eg!C[EC. ~8!

This equation is not solvable analytically and we determ
its ground-state solutions using Ritz’s variational princip
We choose the following trial wave function which genera
izes that previously used5–7 in the study of the (D1,X) com-
plex in bulk semiconductors, 2D semiconductors, and qu
tum wells:

C5N(
mnp

cmnpumnp), ~9!

umnp)5 f e~r e! f h~r h!exp~2ar e2br eh!r e
mr h

nr eh
p , ~10!

f e~r !5 f h~r !5 j 0~pr /R!5
sin~pr /R!

pr /R
, ~11!

N stands for the normalization constant. The prod
f e(r e) f h(r h) describes the ground state of an uncorrela
electron-hole pair confined in an infinitely deep spheri
potential well andj 0 is the zeroth-order spherical Bess
function. The corresponding energy isEp5Ee1Eh , where
Ee5p2/2R2 andEh5sEe are the ground-state energies
the confined electron and hole, thusEp5p2(11s)/2R2.
The first exponential factor exp(2are) describes the Cou
lombic spatial correlation between the electron and the i
ized donor. The second exponential factor exp(2breh) ex-
presses the Coulombic spatial correlation between
electron and the hole. The integersm, n, andp are positive
or equal to zero. The productr e

mr h
nr eh

p is introduced in order
to take into account the spatial correlations mentioned abo
This function is expected to lead to less accurate res
whenR→` than that used previously4 in the 3D limit. How-
ever, for finite values ofR, it appears to be a good compro
mise between accuracy and computing time.

The linear coefficientscmnp as well as the nonlinear pa
rametersa andb are determined in order to minimize th
mean value of the energy:

^E~a,b!&5^CuHuC&/^CuC&. ~12!

This leads us, for given values ofa andb, to the following
system of linear equations:

~T1V2ES!c50, ~13!

whereT, V, andS represent, respectively, the matrices of t
kinetic energy, the Coulomb potential energy, and the no
with respect to the basis functionsumnp). Further,c denotes
the column matrix of the coefficientscmnp. All the matrix
elements may be expressed as functions of the following
threefold integrals:
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I mnp
m8n8p8~l,m,n!58p2E

0

R

dreE
0

R

drhE
ur e2r hu

r e1r h
drehj 0

2~pr e /R! j 0
2~pr h /R!

3exp~22ar e22br eh!r e
m1m81l11r h

n1n81m11r eh
p1p81n11 ,

Jmnp
m8n8p8~l,m,n!58p2E

0

R

dreE
0

R

drhE
ur e2r hu

r e1r h
drehj 0

2~pr e /R! j 0~pr h /R!cos~pr h /R!

3exp~22ar e22br eh!r e
m1m81l11r h

n1n81mr eh
p1p81n11 ,

Kmnp
m8n8p8~l,m,n!58p2E

0

R

dreE
0

R

drhE
ur e1r hu

r e1r h
drehj 0~pr e /R! j 0

2~pr h /R!cos~pr e /R!

3exp~22ar e22br eh!r e
m1m81lr h

n1n81m11r eh
p1p81n11 ,

Lmnp
m8n8p8~l,m,n!58p2E

0

R

dreE
0

R

drhE
ur e2r hu

r e1r h
drehj 0

2~pr e /R! j 0~pr h /R! j 1~pr h /R!

3exp~22ar e22br eh!r e
m1m81l11r h

n1n81mr eh
p1p81n11 ,

Mmnp
m8n8p8~l,m,n!58p2E

0

R

dreE
0

R

drhE
ur e2r hu

r e1r h
drehj 0~pr e /R! j 0

2~pr h /R! j 1~pr e /R!

3exp~22ar e22br eh!r e
m1m81lr h

n1n81m11r eh
p1p81n11 . ~14!
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j 0(x)5(sinx)/x and j 1(x)5(sinx)/x22(cosx)/x are the spheri-
cal Bessel functions, respectively, of order zero and one.
explicit expressions of all the matrix elements as well
those corresponding to the mean distances are given in
Appendix.

B. Optical properties

It may be interesting to see whether the bound-exci
oscillator strength may be considered as ‘‘giant’’ in compa
son with the exciton oscillator strength. We consider the
tical absorption by a sample of volumeV` containing iden-
tical semiconducting microspheres of volumeVm embedded
in a matrix transparent in the spectral regionDv of interest.
We assume that the dielectric heterogeneity of the med
has no notable effect on the electromagnetic field of the
cident wave and that a given microsphere contains only
sole impurity located at its center. This last assumption
realistic in the case of usual doping ratesnD . Indeed, the
mean radiusRD5(3/4pnD)

1/3 of a sphere containing only
one impurity amounts toRD 5 6.2 nm in the case of a stron
doping (nD51018 cm23) and toRD 5 133.6 nm in the case
of a weaker doping (nD51014 cm23). This last value corre-
sponds to very large microspheres for which the effect of
quantum confinement becomes negligible. So, our hyp
esis seems to be justified in the case of microcrystals of u
sizes.

Since the theories of the optical absorption of ioniz
bound excitons (D1,X) and free excitons (X) are quite
analogous, we present here a common treatment for the
cases. We restrict ourselves to one photon transition
T50 K between an initial state corresponding to a micro
rystal with one ionized impurityD1 and a final state of an
e
s
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n
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m
-
e
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e
h-
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o
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-

exciton bound to this impurity. For the sake of simplicity, w
do not take into account all the details of the band structu

Generally speaking, the oscillator strength per mic
sphere for a radiation of circular frequencyv may be defined
in relation to the integrated absorption coefficient:

f ~v!5V`

cnm

2p2E
Dv

a~v8!dv8, ~15!

whereV` represents the fundamental volume of normaliz
tion of the radiation field, anda is the absorption coefficien
per microsphere. Furthermore,c is the velocity of the light in
the vacuum,n the index of refraction of the semiconducto
m the mass of the electron at rest, whereasDv corresponds
to a small interval of frequencies around the transition f
quency of interest. We determine the absorption coeffici
a per microsphere in a two band model within the effecti
mass approximation, the dipolar approximation, and negl
ing possible nonlinear effects. We obtain

a~v!5
4p2

ncm2vV`

Vm

V`
m2Id~E~D1,X!2ED12\v!,

~16!

wherem2 is the square of the interband matrix momentu
element at the center of the Brillouin zone.E(D1,X) and
ED1 denote the crystal electronic excitation energies co
sponding to the initial and final states. We have introduc
the dimensionless ‘‘envelope oscillator strength’’ defined

I5U E
sphere

d3r 1d
3r 2C~r1 ,r2!d~r12r2!U2, ~17!
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which depends only on the normalized envelope wave fu
tion C of the exciton or the ionized donor bound excito
We remark thata is proportional toVm /V` . In the limit
case where the radius of the microsphere tends to infin
this ratio tends to unity, so that the absorption coeffici
becomes identical to the absorption coefficient per impu
that we get in the case of bulk semiconductors9. On the other
hand, when the radiusR tends to zero, this ratio tends also
zero so that the absorption coefficient tends to zero. F
Eq. ~15! and Eq.~16! it appears that the oscillator streng
per microsphere is given by

f5
2

m\v i f
m2I , ~18!

where v i f is the circular frequency corresponding to t
given optical transition. It is interesting to remark that, in t
effective mass approximation,m2 takes the same value for a
exciton or an ionized bound-exciton absorption. If we a
sume that the corresponding transitions energies\v are very
close, it appears from Eq.~16! and Eq.~18! that the ratio of
the absorption coefficient of the ionized donor bound exci
to that of the exciton depends only on the ratio of the cor
sponding envelope oscillator strengths:

a~D1,x!/ax5 f ~D1,X! / f X.I ~D1,X! /I X. ~19!

Using the variational wave function discussed above,
(D1,X) envelope oscillator strength reads

I ~D1,X!5U 4p2

R2 N~D1,X! (
m,n,p50

cmn0E
0

R

dr rm1n1p

3exp~2ar ! j 0
2~pr /R!U2. ~20!

In order to compare the ionized bound-exciton and
exciton oscillator strengths, it is necessary to evaluate
ratio f (D1,X) / f X.I (D1,X) /I X . For this purpose, we have als
determined the exciton envelope oscillator strengthI X using
the following wave function:10,11

CX5NXexp~2dr eh! j 0~pr e /R! j 0~pr h /R!, ~21!

whereNX is a normalization constant andd a variational
parameter. We obtain

I X5~2pNXR!2. ~22!

It can be verified thatI X tends to the expected limit valu
V` /p(11s)3 when the radiusR goes to infinity.

The bound-exciton and exciton transition energies
given by

hn~D1,X!5eg1Ee1Eh1Ec1E0 , ~23!

hnX5eg1Ee1Eh1EX
c1E0 , ~24!

where we have introduced the ‘‘correlation energies’’ d
fined by

EX
c5EX2Ee2Eh , ~25!

Ec5E2Ee2Eh , ~26!
c-
.

y,
t
y

m

-

n
-

e

e
e

e

-

in relation to the confined electron and hole energiesEe and
Eh . E0 stands for crystal electronic ground-state energy c
responding to full valence bands and empty conduct
bands at the temperatureT50 K. The localization energy of
the bound-exciton lines reads then

hnX2hn~D1,X!5EX
c2Ec. ~27!

The confinement acts on the positions of the lines associ
to the complex and the exciton by shifting them to the hi
energies.

III. NUMERICAL RESULTS AND DISCUSSION

We have calculated the ground-state energy of the c
plex as a function of the microcrystallite radiusR and the
effective mass ratios using a ten-term trial wave function
defined by the conditionm1n1p<2, which ensures a good
accuracy without lengthening the computing time. The in
grals have been computed using the 12-term Gauss qua
ture method. The energies are estimated to be accurate w
six significant figures. Figure 1 shows the variations of t
uncorrelated confined pair energyEp and of the totalE, ki-
neticT, potentialV, and correlationEc mean value energie
of the complex as functions of the radiusR for s50.2. We
remark first that the quantum confinement increases, as
pected, the absolute mean value of the Coulomb correla
energy^Ec&.

In the limit R→`, ^Ec&→^E&→20.51 a.u., in good
agreement with the 3D results.4,5 Further, ^T&→0.51 a.u.,

FIG. 1. Total energyE, uncorrelated pair energyEp , kinetic
energy T, Coulomb potential energyV, and correlation energy
Ec5E2Ep versus the radius of the spherical crystallite f
s50.2.
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54 17 789EXCITON BOUND TO AN IONIZED DONOR IMPURITY . . .
^V&→21.02 a.u., so that the virial theorem is satisfied.
the limit R→0, the quantum confinement becomes predo
nant in comparison with the Coulomb interactions. We c
estimate the behavior of the mean energies using the asy
totic expression of our trial wave function. In this limit, th
terms of the sum in Eq.~9! corresponding tom1n1pÞ0
are expected to give rise to a very small contribution to
total energy of the complex and we may neglect them. F
ther, we may retain only the first terms of the developm
near the origin of the exponential part of the wave functio
which reduces to

C5exp~2ar e2br eh! j 0~pr e /R! j 0~pr h /R!. ~28!

We obtain the following asymptotic expressions wh
R→0:

^T&.Ep5p2~11s!/2R2,

^Ve&.2^Vh&.2K1 /R,

^Veh&.2K2 /R,

^E&.Ep1^Veh&,

^Ec&5^E&2Ep.^Veh&, ~29!

with K152.4376 andK251.7860. We remark that in thi
limit ^Ve&52^Vh&, so that the mean Coulomb potential e
ergy reduces tôVeh&. Thus we find the same results as pr
viously obtained11 in the case of a confined exciton
EX
c521.7860/R. On the other hand, the neutral donor co

FIG. 2. Comparison between our total energies~solid line! with
those obtained by Ping and Dalal~Ref. 8! ~dotted line! versus the
radius of the microsphere fors50.174, which corresponds to CdS
i-
n
p-

e
r-
t
,

-

relation energyED
c reduces tô Ve&522.4376/R in agree-

ment with a previous result12. Finally, we remark that the
fact that^Ec& varies as21/R is consistent with our assump
tion that the electrons and holes are completely confined
side the microsphere.

We can tentatively compare our results with those o
tained previously by Ping and Dalal8 using a variation-
perturbation method although this comparison seems to
meaningful only in the limit of large radius, i.e., in the ca
of a small quantum confinement. Indeed, these authors u
a finite confinement potential whereas we have limited o
selves to the case of an infinite potential well. In Fig. 2 w
compare the energies obtained by the two methods in
case of CdS microcrystals assuming an effective mass r
of s50.174. It appears that in the case of intermediate
small confinement (R.1 a.u.!, our variational method leads
as expected, to better results than the variation-perturba
method. However, in the case of very small microcryst
(R,1 a.u.!, the energies obtained by Ping and Dalal a
better, mainly due to the fact that these authors have us
finite confinement potential. Nevertheless, it must be stres
that in the limit of very small microcrystals the effectiv
mass approximation becomes questionable, so that the c
parison of the two methods becomes meaningless in
limit.

Strictly speaking, the problem of the stability of the com
plex does not exist in a quantum box when assuming
infinite potential well. Indeed, in this case, the ionized don
the electron, and the hole remain always at finite distan
from each other due to the quantum confinement. Howe
it is well known that in the 3D limit, the complex (D1,X)

FIG. 3. Ratio of the neutral donor correlation energy to t
exciton correlation energy versus the radius of the microsphere
different values ofs.
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becomes unstable against dissociation into the most st
dissociation product, a neutral donorD0 and a free holeh
with zero kinetic energy,

~D1,X!→D01h, ~30!

FIG. 4. Ratio of the (D1,X) correlation energy to the neutra
donor correlation energy versus the radius of the microcrysta
for s50.2 ands50.8.

FIG. 5. Spatial extension of the complex drawn againstR for
s50.2.
le
becauseP(s)5ED

c /EX
c.1 in the 3D limit. The correspond

ing stability condition may be written

E<ED1Eh⇔Ec<ED
c . ~31!

In this case, it has been established4 that the complex re-
mains stable only ifs,sc.0.4. In a microsphere, the dis

e FIG. 6. Spatial extension of the complex drawn againstR for
s50.8.

FIG. 7. Localization energy drawn versus the radiusR.
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54 17 791EXCITON BOUND TO AN IONIZED DONOR IMPURITY . . .
cussion about the stability of the complex becomes mean
ful only in the limit whenR→`. We can verify in Fig. 3 that
in a microsphere, the above ratioP(s)5ED

c /EX
c is also al-

ways greater than unity whatever the value ofR and of the
ratio s. We remark that whens tends to zero the ratio
P(s) decreases rapidly and becomes very close to un
which justifies the so-called ‘‘donorlike exciton’’ mode
adopted in the study of the exciton when the hole is infinit
heavy in comparison with the electron. On the other ha
we see that whenR tends to zeroP(s) tends to the limit
1.3648 independently ofs and whenR becomes very large
P(s) tends to the expected limit (11s). These latter results
are verified by the study of the asymptotic behaviors of
neutral donor and the exciton inside the microcrystal wh
the well radius tends to zero and infinity. In Fig. 4 we re
resent the variations of the ratioEc/ED

c as a function of the
radiusR for s50.2 ands50.8 where the complex is, re
spectively, stable and unstable in the 3D limit. Wh
R→`, for s50.2,Ec/ED

c→1.02.1, so that we get, as ex
pected, a stable binding. However, fors50.8, Ec/ED

c→1
which shows that the complex becomes unstable in this lim
like what happens in the 3D case. We remark further t
Ec/ED

c ,1 for R.4 a.u. and thatEc/ED
c→0.7327 for all val-

ues ofs whenR→0. This result is consistent with our abov
discussion. Indeed, following Eq.~29!, ED

c .22.4376/R and
Ec.21.786/R when R→0. Thus Ec/ED

c→1.786/2.4376
50.7327 whenR→0.

The preceding discussion may be completed by the st
of the mean distances between the three particles. We re

FIG. 8. (D1,X) envelope oscillator strengths~solid lines! versus
the radiusR for s50.2 ands50.8. We have also reported th
variations of the envelope oscillator strengthI (D0,h) corresponding
to a transition towards a noncorrelated neutral donor-hole s
(D0,h) which corresponds to the 3D limit of an unstable (D1,X)
complex.
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in Fig. 5 the behavior of the mean values^r e&, ^r h&, and
^r eh& as functions of the radiusR for s50.2. As expected,
the three curves converge to zero whenR tends to zero while
for large R values they tend, respectively, to the limi
1.76, 4.05 and 3.68 a.u. in agreement with the values co
sponding to the bulk semiconductor4. Fig. 6 shows the varia-
tions of ^r e&, ^r h&, and of^r eh& versusR for s50.8. When
R tends to zero, our conclusions are the same as above. H
ever, whenR becomes very large, the behavior becomes d
ferent. Indeed̂r e& tends to 1.50 a.u. units which correspon
to the spatial extension of the neutral donor in bulk semic
ductors. On the other hand,^r h& is very close tô r eh&. The
effect of the quantum confinement is now much more imp
tant than that of the Coulomb potential. The wave functi
tends toj 0(pr h /R) from which we may write

^r eh&.^r h&.^ j 0~pr h /R!ur hu j 0~pr h /R!&5R/2. ~32!

In order to localize the relative position of the comple
line we represent in Fig. 7 the variations o
D5hnX2hn (D1,X) against the radiusR for our two refer-
ence values of the ratios. We remark that whenR tends to
zeroD tends to 0.48 a.u. fors50.2 while it tends to 0.24
a.u. if s50.8. OtherwiseD(R) is a decreasing function
which tends to the limits 0.09 and 0.22 a.u. fors equal to
0.2 and 0.8, respectively, from which we may conclude t
the confinement increases the localization energyD.

In Fig. 8 we report the variations ofI (D1,X) as a function
of the radiusR for s50.2 ands50.8. In the two cases
when R tends to zero, the confinement potential becom
more important than the Coulomb potential andI (D1,X) tends
to a limit value which corresponds to the envelope oscilla
strength of a confined, but noncorrelated, electron-hole p
For s50.2, I (D1,X) is an increasing function ofR, showing
that it is depending, as expected, on the volume available

te

FIG. 9. RatioI (D1,X)/I X drawn against the radiusR for s50.2
ands50.8.
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the complex. WhenR tends to infinity, this integral tends t
the limit value which has been obtained in the case of b
semiconductors4. For s50.8, I (D1,X) exhibits a maximum
for a radius close to 5 a.u. Below this value, the quant
confinement is predominant and the electron remains clos
the hole, so that we observe a similar behavior as
s50.2. However, forR.5 a.u., the effect of the quantum
confinement becomes negligible with respect to the Coulo
correlation. Because fors50.8 the complex becomes un
stable whenR goes to infinity, the hole moves far away fro
the electron so that the envelope oscillator strength decre
at increasingR values.

In the same figure, we have also reported the variation
the envelope oscillator strengthI (D0,h) corresponding to a
transition towards a noncorrelated neutral donor-hole s
(D0,h), which corresponds to the 3D limit of an unstab
(D1,X) complex. It can be verified thatI (D0,h) is a strictly
decreasing function ofR and that fors50.8, I (D1,X) tends to
the same limit asI (D0,h) whenR goes to infinity. We may
compare the above results with those obtained recently
Ping and Dalal.8 They obtained an envelope oscillat
strengthI (D1,X) which decreases withR and which does no
tend towards the expected limit whenR tends to infinity.
This behavior is comparable with that of the envelope os
lator strengthI (D0,h) of the (D0,h) state that we have dis
cussed above. This discrepancy with our results is due to
fact that these authors have treated the Coulomb elect
hole interaction as a perturbation, which is only justified
very smallR values.

Figure 9 shows the variations of the ratioI (D1,X) /I X as a
function ofR for the same two values ofs we used above
We remark first that its behavior is quite analogous in
two cases. WhenR goes to zero, the two oscillator strengt
become identical. This is due to the fact that in this limit t
effect of the Coulomb correlation effect becomes negligi
in comparison with that of the quantum confinement. At
creasingR, the ratio increases towards a maximum va
I (D1,X) /I X. 1.1, corresponding toR.2 a.u. In this case, the
ionized donor bound-exciton oscillator strength is grea
than the exciton oscillator strength, showing that the effec
the quantum confinement on the Coulomb interaction
more important in the case of the ionized donor bound e
ton. However, whenR tends to infinity, the ratio become
very small, and the exciton oscillator strength becomes m
higher than the ionized bound-exciton oscillator streng
and we cannot at all speak about a giant oscillator stren
per impurity for the (D1,X) complex, contrary to what ha
been claimed many years ago.13,14 On the other hand, it is
clear that our assumption on one sole impurity per mic
sphere becomes questionable whenR tends to infinity, be-
cause it corresponds to a very small doping.

In reality, it is easy to show that in the case of bulk sem
conductors, the ionized donor bound-exciton envelope os
lator strength per impurity is very small compared to that
the exciton, provided that the two oscillator strengths
determined with reference to the same volume. Howeve
large bound-exciton oscillator strength may result from
large doping and not from a giant envelope oscilla
strength per impurity. Indeed, in the 3D limit, we obtain,
the case of a crystal of volumeV` containingND impurities,
k
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f ~D1,X! / f X.nDI ~D1,X!

3D
paX

3 , ~33!

wherenD5ND /V` is the impurity concentration and wher
we have assumed, as above, that\vX /\v (D1,X).1. This
ratio becomes very small when the impurity concentrat
nD becomes very low, provided thatI (D1,X)

3D and aX
remain finite. For example, fors50.2, using the 3D
value I (D1,X)

3D .30 obtained previously,4 we get

I (D1,X)
3D

paX
3.10216 cm3 with aX.100 Å . The ratio of the

bound exciton to the exciton envelope oscillator strength
thus not at all giant, but can be very low, in agreement w
our above results. It is important to remark that the value
the ratio of the oscillator strengths, Eq.~33!, is proportional
to the impurity concentrationnD . For example, at low dop-
ing with nD.1014 cm23, f (D1,X) / f X51022. At high doping
with nD.1018 cm23, f (D1,X) / f X5102. Crudely speaking, in
bulk semiconductors, large oscillator strength can only oc
when the number of impurities per unit volume is large
comparison with the number of excitons per unit volume,
in other words, when a large number of unit cells are dop

The reason why in the past it has been claimed that e
tons weakly bound to impurities exhibit giant oscillat
strengths, independently from the impurity concentrati
arises from the fact that Rashba and Gurgenishvili13,14 com-
pared two oscillator strengths not corresponding to the sa
crystal volume. He compared the ionized bound-exciton
cillator strength per impurity for the whole crystal to th
exciton oscillator strength per unit cell and obtained the f
lowing ratio:

f
~D1,X!

imp / f X
UC5I

~D1,X!

3D
paX

3/V0 , ~34!

whereV05V` /N is the volume of the unit cell of the crys
tal containingN unit cells. For example, in a cubic materia
V05a3, where the lattice constanta is typically of the order
of a55 Å . Assuming the same 3D envelope oscillat
strengthI (D1,X)

3D .30, and exciton Bohr radiusaX.100 Å as
above, the ratio of Eq.~34! amounts then to 73105, which
appears to be giant. But it must be stressed that this rat
not significant because the two oscillator strengths do
refer to the same volume. This ratio becomes meaning
only in the limit case where each unit cell is doped with o
impurity. In this case,ND5N5V` /V0 and the impurity
concentration becomesnD5ND /V`51/V051/a3. In the
case of a cubic crystal witha55 Å , this corresponds to a
very giant impurity concentrationnD5831021, which in-
deed is not very realistic.

Therefore we have shown that in a microsphere, due
the quantum confinement, the envelope bound-exciton os
lator strength may be considered as giant in compariso
what we get in bulk semiconductors. In particular, we exp
that even with only one sole impurity per microsphere, t
intensities of the (D1,X) and the exciton lines should hav
comparable intensity ifR.2 a.u., i.e.,R.100 Å . As a
consequence, we expect that the observation of ioni
bound excitons should be more easy in low-dimensional
crocrystals than in bulk semiconductors. Nevertheless,
conclusion should be moderated by the fact that a giant
cillator strength does not necessarily lead to a giant to
absorption coefficient. Indeed, if the sample contains ide
cal semiconducting microspheres, and if only a fractiont
(0<t<1) of the microspheres is doped with one sole imp
rity, the ratio of the total absorption coefficients becomes
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a~D1,X! /aX5t f ~D1,X! / f X.tI ~D1,X! /I X ~35!

and may become small when not enough microspheres
doped.

To conclude, we remark that all the above results may
used without difficulties to get some insight into the prop
ties of another kind of exciton-ionized impurity complex: th
exciton-ionized acceptor complex (A2,X). Indeed, within
the effective mass approximation and assuming infinit
deep confinement potentials, it is easy to verify that the
lowing relation holds:

E~A2,X!~s!

EA0
5
E~D1,X!~1/s!

ED0
. ~36!
re
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APPENDIX: MATRIX ELEMENTS

In order to determine the matrix elements between
statesu i )[umnp) and u i 8)[um8n8p8), we define

I i i 8~l,m,n!5I ~l,m,n!, ~A1!

Jii 8~l,m,n!5J~l,m,n!, ~A2!

Kii 8~l,m,n!5K~l,m,n!, ~A3!

Lii 8~l,m,n!5L~l,m,n!, ~A4!

Mii 8~l,m,n!5M ~l,m,n!. ~A5!

So we get
Sii 85I ~0,0,0!, ~A6!

Tii 85Tii 8
e

1sTii 8
h , ~A7!

Tii 8
e

52
m~m21!

2
I ~22,0,0!2

p~p1m!

2
I ~0,0,22!1

a~2m1p!

2
I ~21,0,0!1

b~2p1m11!

2
I ~0,0,21!

1
p22a2R22b2R2

2R2 I ~0,0,0!2
ba

2
I ~21,0,1!2

ba

2
I ~1,0,21!1

ba

2
I ~21,2,21!1

ap

2
I ~1,0,22!2

ap

2
I ~21,2,22!

2
mp

2
I ~22,0,0!1

mp

2
I ~22,2,22!1

mb

2
I ~22,0,1!2

mb

2
I ~22,2,21!2

mp

R
K~21,0,0!1

ap

R
K~0,0,0!

2
pp

2R
K~1,0,22!1

bp

2R
K~1,0,21!2

p

2
M ~0,0,0!1

p

2
M ~0,2,22!1

b

2
M ~0,0,1!2

b

2
M ~0,2,21!, ~A8!

Tii 8
h

52
n~n21!

2
I ~0,22,0!2

p~p1n!

2
I ~0,0,22!1

b~2p1n11!

2
I ~0,0,21!1

p22b2R2

2R2 I ~0,0,0!2
np

2
I ~0,22,0!

1
np

2
I ~2,22,22!1

nb

2
I ~0,22,1!2

nb

2
I ~2,22,21!2

p

R
J~0,21,0!2

pp

2R
J~0,1,22!1

bp

2R
J~0,1,21!

2
p

2
L~0,0,0!1

p

2
L~2,0,22!1

b

2
L~0,0,1!2

b

2
L~2,0,21!, ~A9!

Vii 852I ~21,0,0!1I ~0,21,0!2I ~0,0,21!. ~A10!

In the same way the matrix elements for the mean distances are given by

r ii 8
e

5I ~1,0,0!, ~A11!

r ii 8
h

5I ~0,1,0!, ~A12!

r ii 8
e

5I ~0,0,1!. ~A13!
,
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9L. Stauffer, B. Ste´bé, and G. Munschy, Phys. Status Solidi B119,
193 ~1983!.

10Y. Kayanuma, Solid State Commun.59, 405 ~1986!.
11Y. Kayanuma, Phys. Rev. B38, 9797~1988!.
12A.I. Ekimov, I.A. Kudryavtsev, M.G. Ivanov, and Al. L. Efros

Fiz. Tverd. Tela~Leningrad! 31, 192 ~1989! @Sov. Phys. Solid
State31, 1385~1989!#.

13E.I. Rashba and G.E. Gurgenishvili, Fiz. Tverd. Tela~Leningrad!
4, 1029~1962! @Sov. Phys. Solid State4, 759 ~1962!#.

14E.I. Rashba, Fiz. Tekh. Poluprovodn.8, 1241~1974! @Sov. Phys.
Semicond.8, 807 ~1975!#.


