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Exciton bound to an ionized donor impurity in semiconductor spherical quantum dots
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The effect of the quantum confinement on the electronic and optical properties of an exciton bound to an
ionized hydrogenic donor placed at the center of a semiconductor spherical microcrystal is studied theoretically
as a function of the sphere radiRsand the effective mass ratio of the electron and the hole. The valence-
and conduction-band offsets are assumed to be infinite. The ground-state energy is determined by Ritz's
variational method. The influence of the confinement on the dipole absorption of the bound exciton is dis-
cussed in relation to the exciton absorption. We show that the quantum confinement gives rise to a “giant”
oscillator strength per impurity, contrary to what happens in bulk materials where a "“giant”oscillator strength
results only in the case of a high doping. The ratio between the exciton and the bound-exciton oscillator
strengths may be close to unity in small microcrystals, contrary to the three-dimensional case where it is very
small. Thus bound-exciton lines are expected to be easier to observe in the former case.
[S0163-182606)06348-5

I. INTRODUCTION mation as a function of the electron to hole effective mass
ratio c=m./m,. As a result, it appeatshat the D *,X)

The recent progress in crystal growth techniques hasomplex is stable i< o.=0.454 and that theX™,X) com-
made it possible to realize zero-dimensio@D) systems plex is stable ifo=0.. Up to now, only few theoretical
such as clusters, quantum dots, and microcrystallites. Thesdudies have been devoted to tH2"(,X) complex in low-
latter may be present as suspensions in colloidal liquids, oflimensional structures: variational determinations of the
embedded in a glass or rocksalt matrix, with very large enground-state energies in two-dimensional semicondtittors
ergy gaps. In these systems, the ultimate quantum confin@nd semiconductor quantum well§QW),*” and a
ment effects restrict the motions of the optically excited elecvariational-perturbation study in semiconductor micro-
trons and holes in all the three space dimensions. As rystallites®
consequence, the free particles’ energy levels are quantized, In this paper we present a fully variational determination
and the Coulomb correlation effects and the optical absorpef the ground-state energy of th®(,X) complex with a
tion oscillator strengths are enhanced. For more details, wydrogenic donor impurity placed at the center of a semicon-
refer the reader to a recent reviean the subject. As in the ductor spherical microcrystallite and determine the oscillator
three-dimensional semiconductors, optical excitations magtrength for the optical absorption. In Sec. Il we present our
give rise to “exciton” (X) or “bound-exciton” (BE) states, method of determination of the ground-state energy as well
which must now be interpreted as resonant electronic stateé&s the absorption coefficient and the oscillator strength. In
of the microcrystals, because there is no longer conservatiofec. Ill we present and discuss the results of our computa-
of the translation motion of the free particles. In 3D semi-tions.
conductors, the binding energies of BE complexes are gen-

erally low, and their existence depends sometimes on spe- Il. THEORY
cific stability conditions. However, in 0D semiconductors,
because the overlapping between the wave functions of the A. Ground-state energy

electron and the hole becomes more important, the exciton | et us consider an excitorX) bound to an ionized hy-
and BE states are more bound than in the bulk. Moreover, Iarogenic donor impurityD‘*’) placed at the center of a semi-

the confinement potentials may be modeled by an infinitely{tonductor spherical microcrystal embedded in a glassy ma-
deep potential well, the possible stability problem no longetrix. We assume that the electron and the hole are completely
occurs because in this case all the particles remain confinegbnfined in the microcrystal by an infinite potential barrier.

in a finite space. So it is expected that the observation ofye neglect the effect of the polarization charge induced at
bound excitons should be more easy in 0D semiconductorge surface. In the case of the effective mass approximation
than in 3D semiconductors. and assuming isotropic parabolic and nondegenerated bands

In the present work we concentrate our study on thehe Hamiltonian of the ™, X) complex is written:
(D*,X) and the A~,X) complexes. They result, respec-

tively, from the binding of an exciton to an ionized hydro- H=T+V+V,+e=H+¢,. )
genic donor or acceptor impurity. Their possible existence

was predicted in 1958 by LampériTheir stability and bind- €4 corresponds to the band-gap energy of the bulk semicon-
ing energies in 3D semiconductors have been the subject aluctor. Afterwards we use as unit of length the 3D donor
several theoretical studies within the effective mass approxieffective Bohr radiusap = «#%2/€’m, and as unit of energy
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ﬁzlmeazD, which represents twice the absolute value of thetween accuracy and computer time. Indeed, though the use of
3D donor ground-state energy. The dielectric constamg  infinite potential wells does not consistently modify the ana-
introduced in order to take into account the possible polarlytic calculations, it decreases significantly the computer
ization effects. The kinetic energy operafbris then given time necessary to compute numerically all of the manifold

by integrals needed.
The energy and the envelope wave function are solutions
1 o of the effective Schidinger equation:
T=—§Ae— EAhETe+UTh1 (2)
HV =(e—ey) V=EV. (8

wherea=mg/my, is the ratio of the effective masses of the o ) )

electron and the hole. For the ground state, it is sufficient td his equation is not solvable analytically and we determine
consider a wave function depending only on the three disitS ground-state solutions using Ritz's variational principle.
tances e, Iy, andr,. Within these coordinates, the kinetic We choose the following trial wave function which general-

energy and Coulomb potential energy operators read izes that previously uséd' in the study of the D *,X) com-
plex in bulk semiconductors, 2D semiconductors, and quan-
19 162 1 o9 1 &2 tum wells:
a2 Tepdten 205
r2—r24+r2, 52 V=N Cnndmnp, C)
- ) mnp

2relen Oredlepn’

|mnp): fo(re)fr(rn)exp(— are_Breh)r:enrﬂrgh’ (10

Mdrn 202 Tendlen 2 dr2, sin(wrr/R)

_rﬁ—ré-i-réh P “ fe(r)=fh(r)=10(wrlR)=W, (11
2fnfen  ITndTen N stands for the normalization constant. The product
fo(re)fn(ry) describes the ground state of an uncorrelated
V:_i i_i (5) electron-hole pair confined in an infinitely deep spherical
fre Th Ten potential well andj, is the zeroth-order spherical Bessel

function. The corresponding energy ks =E.+E;,, where
E.= 7%/2R? and E,= oE, are the ground-state energies of
the confined electron and hole, this,= 7?1+ ¢)/2R%
The first exponential factor exp(ar,) describes the Cou-

The total confinement potenti®,, is written as follows, as-
suming infinitely deep electron and hole potential wells:

V=V, TV, 6) lombic spatial correlation between the electron and the ion-
ized donor. The second exponential factor exp(.,) ex-

0 if ri<R presses the Coulombic spatial correlation between the
Vwiz o if =R (@) electron and the hole. The integers n, andp are positive

or equal to zero. The producf'rir®, is introduced in order
The validity of this approximation depends on the to take into account the spatial correlations mentioned above.
conduction- and valence-band offsets as well as on the radiukhis function is expected to lead to less accurate results
R. In the case of semiconductor microcrystals embedded in whenR— o than that used previougiyn the 3D limit. How-
glass matrix, we can assume very large band offsets, so thaver, for finite values oR, it appears to be a good compro-
this approximation is justified for all nonzeRvalues. Inthe  mise between accuracy and computing time.
case of finite band offsets, which corresponds to the case of The linear coefficientgy,,, as well as the nonlinear pa-
microcrystals surrounded by another semiconductor, our aprameterse and 8 are determined in order to minimize the
proximation is justified only in the case of intermediate tomean value of the energy:
small quantum confinemenR& 1 a.u.). In all cases, when
R becomes very large, our approximation is expected to lead (E(a,B))=(W|H|W)/(P|¥). (12
to the “exact” 3D values, depending on the accuracy of our
wave function. However, whelR tends to zero, this ap- This leads us, for given values af and 3, to the following
proximation may no longer be used, because it would lead teystem of linear equations:
infinite energy values, whereas a finite potential well would
lead to the finite 3D energy values corresponding to the well (T+V—ES)c=0, (13
material. Nevertheless, it must be stressed that for very low
R values R<1-5 nm), the effective mass approximation whereT, V, andS represent, respectively, the matrices of the
becomes unjustified. So, it seems to us that the use of thdnetic energy, the Coulomb potential energy, and the norm
infinite potential well approximation, which is consistent with respect to the basis functiop®np). Further,c denotes
with the use of the effective mass approximation, and whictthe column matrix of the coefficients;,,,. All the matrix
is expected to lead to reasonable energy values in the case @kments may be expressed as functions of the following five
practical R values, appears to be a good compromise bethreefold integrals:
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o R R retrp
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0 0 Ire=rnl
Xexq_Zare_Zﬂreh)r;n+m'+)\+1rﬂ+n’+;¢+1r2;p’+v+l’
s R R letrp
Jinp " (7\,,u,v)=8772j dref drhf| |drehjg(qrre/R)jO(wrh/R)cos(qrrh/R)
0 0 re=rn

! ! ’
><exp(—2are—2/8reh)r2“+m +)\+er+” +,urg;p +v+l,

o R R retr
Kmnp " ()\,,u,v)=8772f0 drefO drhf| hdrehjO(Wre/R)jg(th/R)COS(WI’e/R)

retrpl
r ’ !
XeX[X—Zare—Z,Breh)rgwm +}\rﬂ+n +,u,+lr2;p +v+l’

Tl

R R retrp ) . )
L® O =87 [ “are [ “ar, [ Ar Bt/ Ro R0 IR
e 'h

r ’ ’
><exp(—2are—2ﬁreh)r2.”m +)\+1rg+n +Mrg;p +v+l,

m'n’p’ ) R R retrn . o .
Mmnp " (N, p,v) =81 0dre Odrh ' r‘drehlo(ﬂ're/R)Jo(th/R)J1(7Tre/R)
e 'h
X X — 2af g— 23r g THM FApREN Fptpp iR vl (14)

jo(X) = (sinx)/x andj ;(x) = (sinx)/x>— (co))/x are the spheri- €xciton bound to this impurity. For the sake of simplicity, we
cal Bessel functions, respectively, of order zero and one. Théo not take into account all the details of the band structure.
explicit expressions of all the matrix elements as well as Generally speaking, the oscillator strength per micro-
those corresponding to the mean distances are given in tigphere for a radiation of circular frequene@ymay be defined
Appendix. in relation to the integrated absorption coefficient:

B. Optical properties cnm

o PR | f(0)=0. 5 | o)’ (15
It may be interesting to see whether the bound-exciton 27" ) o
oscillator strength may be considered as “giant” in compari- h h q I vol i
son with the exciton oscillator strength. We consider the opy,v ere(l., repr.es.ents.t e fun gmenta volume of normaliza-
tical absorption by a sample of volung, containing iden- tion of the radiation field, and is the absorption coefficient
tical semiconducting microspheres of voluflg, embedded per microsphere. Furthermomls the velocity of the light in
in a matrix transparent in the spectral regibm of interest. the vacuumpn the index of refraction of the semiconductor,
We assume that the dielectric heterogeneity of the mediurff? the mass of the electron at rest, wheréas corresponds
has no notable effect on the electromagnetic field of the into a small interval of frequencies around the transition fre-
cident wave and that a given microsphere contains only on8UY€ncy _of interest. We determine the abs_orptlon coefflc_lent
sole impurity located at its center. This last assumption i<¥ Per microsphere in a two band model within the effective
realistic in the case of usual doping rates. Indeed, the Mass approximation, the dipolar approximation, and neglect-
mean radiusRp = (3/4mnp) ™ of a sphere containing only ing possible nonlinear effects. We obtain
one impurity amounts t&, = 6.2 nm in the case of a strong

i - ; 472 Q
doping (hp=10"® cm~3) and toRp, = 133.6 nm in the case _ mo2 s e
of a weaker dopingr(p =10 cm~3). This last value corre- a(w) ncnfel. 0. " (o3~ ©).
sponds to very large microspheres for which the effect of the (16)

guantum confinement becomes negligible. So, our hypoth-

esis seems to be justified in the case of microcrystals of usué{Yhere“ is the square of the mtgrba_nd matrix momentum
sizes. element at the center of the Brillouin zong;+ xy and

Since the theories of the optical absorption of ionizegfo+ denote the crystal electronic excitation energies corre-
bound excitons D*,X) and free excitons X) are quite sponding to the initial and final states. We have introduced

analogous, we present here a common treatment for the tv\;ge dimensionless “envelope oscillator strength” defined by
cases. We restrict ourselves to one photon transitions at

2
T=0 K between an initial state corresponding to a microc- |:U d3r 3, W (ry,ry) 8(ry—ry) (17)
S|

rystal with one ionized impurityD ™ and a final state of an phere
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which depends only on the normalized envelope wave func-
tion ¥ of the exciton or the ionized donor bound exciton.
We remark thatw is proportional to€),,/Q. . In the limit
case where the radius of the microsphere tends to infinity,
this ratio tends to unity, so that the absorption coefficient
becomes identical to the absorption coefficient per impurity
that we get in the case of bulk semiconducto@n the other
hand, when the radiuR tends to zero, this ratio tends also to
zero so that the absorption coefficient tends to zero. From
Eqg. (15 and Eq.(16) it appears that the oscillator strength
per microsphere is given by

2

_ 2
f mhwif I

: (18

where wj; is the circular frequency corresponding to the
given optical transition. It is interesting to remark that, in the
effective mass approximatiop,? takes the same value for an
exciton or an ionized bound-exciton absorption. If we as-
sume that the corresponding transitions enerfjiesare very

ENERGIES (a.u.)
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0.2

_Ec

N

<[|m|m|-

close, it appears from Eq16) and Eq.(18) that the ratio of
the absorption coefficient of the ionized donor bound exciton i
to that of the exciton depends only on the ratio of the corre-
sponding envelope oscillator strengths: 0

1 1 1 1
4 8 12 16
R (a.u.)

20
(19

Using the variational wave function discussed above, the
(D*,X) envelope oscillator strength reads

a(DerX)/aX: f(D*,X)/fXZI(DﬂX)/lX.

FIG. 1. Total energyE, uncorrelated pair energ,, kinetic
energy T, Coulomb potential energy¥, and correlation energy
472 R E°=E—E, versus the radius of the spherical crystallite for
Lo+ )= ?J\/(D*,X) E Cmnof dr rmenTe 0=02.
m,n,p:O 0

2 in relation to the confined electron and hole energigsind
. (20) Ey. & stands for crystal electronic ground-state energy cor-

responding to full valence bands and empty conduction

o _ bands at the temperatufe=0 K. The localization energy of
In order to compare the ionized bound-exciton and thghe bound-exciton lines reads then

exciton oscillator strengths, it is necessary to evaluate the
ratio f o+ xy/fx=1p+ x)/l1x. For this purpose, we have also
determined the exciton envelope oscillator strerigtlusing
the following wave functiort®*

X exp(— ar)ja(mr/R)

(27)

The confinement acts on the positions of the lines associated
to the complex and the exciton by shifting them to the high
energies.

hVX_ hV(DJr,X): E;:(_ EC.

Wy =Nxexp(— &rep)jo(mre/R)jo(mrn/R),  (21)

where Nk is a normalization constant and a variational

parameter. We obtain I1l. NUMERICAL RESULTS AND DISCUSSION

ly=(2mNYR)2. (22 We have calculated the ground-state energy of the com-
. . plex as a function of the microcrystallite radi&&sand the
It can be vegfled thaty tends to the expected limit value ggective mass ratiar using a ten-term trial wave function
Q. /lm(1+0) whe.n the radiufR goes to |qf!n|ty. _ defined by the conditiom+n+ p<2, which ensures a good
_The bound-exciton and exciton transition energies aré,.c,acy without lengthening the computing time. The inte-
given by grals have been computed using the 12-term Gauss quadra-
ture method. The energies are estimated to be accurate within
six significant figures. Figure 1 shows the variations of the
(24) uncorrelated confined pair enery, and of the totakE, ki-
netic T, potentialV, and correlatiorE® mean value energies
where we have introduced the “correlation energies” de-of the complex as functions of the radigsfor 0=0.2. We
fined by remark first that the quantum confinement increases, as ex-

pected, the absolute mean value of the Coulomb correlation

hV(D+,X):€g+ Ee+ Eh+EC+50, (23)

hVX: Eg+ Ee+ Eh+ E;:('f' 50,

Ey=Ex—E.—Ey, (25  energy(E®).
In the limit R—, (E®)—(E)——0.51 a.u., in good
EC=E—E,—Ej, (26)  agreement with the 3D results. Further,(T)—0.51 a.u.,
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FIG. 2. Comparison between our total enerdidid line) with FIG. 3. Ratio of the neutral donor correlation energy to the

those obtained by Ping and Dal@ef. 8 (dotted line versus the  exciton correlation energy versus the radius of the microsphere for
radius of the microsphere fer=0.174, which corresponds to CdS. different values ofo.

<V>~>_102 a.u., so that the virial theorem is satisfied. |nre|ation energyE‘I:3 reduces t0<Ve>: —2.4376R in agree-
the limit R—0, the quantum confinement becomes predomiment with a previous resdft Finally, we remark that the
nant in comparison with the Coulomb interactions. We carfact that(E®) varies as— 1/R is consistent with our assump-

estimate the behavior of the mean energies using the asymgon that the electrons and holes are completely confined in-
totic expression of our trial wave function. In this limit, the side the microsphere.

terms of the sum in Eq9) corresponding tan+n+p+0 We can tentatively compare our results with those ob-
are eXpeCted to g|Ve rise to a Very Sma” Contr|but|0n to thQained previous|y by P|ng and Da?a“sing a Variation_

total energy of the complex and we may neglect them. Furpertyrbation method although this comparison seems to be
ther, we may retain only the first terms of the developmenimeaningful only in the limit of large radius, i.e., in the case

near the origin of the exponential part of the wave function,of 3 small quantum confinement. Indeed, these authors used
which reduces to a finite confinement potential whereas we have limited our-
. . selves to the case of an infinite potential well. In Fig. 2 we

W =exp(—are=Brenjo(mre/R)io(mTh/R).  (28)  compare the energies obtained by the two methods in the

We obtain the following asymptotic expressions whencase of CdS microcrystals assuming an effective mass ratio

R—0: of 0=0.174. It appears that in the case of intermediate or
small confinementR>1 a.u), our variational method leads,
(T)=Ep=m?(1+0)I2R?, as expected, to better results than the variation-perturbation
method. However, in the case of very small microcrystals
(Vo)=—(Vpy=—K,/R, (R<1 a.u), the energies obtained by Ping and Dalal are
better, mainly due to the fact that these authors have used a
(Ver)=—K,/R, finite confinement potential. Nevertheless, it must be stressed
that in the limit of very small microcrystals the effective
(Ey=Ep+(Ven, mass approximation becomes questionable, so that the com-
parison of the two methods becomes meaningless in this
(E®y=(E)— Ep:<Veh>, (29 limit.

Strictly speaking, the problem of the stability of the com-
with K;=2.4376 andK,=1.7860. We remark that in this plex does not exist in a quantum box when assuming an
limit (V)= —(V}), so that the mean Coulomb potential en- infinite potential well. Indeed, in this case, the ionized donor,
ergy reduces tdV,). Thus we find the same results as pre-the electron, and the hole remain always at finite distances
viously obtained® in the case of a confined exciton, from each other due to the quantum confinement. However,
Ey=—1.7860R. On the other hand, the neutral donor cor-it is well known that in the 3D limit, the complexX(*,X)
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FIG. 4. Ratio of the P*,X) correlation energy to the neutral
donor correlation energy versus the radius of the microcrystallite
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FIG. 6. Spatial extension of the complex drawn agaRdbr
o=0.8.

becomes unstable against dissociation into the most stable
dissociation product, a neutral donb® and a free holén
with zero kinetic energy,
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FIG

(D", X)—D%+h, (30
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. 5. Spatial extension of the complex drawn agaR<gor

o=0.2.

becauseP (o) =ER/ES>1 in the 3D limit. The correspond-
ing stability condition may be written

E<Ep+E,~E°<E]. (32)

In this case, it has been establishedat the complex re-
mains stable only ib<<o.=0.4. In a microsphere, the dis-

0.5

0.4

0.3

—E° (a.u.)

c
X

0.2

E

0.1

0.0 1 1 1 |
0 4 8 12 16 20

R (a.u.)

FIG. 7. Localization energy drawn versus the radius
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1.2
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0.8
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|(D*,x)/ Ix

0.4

0.2

0.0

0 4 8 12 16 20
0 4 8 12 16 20
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FIG. 9. Ratiol p+ xy/Ix drawn against the radiuR for 0=0.2
FIG. 8. (D,X) envelope oscillator strengtlsolid lineg versus  ando=0.8.

the radiusR for ¢=0.2 ando=0.8. We have also reported the
variations of the envelope oscillator strendtho ) corresponding in Fig. 5 the behavior of the mean valués.), (ry), and
to a transition towards a noncorrelated neutral donor-hole stater ) as functions of the radiuR for o=0.2. As expected,
(D°%h) which corresponds to the 3D limit of an unstabR(X)  the three curves converge to zero wietends to zero while
complex. for large R values they tend, respectively, to the limits

1.76, 4.05 and 3.68 a.u. in agreement with the values corre-
cussion about the stability of the complex becomes meaningsponding to the bulk semiconductoFig. 6 shows the varia-
ful only in the limit whenR— o2, We can verify in Fig. 3 that tions of(r.), {r,,), and of(re},) versusR for o=0.8. When
in a microsphere, the above ratiR{ o) =EZ/E is also al- Rtends to zero, our conclusions are the same as above. How-
ways greater than unity whatever the valueRoaind of the  ever, wherR becomes very large, the behavior becomes dif-
ratio o. We remark that wherr tends to zero the ratio ferent. Indeedr,) tends to 1.50 a.u. units which corresponds
P(o) decreases rapidly and becomes very close to unityto the spatial extension of the neutral donor in bulk semicon-
which justifies the so-called “donorlike exciton” model ductors. On the other hangk,) is very close t(rep). The
adopted in the study of the exciton when the hole is infinitelyeffect of the quantum confinement is now much more impor-
heavy in comparison with the electron. On the other handtant than that of the Coulomb potential. The wave function
we see that wheiR tends to zerdP(o) tends to the limit tends tojo(#r/R) from which we may write
1.3648 independently af and whenR becomes very large . .
P(o) tends to the expected limit (do). These latter results (remw=(rny={o(mrn/R)|rpljo(7rn/R))=R/2. (32
are verified by the study of the asymptotic behaviors of the
neutral donc_)r and the exciton insi_de. t_he micrpcrystal Wherline we represent in Fig. 7 the variations of
the well radlus_, t(_ands to zero and |rgf|n|ty. In Flg. 4 we rep'Azth—hv(D+,X) against the radiu® for our two refer-
res_ent the variations of the ratlf/Ef, as a function qf the  once values of the ratio. We remark that wheR tends to
radiusR for 0=0.2 ando=0.8 where the complex is, ré- ;61 A tends to 0.48 a.u. for=0.2 while it tends to 0.24
spectively, stable andC unstable in the 3D limit. Wheng \, it ,=08. OtherwiseA(R) is a decreasing function
R—, for 0=0.2, EY/Ep—1.02>1, so that we get, as ex- \yhich tends to the limits 0.09 and 0.22 a.u. ferequal to

pected, a stable binding. However, for=0.8, EC/ECD—fl ~ 0.2 and 0.8, respectively, from which we may conclude that
which shows that the complex becomes unstable in this limitihe confinement increases the localization enexgy

like what happens in the 3D case. We remark further that |5 Fig. 8 we report the variations ®fp+ x) as a function
EY/Ep<1 forR=4 a.u. and thaE®/Ej—0.7327 for all val-  of the radiusR for 0=0.2 ando=0.8. In the two cases,
ues ofe whenR— 0. This result is consistent with our above when R tends to zero, the confinement potential becomes
discussion. Indeed, following EqR9), Ej=—2.4376R and  more important than the Coulomb potential dggk x, tends
E°=~—-1.786R when R—0. Thus E/E;—1.786/2.4376 to a limit value which corresponds to the envelope oscillator
=0.7327 wherR—0. strength of a confined, but noncorrelated, electron-hole pair.
The preceding discussion may be completed by the studifor o=0.2,1 p+ xy is an increasing function dr, showing
of the mean distances between the three particles. We repdtat it is depending, as expected, on the volume available for

In order to localize the relative position of the complex
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the complex. WheiR tends to infinity, this integral tends to
the limit value which has been obtained in the case of bulk . ) ) ]
semiconductofs For ¢=0.8, | o+ x) exhibits a maximum wherenp=Np /(). is the impurity concentration and where
for a radius close to 5 a.u. Below this value, the quantum€ have assumed, as above, thaix/Awp+ x=1. This
confinement is predominant and the electron remains close {gtio becomes very small whep the 'mpég'ty concentration
the hole, so that we observe a similar behavior as fof'D b.eco.m.es very low, provided that(D*QO and ax
o=0.2. However, forR>5 a.u., the effect of the quantum femain finite. For example, folr=0.2, using the 3D
confinement becomes negligible with respect to the CoulomEfg‘:"El)ue lo+ x=30 obtained previously, we  get
correlation. Because for=0.8 the complex becomes un- |+ y,max=10"'® cm® with ax=100 A . The ratio of the
stable wherR goes to infinity, the hole moves far away from bound exciton to the exciton envelope oscillator strengths is
the electron so that the envelope oscillator strength decreast¥is not at all giant, but can be very low, in agreement with
at increasingR values. our abpve results. I.t is important to remarl_< that the .value of
In the same figure, we have also reported the variations df*€ ratio of the oscillator strengths, E@3), is proportional
the envelope oscillator strengthyo, corresponding to a to the impurity concentrationy . For example, at low dop-

i ; — 10 a3 —10-2 ; ;
transition towards a noncorrelated neutral donor-hole stat&&hvﬂgljfolglg;gn f(c>,+f(>3;f):<) i foZ 18rud§§/hs|32;k?r?gljn?n

(D%h), which corresponds to the 3D limit of an unstable 1 semiconductors, large oscillator strength can only occur
(D™, X) complex. It can be verified thagpo is a strictly  \when the number of impurities per unit volume is large in
decreasing function d® and that forc=0.8,1 5+ x) tends to  comparison with the number of excitons per unit volume, or
the same limit ad o,y whenR goes to infinity. We may in other words, when a large number of unit cells are doped.
compare the above results with those obtained recently by The reason why in the past it has been claimed that exci-
Ping and Dalaf They obtained an envelope oscillator tons weakly bound to impurities exhibit giant oscillator
strengthl 5+ x) which decreases witR and which does not Strengths, independently from the impurity concentration,
tend towards the expected limit whé tends to infinity. ~ &rises from the fact that Rashba and Gurgenistiviticom-
This behavior is comparable with that of the envelope oscilpar6d two oscillator strengths not corresponding to the same

0 . crystal volume. He compared the ionized bound-exciton os-
lator strengthl (oo of the (D7.h) state that we have dis- o0, strength per impurity for the whole crystal to the

cussed above. This discrepancy with our results is due 10 thg,ciion oscillator strength per unit cell and obtained the fol-
fact that these authors have treated the Coulomb eIectroq’meg ratio:

hole interaction as a perturbation, which is only justified for _ %
very smallR values. fior x! Tx =1 p+ x max/ Qo, (34)
Figure 9 shows the variations of the ratig)+ xy/Ix as a y ’ .
funct?on of R for the same two values of wlg u')s?ed éibove where(lo=(}../N is the volume of the unit cell o_f the crys-
) : S . . tal containingN unit cells. For example, in a cubic material,
We remark first that its behavior is quite analogous in theQ —a®, where the lattice constaatis typically of the order
two cases. WheR goes to zero, the two oscillator strengths of a:5’ A . Assuming the same 3D envelope oscillator
become identical. This is due to the fact that in this limit the 3D . .
strengthl o+ X):30, and exciton Bohr radius,=100 A as

effect of the Coulomb correlation effect becomes negligible X), .
in comparison with that of the quantum confinement. At in-200Ve, the ratio of E¢(34) amounts then to X 10°, which
appears to be giant. But it must be stressed that this ratio is

creasingR, the ratio increases towards a maximum Valuenot significant because the two oscillator strengths do not

.I(D_*'X)d“éz 1.1i)corrgspor]tcilng tR~_—~”2ta.u.:n th'fhc"?‘se' thet refer to the same volume. This ratio becomes meaningful
lonized donor bound-excilon osciliator strength 1S greatel nly in the limit case where each unit cell is doped with one

than the exciton oscillator strength, showing that the effect o mpurity. In this caseNp=N=0../Q, and the impurity
the quantum confinement on the Coulomb interaction i%:oncentration becoméBD=ND/Qw=1/QO=1/a3. In the
more important in the case of the ionized donor bound eXCiza5e of a cubic crystal with="5 A , this corresponds to a
ton. However, wherR tends to infinity, the ratio becomes yery giant impurity concentratiomp=8x 102, which in-
very small, and the exciton oscillator strength becomes mucfeed is not very realistic.

higher than the ionized bound-exciton oscillator Strength, Therefore we have shown that in a microsphere, due to
and we cannot at all speak about a giant oscillator strengtthe quantum confinement, the envelope bound-exciton oscil-
per impurity for the D*,X) complex, contrary to what has |ator strength may be considered as giant in comparison to
been claimed many years aljp'* On the other hand, it is what we get in bulk semiconductors. In particular, we expect
clear that our assumption on one sole impurity per microthat even with only one sole impurity per microsphere, the
sphere becomes questionable whRrends to infinity, be- intensities of the D*,X) and the exciton lines should have
cause it corresponds to a very small doping. comparable intensity iR=2 a.u., i.e.,,R=100 A . As a

In reality, it is easy to show that in the case of bulk semi-consequence, we expect that the observation of ionized
conductors, the ionized donor bound-exciton envelope oscilbound excitons should be more easy in low-dimensional mi-
lator strength per impurity is very small compared to that ofcrocrystals than in bulk semiconductors. Nevertheless, this
the exciton, provided that the two oscillator strengths areconclusion should be moderated by the fact that a giant os-
determined with reference to the same volume. However, aillator strength does not necessarily lead to a giant total
large bound-exciton oscillator strength may result from aabsorption coefficient. Indeed, if the sample contains identi-
large doping and not from a giant envelope oscillatorcal semiconducting microspheres, and if only a fraction
strength per impurity. Indeed, in the 3D limit, we obtain, in (O=<r<1) of the microspheres is doped with one sole impu-
the case of a crystal of volum@,, containingNp, impurities,  rity, the ratio of the total absorption coefficients becomes

f(DJr,X)/fX:nDI?g*’X)Wa?(a (33)
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@+ 5/ ax= Tt o+ x [ Fx=7l o+ x 1 (35) APPENDIX: MATRIX ELEMENTS
and may become small when not enough microspheres are In order to determine the matrix elements between the
doped. statesli)=|mnp) and|i’)=|m'n’p’), we define
To cpncludg, we r.emark that all th_e- qbovg results may be Lo O s 2) =1, 2, ), (A1)
used without difficulties to get some insight into the proper-
ties of another kind of exciton-ionized impurity complex: the Jir (N, v) =IO\, 1, v), (A2)
exciton-ionized acceptor compleXA(,X). Indeed, within _
the effective mass approximation and assuming infinitely Kiir (Ao, v) =K(N, 1, v), (A3)
deep confinement potentials, it is easy to verify that the fol- Lii (N, iy ) =L (N, 2, v), (A4)
Mii (

lowing relation holds:

Eax(7) _Ep, x>(1/(f) i (N, ) =M\, 1, v). (A5)

36
Eno Epo (36) So we get
|
Si»=1(0,0,0, (AB)
T = T“,-i—oT”,, (A7)
-1 + 2m+p 2p+m+1
T?-,=— Ml(—Z,O,Q— M|(0,0’_2)+ M|(_1,0'Q+ MI(O,O,— 1)
n 2 2 2 2
m?— a’R%?— B?R? Ba Ba Ba ap ap
+ Y 100,05 1(-1.0.0 - - 1(1,0~1)+ 5-1(-1.2-1)+ - 1(10,-2)~ - 1(-1.2,-2)
mp mp mg mg mar am
- 7I(—2,0,Q+ 7I(—2,2,— 2)+ 7I(—2,0,])— 7I(—2,2,— 1)— ?K(— 1,00+ FK(O,O,Q
pm B B B
— SR K(L0-2)+ 5oK(1,0-1)- 3 M(ooq+ M(OZ 2)+5M(0,0,0—-5M(0,2,-1), (A8)
h_ n(n=1)  _  p(p+n) B B(2p+n+1) B 772—,82R2 np
in= > 1(0,—2,0 > 1(0,0,—2)+ fl(o,o, 1)+ TI(O,O,Q 7I(O, 2,0
ng ng B
+ —I(2 2,-2)+ —I(O 2,1)— —I(2 2-1)—- —J(O 1,0- —J(O 1,-2)+ —J(O 1,-1)
p p B B
- EL(O,O,Q+ EL(Z,O,— 2)+ EL(O,O,ZD— EL(Z,O,— 1), (A9)
V;,=-1(-1,0,0+1(0,—-1,00—1(0,0,—1). (A10)
In the same way the matrix elements for the mean distances are given by
re,=1(1,0,0, (A11)
”,—I(Ol() (A12)
rs,=1(0,0,9. (A13)
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