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Electron diffraction by periodic arrays of quantum antidots
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Electron diffraction by a periodic array of repulsiv@ barriers is an analytically solvable quantum-
mechanical problem. In this geometry, bearing some analogy with single-barrier tunneling, incident electrons
are perpendicular to the periodic barrier of antidots. In contrast to conventional quasi-one-dimensional tunnel-
ing, which conserves the component of the electron wave vector transverse to the current, electron diffraction
occurs through multiple channels characterized by the transverse electron wave vectors differing by the recip-
rocal lattice vector of the periodic array. For a one-dimensi¢bB) array of two-dimensional2D) & poten-
tials we predict highly nonlinear characteristics in the vicinity of Fermi energies when a new channel for
diffraction opens up. Two lines of 1D arrays reveal a rich resonant diffraction structure.
[S0163-18296)04644-9

[. INTRODUCTION such as the Kroenig-Penney model, nor automatically treated
with a perturbative technique using a scattering formalism,
The possibility of realizing lateral superstructures bysince the potential does not vanish at the infinity in the array
modulating the electric potential in a two-dimensiol2D) plane.
electron gas with the expectation of novel electronic proper- In the present paper, we consider a class of 2D and 3D
ties has been anticipated by SaKakienty years ago. In the Problems in diffraction geometry for which the periodicity of
meantime, with the continuous development of nanostructur@uantum antidots or antiwires permits exact analytical
technology, a wide class of superstructures has been prguantum—mechanical solutions, and provides the wave func-
posed for the investigation of novel quantum transport ef_tiOl’lS in the whole space. We find that in contrast to quaSi'lD
fects and their applications in high functional deviééxres- tunneling, which conserves the transverse component of the
ently, many phenomena resulting from the periodicwave vector, electron diffraction occurs through multiple
modulation of the electron gas have been observed at loghannels characterized by transverse electron wave vectors
temperature or in the mesoscopic regime, mainly because &fat differ from each other and from the wave vector of the
the difficulty of confining or modulating the electron gas incident electron by reciprocal lattice vectors of the periodic
over short distances in more than one direction. Recer@ffays as one can expect from the von Laue and the Wolf-
progresses in self-assembled microstructures with nanometBfagg formula for x-ray diffraction in crystals. As we will
size features and the manipulation of single atoms by scarfi€e by using the periodicity of the arrays it becomes possible
ning tunneling microscopy have created new opportunitie$0 solve 2D or 3D Schrdinger equations analytically in
for realizing nanostructures with strong confinement of thec@ses when variables are inseparable and the problem cannot
order of the de Brog“e Wave|ength at room temperafﬁ?ét be reduced to 1D equations. MeanWh”e, we will also show
becomes therefore possible to generate three-dimension@at the opening of diffraction channels results in highly non-
(3D) configurations of molecular scale structures with linear tunneling characteristics of two distinct conductance

guantum-mechanical properties and transport phenomena n&dimes separated by a sharp transition at the Fermi energy
yet envisioned. corresponding to the half of the reciprocal lattice vector of
The simplest configurations of periodic nanostructures aréhe periodic arrays.
short-period arrays of quantum antidots or quantum anti- VWe proceed as follows: In Sec. Il we describe the diffrac-
wires, which act as diffraction centers for incident electrongion geometry and the electron scattering model; Sec. Ili
perpendicular to the plane of the arragee Fig. 1 From a dea}ls ywth sqlutlon_s of thg Schiimger equation for several
physica| point of view, this prob|em bears some ana|ogyper|0dlc barriers. Flna”y, !n Sec. IV we calculate the tunnel-
with the diffraction of light by a lattice of small apertures, Ing current for these barriers.
but also with the von Laue diffraction of x rays by crystals.
Aside from this analogy, the problem is also interesting from
a transport viewpoint since the geometrical configuration is
reminiscent of tunneling configuration across(sangle or In this section we consider several configurations of quan-
double potential barrier. However, because of the periodic-tum antidot and antiwire arrays for the 2D or 3D diffraction
ity in the plane(the direction perpendicular to the currgnt of electrons. In our search for analytical solutions of the
the transverse component of the electron wave vector is n8chralinger equation, we model the repulsive potential of
longer conserved for coherent transport processes. Formallthe quantum structures by &function. This approximation
the problem cannot be treated within a one-dimensi@hia) is justified if the geometrical dimensions of the diffraction
model by separation of variables as would be, for instancegenter are relatively small, but its potential strength relatively
the case in a tunneling problem across a periodic potentiamportant.

Il. DIFFRACTION GEOMETRIES AND MODEL
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is described by an isotropic electron mass characteristic of

For simplicity, we will assume that the electron spectrum
\\g kt z : I1I-V semiconductor compounds. We limit ourselves to the

single-particle picture leaving the investigation of many-

. body effects for future work.
b \ It is well known that exact solutions for the electron wave

t
kx functions can easily be obtained for one-dimentional tunnel-
) ing through a rectangular barrier or a set of barrfetsA
kl B typical case of an exactly solvable problem is tunneling
}Z ./ through a 1D§ barrier or a 1D doubles barrier. As we
discussed in the Introduction, for 2D and 3D quantum-
mechanical configurations analytical solutions are known for
i problems in which the electron potential does not depend on
one or two coordinates. In such a case one can separate the
variables, writing the electron wave function as a product of
- plane waves propagating in one or two directions and a func-
tion depending on the remaining coordinate. Thus, the prob-
kt lem is effectively 1D and becomes easily solvable.
- y 7 In the theory of electron diffractidfi-'?analysis is often
e given for the case of resonant scattering. The solution of
- e diffraction equations is then obtained with the “two-rod”
) b kt approximation in the theory of the reflection high-energy
kl Py X electron diffraction. This approximation retains only two
yA -7 components of the Fourier series expansion of the wave
- — function, i.e., the component corresponding to zero recipro-
ki S cal lattice vectoriand elastic scatteringand the component
X b \§ corresponding to the reciprocal lattice vector satisfying the
inequality related to resonant condition. This method is valid
for an arbitrary form of the potential.
®) — The case that we study is different since we do not con-
sider resonant scattering nor the two-rod approximation. We

solve the 2D Schidinger equation for a 1D periodic array of

antidots, and the 3D Schilimger equation for a 2D periodic
N array of antidots by retaining all the coefficients of the Fou-
§ rier series expansion, and not just two of them as in Refs.

b \\ ¢ 10-12. For instance, we demonstrate that, if the potential
Y X kx barriers"areﬁ functions, the analytical solution of the 2D and
0 3D Schrainger equations for which the potential is unsepa-
. rable, is found exactly.
kl g g The electron Hamiltonian for these systems is written as

2

P
(c) k;( whereU (x,y,z) is the potential periodic in one or two direc-

tions perpendicular to the direction, which is the direction

FIG. 1. Schematic representation(@f diffraction across a line of the tunneling currenin is the electron mass. We will

of antidots within the plane of a 2D electron gés). 3D diffraction  discuss firstly the most simple ca&® and then will extend
across a line of antiwirege) diffraction through two lines of anti-  our consideration to casél) and (c).

dots separated by a distankg within the plane of a 2D electron

gas. The period of arrays Is and k' andk' are the incident and
transmitted wave vectors, respectively.

(@) k;

A. Single chain of periodically spacedé barriers:
Two-dimensional case

We study successively the following configurations. We first consider tunneling across a barrier characterized

(a) 2D diffraction by a line of periodias barriers. Such a by the following potential:
problem corresponds to the 2D electron tunneling across the
line of quantum antidotfFig. 1(a)].

(b) 3D diffraction by periodically spaced set of quantum Uxy)=W 5()(); oly=bn |, @
antiwire § potentials[Fig. 1(b)].

(c) 2D diffraction by two lines of periodics barriers, whereW is the strength of the potential barrier periodic in
which may be displaced from one another in the directiorthey direction in units of(energy x length?) andb is the
perpendicular to the currefifig. 1(c)]. lattice constant of the 1D array of thepotential dots in the
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y direction. The electron wave function of the system de- W(x,y)=exdi(kx+kyy)]
scribed by the potential Eq(2) satisfies the Lippman-

Schwinger formula, which is equivalent to the Satirger 2m
g q g + FU(O,O)WJ (Z 5ky,py2ﬂ-|/b>

equation:
W (x,y)=exdi(kx+kyy)] ><e><fii(><|ox+y|oy)] dp,dpy ©
" " p*—k* (2m)*"
+ f_wdx’ f_wdy’G(x,x’,y,y') which allows easy summation over the components of the
vectorp, yielding
XW(x",yHU(X",y"), () .

_ 2mu(0,0W. exdik!|x|]
whereG(x,x’,y,y’) is the electron Green functiok;is the ¥ (X.y) =exli(kx+kyy) ]+ ——7 : KD
wave vector of an incident electron. In the basis of plane X
waves characterized by the 2D wave vegorthe Green _ 27l
function reads xexgi| ky Ml (10)

o 2mexdi(x—X)pe+i(y—y)p,] where
Gxx"y,y' =77 e
P K \/k2 47l Kt 7l 3 \/ZmE K +271'| 2
dp,dpy X N p \Yp] NV a2 )

X .
(2m)? @ (11

. ) L . is thex component of the wave vector after diffraction by the
We note that this expression for the Green function is eas'%eriodic barrier. One can see that in contast to tunneling
generalized to a system of any dimensionality. , through a barrier that is uniform in the transverse direction,

We solve now Eq(3) using the symmetry properties of gnq that conserves the, component of the wave vector,

the problem. Since the potential is translationally invariant ingigtraction through the periodic barrier allows the transverse
they direction, we write the wave function in the form of a \4ve vector to differ from its initial value by the reciprocal

Bloch function, i.e., lattice vector of the periodic structure, i.eqrfb. The mag-
) nitude of the longitudinal component of the wave vector of
V(x,y)=explikyy)u(x,y), (®  the diffracted electron is determined by energy conservation
where and its sign coincides with that of the incoming wave for the

transmitted wave X>0) and is opposite for the reflected
_ wave k<<0). The constanti(0,0) is determined by the lin-

= +
u(x.y)=ulx,y+nb) © ear equation obtained from E@LO) atx=0, y=0 and reads

is a periodic function. Integrating E¢3) over both coordi-

natesx andy and using thes-functional form of the poten- u(0,0 = 1 ’ (12)
tial barrier we obtain . _
1-it>, (ki1
2 (k)
) 2m
W(x,y)=exdi(kx+kyy) ]+ ?WE ¥(0,bn) where
n
. mwW
><j<a><|c1[l(xpx+(y—bn)loy)] dp,dpy @) t= 27 (13
p?—K? (2m? "

) S ) ] In general, summation in EqéL0) and(12) extends over
By using the periodicity of the wave function we find all integerl, therefore including evanescent modes. How-
ever, since we are interested only in tunneling current
through the barrier, our summation ovem Egs. (10) and
(12) effectively extends to numbeits which correspond to
. real wave vectors of the diffracted electriff) characteriz-
% f exdi(xpxt(y—bn)py)] dpdpy (8  ingthe extended states. In particular, at zero temperature, the

p*—k? (2m)*” k{) contributing to transmission are smaller than the Fermi

. . . wave vectory2mEg/A. We note that the second term in Eq.
whereu(0,0)=u(0,bn) is a constant that will be determined (10) contains an EFncertaint which in the limit hi”:o s q
later. In our calculation, it is more convenient to retain the Y,

Green function in its most general form rather than to use it£eSOIVed so that the wave function is finite.
explicit form, which is the Hankel function in the 2D case
(or the spherical wave in the 3D problenThen, when the
sum over the real space lattice vector is substituted by the
sum over the space of the reciprocal lattice vector, the wave In this subsection we consider a tunneling barrier charac-
function reads terized by the same potential as in E&), but in contrast to

2m
W (x,y)=exdi(kx+k,y) ]+ u(O,O)WFE explik,bn)

B. Single chain of periodically spaceds barriers:
Three-dimensional case
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the former situation, the wave vector of tunneling electrongunneling through quasistationary states located between the
has ak, component in addition to the 2R, andk, compo-  chains. The potential barrier is assumed to be given by
nents. Physically, this situation corresponts to diffraction of

3D electrons by a plane containing periodic array of thin U(x,y)=W 5()()2 S(y—bn)

guantum antiwires made of a material with the bottom of n

conduction band being considerably higher than that in the

rest of a device. Sinc&J(x,y,z) is z independent, the, +3(X—X0) 2, S(y—yo—bn)|, (17)
component of the wave vector is conserved during tunneling. n

Therefore, the 3D problem at hand allows the trivial reduc-
tion to the 2D problem. The wave function corresponding to
Egs.(12) and(14) can be written as

‘wherex, is the distance between the two periodical chains,
Yo is the displacement in the direction of § barriers on the
second chain relative to barriers of the first chaMjs the
d(x,y,2)=expik,2) ¥ (x,y), (14) coefficient(the barrier strengihdescribing the potential pe-
riodical in they direction. We assume that both chains are
whereW (x,y) is given by the same E@3) as in the 2D case  similar, i.e., described by the same coefficigtt(see Sec.

(Sec. Il A) with Il A). In order to preserve the symmetry properties of the
52 system, i.e., the translational invariance in thealirection,
E= — (K2+Kk2+k?) (15)  the lattice constan is chosen to be equal for both chains.
2m> Y We note that the case,=0 andy,=0 is reduced to model
and (i) with the barrier with the double strength. In the 2D con-
figuration, we write the wave function in the Bloch forisee
| ) 4w| 2mE 271\ Sec.llA:
kg(): k —2— k y+ T . i
16 Wa(x,y) =exp(ikyy)ua(X,y), (18)
) o where
The wave function of the 3D system is given by E¢K2)
and (14) with k{) determined by Eq(16). Ux(X,Y) =Uy(X,y+nb). (19
Following along the lines of Sec. Il A, we obtain the follow-
C. Two chains of periodically spacedé barriers ing wave function:
E.Iectron diffraction through a single perio_dic chain of W,(x,y) =expi (Kx+kyy)]
barriers bears some analogy with 1D tunneling through a
single barrier. In quasi-1D configuration, one of the most 2muy(0,0Wey ek

gl (ky—2ml/b)y

intriguing phenomena is resonant tunneling, which occurs

when the barrier cogéains a quantum well characterized by
uasistationary states.More general tunneling problems i Dy

guch as resongnt transmissiongthrough a singlegtrgp contained 2mp(Xo,yo) "YW, e

in a quasi-1D potential barrier were discussed by Knauer, n°b [ ki”

Richter, and Seid&t and Kalmeyer and Laughlitf. In that ik — 2011}y —ye)

kind of problem a conventional scattering approach is usu- xew . (20

ally utilized owing to the finite potential range of the trap. In The unknown amplitudes,(0,0) andu,(Xg,Y,) are readily

this subsection we investigate a new kind of transmissionfound from the system of two algebraic equations obtained

diffraction across two chains of periodically spac@darri- by substitutingx=0, y=0 andx=Xx,, Y=Y in Eq. (20).

ers, which manifests certain features of resonant electromhese amplitudes are given by

%2b T kg(l)

it . m )
1+ ikyXg e(lk)< Xo— 2minyg/b)
DF k<n> 2 i

X

U2(0,0= 1 , (21)
i(Wy o i i
1+2 k(n +t22 (n) gl (kx 'xo=2 |ny0/b)2 kg(n) eliky "xg+2minyg/b)
1+3 it eikxxo_Z it el (KVxg+2minyg/b)
n k(“) KW
Ux(Xg,Yo0) = (22

. . 1 , '
_sz (n <'k§<n)xo’2”'”y0/b)2 — e(|k<xn)xo+2mny0/b)
K n Ky

it
1+, —
; k"
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lll. THE ELECTRIC CURRENT AND CONDUCTANCE 0.5x 10%

A. General considerations

In order to calculate the electric current and conductance
we use a formalism similar to the Landauer modelve
assume that the chemical potentials on each side of the active
(barriep region of the device, i.e., in the electrodegectron
reservoij, are uniform and constant but differ from one an-
other by a small potential differene®/. The electron distri-
bution functions in the electrodes are assumed to be the
Fermi distribution functiong (€). Calculating the difference
of currents from the left to the right and from the right to the
left we obtain

o
~

<
w

b=75 A

©
o

Conductance/Length , (A/V m)

o©
—

. * (%) af(e) 0 - - , .
j=esV | dkc| dkji’——, (23 0 002 004 006 008 01 0.12
0 Q, € (a) Fermi Energy (eV)

where(), is the phase space corresponding to the transverse g 4*19
wave-vector component. We note that the integral in(28).
extends over positive values &f and over the whold)
subspace. The matrix element of the currjéj‘?t in Eqg. (23
is given by

¢=0.5

o
w

. =1
j(x):f dsrﬁ[(v WY —P*(V,P)] (24
k 2m- X oo

The current matrix element can be calculated at any value of
x (left or right to the barrier or in the barrier regipdue to

the current conservation. Equati¢®3) expressing the cur-
rent via its matrix element is very convenient when the wave
function in the whole space is known. In a 1D conductor Eq. 0 : . .
(23) immediately yields the Landauer formula. We note that 0 0.02 0.04 0.06 0.08
when the wave function cannot be easily calculated, but théb) Fermi energy (eV)

Green function in the barrier region is known, the numerical
approach of Kalmeyer and Laughffrcan be readily applied.

@
=

Conductance/Length (A/m V)
o
>

FIG. 2. (a) 2D conductance of a periodic 1D array of quantum
antidots as a function of the Fermi energy for three different array
periods atT=0 K, c=1, (b) 2D conductance for different barrier
B. Current through a single chain of periodically strengths.

spacedé barriers

By using the general expression for the current matrix

2
element Eq(24) we obtain the current matrix element in the 2 t

EI (k|ko)l>

e
case of diffaction through a single chain of periodically G=7- dk.| 1- 2 (27
. i Q, 2 -1
spaceds barriers: [1+t > (k) } ]
|
jﬂx)zﬁ ke—2tIm[u(0,0)]+t?/u(0,0) 22 (k|)l), At zero temperature, channels for electron diffraction

(25) open up successively: hence for Fermi enekgy smaller
than the energy corresponding to half of the reciprocal lattice
where Inf ] denotes the imaginary pak,=k{ . Substitu- vector, i.e., fm)2/2mb?, the transverse component of the
tion of Eq.(12) in Eq. (25) yields wave vector cannot be changed during the tunneling since
the transmitted wave vector would be larger than the Fermi
wave vector, which is forbidden for coherent processes. For
tz( D (kl)—l) Er> (A )2/2mb? the incident electron wave vector can be
[ changed by the amount equal to the smallest reciprocal lat-
2 (26)  tice vector, first. Then with the opening of new diffraction
> (k|)1) channels the wave vector can be changed by a larger and
! larger amount.
If only one diffraction channdl=0 is open(i.e., when the
In the case of zero-temperature conducta@eedj/dsV  electron wavelength is much larger than the distance be-
reads tween barriers so that tunneling electrons are effectively sen-

~eh
]kzﬁ Ky

1+t2
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I 4
4-5x10 . . ; ] 0.4x10
4t .
b=150 A
%3.5 ] 0.3}

(A
@

Conductance/Length (A/V m)

(W]
©2.5F o
8 2 -
c
8
§1.5-
é 4t o 0.1
b=50 A
0.5 ]
R
0 ; . 0 A . . .
0 0.02 0.04 0.06 0.08 0.1 0 0.02 004 = 0.06 0.08 0.1
Fermi energy (eV) (a) Fermi energy (eV)
FIG. 3. 3D conductance of periodic arrays of antiwires for dif- 0.45% 108
ferent periodsc=1. 04

sitive to a uniform potential Eq. (26) is nothing but the €0.35}

expression for the current through the uniform &arrier ;
obtained from the Landauer formuthWhen, with the in- = 03
crease of the Fermi energy and the reduction of the electron %0_25
wavelength, a new channel of diffraction opens up the elec- 9
tric current increases correspondingly. g 02r
The current increase with the variation of the Fermi en- §0_15_
ergy may be abrupt and much stronger than in the case of 1D §
tunneling through a singlé barrier. In Fig. 2a) we show the § o1r
2D conductance of a periodic 1D array of quantum antidots © o5t
as a function of the Fermi energy of incident electrons for
three different array periods Etzq K and at high potential _ 0 0.02 0.02 0.06 0.08 0.1
strength. To describe the potential strength, we use the di{b) Fermi energy (eV)
mensionless parametey rather than using parametegiven
by Eq. (13): FIG. 4. Current-voltage characteristics for the case of tunneling
across two parallel periodic arrays of antidots Tat0 K and
c=t2/Q?*1eV), (28)  c=1:(a) the two arrays separated By=100 A (no shift of arrays

relative to each otherwith two different periods of the antidot
whereQ(1 eV) is the wave vector corresponding to the elec-|attice. (b) Comparison of conductance resonant features between
tron energyE=%2Q%2m=1 eV. By writing W= Ua,ay, the two arrays with the period=150 A, (curve 1, no relative shift
whereU is the barrier height, and, anda, are the barrier between arrays; curve 2, with a relative shiftygf=40 A).
thickness in thex direction and the width in thg direction
respectively, the value=1 could represent a rectangular magnitude but the opposite sign. For our choice of param-
barrier of heightU=0.3 eV, with a,=75 A, and with eters, in the three cases, the abrupt transition for the opening
a,=b/2. The height of the barrier corresponds to the differ-of the first new channel is particularly well defined while
ence between the bottom of conduction bands in GaAs anttansitions for higher-order channels are much weaker and
in the solid solution A} 3:GaygsAs located at thd™ point.  barely noticeable, as follows from Ed@27). Figure Zb)
The electron mass is taken to be=0.068n,, as in GaAs. shows the 2D conductance for different parametenshich
Let us point out that for other materials, alternative combi-correspond to different potential barrier strength. The poten-
nations of barrier heights and thicknesses can be determinetial strength is regulated by the barrier height and the barrier

In Fig. 2(a) it is seen that at high potential strength the sizes in thex andy directions. It is seen that the abrupt

conductance exhibits low and high conductivity regimestransition still occurs at the same Fermi energy, but the con-
separated by an abrupt transition when a new diffractiorductance for the low conductivity regime decreases as the
channel opens up. The transition occurs at the Fermi energstrength of the barrier increases. Note also that the abrupt-
for which the wave vector of the incident electrons is exactlyness of the transition is enchanced withLet us mention
equal to half of the reciprocal lattice vector of the periodicthat in the Landauer formalism, as a result of E2p) the
array/b. In the new diffraction channel thecomponendf  current-voltage characteristic, at low voltages, is obtained by
the wave vector of electrons changes by the smallest recighe simple multiplication of the conductance by the voltage
rocal lattice vector, 2/b, which means that the values of the drop accross the arrays.
y component of the wave vectors of the incident and the In Fig. 3, we plot the 3D conductan¢ease(b)], which
transmitted electron are/b and — #/b, i.e., have the same shows a behavior similar to the 2D case, but with slightly
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x 104 x 104

T=77K

<
>

0.4

o
w
o
w

T=4.2K

o
[
o
o

T=300 K

Conductance/Length, (A/V m)

o
s
[=4
-

T=42K

Conductance/Length, (A/V m)

0 002 0 0.02 004 006 0.08 % 0.5 1 1.5 2 25 3
@) Fermi energy (eV) Concentration (cm 2 ) x 1012
x1om . .
4.5 i ) FIG. 6. 2D conductance vs electron concentration for three dif-
4l T=300 K_ ferent temperatures.
35
al T=77K |
525_ Here we use Eq(20) for the expression of the wave func-
<= tion. Explicit expression for the current as a function of the
§ 2t potential strength and period is obtained by substituting the
£ expressions ofi(0,0) andu(xg,Yo) given by Egs.(21) and
'§1‘5' (22) in Eq. (28). This procedure is rather tedious and we will
3 1t 1 not present it here.
T=4.2K : . . :
05 It is possible Fo show by solving transcendental qugnons
that the denominators af,(Xq,Yg) and u,(0,0) are mini-

S o0 0 002 004 006 008 0 mum and equal to unity for spec'ific magnitudes 'of.the inci-
(b) Fermi energy (eV) dent electron wave vector. This situation that is similar to 1D
resonant tunneling through th#&barrier corresponds to 2D
FIG. 5. (a) 2D conductance vs Fermi energy at finite tempera-and 3D resonant tunneling in the present case. We note that
tures.(b) 3D conductance vs Fermi energy at finite temperatures. the case of a single diffraction channel is described by ex-

. . .. actly the same relations as 1D tunneling through the double
smoother transitions between the low and high conduct|V|ty5 barrier. Figure ) shows that resonant tunneling in the

regimes. We note that experimental observation of Sucr(]jiffraction icture can be characterized by resonance features
highly nonlinear characteristics could be realized by both P y

current (conductancemeasurements and, especially by the'? Poth the low and high impedance regimes depending on
current derivative with respect to the Fermi enefggnscon- the period of the diffraction array. One can see that the pe-
ductance which, for 2D electron gases, could be related toriodic barrier exhibits not only resonances that characterize
the variation of the gate voltage in a field effect transistor.tunneling through the continuous doubfebarrier, but also
Such high nonlinearities make possible the application ofdditional resonances indicated by the arr@wsrigure 4b)
electron diffraction in field effect transistols. shows that these additional resonant features can be tuned by
varying the displacement,. The closery, to a half of a
C. Current across two chains of periodically spaceds barriers ~ period of the array, the larger the shadowing effect that

The current matrix element for the electron transmission6|'mm"’Ites the resonant featufe

through two parallel lines ob barriers reads

. eh ik IV. TEMPERATURE DEPENDENCE OF THE CURRENT
k=771 Kt 2tIm[u(0,0) + u(xo,yo) € 1]

The current and conductance characteristics at finite tem-
peratures are derived from E@3) by computing the deriva-
+t7|u(0,0) |2+ |u(Xo,Yo) 21>, (k)™ 1+2t2Re tive of the Fermi function.

! Because of the spreading of the electron distribution at
A high energy, the simultaneous contribution of several diffrac-
u*(0,0/u(Xo,Yo) (k|)_1e_'(k'X°+2’T'y°/a)}]- tion channels occurs at finite temperatures even in the limit
! of long wavelength. In this case the contribution of different
(299  channels to the conductance is determined by the exponential

X
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cutoff of the carrier distribution at large wave vectors after V. CONCLUSION
diffraction. From this consideration, it is seen that by choos-

ing chains of smaller periodicityand, correspondingly, We have considered a class of quantum problems of elec-

; : o : tron diffraction by periodic structures. In the particular ge-
larger reciprocal lattice vectord is possible to suppress the ometry considered here, diffraction occurs through multiple

contribution of diffraction channels characterized by a Sig'?hannels with transverse electron wave vectors differing by

nificant change in the electron wave vector at small chemicat e reciorocal lattice vector of the periodic arrav. We also
potential, and, thereby, achieving more abrupt increase in th P SRR P Y. .
! owed that tunneling in this diffraction geometry is analyti-

conductance with increasing Fermi energy. Conductance Vecally solvable in two and three dimensions for 1D and 2D

sus electrochemical potential for finite temperatures is Pre: ravs ofs potentials. Hiahlv non-linear conductance chara-
sented on Fig. ® for 2D diffraction by linear chains and Y P - NGy

Fig. 5(b) for 3D diffraction by linear chains. At liquid helium teristics in the vicinity of the Fermi energy, corresponding to

and nitrogen temperatures, we clearly distinguish the |0V\}he opening of a new d.|ffr_act|on channel, hav_e bgen found.
and high impedance regimes. At room temperature howeveporjductance charqctensﬂcs show low an.d high |mpedance
thermal smearing of the transition between low :';md highréglmes as a function of the electrochemical potential. For

impedance states becomes substantial and the two regimggﬂacuon by two C.ha'r.]S of periodi@-potential arrays, .the
onductance exhibits rich resonant structures determined by

are undistinguishable. Figure 6 shows the conductance vel iod and ing betw hai
sus 2D electron concentration at different temperatures, € array period and spacing between chains.
which shows little difference from Fig.(8 except at high
temperatures and negative Fermi energies. Since the concen- ACKNOWLEDGMENTS
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