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Electron diffraction by periodic arrays of quantum antidots

J.-P. Leburton and Yu. B. Lyanda-Geller
Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 6180

~Received 16 May 1996!

Electron diffraction by a periodic array of repulsived barriers is an analytically solvable quantum-
mechanical problem. In this geometry, bearing some analogy with single-barrier tunneling, incident electrons
are perpendicular to the periodic barrier of antidots. In contrast to conventional quasi-one-dimensional tunnel-
ing, which conserves the component of the electron wave vector transverse to the current, electron diffraction
occurs through multiple channels characterized by the transverse electron wave vectors differing by the recip-
rocal lattice vector of the periodic array. For a one-dimensional~1D! array of two-dimensional~2D! d poten-
tials we predict highly nonlinear characteristics in the vicinity of Fermi energies when a new channel for
diffraction opens up. Two lines of 1D arrays reveal a rich resonant diffraction structure.
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I. INTRODUCTION

The possibility of realizing lateral superstructures
modulating the electric potential in a two-dimensional~2D!
electron gas with the expectation of novel electronic prop
ties has been anticipated by Sakaki1 twenty years ago. In the
meantime, with the continuous development of nanostruc
technology, a wide class of superstructures has been
posed for the investigation of novel quantum transport
fects and their applications in high functional devices.2 Pres-
ently, many phenomena resulting from the period
modulation of the electron gas have been observed at
temperature or in the mesoscopic regime, mainly becaus
the difficulty of confining or modulating the electron ga
over short distances in more than one direction. Rec
progresses in self-assembled microstructures with nanom
size features and the manipulation of single atoms by sc
ning tunneling microscopy have created new opportuni
for realizing nanostructures with strong confinement of
order of the de Broglie wavelength at room temperature.3–7 It
becomes therefore possible to generate three-dimens
~3D! configurations of molecular scale structures w
quantum-mechanical properties and transport phenomen
yet envisioned.

The simplest configurations of periodic nanostructures
short-period arrays of quantum antidots or quantum a
wires, which act as diffraction centers for incident electro
perpendicular to the plane of the arrays~see Fig. 1!. From a
physical point of view, this problem bears some analo
with the diffraction of light by a lattice of small aperture
but also with the von Laue diffraction of x rays by crysta
Aside from this analogy, the problem is also interesting fro
a transport viewpoint since the geometrical configuration
reminiscent of tunneling configuration across a~single or
double! potential barrier. However, because of the period
ity in the plane~the direction perpendicular to the curren!,
the transverse component of the electron wave vector is
longer conserved for coherent transport processes. Form
the problem cannot be treated within a one-dimensional~1D!
model by separation of variables as would be, for instan
the case in a tunneling problem across a periodic poten
540163-1829/96/54~24!/17716~8!/$10.00
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such as the Kroenig-Penney model, nor automatically trea
with a perturbative technique using a scattering formalis
since the potential does not vanish at the infinity in the ar
plane.

In the present paper, we consider a class of 2D and
problems in diffraction geometry for which the periodicity o
quantum antidots or antiwires permits exact analyti
quantum-mechanical solutions, and provides the wave fu
tions in the whole space. We find that in contrast to quasi-
tunneling, which conserves the transverse component of
wave vector, electron diffraction occurs through multip
channels characterized by transverse electron wave ve
that differ from each other and from the wave vector of t
incident electron by reciprocal lattice vectors of the perio
arrays as one can expect from the von Laue and the W
Bragg formula for x-ray diffraction in crystals. As we wil
see by using the periodicity of the arrays it becomes poss
to solve 2D or 3D Schro¨dinger equations analytically in
cases when variables are inseparable and the problem ca
be reduced to 1D equations. Meanwhile, we will also sh
that the opening of diffraction channels results in highly no
linear tunneling characteristics of two distinct conductan
regimes separated by a sharp transition at the Fermi en
corresponding to the half of the reciprocal lattice vector
the periodic arrays.

We proceed as follows: In Sec. II we describe the diffra
tion geometry and the electron scattering model; Sec.
deals with solutions of the Schro¨dinger equation for severa
periodic barriers. Finally, in Sec. IV we calculate the tunn
ing current for these barriers.

II. DIFFRACTION GEOMETRIES AND MODEL

In this section we consider several configurations of qu
tum antidot and antiwire arrays for the 2D or 3D diffractio
of electrons. In our search for analytical solutions of t
Schrödinger equation, we model the repulsive potential
the quantum structures by ad function. This approximation
is justified if the geometrical dimensions of the diffractio
center are relatively small, but its potential strength relativ
important.
17 716 © 1996 The American Physical Society
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We study successively the following configurations.
~a! 2D diffraction by a line of periodicd barriers. Such a

problem corresponds to the 2D electron tunneling across
line of quantum antidots@Fig. 1~a!#.

~b! 3D diffraction by periodically spaced set of quantum
antiwire d potentials@Fig. 1~b!#.

~c! 2D diffraction by two lines of periodicd barriers,
which may be displaced from one another in the directio
perpendicular to the current@Fig. 1~c!#.

FIG. 1. Schematic representation of~a! diffraction across a line
of antidots within the plane of a 2D electron gas.~b! 3D diffraction
across a line of antiwires,~c! diffraction through two lines of anti-
dots separated by a distancex0 within the plane of a 2D electron
gas. The period of arrays isb and k i and kt are the incident and
transmitted wave vectors, respectively.
he

n

For simplicity, we will assume that the electron spectru
is described by an isotropic electron mass characteristic
III-V semiconductor compounds. We limit ourselves to t
single-particle picture leaving the investigation of man
body effects for future work.

It is well known that exact solutions for the electron wa
functions can easily be obtained for one-dimentional tunn
ing through a rectangular barrier or a set of barriers.8,9 A
typical case of an exactly solvable problem is tunneli
through a 1Dd barrier or a 1D doubled barrier. As we
discussed in the Introduction, for 2D and 3D quantu
mechanical configurations analytical solutions are known
problems in which the electron potential does not depend
one or two coordinates. In such a case one can separat
variables, writing the electron wave function as a product
plane waves propagating in one or two directions and a fu
tion depending on the remaining coordinate. Thus, the pr
lem is effectively 1D and becomes easily solvable.

In the theory of electron diffraction10–12 analysis is often
given for the case of resonant scattering. The solution
diffraction equations is then obtained with the ‘‘two-rod
approximation in the theory of the reflection high-ener
electron diffraction. This approximation retains only tw
components of the Fourier series expansion of the w
function, i.e., the component corresponding to zero recip
cal lattice vector~and elastic scattering! and the componen
corresponding to the reciprocal lattice vector satisfying
inequality related to resonant condition. This method is va
for an arbitrary form of the potential.

The case that we study is different since we do not c
sider resonant scattering nor the two-rod approximation.
solve the 2D Schro¨dinger equation for a 1D periodic array o
antidots, and the 3D Schro¨dinger equation for a 2D periodic
array of antidots by retaining all the coefficients of the Fo
rier series expansion, and not just two of them as in R
10–12. For instance, we demonstrate that, if the poten
barriers ared functions, the analytical solution of the 2D an
3D Schrödinger equations for which the potential is unsep
rable, is found exactly.

The electron Hamiltonian for these systems is written

H5
p2

2m
1U~x,y,z!, ~1!

whereU(x,y,z) is the potential periodic in one or two direc
tions perpendicular to thex direction, which is the direction
of the tunneling currentm is the electron mass. We wil
discuss firstly the most simple case~a! and then will extend
our consideration to cases~b! and ~c!.

A. Single chain of periodically spacedd barriers:
Two-dimensional case

We first consider tunneling across a barrier characteri
by the following potential:

U~x,y!5WS d~x!(
n

d~y2bn! D , ~2!

whereW is the strength of the potential barrier periodic
the y direction in units of~energy3 length2) andb is the
lattice constant of the 1D array of thed-potential dots in the



e
-

n

si

f
t i
a

d
he
i
e

th
av

the

e
ling
on,
,
rse
al

of
tion
he
d

w-
ent

, the
rmi
q.

ac-

17 718 54J.-P. LEBURTON AND YU. B. LYANDA-GELLER
y direction. The electron wave function of the system d
scribed by the potential Eq.~2! satisfies the Lippman
Schwinger formula, which is equivalent to the Schro¨dinger
equation:

C~x,y!5exp@ i ~kxx1kyy!#

1E
2`

`

dx8E
2`

`

dy8G~x,x8,y,y8!

3C~x8,y8!U~x8,y8!, ~3!

whereG(x,x8,y,y8) is the electron Green function;k is the
wave vector of an incident electron. In the basis of pla
waves characterized by the 2D wave vectorp, the Green
function reads

G~x,x8,y,y8!5
2m

\2 E exp@ i ~x2x8!px1 i ~y2y8!py#

p22k2

3
dpxdpy
~2p!2

. ~4!

We note that this expression for the Green function is ea
generalized to a system of any dimensionality.

We solve now Eq.~3! using the symmetry properties o
the problem. Since the potential is translationally invarian
the y direction, we write the wave function in the form of
Bloch function, i.e.,

C~x,y!5exp~ ikyy!u~x,y!, ~5!

where

u~x,y!5u~x,y1nb! ~6!

is a periodic function. Integrating Eq.~3! over both coordi-
natesx andy and using thed-functional form of the poten-
tial barrier we obtain

C~x,y!5exp@ i ~kxx1kyy!#1
2m

\2 W(
n

C~0,bn!

3E exp@ i ~xpx1~y2bn!py!#

p22k2
dpxdpy
~2p!2

. ~7!

By using the periodicity of the wave function we find

C~x,y!5exp@ i ~kxx1kyy!#1u~0,0!W
2m

\2 (
n

exp~ ikybn!

3E exp@ i ~xpx1~y2bn!py!#

p22k2
dpxdpy
~2p!2

, ~8!

whereu(0,0)5u(0,bn) is a constant that will be determine
later. In our calculation, it is more convenient to retain t
Green function in its most general form rather than to use
explicit form, which is the Hankel function in the 2D cas
~or the spherical wave in the 3D problem!. Then, when the
sum over the real space lattice vector is substituted by
sum over the space of the reciprocal lattice vector, the w
function reads
-

e

ly

n

ts

e
e

C~x,y!5exp@ i ~kxx1kyy!#

1
2m

\2 u~0,0!WE S (
l

dky ,py22p l /bD
3
exp@ i ~xpx1ypy!#

p22k2
dpxdpy
~2p!2

, ~9!

which allows easy summation over the components of
vectorp, yielding

C~x,y!5exp@ i ~kxx1kyy!#1
2mu~0,0!W

\2b (
l

exp@ ikx
~ l !uxu#

kx
~ l !

3expF i S ky2 2p l

b D yG , ~10!

where

kx
~ l !5Akx

22
4p l

b S ky1 p l

b D5A2mE

\2 2S ky1 2p l

b D 2
~11!

is thex component of the wave vector after diffraction by th
periodic barrier. One can see that in contast to tunne
through a barrier that is uniform in the transverse directi
and that conserves theky component of the wave vector
diffraction through the periodic barrier allows the transve
wave vector to differ from its initial value by the reciproc
lattice vector of the periodic structure, i.e., 2p/b. The mag-
nitude of the longitudinal component of the wave vector
the diffracted electron is determined by energy conserva
and its sign coincides with that of the incoming wave for t
transmitted wave (x.0) and is opposite for the reflecte
wave (x,0). The constantu(0,0) is determined by the lin-
ear equation obtained from Eq.~10! at x50, y50 and reads

u~0,0!5
1

12 i t(
l

~kx
~ l !!21

, ~12!

where

t5
mW

\2b
. ~13!

In general, summation in Eqs.~10! and~12! extends over
all integer l , therefore including evanescent modes. Ho
ever, since we are interested only in tunneling curr
through the barrier, our summation overl in Eqs. ~10! and
~12! effectively extends to numbersl , which correspond to
real wave vectors of the diffracted electronkx

( l ) characteriz-
ing the extended states. In particular, at zero temperature
kx
( l ) contributing to transmission are smaller than the Fe
wave vectorA2mEF/\. We note that the second term in E
~10! contains an uncertainty, which in the limit ofkx

( l )50 is
resolved so that the wave function is finite.

B. Single chain of periodically spacedd barriers:
Three-dimensional case

In this subsection we consider a tunneling barrier char
terized by the same potential as in Eq.~2!, but in contrast to
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54 17 719ELECTRON DIFFRACTION BY PERIODIC ARRAYS OF . . .
the former situation, the wave vector of tunneling electro
has akz component in addition to the 2Dkx andky compo-
nents. Physically, this situation corresponts to diffraction
3D electrons by a plane containing periodic array of th
quantum antiwires made of a material with the bottom
conduction band being considerably higher than that in
rest of a device. SinceU(x,y,z) is z independent, thekz
component of the wave vector is conserved during tunnel
Therefore, the 3D problem at hand allows the trivial redu
tion to the 2D problem. The wave function corresponding
Eqs.~12! and ~14! can be written as

F~x,y,z!5exp~ ikzz!C~x,y!, ~14!

whereC(x,y) is given by the same Eq.~3! as in the 2D case
~Sec. II A! with

E5
\2

2m
~kx

21ky
21kz

2! ~15!

and

kx
~ l !5Akx

22
4p l

b S ky1p l

b D5A2mE

\2 2kz
22S ky1 2p l

b D 2.
~16!

The wave function of the 3D system is given by Eqs.~12!
and ~14! with kx

( l ) determined by Eq.~16!.

C. Two chains of periodically spacedd barriers

Electron diffraction through a single periodic chain
barriers bears some analogy with 1D tunneling throug
single barrier. In quasi-1D configuration, one of the m
intriguing phenomena is resonant tunneling, which occ
when the barrier contains a quantum well characterized
quasistationary states.17 More general tunneling problem
such as resonant transmission through a single trap conta
in a quasi-1D potential barrier were discussed by Knau
Richter, and Seidel13 and Kalmeyer and Laughlin.16 In that
kind of problem a conventional scattering approach is u
ally utilized owing to the finite potential range of the trap.
this subsection we investigate a new kind of transmiss
diffraction across two chains of periodically spacedd barri-
ers, which manifests certain features of resonant elec
s
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tunneling through quasistationary states located between
chains. The potential barrier is assumed to be given by

U~x,y!5WS d~x!(
n

d~y2bn!

1d~x2x0!(
n

d~y2y02bn! D , ~17!

wherex0 is the distance between the two periodical chai
y0 is the displacement in they direction ofd barriers on the
second chain relative to barriers of the first chain,W is the
coefficient~the barrier strength! describing the potential pe
riodical in they direction. We assume that both chains a
similar, i.e., described by the same coefficientW ~see Sec.
II A !. In order to preserve the symmetry properties of t
system, i.e., the translational invariance in they direction,
the lattice constantb is chosen to be equal for both chain
We note that the casex050 andy050 is reduced to mode
~i! with the barrier with the double strength. In the 2D co
figuration, we write the wave function in the Bloch form~see
Sec. II A!:

C2~x,y!5exp~ ikyy!u2~x,y!, ~18!

where

u2~x,y!5u2~x,y1nb!. ~19!

Following along the lines of Sec. II A, we obtain the follow
ing wave function:

C2~x,y!5exp@ i ~kxx1kyy!#

1
2mu2~0,0!W

\2b (
l

eikx
~ l !uxu

kx
~ l ! ei ~ky22p l /b!y

1
2mu2~x0 ,y0!e

ikyy0W

\2b (
l

eikx
~ l !ux2x0u

kx
~ l !

3ei ~ky22p l /b!~y2y0!. ~20!

The unknown amplitudesu2(0,0) andu2(x0 ,y0) are readily
found from the system of two algebraic equations obtain
by substitutingx50, y50 and x5x0, y5y0 in Eq. ~20!.
These amplitudes are given by
u2~0,0!5

11(
n

it

kx
~n! 2eikxx0(

n

it

kx
~n! e

~ ikx
~n!x022p iny0/b!

S 11(
n

it

kx
~n!D 21t2(

n

1

kx
~n! e

i ~kx
~n!x022p iny0/b!(

n

1

kx
~n! e

~ ikx
~n!x012p iny0/b!

, ~21!

u2~x0 ,y0!5

S 11(
n

it

kx
~n!D eikxx02(

n

it

kx
~n! e

i ~kx
~n!x012p iny0/b!

S 11(
n

it

kx
~n!D 21t2(

n

1

kx
~n! e

~ ikx
~n!x022p iny0/b!(

n

1

kx
~n! e

~ ikx
~n!x012p iny0/b!

. ~22!
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III. THE ELECTRIC CURRENT AND CONDUCTANCE

A. General considerations

In order to calculate the electric current and conducta
we use a formalism similar to the Landauer model.14 We
assume that the chemical potentials on each side of the a
~barrier! region of the device, i.e., in the electrodes~electron
reservoir!, are uniform and constant but differ from one a
other by a small potential differencedV. The electron distri-
bution functions in the electrodes are assumed to be
Fermi distribution functionsf (e). Calculating the difference
of currents from the left to the right and from the right to t
left we obtain

j5edVE
0

`

dkxE
V'

dk'j k
~x!

] f ~e!

]e
, ~23!

whereV' is the phase space corresponding to the transv
wave-vector component. We note that the integral in Eq.~23!
extends over positive values ofkx and over the wholeV'

subspace. The matrix element of the currentj k
(x) in Eq. ~23!

is given by

j k
~x!5E d3r

ie\

2m
@~¹xC* !C2C* ~¹xC!#. ~24!

The current matrix element can be calculated at any valu
x ~left or right to the barrier or in the barrier region! due to
the current conservation. Equation~23! expressing the cur
rent via its matrix element is very convenient when the wa
function in the whole space is known. In a 1D conductor E
~23! immediately yields the Landauer formula. We note th
when the wave function cannot be easily calculated, but
Green function in the barrier region is known, the numeri
approach of Kalmeyer and Laughlin16 can be readily applied

B. Current through a single chain of periodically
spacedd barriers

By using the general expression for the current ma
element Eq.~24! we obtain the current matrix element in th
case of diffaction through a single chain of periodica
spacedd barriers:

j k
~x!5

e\

m S kx22tIm@u~0,0!#1t2Uu~0,0!U2(
l

~kl !
21D ,

~25!

where Im@ # denotes the imaginary part,kl5kx
( l ) . Substitu-

tion of Eq. ~12! in Eq. ~25! yields

j k5
e\

m S kx2

t2S (
l

~kl !
21D

11t2S (
l

~kl !
21D 2D . ~26!

In the case of zero-temperature conductanceG5d j /ddV
reads
e

ive

e

se

of

e
.
t
e
l

x

G5
e2

\ E
V'

dk'S 12

t2S (
l

~klk0!
21D

H 11t2F(
l

~kl !
21G2J D . ~27!

At zero temperature, channels for electron diffractio
open up successively: hence for Fermi energyEF smaller
than the energy corresponding to half of the reciprocal latti
vector, i.e., (\p)2/2mb2, the transverse component of th
wave vector cannot be changed during the tunneling sin
the transmitted wave vector would be larger than the Fer
wave vector, which is forbidden for coherent processes. F
EF.(\p)2/2mb2 the incident electron wave vector can b
changed by the amount equal to the smallest reciprocal
tice vector, first. Then with the opening of new diffractio
channels the wave vector can be changed by a larger
larger amount.

If only one diffraction channell50 is open~i.e., when the
electron wavelength is much larger than the distance b
tween barriers so that tunneling electrons are effectively s

FIG. 2. ~a! 2D conductance of a periodic 1D array of quantum
antidots as a function of the Fermi energy for three different arr
periods atT50 K, c51, ~b! 2D conductance for different barrier
strengths.
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54 17 721ELECTRON DIFFRACTION BY PERIODIC ARRAYS OF . . .
sitive to a uniform potential! Eq. ~26! is nothing but the
expression for the current through the uniform 1Dd barrier
obtained from the Landauer formula.14 When, with the in-
crease of the Fermi energy and the reduction of the elec
wavelength, a new channel of diffraction opens up the e
tric current increases correspondingly.

The current increase with the variation of the Fermi e
ergy may be abrupt and much stronger than in the case o
tunneling through a singled barrier. In Fig. 2~a! we show the
2D conductance of a periodic 1D array of quantum antid
as a function of the Fermi energy of incident electrons
three different array periods atT50 K and at high potentia
strength. To describe the potential strength, we use the
mensionless parameterc, rather than using parametert given
by Eq. ~13!:

c5t2/Q2~1eV!, ~28!

whereQ(1 eV! is the wave vector corresponding to the ele
tron energyE5\2Q2/2m51 eV. By writing W5Uaxay ,
whereU is the barrier height, andax anday are the barrier
thickness in thex direction and the width in they direction,
respectively, the valuec51 could represent a rectangul
barrier of heightU50.3 eV, with ax575 Å, and with
ay5b/2. The height of the barrier corresponds to the diff
ence between the bottom of conduction bands in GaAs
in the solid solution Al0.35Ga0.65As located at theG point.
The electron mass is taken to bem50.068m0, as in GaAs.
Let us point out that for other materials, alternative com
nations of barrier heights and thicknesses can be determ

In Fig. 2~a! it is seen that at high potential strength t
conductance exhibits low and high conductivity regim
separated by an abrupt transition when a new diffract
channel opens up. The transition occurs at the Fermi en
for which the wave vector of the incident electrons is exac
equal to half of the reciprocal lattice vector of the period
arrayp/b. In the new diffraction channel they componentof
the wave vector of electrons changes by the smallest re
rocal lattice vector, 2p/b, which means that the values of th
y component of the wave vectors of the incident and
transmitted electron arep/b and2p/b, i.e., have the same

FIG. 3. 3D conductance of periodic arrays of antiwires for d
ferent periods,c51.
n
c-

-
D

s
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-

-
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-
ed.

s
n
gy
y

p-

e

magnitude but the opposite sign. For our choice of para
eters, in the three cases, the abrupt transition for the ope
of the first new channel is particularly well defined whi
transitions for higher-order channels are much weaker
barely noticeable, as follows from Eq.~27!. Figure 2~b!
shows the 2D conductance for different parametersc, which
correspond to different potential barrier strength. The pot
tial strength is regulated by the barrier height and the bar
sizes in thex and y directions. It is seen that the abrup
transition still occurs at the same Fermi energy, but the c
ductance for the low conductivity regime decreases as
strength of the barrier increases. Note also that the abr
ness of the transition is enchanced withc. Let us mention
that in the Landauer formalism, as a result of Eq.~23! the
current-voltage characteristic, at low voltages, is obtained
the simple multiplication of the conductance by the volta
drop accross the arrays.

In Fig. 3, we plot the 3D conductance@case~b!#, which
shows a behavior similar to the 2D case, but with sligh

FIG. 4. Current-voltage characteristics for the case of tunne
across two parallel periodic arrays of antidots atT50 K and
c51: ~a! the two arrays separated byx05100 Å ~no shift of arrays
relative to each other! with two different periods of the antido
lattice. ~b! Comparison of conductance resonant features betw
the two arrays with the periodb5150 Å, ~curve 1, no relative shift
between arrays; curve 2, with a relative shift ofy0540 Å!.
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17 722 54J.-P. LEBURTON AND YU. B. LYANDA-GELLER
smoother transitions between the low and high conducti
regimes. We note that experimental observation of s
highly nonlinear characteristics could be realized by b
current ~conductance! measurements and, especially by t
current derivative with respect to the Fermi energy~transcon-
ductance! which, for 2D electron gases, could be related
the variation of the gate voltage in a field effect transist
Such high nonlinearities make possible the application
electron diffraction in field effect transistors.15

C. Current across two chains of periodically spacedd barriers

The current matrix element for the electron transmiss
through two parallel lines ofd barriers reads

j k5
e\

m H kx12tIm@u~0,0!1u~x0 ,y0!e
2 ikxx0#

1t2@ uu~0,0!u21uu~x0 ,y0!u2#(
l

~kl !
2112t2Re

3Fu* ~0,0!u~x0 ,y0!(
l

~kl !
21e2 i ~klx012p ly0/a!G J .

~29!

FIG. 5. ~a! 2D conductance vs Fermi energy at finite tempe
tures.~b! 3D conductance vs Fermi energy at finite temperature
y
h
h

.
f

n

Here we use Eq.~20! for the expression of the wave func
tion. Explicit expression for the current as a function of t
potential strength and period is obtained by substituting
expressions ofu(0,0) andu(x0 ,y0) given by Eqs.~21! and
~22! in Eq. ~28!. This procedure is rather tedious and we w
not present it here.

It is possible to show by solving transcendental equati
that the denominators ofu2(x0 ,y0) and u2(0,0) are mini-
mum and equal to unity for specific magnitudes of the in
dent electron wave vector. This situation that is similar to
resonant tunneling through thed barrier corresponds to 2D
and 3D resonant tunneling in the present case. We note
the case of a single diffraction channel is described by
actly the same relations as 1D tunneling through the dou
d barrier. Figure 4~a! shows that resonant tunneling in th
diffraction picture can be characterized by resonance feat
in both the low and high impedance regimes depending
the period of the diffraction array. One can see that the
riodic barrier exhibits not only resonances that characte
tunneling through the continuous doubled barrier, but also
additional resonances indicated by the arrowsA. Figure 4~b!
shows that these additional resonant features can be tune
varying the displacementy0. The closery0 to a half of a
period of the array, the larger the shadowing effect t
eliminates the resonant featureA.

IV. TEMPERATURE DEPENDENCE OF THE CURRENT

The current and conductance characteristics at finite t
peratures are derived from Eq.~23! by computing the deriva-
tive of the Fermi function.

Because of the spreading of the electron distribution
high energy, the simultaneous contribution of several diffr
tion channels occurs at finite temperatures even in the l
of long wavelength. In this case the contribution of differe
channels to the conductance is determined by the expone

-

FIG. 6. 2D conductance vs electron concentration for three
ferent temperatures.
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cutoff of the carrier distribution at large wave vectors af
diffraction. From this consideration, it is seen that by cho
ing chains of smaller periodicity~and, correspondingly
larger reciprocal lattice vectors! it is possible to suppress th
contribution of diffraction channels characterized by a s
nificant change in the electron wave vector at small chem
potential, and, thereby, achieving more abrupt increase in
conductance with increasing Fermi energy. Conductance
sus electrochemical potential for finite temperatures is p
sented on Fig. 5~a! for 2D diffraction by linear chains and
Fig. 5~b! for 3D diffraction by linear chains. At liquid helium
and nitrogen temperatures, we clearly distinguish the
and high impedance regimes. At room temperature, howe
thermal smearing of the transition between low and h
impedance states becomes substantial and the two reg
are undistinguishable. Figure 6 shows the conductance
sus 2D electron concentration at different temperatu
which shows little difference from Fig. 5~a! except at high
temperatures and negative Fermi energies. Since the con
tration of the 2D electron gas could be tuned by the gate
field effect transistor, it is therefore possible to control t
transition from the low to the high impedance regime sim
by varying the gate voltage.
ol
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V. CONCLUSION

We have considered a class of quantum problems of e
tron diffraction by periodic structures. In the particular g
ometry considered here, diffraction occurs through multi
channels with transverse electron wave vectors differing
the reciprocal lattice vector of the periodic array. We a
showed that tunneling in this diffraction geometry is analy
cally solvable in two and three dimensions for 1D and 2
arrays ofd potentials. Highly non-linear conductance char
teristics in the vicinity of the Fermi energy, corresponding
the opening of a new diffraction channel, have been fou
Conductance characteristics show low and high impeda
regimes as a function of the electrochemical potential.
diffraction by two chains of periodicd-potential arrays, the
conductance exhibits rich resonant structures determined
the array period and spacing between chains.
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