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Magnetotransport fluctuations in regular semiconductor ballistic quantum dots
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We present studies of the quantum-mechanical transport and the classical billiard transport through ballistic
semiconductor quantum dots, where the transport is nonergodic or ‘‘regular.’’ These are shown to have quite
similar behavior if the classical motion is limited to a collimated set of trajectories. These results are shown to
agree substantially with experiments performed on actual semiconductor quantum dots. The results suggest that
transport in regular semiconductor quantum dots is clearly distinguished from the equivalent transport in
ergodic dots. In particular, the fluctuation spectrum is not random, but highly oscillatory and correlated. The
correlation functions for these fluctuations show regular and periodic oscillations that contain only a few, often
harmonically related, frequencies. This is fully in keeping with the expectations of semiclassical descriptions of
the fluctuations in the density of states of such structures.@S0163-1829~96!03348-6#
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I. INTRODUCTION

Reproducible fluctuations are a well-known quantu
mechanical correction to the conductance in disorde
semiconductors.1 Recently, there have also been obser
tions of conductance fluctuations in small semiconduc
quantum dots, in which the transport through the dot is ba
listic in nature.2–12By ballistic we mean that the geometric
size of the dot is smaller than the elastic mean free path
the carriers. This has been made possible by advances i
use of electron-beam lithography and molecular-be
epitaxy.13 In such structures, large-angle scattering of el
trons occurs only at the dot boundaries. Experimental stu
of such devices have shown the presence of both weak
calization and conductance fluctuations, qualitatively sim
to that observed in disordered systems. Generally it is
lieved that the fluctuations arise from interference betw
the complex ballistic paths in a manner analogous to im
rity scattering in a disordered medium. In this ballistic ca
the complexity is introduced by the reflections off of the d
geometry. However, there is evidence to suggest that w
localization occurs primarily due to interference between
coming particles and backscattered electrons at the entr
point contact.5,14

It is clear that the shape of the quantum dot strongly
fects the details of the transport through it. Structures wh
classical behavior is regular~integrable!, such as the square
exhibit a weak localization signature that is characterized
a linear decay of the excess resistance with magnetic fi
Contrastingly, structures whose classical behavior is cha
~the stadium, for example! exhibit a Lorentzian line shap
for the weak localization.2–4,6,11,15–18We note, however, tha
in open billiard systems, the presence of the leads also
induce phase-space filling behavior in quantum dots wh
classical motion is otherwise integrable.19 A transition be-
tween chaotic and regular behavior also has been seen i
540163-1829/96/54~24!/17705~11!/$10.00
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weak localization line shape11 in square quantum dots. Th
opposite transition in a stadium billiard in a magnetic fie
has been predicted.20

Conductance fluctuations in a chaotic quantum dot
characterized by their correlation function, which has a ch
acteristic Lorentzian shape. This arises from the assump
that the ensemble of semiclassical trajectories through
quantum dot sweep out a wide range of ‘‘areas’’~these areas
are related to the enclosed flux winding number of the orb!.
This is characterized by an exponential distribution as15–18

P~A!;e2auAu, ~1!

wherea is the inverse of the ‘‘average’’ area enclosing t
flux. The correlation function of the conductance is related
this through

F~DB!5^dG~B1DB!dG~B!&}U E
2`

`

dA e2p iDBA/f0P~A!U2

}F11S 2pDB

af0
D 2G22

, ~2!

wheref05h/e is the quantum of flux.
Recently, however, there have been measurements of

ductance fluctuations in square dots21,22 that do not appear to
be irregular but are quite periodic, and their correlation fun
tion is characterized by large-amplitude oscillations. A Fo
rier spectrum of these correlation functions exhibits famil
of harmonically related peaks; sometimes only one fam
appears, while at other times multiple families appear. Th
results cannot be explained by the above theory, nor by
ensemble of trajectories that includesall possible classica
paths through the dot. Rather, the excitation of the regu
behavior is thought to proceed through the collimation
fects of the quantum point contact. In the classical limit,
which a great many waveguide modes are passed by
17 705 © 1996 The American Physical Society
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17 706 54R. AKIS, D. K. FERRY, AND J. P. BIRD
point contact, the particles form a beam centered on
transport axis of the contact.23 However, when only a few
modes are passed, the quantization of the transverse mo
tum can cause a diffraction effect that leads to the be
exiting the point contact at a significant angle away from
transport axis.24 This axis is defined by the line connectin
the two aligned leads shown in Fig. 1 below. Hence exc
tion of the quantum dot proceeds via a collimated beam
ented away from the axis, which then can excite a se
regular orbits within the dot.

In this paper, we examine the transport through such re
lar quantum dots, both by a careful study of the quant
transport obtained by a direct solution of the Schro¨dinger
equation and by the study of a selected set of classical
liard trajectories within the dot. We show that the classi
trajectories have a strong connection to scarring of the qu
tum wave function,25 and the computed correlation function
and Fourier spectra are shown to exhibit a close connec
to those measured experimentally. In the next section,
transport obtained from the Schro¨dinger equation is dis-
cussed, while the classical billiard approach is describe
Sec. III. We then turn, in Sec. IV, to a comparison with t
experiments. Finally we summarize the results in Sec. V

FIG. 1. Geometry of the quantum dot and quantum point c
tacts that are considered in this study. The grid represents the
derlying mesh on which the calculations are performed, though
practice, the mesh is much finer.
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II. QUANTUM BEHAVIOR OF THE REGULAR DOT

As displayed in Fig. 1, the general situation is one
which ideal quantum wires, which extend outward to6`,
are connected to the quantum dot. This quantum-mechan
problem can be solved by using an iterative matrix metho26

applied to the discretized version of the Schro¨dinger equa-
tion, obtained by keeping terms up to first order in the a
proximation of the derivative:

~EF2H j !c j1H j , j21c j211H j , j11c j1150, ~3!

wherec j is a M -dimensional vector containing the ampl
tudes of thej th slice. The problem is solved on a squa
lattice of lattice constanta with the wires extendingM lat-
tice sites across in thex direction and the region of interes
being broken down into a series of slices along they direc-
tion. In this equation, theH j matrices represent Hamiltonian
for individual slices and the matricesH j , j21 andH j , j11 give
the interslice coupling. By approximating the derivative, t
kinetic-energy terms of Schro¨dinger’s equation get mappe
onto a tight-binding model witht52\2/2m* a2 representing
nearest-neighbor hopping. The potential simply adds to
on-site energies. This equation can be used to derive a tr
fer matrix that allows us to translate across the system
thus calculate the transmission coefficients that enter
Landauer-Buttiker formula to give the conductance. Trans
matrices, however, notoriously are unstable due to the ex
nentially growing and decaying contributions of evanesc
modes. This difficulty can be overcome by performing so
clever matrix manipulations and calculating the transmiss
by an iterative procedure rather than just multiplying trans
matrices together. The full details of this technique are giv
in Ref. 26. This method, in some ways, is quite similar to t
recursive Green’s-function techniques27,28 that typically are
used to solve these problems, and a comparison has sh
good agreement between the two methods. The amplitu
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FIG. 2. Conductance fluctua
tions vs magnetic field for the 0.3
mm dot discussed in the text. Fou
resonance features that appear
the curve are also indicated an
uc(x,y)u vs x and y in the quan-
tum dot is plotted for each of
these features. Darker shadin
corresponds to higher amplitude.
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54 17 707MAGNETOTRANSPORT FLUCTUATIONS IN . . .
of the wave functions at specific values ofx and y can be
found easily by backward substitution after the iteration
performed.

The quantum dots we study are nominally square
shape. They are connected to two leads, which provide
input and exit ports, as shown in Fig. 1. The leads are usu
taken at the top of the dot, as illustrated, but a stagge
positioning of the leads will also be discussed briefly. A
though the ports are normally aligned, straight through
jectories are not a problem due to the diffraction effects
the quantum point contacts themselves, as discussed a
~we will return to this point below!. A magnetic field is ap-
plied normal to the plane of the dot and the carrier densit
typically taken to be 431011 cm22 in order to compare with
the experiments of Refs. 11 and 21.

We first present an illustrative example of our calcu
tions. In Fig. 2, conductance fluctuations as a function
magnetic field are plotted for a 0.3-mm square dot with 0.04-
mm port openings, which allow two modes to enter and e
the dot. Instead of a random aperiodic variation with ma
netic field, a series of nearly periodic oscillations is evide
Also apparent are several resonance features. In partic
we point out a set of resonances atB;0.069, 0.173, 0.283
and 0.397 T ~while the feature is difficult to see a
B50.173 T, it appears as a small notch in the curve!. These
are marked with arrows. Note here that these features o
with virtually periodic spacing. The wave functions corr
sponding to these four resonances are also displayed a
bottom of the figure. What is shown in each case
uc(x,y)u, with the darker shading corresponding to high
wave-function amplitude. Strikingly, essentially the sam
diamond-shaped pattern occurs in each case. This patte
highly reminiscent of the ‘‘scars’’ that have been observe
in calculations performed for stadium-shaped quant
structures,29 in that the quantum-mechanical amplitude a
pears to follow a single underlying classical orbit. Given th
the period for the reappearance of the diamond
DB;0.11 T and using the criterion familiar from th
Aharonov-Bohm effect, thatDf/f052p for the difference
in magnetic flux, one obtainsA;0.04mm2 for the enclosed
area, which corresponds well to the enclosed area of
diamond.

In Fig. 3, we show the conductance fluctuations for s
eral other examples of a 0.3-mm quantum dot. In the figure
conductance fluctuations as a function of the magnetic fi
are shown for~a! 0.09-mm port openings;~b! 0.04-mm port
openings, but with the entry port at the top of the dot and
exit port at the bottom to minimize the possibility that ele
trons might take direct paths through the dot; and~c! 0.04-
mm port openings, but with circularly rounded corners a
openings. As above, the 0.04-mm port openings support two
propagating modes, while the 0.09-mm port openings allow
four. Once again, in each case a series of nearly peri
oscillations is evident. Also apparent are sets of resona
features. In fact, many of these resonances appear in app
mately the same location in all three panels, as well as
responding closely with the initial example displayed abo
In particular, the set of resonances atB;0.069, 0.173, 0.283
and 0.397 T are apparent in these three examples as we
one may expect, the curve for the wider port case@Fig. 3~a!#,
in which two more modes are passing through the leads
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somewhat smoother, with only about half the resonance
tures as in Fig. 2. This is almost certainly a result of t
effect of level broadening induced by the port opening. Ho
ever, the basic periodicity of the oscillations is quite simi
to the narrow port case above. For Fig. 3~c!, the bottom
corners of the dot are of the form of semicircles of radius
mm, while the entry ports are also rounded with radius 0
mm, though the narrowest width of the opening is the sa
as in the first example. It is evident that this rounding
itself does not destroy the resonance effects~in fact, some of
the resonances are even stronger in this case!, nor does it
strongly affect the basic underlying periodicity. The sam
comments can be made about offsetting the port opening
shown in Fig. 3~b!. From these results, we may surmise th
the resonances and the fluctuations are both basic prope
of the quantum dot itself. However, only those intrinsic pro
erties that couple to the input and output leads can be
pected to be reflected in the conductance.

In Fig. 4, we plot more examples of wave functions
quantum dots. The wave functions shown in Fig. 2
pointed out earlier looks to be scarred by a periodic class
orbit. However, since the structure is ostensibly regular,
fact that there appears to be a correspondence to the clas
picture should not be a surprise since the wave functi
should be concentrated along the projections of the invar
tori of the regular trajectories in classical phase space. H
ever, it is worth pointing out that this imagediffers radically

FIG. 3. Conductance fluctuations vs magnetic field for 0.3-mm
quantum dots with~a! port openings that are 0.09mm; ~b! port
openings that are 0.04mm, but with staggered leads,~c! port open-
ings that are 0.04mm, but with the corners and openings of the d
not having been rounded.
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FIG. 4. uc(x,y)u vs x andy is plotted. Darker
shading corresponds to higher amplitude. T
four pictures correspond to~a! a dot completely
enclosed by tunneling barriers;~b! the rounded
dot, with B50.282 T; ~c! the dot with 0.04-mm
openings atB50.231 T; ~d! same as in~c!, but
with B50.299 T; and ~e! a 0.8-mm dot at
B50.0056 T.
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from what occurs in acloseddot, in which the amplitude for
an eigenstate is distributed much more uniformly and o
cannotmake an association with a single orbit. To emph
size this point, in Fig. 4~a!, we plot uc(x,y)u for a 0.3-mm
dot formed by two tunneling barriers, with the barrier heig
equal to the Fermi energy of the previous example an
barrier width of 0.05mm. The transmission as a function o
B for this case consists of a series of very sharp tunne
peaks, so the dot is a very close approximation to a clo
system. The wave function in this image corresponds t
resonant tunneling peak atB50.165 T and is a fairly typical
result. Comparing Fig. 4~a! with the wave functions dis-
played in Fig. 2, it is clear that the results are quite differ
when the electrons are made to enter the dot in a nar
beam by the contact, and what we see is consistent wi
reduction in the classical phase space sampled by the
trons, in turn introduced by collimating action of the lead
as will be discussed in Sec. III. Once again, we conclude
the collimation by the quantum point contacts selects a se
properties~trajectories! of the quantum dot.

In Fig. 4~b!, uc(x,y)u is plotted forB50.282 T, but in
this case for the rounded dot example discussed in the
text of Fig. 3. We see that rounding does not prevent
diamond scar from forming. This result is reassuring, sin
one does not expect the experimental dots to be perfe
square in shape.

In Fig. 4~c!, uc(x,y)u is plotted for the 0.3-mm dot with
the 0.04-mm port opening, except now we have s
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B50.231 T, which corresponds to another resonance fea
in Fig. 2. Here we see another scarlike feature, but in t
case it has the appearance of two intersecting rectang
orbits. In comparison to the diamond-shaped scar, this
ture is somewhat less well resolved. Making an estimate
the enclosed area of one of the rectangles, we getA;0.04
mm2, approximately the same as the diamond. Given th
we should also expect to see the double rectangle
B;0.11–0.12 T; however, we cannot make out this e
dently more delicate feature, though there is a resonanc
the conductance fluctuations in about the right locati
However, it is worth noting that the resonance at this field
somewhat less sharp than the one atB50.231 T. The double
rectangle also occurs for the offset port and rounded
cases atB50.231 T, while it does not appear in the dot wi
the wide opening, which shows no resonance at this valu
B. Not surprisingly, forB fields falling in between the reso
nances, the wave function in general is much less organi
As mentioned above, a resonance does not necessarily
a well-defined scarlike feature, though this seems to be
lated to the sharpness of the resonance. It should also
noted that some of the resonances that occur in Fig. 2 y
wave functions that are quite similar to the ‘‘bouncing bal
plots familiar from the stadium billiard problem.26 An ex-
ample of this is shown in Fig. 4~d!, which was generated
with the 0.04-mm port opening, but withB50.299 T. An-
other such feature occurs atB50.1 T, but in that case the
orientation of the bouncing ball is vertical rather than ho
zontal as it is here.
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So far, we have concentrated our discussion on 0.3-mm
dots. We have also seen the diamond-shaped pattern in
smaller~0.2-mm! and larger~0.8-mm! dots for the same elec
tron density. Many more complicated patterns are also
dent in the larger dot. An example is shown in Fig. 4~e!,
which occurs for the 0.8-mm dot with B50.0056 T. The
leads here support three modes. Needless to say,
Aharonov-Bohm analysis performed for the 0.3-mm dot is no
longer a simple matter here, and the results, at least in te
of the scarring, become somewhat more difficult to interp

In Figs. 5~a!–5~d!, we plot the correlation functions
C(DB) obtained from the conductance fluctuations d
played in Fig. 2@Fig. 5~a!# and Fig. 3@Figs. 5~b!–5~d!#. To
eliminate any possible effects of a weak localization pe
they are calculated for a range between 0.1 and 0.5 T and
have used averaging to minimize any statistical errors.
correlation functions all show large negative excursions
oscillations. The oscillations appear to be quasiperiodic
reflection of the periodicity apparent in the fluctuatio
themselves in Figs. 2 and 3. These oscillations are l
prevalent in the case with the large openings, though they
still apparent in that case. Comparing Fig. 5~a! with Fig.
5~c!, the offset port case, the former has large oscillatio
with much smaller ones superimposed on top of the

FIG. 5. Correlation functionC(DB) vs DB plotted for the four
cases considered in~a! Fig. 2~b!–2~d! and Figs. 3~a!–3~c!. In ~e!,
the normalized correlation functionC(DB)/C(0) is plotted for low
fields for the above cases with circles corresponding to~a!, crosses
to ~b!, a dashed line to~c!, and a solid line to~d!. A fit to case~d!
using Eq.~2! is also plotted~stars!.
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whereas the latter is dominated more by the smaller osc
tions. Fig. 5~d!, for the rounded dot, appears to fall in b
tween Figs. 5~a! and 5~c!. In Fig. 5~e!, we consider the low-
field behavior of correlation function, with the crosse
circles, dashed and solid lines corresponding to Figs. 5~a!,
5~b!, 5~c!, and 5~d! from above, respectively. Unlike the pre
vious panels, the correlation function has been normalized
C(0) in each case. Here Figs. 5~a! and 5~b! display approxi-
mately the same correlation fieldBc ~the DB value that
yields the half maximum value ofC(DB)#, about 0.01 T.
The correlation function for the offset port case drops m
quickly tan in Fig. 5~a! or 5~b!, with Bc50.007 T, but still
shows power-law behavior. For the rounded port case,
correlation function drops even more quickly (Bc50.005 T!
and the curve is significantly more rounded than the oth
which is more in line with the prediction for chaotic system
given in Eq. ~2!. For comparison, we plot a fit using~2!,
represented by the diamond symbols. The fit yields an a
age enclosed area ofa2150.079mm2, which is close to the
entire area of the dot 0.09mm2. That the rounded dot show
the best correspondence to~2! is not particularly surprising
since the dot in this case has a geometry approaching th
a half stadium, which is known to be chaotic. We point o
however, that observation of a Lorentzian correlation fun
tion is not a priori evidence for chaotic behavior, and th
above discussion indicates that the dot remains quite reg
This feature is confirmed by the classical calculations, wh
show that, for uniform injection of particles into a perfect
regular cavity, strong phase-space filling is obtained, in s
of the underlying regularity.

In Fig. 6, we plot the Fourier transforms of the correlati
functions from Fig. 5. As with the classical examples to
seen below, these power spectra indicate that just a few
crete frequencies can dominate the behavior, and it is evid
that many of these peaks are harmonically related. For
ample, the offset port in Fig. 6~c! has a group of peaks oc
curring at approximately 9, 16, and 24 T21, with the peaks
at 13 and 26 T21 constituting a second group. In fact, th
peaks seem to occur in more or less the same positions i
four cases~in particular, the two groups of peaks mention
above!, though their relative weights are quite different
each example. It is noteworthy that prominent peaks occu
the region;8–9 T21 for Figs. 6~a!–6~c! and, while less
prominent, it also appears in Fig. 6~d! as well. As mentioned
earlier, we repeatedly observed the diamond-shaped w
functions for all these examples. The spacing of these s
like features yield values of (DB)21 of ;8.7 T21, which
corresponds fairly well with the positions of these peaks.

III. CLASSICAL BILLIARDS

Periodic orbits have played a large theoretical role in
computation of semiclassical quantization of bound states
many years, dating back to the Einstein-Brillouin-Kell
view of quantization. The modern revival of work in th
area apparently was begun by Gutzwiller,30 who examined
the relationship between the periodic orbits of a class
system and the corresponding solutions of the Schro¨dinger
equation in the case where neither corresponded to a s
rable system. Balian and Bloch31 and Berry and Tabor32 be-
gan studies of the level densities and eigenvalues of no
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17 710 54R. AKIS, D. K. FERRY, AND J. P. BIRD
tegrable systems. Perhaps the most important result, tho
was the observation that certain~what were thought to be!
unstable periodic orbits produced scars in the quantum w
functions.29 More recent studies indicate that the ‘‘imprints
of these orbits persist up through thousands of states,33 a
result that suggests that the closed orbits are quite stab
regular systems and only become unstable as one pass
the ergodic regime, which seems to be replicated as
passes from the semiclassical to the quantum regime. Ne
theless, how is one to choose these semiclassical orbits?
ditionally, one examined all possible classical paths from
input to the output.15,16 But, in such ballistic quantum dots
this produces essentially a phase-space filling and erg
behavior of the transport, which agrees closely with chao
dot studies.15–18 There is a clear difference between the b
havior obtained when al possible trajectories are investiga
and when only a limited set of trajectories are investigate34

We focus solely on the case for a collimated beam of p
ticles. The crucial assumption in doing this is that the qu
tum point contact imposes a boundary condition on the p
ticles, in which the entry angle is determined by the wa
mechanical nature of propagation through the quantum p

FIG. 6. Fourier transforms of the correlation functions display
in Figs. 5~a!–5~d!.
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contact. As discussed above, the quantum point contact
fectively collimates the beam into a relatively narrow ray o
particles, and we illustrate this collimation in Fig. 7 using th
solution to the quantum-mechanical case described in Sec
Here we depict a narrow contact connected to a much wid
quantum wire. What we are seeing here is the result of
waveguiding effects of the contact. With very few mode
present in the leads~in this case 2!, the entry angle of the
electrons becomes strongly restricted by thequantizationof
the wave vectors in they direction. It should be emphasized
that this picture corresponds to the zero-field case. Thus
rotation of the electron beam away from thex axis cannot be
attributed to the bending of the electron trajectories by t
magnetic field. It is this collimation that is important fo
selecting or exciting the regular orbits of the particles,
point that is discussed further below.

In the first three panels of Fig. 8, we show Poincare´ plots
for entry angles of 74°, 59°, and 36°~the angles are not
magic, but are chosen merely as fractions ofp/2) from the
y axis for the case of a magnetic field of 10 mT. Poinca´
plots essentially are cross sections through part of the cl
sical phase space. What appears on the plot are the inter
tion points of the classical trajectories with the cros
sectional surface. These plots give a good indication

d

FIG. 7. Collimation of the beam is apparent in this picture
which describes the entry of particles from a point contact~0.05mm
wide! in which only two modes are allowed to propagate into
much wider quantum wire~0.8mm wide!.
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54 17 711MAGNETOTRANSPORT FLUCTUATIONS IN . . .
which portions of the multidimensional phase space are
ited. In the present case, the surface is taken as the botto
the dot~particles pass through the surface just prior to refl
tion from the bottom boundary! and illustrates thex position
andx velocity for particles that impinge on this surface~this
general geometry is used throughout this paper!.35 The mag-
nitude of the particle velocity has been set to 33107 cm/s as
this yields a kinetic energy equal to the Fermi energy use
the quantum calculations. The gray scale corresponds to

FIG. 8. Poincare´ plots for a magnetic field of 10 mT and fo
entry angles of~a! 63°, ~b! 56°, and~c! 36°. The vertical gray map
in ~b! is a calibration of they velocity in the plots ranges from 0 u
to 33107 cm/s, and applies to the other three panels. Another P
caréplot is shown in~d!, in this case for a magnetic field of 50 m
and an entry angle of 54°. Note that the axes plotted in pane~c!
also apply to the other three panels in the figure. Thex range is
0–1.0mm and thenx range is from233107 to 33107 cm/s.
s-
of
-

in
he

y-directed velocity and varies from 0 to 33107 and is shown
for convenience. The vertical scale for thex velocity ranges
from 233107 to 33107. As the entry angle is reduced, th
phase-space filling is greatly reduced and there appears
a critical angle for which this occurs. This angle is related
the magnetic field, but the behavior of the ballistic transp
is anything but ergodic. We can see this somewhat bette
Fig. 8~d!, where the Poincare´ plot is shown foru554 ° and
B550 mT. Here, although only a small number of particl
have been used so that the discrete trajectory maps are
servable, it is clear that the magnetic field induces curvat
in the ballistic orbits that causes an apparent phase-s
filing through precession of the magnetic orbits, even thou
the motion is fully integrable. For further insight, we ca
actually compute the histogram for the Poincare´ plot. That is,
we plot a three-dimensional picture, whosez axis is the fre-
quency at which any single (x,vx) point is occupied in the
Poincare´ plot itself. In Fig. 9~a!, we plot this for the apparen
phase-space filling motion of Fig. 8~a!. There are clear scar
throughout the plot that are quite reminiscent of the traj
tory maps of Figs. 8~b! and 8~c!. However, the plot in Fig.
9~a! is the logarithm of the occurrence (93106 particle tra-
jectories were followed!, so that there are orders of magn
tude difference between the peaks on the residuals of
proper trajectories and the valleys aroundvx50. Finally, it
should be remarked that the area distribution function@Fig.
9~b!# does not fit Eq.~1! at all; it is essentially one sided
~only a positive area! and is not fully exponential in its de
pendence upon the area. The two peaks occur at zero
and an area corresponding roughly to an enclosed are
0.48mm2 ~this is for the 1.0-mm dot!, which compares well
with the scaling from the smaller dots for the prime freque
cies of the periodic orbits. It is relatively clear that just ha
ing phase-space filling is not sufficient to say that the mot
is ergodic. Quite the opposite, in these regular~square! quan-
tum dots, the transport for a collimated input beam is co
pletely regular, even with open leads and the presence
magnetic field.

The magnetotransport through the dot can be compu
by determining the transmission probability of electro

n-
FIG. 9. ~a! Poincare´ histogram corresponding to Fig. 8~a!. ~b! Area distribution function for this case of regular transport.



s
f
for
e

o
o

17 712 54R. AKIS, D. K. FERRY, AND J. P. BIRD
FIG. 10. Transmission probability plotted a
2T21, in order to remove a significant part o
the magnetic-field-independent conductance,
a 1.0-mm quantum dot with an entry angl
u563. ~b!–~e! correspond to the correlation
function ~left panels! and its Fourier transform
~right panels! for two different entry angles into
the 1.0-mm dot. The top row corresponds t
u554, while the bottom row corresponds t
u563.
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through the dot.36 In Fig. 10~a!, we plot such a magnetocon
ductance trace for an entry angle of 63° for a 1.0-mm dot.
The actual plot depicts 2T21 as this removes most of th
background average conductance and highlights the fluc
tions. It is clear that the fluctuations in this case have a
nificant tendency toward regular oscillatory properties a
are not characterized by the random nature expected o
godic behavior. We can see this better in the correlat
function C(DB) of the conductance. This correlation fun
tion and its Fourier transform are shown for two differe
entry angles in Figs. 10~b! and 10~c!. The correlation func-
tion described by Eq.~2!, in terms of an exponential distri
bution of areas, is positive definite. This is anything but
case for these regular trajectories, and extensive negative
cursions and oscillations are present in these correla
functions. Indeed, these now resemble the correlation fu
tions obtained for the fully quantum case in Sec. II. Aga
the Fourier transform illustrates that only a few discrete f
quencies are present in the correlation function. These
quencies seem to be harmonically related~or compose very
few families of harmonically related frequencies!. Not all
a-
-
d
er-
n

t

e
ex-
n
c-
,
-
e-

harmonics are always present, and we do not understand
relationships between the harmonic amplitudes at this ti
Nevertheless, it is clear that this regular transport produ
fluctuations that are the result of a few multiply recurrin
orbits within the quantum dot, a result that is inherent in t
quasiclassical quantization of the dot itself.31 Indeed, the un-
derlying theory of such quasiclassical quantization sugg
that the spectrum should be made up of contributions fr
families of harmonically related orbits,32 a result in keeping
with the Einstein-Brillouin-Keller theory of quantization.

IV. EXPERIMENT AND DISCUSSION

Now, as a summary of the theoretical discussion abo
we compare it with experiments carried out in 0.3-mm dots
fabricated in GaAs/AlxGa12xAs heterostructures. Split-gat
quantum dots were formed in a heterojunction wa
using standard lithographic techniques. After low
temperature illumination, the carrier density and mobility
the wafer were found to be 5.131011 cm22 and 70
m2/V s, respectively. The gates allowed definition of
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FIG. 11. Correlation function~left! and power
spectra~right! of the fluctuations in the 0.4-mm
~lithographically defined! quantum dot for two
different gate voltages. The dot resistances are
and 26 kV for the top and bottom rows, respec
tively.
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square cavity, with lithographic dimension of 0.4mm. The
well-defined Aharonov-Bohm oscillations at high magne
field37 enabled a determination of the actual dot size, a
accounting for depletion around the gate edges, to be
proximately 0.3mm. In Fig. 11, correlation functions and th
Fourier transforms of these correlation functions are sho
for two different gate voltages. It is clear that there is a cl
dominance of the transport by probably a single or a v
few orbits. Such dominance is quite different from what
expected for ergodic transport, a conclusion that is confirm
by the observed fact that the correlation fieldBc is indepen-
dent of lead opening in the quantum point contacts and of
temperature~measurements were made at a base tempera
of approximately 30 mK!.21 The insensitivity to lead opening
width is also in agreement with our quantum simulatio
shown in Sec. II, which yielded almost the same value
Bc when the lead openings were increased from 0.04 to 0
mm, and shows that just a fewstableorbits are able to domi-
nate even the ensemble-averaged behaviorof the interfer-
ence.

In Fig. 12, we compare the Fourier transform from one
the correlation functions and compare it with those cal
lated both classically and quantum mechanically for the 0
mm dot, in this case with a port opening of 0.06mm. Figure
12~a! is the experiment, while Figs. 12~c! and 12~b! are those
from the classical billiards and the quantum simulation,
spectively. In all three cases, the spectra are quite similar
the resemblance between these curves is remarkable.
dominant peak in all cases is that near a magnetic freque
of 9 T21. As discussed above, this is closely correlated
the diamond wave-function plots. Thus the observed tra
port in the ballistic quantum dot is consistent with a mod
where the excitation of the dot is by a collimated bea
whether classically or quantum mechanically. To our kno
edge, Fig. 12 provides the clearest evidence obtained to
for the direct manifestation of wave-function scarring in t
transport properties of mesoscopic quantum dots.2,4

The implication of our results then is that in measu
ments of theseopenballistic quantum dots, the trajectorie
that contribute to transport areselectedby the nature of the
r
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input and exit ports. The overall transport properties are n
necessarily descriptive of the complete spectrum of the d
but are descriptive of those parts of the spectrum that a
closely correlated to the selective properties of the por
This same behavior has been seen in the wave function s
ring in resonant tunneling diodes in tilted magnetic fields,38

where only those orbits that couple effectively through th
tunnel barrier are seen in the wave-function plots.39 The be-
havior here, where a small family or families oflong trajec-
tories ~long due to their apparent periodicity! is excited by
the collimated beam and dominate the behavior, is quite d
ferent from that in a chaotic dot. In the chaotic case,short
trajectories~an example being a trajectory going straigh
through from input to output ports! are believed to dominate
due to a very dense distribution of eigenvalues.31

Before closing, we note that multiply periodic oscillation

FIG. 12. Comparison of the spectra of the correlation functio
for ~a! the experimental dot,~b! the classical billiard, and~c! the
quantum simulation for an effective dot size of 0.3mm. The curves
are offset for clarity.
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in the transport of square quantum dots has been obse
previously.40,41 In contrast to the present work, this was wi
a four-lead geometry and the quantum Hall effect was
object of the study. In addition, the magnetic fields we
much higher, so that edge states were present in the do
addition, the magnetic fields were much higher, so that e
states were present in the dot. The theoretical model41 used
to explain these results assumed that two of the edge stat
the dot were involved in the transport, with one transmit
by the leads, the second forming a complete orbit trap
inside the dot. With mixing of the two edge states caused
the presence of leads, what resulted was a rather complic
version of the Aharoov-Bohm effect. While ‘‘trapped’’ or
bits appear to be playing at least a superficially similar r
in the results shown in the present case, we empha
strongly that the orbits here are not of the ‘‘skipping’’ var
ety and cannot be associated with edge states.

V. CONCLUSION

In summary, we have presented studies of the quant
mechanical transport and the classical billiard transp
v.
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rt

through ballistic semiconductor quantum dots. These w
shown to have quite similar behavior, if the classical moti
is limited to a collimated set of trajectories, presumably
lected by the quantum-mechanical properties of the quan
point contacts by which leads are connected to the o
quantum dots. These results are shown to agree substan
with experiments performed on actual semiconductor qu
tum dots, yielding highly oscillatory and correlated fluctu
tion spectra. This is fully in keeping with the expectations
semiclassical descriptions of the fluctuations in the density
states of such structures.
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