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We present studies of the quantum-mechanical transport and the classical billiard transport through ballistic
semiconductor quantum dots, where the transport is nonergodic or “regular.” These are shown to have quite
similar behavior if the classical motion is limited to a collimated set of trajectories. These results are shown to
agree substantially with experiments performed on actual semiconductor quantum dots. The results suggest that
transport in regular semiconductor quantum dots is clearly distinguished from the equivalent transport in
ergodic dots. In particular, the fluctuation spectrum is not random, but highly oscillatory and correlated. The
correlation functions for these fluctuations show regular and periodic oscillations that contain only a few, often
harmonically related, frequencies. This is fully in keeping with the expectations of semiclassical descriptions of
the fluctuations in the density of states of such structU®8163-182¢06)03348-4

l. INTRODUCTION weak localization line shapkin square quantum dots. The
opposite transition in a stadium billiard in a magnetic field
Reproducible fluctuations are a well-known quantum-has been predicted.
mechanical correction to the conductance in disordered Conductance fluctuations in a chaotic quantum dot are
semiconductor$. Recently, there have also been observaharacterized by their correlation function, which has a char-
tions of conductance fluctuations in small semiconducto@Cteristic Lorentzian shape. This arises from the assumption
quantum dotsin which the transport through the dot is bal- that the ensemble of sem@lassmal trajectories through the
listic in nature?~*2By ballistic we mean that the geometrical duantum dot sweep out a wide range of “aredtiese areas
size of the dot is smaller than the elastic mean free path oife related to the enclosed flux winding number of the arbit
the carriers. This has been made possible by advances in tH&is is characterized by an exponential distributiot?a$
use of electron-beam lithography and molecular-beam a—alAl
; 13 : P(A)~e , 1)
epitaxy:~ In such structures, large-angle scattering of elec-
trons occurs only at the dot boundaries. Experimental studieshere« is the inverse of the “average” area enclosing the
of such devices have shown the presence of both weak Idlux. The correlation function of the conductance is related to
calization and conductance fluctuations, qualitatively similaithis through
to that observed in disordered systems. Generally it is be-
lieved that the fl_uc_tuat|ons arise from interference bet.weerr:(AB)=(6G(B+AB)5G(B)>O<
the complex ballistic paths in a manner analogous to impu-
rity scattering in a disordered medium. In this ballistic case,
the complexity is introduced by the reflections off of the dot 27AB\ 2
geometry. However, there is evidence to suggest that weak x ad )
localization occurs primarily due to interference between in- 0
coming particles and backscattered electrons at the entranwéhere ¢po=h/e is the quantum of flux.
point contacf* Recently, however, there have been measurements of con-
It is clear that the shape of the quantum dot strongly af-ductance fluctuations in square dot&that do not appear to
fects the details of the transport through it. Structures whosbe irregular but are quite periodic, and their correlation func-
classical behavior is reguldintegrable, such as the square, tion is characterized by large-amplitude oscillations. A Fou-
exhibit a weak localization signature that is characterized byier spectrum of these correlation functions exhibits families
a linear decay of the excess resistance with magnetic fieledf harmonically related peaks; sometimes only one family
Contrastingly, structures whose classical behavior is chaotiappears, while at other times multiple families appear. These
(the stadium, for exampleexhibit a Lorentzian line shape results cannot be explained by the above theory, nor by an
for the weak localization-*%1115-18ye note, however, that ensemble of trajectories that includal possible classical
in open billiard systems, the presence of the leads also cgwaths through the dot. Rather, the excitation of the regular
induce phase-space filling behavior in quantum dots whosbkehavior is thought to proceed through the collimation ef-
classical motion is otherwise integraBfeA transition be- fects of the quantum point contact. In the classical limit, in
tween chaotic and regular behavior also has been seen in théhich a great many waveguide modes are passed by the
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1. QUANTUM BEHAVIOR OF THE REGULAR DOT

i=M
As displayed in Fig. 1, the general situation is one in
y which ideal quantum wires, which extend outward-tee,
L are connected to the quantum dot. This quantum-mechanical
X problem can be solved by using an iterative matrix method
applied to the discretized version of the Satinger equa-
. tion, obtained by keeping terms up to first order in the ap-
'=0i_0 (=N+1 proximation of the derivative:
FIG. 1. Geometry of the quantum dot and quantum point con- (Be=Hp¢+Hj 14 1+Hjj11¢:1=0, (©)

tacts that are considered in this study. The grid represents the un-

derly!ng mesh on vv_hlch the palculatlons are performed, though, Nvhere v is a M-dimensional vector containing the ampli-
practice, the mesh is much finer.

tudes of thejth slice. The problem is solved on a square
point contact, the particles form a beam centered on théattice of lattice constara with the wires extendingW lat-
transport axis of the contati.However, when only a few tice sites across in the direction and the region of interest
modes are passed, the quantization of the transverse momdpeing broken down into a series of slices along yheirec-
tum can cause a diffraction effect that leads to the beartion. In this equation, thél; matrices represent Hamiltonians
exiting the point contact at a significant angle away from thefor individual slices and the matrices; ;_; andH; j; give
transport axi$* This axis is defined by the line connecting the interslice coupling. By approximating the derivative, the
the two aligned leads shown in Fig. 1 below. Hence excitakinetic-energy terms of Schdinger’s equation get mapped
tion of the quantum dot proceeds via a collimated beam orionto a tight-binding model with= —%2/2m* a representing
ented away from the axis, which then can excite a set ofiearest-neighbor hopping. The potential simply adds to the
regular orbits within the dot. on-site energies. This equation can be used to derive a trans-
In this paper, we examine the transport through such reguer matrix that allows us to translate across the system and
lar quantum dots, both by a careful study of the quantunthus calculate the transmission coefficients that enter the
transport obtained by a direct solution of the Schinger  Landauer-Buttiker formula to give the conductance. Transfer
equation and by the study of a selected set of classical bilmatrices, however, notoriously are unstable due to the expo-
liard trajectories within the dot. We show that the classicalnentially growing and decaying contributions of evanescent
trajectories have a strong connection to scarring of the quarmodes. This difficulty can be overcome by performing some
tum wave functiorf® and the computed correlation functions clever matrix manipulations and calculating the transmission
and Fourier spectra are shown to exhibit a close connectiohy an iterative procedure rather than just multiplying transfer
to those measured experimentally. In the next section, theatrices together. The full details of this technique are given
transport obtained from the Schiinger equation is dis- in Ref. 26. This method, in some ways, is quite similar to the
cussed, while the classical billiard approach is described imecursive Green’s-function techniqdé$® that typically are
Sec. Ill. We then turn, in Sec. IV, to a comparison with theused to solve these problems, and a comparison has shown
experiments. Finally we summarize the results in Sec. V. good agreement between the two methods. The amplitudes
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FIG. 2. Conductance fluctua-
tions vs magnetic field for the 0.3-
um dot discussed in the text. Four
resonance features that appear in
the curve are also indicated and
|#(x,y)| vs x andy in the quan-
tum dot is plotted for each of
these features. Darker shading
corresponds to higher amplitude.
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of the wave functions at specific valuesfandy can be

found easily by backward substitution after the iteration is 150 (a)
performed. 1o
The quantum dots we study are nominally square in &;:) 0.5¢
shape. They are connected to two leads, which provide the ‘5",:, 00
input and exit ports, as shown in Fig. 1. The leads are usually 050
taken at the top of the dot, as illustrated, but a staggered A0l
positioning of the leads will also be discussed briefly. Al- o o4 o> o3 07 05
though the ports are normally aligned, straight through tra- B (Tesla)
jectories are not a problem due to the diffraction effects of 15 . ,
the quantum point contacts themselves, as discussed above
(we will return to this point beloyw A magnetic field is ap- £
plied normal to the plane of the dot and the carrier density is 5
typically taken to be 4 10** cm~2 in order to compare with P

the experiments of Refs. 11 and 21.
We first present an illustrative example of our calcula-

tions. In Fig. 2, conductance fluctuations as a function of '2%.0 0 02 03 04 05
magnetic field are plotted for a 0/3m square dot with 0.04- B(Tesla)
um port openings, which allow two modes to enter and exit 15[ ' '

the dot. Instead of a random aperiodic variation with mag-
netic field, a series of nearly periodic oscillations is evident.
Also apparent are several resonance features. In particular,
we point out a set of resonancesBat-0.069, 0.173, 0.283,
and 0.397 T (while the feature is difficult to see at
B=0.173 T, it appears as a small notch in the curiénese
are marked with arrows. Note here that these features occur 00 01 02 _ 03 04 05
with virtually periodic spacing. The wave functions corre- B (Tesla)
sponding to these four resonances are also displayed at the
bottom of the figure. What is shown in each case is FIG. 3. Conductance fluctuations vs magnetic field for QrB-
|4(x,y)|, with the darker shading corresponding to higherquantum dots with(@ port openings that are 0.0@m; (b) port
wave-function amplitude. Strikingly, essentially the sameopenings that are 0.04m, but with staggered lead&;) port open-
diamond-shaped pattern occurs in each case. This patterniigs that are 0.04m, but with the corners and openings of the dot
highly reminiscent of the Scars’ that have been observed not having been rounded.
in calculations performed for stadium-shaped quantum
structure$? in that the quantum-mechanical amplitude ap-somewhat smoother, with only about half the resonance fea-
pears to follow a single underlying classical orbit. Given thattures as in Fig. 2. This is almost certainly a result of the
the period for the reappearance of the diamond isffect of level broadening induced by the port opening. How-
AB~0.11 T and using the criterion familiar from the ever, the basic periodicity of the oscillations is quite similar
Aharonov-Bohm effect, thah ¢/ ¢o= 27 for the difference to the narrow port case above. For Figc)3 the bottom
in magnetic flux, one obtaind~0.04 um? for the enclosed corners of the dot are of the form of semicircles of radius 0.1
area, which corresponds well to the enclosed area of thgm, while the entry ports are also rounded with radius 0.05
diamond. pm, though the narrowest width of the opening is the same
In Fig. 3, we show the conductance fluctuations for sev-as in the first example. It is evident that this rounding by
eral other examples of a 048m quantum dot. In the figure, itself does not destroy the resonance efféictact, some of
conductance fluctuations as a function of the magnetic fielthe resonances are even stronger in this )casa does it
are shown for(@ 0.09-wm port openings(b) 0.04.um port  strongly affect the basic underlying periodicity. The same
openings, but with the entry port at the top of the dot and theeomments can be made about offsetting the port openings as
exit port at the bottom to minimize the possibility that elec- shown in Fig. 8b). From these results, we may surmise that
trons might take direct paths through the dot; #0d0.04-  the resonances and the fluctuations are both basic properties
pum port openings, but with circularly rounded corners andof the quantum dot itself. However, only those intrinsic prop-
openings. As above, the 0.Q4m port openings support two erties that couple to the input and output leads can be ex-
propagating modes, while the 0.Q@n port openings allow pected to be reflected in the conductance.
four. Once again, in each case a series of nearly periodic In Fig. 4, we plot more examples of wave functions in
oscillations is evident. Also apparent are sets of resonancguantum dots. The wave functions shown in Fig. 2 as
features. In fact, many of these resonances appear in approxieinted out earlier looks to be scarred by a periodic classical
mately the same location in all three panels, as well as comrbit. However, since the structure is ostensibly regular, the
responding closely with the initial example displayed abovefact that there appears to be a correspondence to the classical
In particular, the set of resonancesBat 0.069, 0.173, 0.283, picture should not be a surprise since the wave functions
and 0.397 T are apparent in these three examples as well. Afould be concentrated along the projections of the invariant
one may expect, the curve for the wider port cdSig. 3(@)], tori of the regular trajectories in classical phase space. How-
in which two more modes are passing through the leads, isver, it is worth pointing out that this imagffers radically

g (e%)
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FIG. 4. |¢(x,y)| vsx andy is plotted. Darker
shading corresponds to higher amplitude. The
four pictures correspond t@) a dot completely
enclosed by tunneling barriergh) the rounded
dot, with B=0.282 T;(c) the dot with 0.04xm
openings aB=0.231 T;(d) same as in(c), but
with B=0.299 T; and(e) a 0.8um dot at
B=0.0056 T.

from what occurs in &loseddot, in which the amplitude for B=0.231 T, which corresponds to another resonance feature
an eigenstate is distributed much more uniformly and onén Fig. 2. Here we see another scarlike feature, but in this
cannotmake an association with a single orbit. To empha-case it has the appearance of two intersecting rectangular
size this point, in Fig. &), we plot|(x,y)| for a 0.3um orbits. In comparison to the diamond—sha_ped scar, _this fea-
dot formed by two tunneling barriers, with the barrier heightture is somewhat less well resolved. Making an estimate of
equal to the Fermi energy of the previous example and &€ enclosed area of one of the rectangles, weAge0.04
barrier width of 0.054m. The transmission as a function of #M*, approximately the same as the diamond. Given this,
B for this case consists of a series of very sharp tunneling’® Should also expect to see the double rectangle at
peaks, so the dot is a very close approximation to a closef ~0-11-0.12 T; however, we cannot make out this evi-
system. The wave function in this image corresponds to ently more delicate feature, though there is a resonance in

. - . . . e conductance fluctuations in about the right location.
resonant tunnel_lng pgak Bt= 0.'165 Tandis a falr!y typlc_al However, it is worth noting that the resonance at this field is
result. Comparing Fig. @ with the wave functions dis-

i . o somewhat less sharp than the on®at0.231 T. The double
played in Fig. 2, it is clear that the results are quite d'ﬁerentrectangle also occurs for the offset port and rounded dot

when the electrons are made to enter the dot in a NAroW,ses aB=0.231 T, while it does not appear in the dot with
beam by the contact, and what we see is consistent with g¢ \ide opening, which shows no resonance at this value of
reduction in the classical phase space sampled by the eleg; ot surprisingly, forB fields falling in between the reso-
trons, in turn introduced by collimating action of the leads,nances, the wave function in general is much less organized.
as will be discussed in Sec. Ill. Once again, we conclude thaks mentioned above, a resonance does not necessarily yield
the collimation by the quantum point contacts selects a set of well-defined scarlike feature, though this seems to be re-
properties(trajectorie$ of the quantum dot. lated to the sharpness of the resonance. It should also be

In Fig. 4b), |¢(x,y)| is plotted forB=0.282 T, but in  noted that some of the resonances that occur in Fig. 2 yield
this case for the rounded dot example discussed in the convave functions that are quite similar to the “bouncing ball”
text of Fig. 3. We see that rounding does not prevent thelots familiar from the stadium billiard problefi.An ex-
diamond scar from forming. This result is reassuring, sinceample of this is shown in Fig.(d), which was generated
one does not expect the experimental dots to be perfectlyith the 0.04um port opening, but witlB=0.299 T. An-
square in shape. other such feature occurs B=0.1 T, but in that case the

In Fig. 4(c), |¢(x,y)| is plotted for the 0.32m dot with  orientation of the bouncing ball is vertical rather than hori-
the 0.04pum port opening, except now we have setzontal as it is here.
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" 02 whereas the latter is dominated more by the smaller oscilla-
£ ' ' ' tions. Fig. &d), for the rounded dot, appears to fall in be-
© 01 (@) tween Figs. ta) and 5c¢). In Fig. 5e), we consider the low-
g 00f field behavior of correlation function, with the crosses,
BT , . . circles, dashed and solid lines corresponding to Figa), 5
03° 01 02 03 04 5(b), 5(c), and §d) from above, respectively. Unlike the pre-
‘i: ’ ' ' ' vious panels, the correlation function has been normalized by
» 01 (b) C(0) in each case. Here Figs@ and 5b) display approxi-
@ 00f mately the same correlation fielB. (the AB value that
O .01 . . ) yields the half maximum value oE(AB)], about 0.01 T.
0.0 01 02 03 04 The correlation function for the offset port case drops more
B 006 y y T quickly tan in Fig. %a) or 5(b), with B,=0.007 T, but still
‘ig'g; (c) shows power-law behavior. For the rounded port case, the
& - correlation function drops even more quicklg = 0.005 T)
< 0.00[ e i
S 002 . ‘ anq th_e curve is §|gn|f|_cantly more rpunded than_ the others,
0.0 0.1 02 03 0.4 which is more in line with the prediction for chaotic systems
o 010 . . . given in Eg.(2). For comparison, we plot a fit usin@),
5 005 (d) represented by the diamond symbols. The fit yields an aver-
= OOOW age enclosed area ef 1=0.079um?2, which is close to the
a7 entire area of the dot 0.09m?. That the rounded dot shows
0410%_0 57 o5 03 0.4 the best correspondence () is not particularly surprising
10 ' . _ since the dot in this case has a geometry approaching that of
0.8] i ] a half stadium, which is known to be chaotic. We point out,
~ 06] et (e) 1 h . R .
a0 e, owever, that observation of a Lorentzian correlation func-
o 8—‘2‘: .- .\""tc:,::\k ] tion is nota priori evidence for chaotic behavior, and the
g 0.0 = above discussion indicates that the dot remains quite regular.
0.2 8 This feature is confirmed by the classical calculations, which
V830 00m 0610 0015~ 0020 show that, for uniform injection of particles into a perfectly
AB(Tesla) regular cavity, strong phase-space filling is obtained, in spite

of the underlying regularity.

FIG. 5. Correlation functiof€(AB) vs AB plotted for the four In Fig. 6, we plot the Fourier transforms of the correlation
cases considered i@ Fig. 2(b)—2(d) and Figs. 83)—-3(c). In (¢),  functions from Fig. 5. As with the classical examples to be
the normalized correlation functidB(AB)/C(0) is plotted for low ~ Seen below, these power spectra indicate that just a few dis-
fields for the above cases with circles correspondingatocrosses — crete frequencies can dominate the behavior, and it is evident
to (b), a dashed line t¢c), and a solid line tdd). A fit to case(d) that many of these peaks are harmonically related. For ex-
using Eq.(2) is also plottedstars. ample, the offset port in Fig.(6) has a group of peaks oc-

curring at approximately 9, 16, and 24 ¥, with the peaks

So far, we have concentrated our discussion onur8- at 13 and 26 T* constituting a second group. In fact, the
dots. We have also seen the diamond-shaped pattern in bo@§aks seem to occur in more or less the same positions in all
smaller(0.2-um) and largex0.8-um) dots for the same elec- four casedin particular, the two groups of peaks mentioned
tron density. Many more complicated patterns are also eviabove, though their relative weights are quite different in
dent in the larger dot. An example is shown in Fige)s €ach ex_ample. Itis notewort_hy that prominent peaks occur in
which occurs for the 0.gsm dot with B=0.0056 T. The the region~8-9 T~* for Figs. a)-6(c) and, while less
leads here support three modes. Needless to say, tH§Ominent, italso appears in Figid as well. As mentioned
Aharonov-Bohm analysis performed for the u&a dotis no  €arlier, we repeatedly observed the diamond-shaped wave
longer a simple matter here, and the results, at least in ternfynctions for all these examples. The spacing of these scar-
of the scarring, become somewhat more difficult to interpretlike features yield values ofAB) ~* of ~8.7 T~*, which

In Figs. 5a)-5(d), we plot the correlation functions Corresponds fairly well with the positions of these peaks.
C(AB) obtained from the conductance fluctuations dis-
pI_aygd in Fig. 2[Fig_. 5@)] and Fig. 3[Figs. E(b)—5(d)_]. To IIl. CLASSICAL BILLIARDS
eliminate any possible effects of a weak localization peak,
they are calculated for a range between 0.1 and 0.5 T and we Periodic orbits have played a large theoretical role in the
have used averaging to minimize any statistical errors. Theomputation of semiclassical quantization of bound states for
correlation functions all show large negative excursions andnany years, dating back to the Einstein-Brillouin-Keller
oscillations. The oscillations appear to be quasiperiodic, aiew of quantization. The modern revival of work in this
reflection of the periodicity apparent in the fluctuationsarea apparently was begun by Gutzwifftnwho examined
themselves in Figs. 2 and 3. These oscillations are leashe relationship between the periodic orbits of a classical
prevalent in the case with the large openings, though they argystem and the corresponding solutions of the Stihger
still apparent in that case. Comparing Figaswith Fig.  equation in the case where neither corresponded to a sepa-
5(c), the offset port case, the former has large oscillationsable system. Balian and Blothand Berry and Tabdf be-
with much smaller ones superimposed on top of themgan studies of the level densities and eigenvalues of nonin-
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FIG. 7. Collimation of the beam is apparent in this picture,
which describes the entry of particles from a point con@d@5 um
wide) in which only two modes are allowed to propagate into a
much wider quantum wir¢0.8 um wide).

'y

0 20 D
Magnetic frequency (1/T)

o ;IG. 6. F_ourler transforms of the correlation functions dISpIayedcontact. As discussed above, the quantum point contact ef-
gs. 5a)-5(d). . . . .

fectively collimates the beam into a relatively narrow ray of
tegrable systems. Perhaps the most important result, thougparticles, and we illustrate this collimation in Fig. 7 using the
was the observation that certajwhat were thought to Be  solution to the quantum-mechanical case described in Sec. Il.
unstable periodic orbits produced scars in the quantum wavgere we depict a narrow contact connected to a much wider
functions?® More recent studies indicate that the “imprints” quantum wire. What we are seeing here is the result of the
of these orbits persist up through thousands of stites, waveguiding effects of the contact. With very few modes
result that suggests that the closed orbits are quite stable present in the leadén this case 2 the entry angle of the
regular systems and only become unstable as one passeseigéctrons becomes strongly restricted by ¢juantizationof
the ergodic regime, which seems to be replicated as onde wave vectors in thg direction. It should be emphasized
passes from the semiclassical to the quantum regime. Nevelhat this picture corresponds to the zero-field case. Thus the
theless, how is one to choose these semiclassical orbits? Treptation of the electron beam away from thexis cannot be
ditionally, one examined all possible classical paths from thettributed to the bending of the electron trajectories by the
input to the output®® But, in such ballistic quantum dots, magnetic field. It is this collimation that is important for
this produces essentially a phase-space filling and ergodielecting or exciting the regular orbits of the particles, a
behavior of the transport, which agrees closely with chaotigoint that is discussed further below.
dot studies®> '8 There is a clear difference between the be- In the first three panels of Fig. 8, we show Poincaiets
havior obtained when al possible trajectories are investigatetbr entry angles of 74°, 59°, and 3@the angles are not
and when only a limited set of trajectories are investigafed. magic, but are chosen merely as fractionsmé®) from the
We focus solely on the case for a collimated beam of pary axis for the case of a magnetic field of 10 mT. Poincare
ticles. The crucial assumption in doing this is that the quanplots essentially are cross sections through part of the clas-
tum point contact imposes a boundary condition on the parsical phase space. What appears on the plot are the intersec-
ticles, in which the entry angle is determined by the wavetion points of the classical trajectories with the cross-
mechanical nature of propagation through the quantum poirgectional surface. These plots give a good indication of
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y-directed velocity and varies from 0 to<310” and is shown
for convenience. The vertical scale for thevelocity ranges
from —3x 10’ to 3x 10’. As the entry angle is reduced, the
phase-space filling is greatly reduced and there appears to be
a critical angle for which this occurs. This angle is related to
the magnetic field, but the behavior of the ballistic transport
is anything but ergodic. We can see this somewhat better in
Fig. 8d), where the Poincarplot is shown ford=54 ° and
B=50 mT. Here, although only a small nhumber of particles
have been used so that the discrete trajectory maps are ob-
servable, it is clear that the magnetic field induces curvature
in the ballistic orbits that causes an apparent phase-space
filing through precession of the magnetic orbits, even though
the motion is fully integrable. For further insight, we can
actually compute the histogram for the Poincpiat. That is,
we plot a three-dimensional picture, whasexis is the fre-
guency at which any singlex(v,) point is occupied in the
Poincareplot itself. In Fig. 9a), we plot this for the apparent
phase-space filling motion of Fig(&. There are clear scars

throughout the plot that are quite reminiscent of the trajec-

(C) (d) tory maps of Figs. &) and 8c). However, the plot in Fig.

9(a) is the logarithm of the occurrence XALCP particle tra-

FIG. 8. Poincareplots for a magnetic field of 10 mT and for jectories were followed so that there are orders of magni-
entry angles ofa) 63°, (b) 56°, and(c) 36°. The vertical gray map tude difference between the peaks on the residuals of the
in (b) is a calibration of they velocity in the plots ranges from O up proper trajectories and the valleys around=0. Finally, it
to 3x10” cm/s, and applies to the other three panels. Another Poinshould be remarked that the area distribution funcfieig.
careplot is shown in(d), in this case for a magnetic field of 50 mT 9(b)] does not fit Eg.(1) at all; it is essentially one sided
and an entry angle of 54°. Note that the axes plotted in pémel (only a positive areaand is not fully exponential in its de-
also apply to the other three panels in the figure. Xheange is  pendence upon the area. The two peaks occur at zero area
0-1.0um and thev, range is from—3x10" to 3x 10" cm/s. and an area corresponding roughly to an enclosed area of

0.48 um? (this is for the 1.0xm dot, which compares well
which portions of the multidimensional phase space are viswith the scaling from the smaller dots for the prime frequen-
ited. In the present case, the surface is taken as the bottom oies of the periodic orbits. It is relatively clear that just hav-
the dot(particles pass through the surface just prior to reflecing phase-space filling is not sufficient to say that the motion
tion from the bottom boundajyand illustrates the position is ergodic. Quite the opposite, in these regiauare quan-
andx velocity for particles that impinge on this surfaghis  tum dots, the transport for a collimated input beam is com-
general geometry is used throughout this papeFhe mag-  pletely regular, even with open leads and the presence of a
nitude of the particle velocity has been set ts B0’ cm/s as  magnetic field.
this yields a kinetic energy equal to the Fermi energy used in The magnetotransport through the dot can be computed
the quantum calculations. The gray scale corresponds to tHgy determining the transmission probability of electrons
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FIG. 9. (a) Poincarehistogram corresponding to Fig(e8. (b) Area distribution function for this case of regular transport.



17712 R. AKIS, D. K. FERRY, AND J. P. BIRD 54

< 08

8 (a)

5 0.4

[73

2

& o

o

o

-

o 04

2

g

E '0-8 1 1 1 1

0.02 0.04 0.06 0.08 0.1
Magnetic Field (T)
0.1 FIG. 10. Transmission probability plotted as
(b) (c) 2T—1, in order to remove a significant part of

0.05 B the magnetic-field-independent conductance, for

a 1.0um quantum dot with an entry angle

" #=63. (b)—(e) correspond to the correlation
-‘é 0 = — function (left panel$ and its Fourier transform
bl 2 (right panel$ for two different entry angles into
Q i 5 the 1.0um dot. The top row corresponds to
& -0.05 _9_' 6=54, while the bottom row corresponds to
o 8  0=63.
S 1 1 1 1 o
o 01 3
S 0.08 2
- (@ (e) 5"-
=1
Lz 0.04 .§
g 3
© or w
o
=
o
O -0.04 |
'0-08 1 i [] 1

0 20 40 60 80 100 100 200 300 400 500
Magnetic Field (mT) Frequency (1/1')

through the dot® In Fig. 10@), we plot such a magnetocon- harmonics are always present, and we do not understand the
ductance trace for an entry angle of 63° for a L@ dot.  relationships between the harmonic amplitudes at this time.
The actual plot depicts P—1 as this removes most of the Nevertheless, it is clear that this regular transport produces
background average conductance and highlights the fluctudluctuations that are the result of a few multiply recurring
tions. It is clear that the fluctuations in this case have a sigerbits within the quantum dot, a result that is inherent in the
nificant tendency toward regular oscillatory properties andjuasiclassical quantization of the dot itsélindeed, the un-

are not characterized by the random nature expected of ederlying theory of such quasiclassical quantization suggests
godic behavior. We can see this better in the correlatiothat the spectrum should be made up of contributions from
function C(AB) of the conductance. This correlation func- families of harmonically related orbif$,a result in keeping

tion and its Fourier transform are shown for two differentwith the Einstein-Brillouin-Keller theory of quantization.

entry angles in Figs. 1B) and 1@c). The correlation func-
tion described by Eq(2), in terms of an exponential distri-
bution of areas, is positive definite. This is anything but the
case for these regular trajectories, and extensive negative ex- Now, as a summary of the theoretical discussion above,
cursions and oscillations are present in these correlatiowe compare it with experiments carried out in @8 dots
functions. Indeed, these now resemble the correlation fundabricated in GaAs/AlGa; _,As heterostructures. Split-gate
tions obtained for the fully quantum case in Sec. Il. Again,quantum dots were formed in a heterojunction wafer
the Fourier transform illustrates that only a few discrete fre-using standard lithographic techniques. After low-
guencies are present in the correlation function. These freeemperature illumination, the carrier density and mobility of
guencies seem to be harmonically related compose very the wafer were found to be 5<10' cm~2 and 70
few families of harmonically related frequenciedlot all m?/V's, respectively. The gates allowed definition of a

IV. EXPERIMENT AND DISCUSSION
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square cavity, with lithographic dimension of Q. The input and exit ports. The overall transport properties are not
well-defined Aharonov-Bohm oscillations at high magneticnecessarily descriptive of the complete spectrum of the dot,
field®” enabled a determination of the actual dot size, aftebut are descriptive of those parts of the spectrum that are
accounting for depletion around the gate edges, to be aplosely correlated to the selective properties of the ports.
proximately 0.3um. In Fig. 11, correlation functions and the This same behavior has been seen in the wave function scar-
Fourier transforms of these correlation functions are showming in resonant tunneling diodes in tilted magnetic fieftls,
for two different gate voltages. It is clear that there is a cleawhere only those orbits that couple effectively through the
dominance of the transport by probably a single or a verytunnel barrier are seen in the wave-function pfSthe be-

few orbits. Such dominance is quite different from what ishavior here, where a small family or families loing trajec-
expected for ergodic transport, a conclusion that is confirmetbries (long due to their apparent periodicitis excited by

by the observed fact that the correlation fi@gis indepen- the collimated beam and dominate the behavior, is quite dif-
dent of lead opening in the quantum point contacts and of thé&rent from that in a chaotic dot. In the chaotic casieort
temperaturémeasurements were made at a base temperatuteajectories(an example being a trajectory going straight
of approximately 30 mK?! The insensitivity to lead opening through from input to output pontgre believed to dominate
width is also in agreement with our quantum simulationsdue to a very dense distribution of eigenvaléks.

shown in Sec. I, which yielded almost the same value of Before closing, we note that multiply periodic oscillations
B. when the lead openings were increased from 0.04 to 0.09

um, and shows that just a festableorbits are able to domi-

nate even the ensemble-averaged behawbrthe interfer- 20
ence.

In Fig. 12, we compare the Fourier transform from one of
the correlation functions and compare it with those calcu-
lated both classically and quantum mechanically for the 0.3-
um dot, in this case with a port opening of 0.26n. Figure
12(a) is the experiment, while Figs. 1& and 12b) are those
from the classical billiards and the quantum simulation, re-
spectively. In all three cases, the spectra are quite similar and
the resemblance between these curves is remarkable. The
dominant peak in all cases is that near a magnetic frequency
of 9 T~ 1. As discussed above, this is closely correlated to
the diamond wave-function plots. Thus the observed trans-
port in the ballistic quantum dot is consistent with a model
where the excitation of the dot is by a collimated beam,
whether classically or quantum mechanically. To our knowl-

-
[4,]

Fourier Amplitude (arb. units)
» o

edge, Fig. 12 provides the clearest evidence obtained to date Magnetic Frequency (1/T)
for the direct manifestation of wave-function scarring in the
transport properties of mesoscopic quantum &éts. FIG. 12. Comparison of the spectra of the correlation functions

The implication of our results then is that in measure-for (a) the experimental dotib) the classical billiard, andc) the
ments of thesepen ballistic quantum dots, the trajectories quantum simulation for an effective dot size of u&. The curves
that contribute to transport aselectedby the nature of the are offset for clarity.
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in the transport of square quantum dots has been observéldrough ballistic semiconductor quantum dots. These were
previously?>*!In contrast to the present work, this was with shown to have quite similar behavior, if the classical motion

a four-lead geometry and the quantum Hall effect was thés limited to a collimated set of trajectories, presumably se-
object of the study. In addition, the magnetic fields werelected by the quantum-mechanical properties of the quantum
much higher, so that edge states were present in the dot. bint contacts by which leads are connected to the open
addition, the magnetic fields were much higher, so that edgguantum dots. These results are shown to agree substantially
states were present in the dot. The theoretical nfddeled \yith experiments performed on actual semiconductor quan-

inside the dot. With mixing of the two edge states cause_d b%éates of such structures.
the presence of leads, what resulted was a rather complicate

version of the Aharoov-Bohm effect. While “trapped” or-
bits appear to be playing at least a superficially similar role
in the results shown in the present case, we emphasize

stronglythat the orbits here are not of the “skipping” vari- ] ) . ]
ety and cannot be associated with edge states. The authors have benefited from helpful discussions with

Richard Taylor, Anna Grincwajg, Barbara Sanborn, Andy
Sachrajda, John Barker, Laurence Eaves, and Tom Szeredi.
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