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We present an analytical study of one-dimensional semiconductor superlattices in external electric fields,
which may be time dependent. A number of general results fofthas)energies and eigenstates are derived.
An equation of motion for the density matrix is obtained for a two-band model and the properties of the
solutions are analyzed. An expression for the current is obtained. Finally, Zener tunneling in a two-band
tight-binding model is considered. The present work gives the background and an extension of the theoretical
framework underlying our recent Lettgd. Rotviget al, Phys. Rev. Lett74, 1831(1995], where a set of
numerical simulations was present¢80163-182606)04148-3

I. INTRODUCTION of motion a rather complicated temporal behavior for the
diagonal (in miniband index component. This structure,

Studies of Bloch electrons under the influence of externahowever, could be interpreted in terms of intuitive physical
electric fields attract at present intensive theoretical attentioarguments. Our numerical study was facilitated by a substan-
(some recent papers can be found in Refs. J-this is a  tial amount of analytic background work, and the purpose of
natural consequence of recent experimental advances, whithis paper is to provide a full account of the formal develop-
include the observation of Bloch oscillatidAsind studies of ments. In subsequent sections we shall derive a number of
photon-assisted transpdft::®Thus the classic predictions of formal results, which we believe to be generalizations of
Bloch'® and Zene? finally have been verified, and the arena previously known results, and we give mathematical proofs
is open for new investigations and ideas. The physics obf several statements made in our previous WorWe also
superlattices in external fields is extremely rich due to thegive a detailed discussion of the density-matrix equation of
large number of parameters that can be controlled quitenotion, upon which our previously reported numerical work
freely. Many of the physical properties are sensitive func-was based, which can be used as a starting point for future
tions of these parameters and hence slight adjustments Biudies, for example, consideration of relaxation or loss of
their values allow one to move between different physicalphase coherence due to scattering.
regimes, both experimentally and theoretically. Examples of The paper is organized as follows. In Sec. Il we derive the
such parameters are the miniband structure of the superlattiemergy spectrum for a superlattice with a finite number of
(which can be controlled by varying the composition and/orfinite bands, in static and time-dependent fields, and apply
thickness of the layers comprising the superlattice to meethe general results to the tight-binding two-band superlattice
the requirements of the particular investigajion the inten-  of Ref. 22. Section Il is devoted to the equation-of-motion
sities and frequencies of the external fields. This flexibilityanalysis of the density matrix and a derivation of an expres-
allows one to study many different physical phenomena. Theion for the current, from which semiclassical intraband and
papers quoted above have addressed such varying physicglantum-mechanical tunneling contributions can be identi-
phenomena a$i) dynamical localization or band collapse fied. We also give some analytic results for Zener tunneling,
(originally discussed in Ref. 2leither in dc or ac electric which we used in the interpretation of our numerical results
fields, (ii) interplay of field-induced localization and Ander- of Ref. 22. Sec. IV gives our conclusions.
son localization due to disordefjii) chaotic motion of

char_ge carriers, ofiv) fuII-S(_:aIe numencal integration of Il ENERGY SPECTRA
semiconductor Bloch equations, which allow one to study
interaction effects, such as exciton dynamics. In this section we consider the energy spectrum of an

Much of the interest has been caused by the need of urelectron in a superlattice in the presence of a static or time-
derstanding the interplay of Bloch oscillatiofi., coherent periodic electric field, which causes coupling between the
time-periodic motion of charge carriers in one baridener  bands. The general Bloch problem can be divided into two
tunneling between Bloch bands, and interaction effects. Weases: the zero-field spectrum consistsipan infinite num-
studied recentR# a two-band tight-binding model and found ber of finite bands an€i) a finite number of finite bands and
via a direct numerical solution of the density-matrix equationan upper infinite band. In general, the spectrum is replaced
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by resonances. For a recent review see Ref. 14. In this paper _ _ 1

we conside finite bands. As shown by Avroat al? the Bk (x) =AY (x,1) = e BAWNE — Xy (%)
spectrum is pointlike and can be thought of Mdnterpen- VL

etrating Wannier-StarKWS) ladders. Below, it is shown

how our formulation allows a direct proof of this fact. In the _ ieik(t)x
final part of this section we introduce the tight-binding model JL

of a superlattice containing two minibands used in the simu-
lations of Ref. 22 and establish a connection to the genergin® Houston function is thus an ordinary BS corresponding

results derived in the beginning of this section. to the wave vectok(t). . _
We shall write solutions to the Schiimger equation

Unikt)(X)- (7

A. Electronic motion in a superlattice z,b( 1)
Hy(X, ) (x,t)=ih

®

We consider a semiconductor superlattice with a growth
direction parallel to thex axis. The lattice period is denoted
by d and is repeatet,=L/d times, wherd. is the length of
the superlattice. In the effective-mass approximédfiche

in the form y(x,t) =e~'<"u(x,t), whereu(x,t) is spatially
periodic with periodL. We thus have

wave function satisfies the usual Satiimger equation with au(x.t)
the scalar-potential Hamiltoniad , given by H,(X,Hu(x,t)=eu(x,t) +in 5 9
2
_ by For a static electric field the function can be chosen to be
Ho( D= 5 T V0 B, @ independent of time anel is the energy. If the field is peri-

) ) ) o ~odic in time with a periodl,., Floquet's theorem states that
wherem is the effective mass/.(x) is the periodic potential  will have the same periodicity. The Floquet solutions de-

with periodd, andE(t) = (E(t),0,0 is the electric field. For  fine the quasienergy, which is a generalization of the en-
E(t)=0, the eigenstate probleni ,(x)¥(x)=ey(x) is ergy.

solved by the usual Bloch statéBS's) Now let us expandy(x,t) in the ABS'’s according to
1 )
dnk(X)= EG'KXUnK(X). 2 Pp(x,t)= ;( Crx(D) €Ay (x,1). (10)

with eigenvaluese,(K) associated with the miniband in- We then inser(10) into (8) and use

dexed byn. In a finite electrical field we follo@&? and intro- 3 i iKx

duce accelerated Bloch statesBS'’s) when calculating the iﬁmziﬁe_vku o (0K (11)
energy spectrum. We assume that the field is applied at ot N

t=0 and define the vector potentidl(t)=(A(t),0,0 by
A(t)=—[LE(t")dt’. Then the semiclassical time evolve-
ment of the crystal momentui(t) = (k(t),0,0 is given by

where we definedk=gk/at. SinceV,u, is a periodic func-
tion with periodd, it may be expanded in terms of the func-
tions u,/ according to

k(t)=K—(e/h)f E(t")dt'=K+eA(t)/h. 3 iV Ui, 2 Unrieo Rl K(D) ], (12)

At this point it is useful to introduce the Hamiltonidh, in \yhere the expansion coefficienk, ., are the matrix ele-
which the electrical field is represented by the vector potenp,ents

tial instead of the scalar potential

i (a2
+eA)]? Ry (k)Z—J dxu},, (X) ViUnk(X). (13
HA(th):W-FVC(X). (4) MY d) g K n
, _ Combining Eqs(11) and(12) with k= —eE/# results in the
The ABS's, defined as following coupled equations for the expansion coefficients
1 CnK(t):
Pnk(X,1) = =€ Upy (%), ) IC (1)
L i7i— = e[ k(1) ]Cok(t) = F(1) 2 Ryn[K(1)IChk(b),
n’

ot
are instantaneous eigenstates to the time-dependent Hamil- (14)

tonianH 5(x,t), . -
A where F(t) = —eE(t). Equations similar to Eq(14) were

H (X, 1) (X, ) = €n[ K(D) (X, 1). (6)  derived by Krieger and lafrat€. Our formulation differs
from theirs in that they use a gauge transformation in order
The set of ABS’s forms an orthonormal basis. The so-calledo eliminate the spatially nonperiodic temt(t)x. We avoid
Houston functiof® dnkny(X) can be expressed in the ABS the gauge transformation and thereby keep the notion of en-
basis as ergy. Instead we introduce a common factor[éf(t)x/%] in
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the ABS expansion of the wave function. As seen from EqA direct calculation shows that
(10), this is the same as using an ordinary BS expansion of A
the wave function: D (k+2m/d)=D,(k)e '€Te/, (20)

As before the energy is only determined modg . If for a
‘/’(X’t):;f( Cok(t) nkn(X) definite solutionD;(k) to Eq.(19) we make the replacement
' e—e+phog, wherep is an integer, therey;— ci;e'Pd.
i Therefore the displaced energy corresponds to a spatial trans-
=e” WL% Cak(t) dn(X), (15 lation of the solution by-pd, i.e., the eigenstates in terms of
Cln ] ) the Dj(k)'s are only determined within a direct lattice dis-
wherec,(t) = Cp k- eays (1) € <"". The functionu is found  placement. The system of equatiafi®) has periodic coef-

from Eq.(15), ficients with period 2r/d. Appealing again to the
N-dimensional Floguet theorem, we conclude that the solu-
u(x,t)=2 Crk(t) dnk(X). (16) tions are of the forerj(k)=e"“inl(k), j=1,...N. The
n,K

Floquet functionQDJ-l(k) are periodic with period z/d. By
The set of coupled equation&ld) for the coefficients calculatingDj(k+27/d) and using Eq(20) we therefore
C,k(1) together with a boundary condition will now be used obtain the energy spectrum
to derive properties for th&quasjenergy spectra.
€jp=—Fri+phwg, j=1,...N, p aninteger.
1. Static fields (21

In the following we consider a model periodic potential we see again that the spectrum can be visualizel &S
corresponding to a finite numbe of energy bands and energy ladders. The relative positions of these are expressed
demonstrate the WS form of the spectrum in static fields. Fof terms of the Floquet coefficients. The systen(19) and
a static field,F(t)=F(>0), thecy’s in Eq. (16) are inde- (20 will later be used to evaluate the point spectrum for a
pendent of time. From this condition and the periodicity of two-band superlattice.
thec,k’s in K it follows that It should be noted that the;’s andr;’s are connected.

_i This can be demonstrated as follows. Floquet solutions for
— ieTg/h

Car(t+Tp) = Crr(t)e T8, 17 D(k) can also be found by using the Floquet solutions for
whereTg=27/wg and wg=Fd/%. For eachK in the Bril-  Ck(t). For an arbitrary choice of K we set
louin zone(BZ) there areN linearly independent solutions Dj(k)=e'K/FCy (k) = e “iKFe I(c huDKIFPL (k). The
Ckj(t), j=1,... N, to the system _E_q(.14). From E_q.(17) energy spgctru_m is thus given by !E(d;8). L}niqueness of the
we see that the energy for a specific solutg(t) is only  spectrum implies that the energi¢w;|j=1,... N} are
determined modiwg. The system of equationél4) has  equal to the WS ladder positiod&r;|j=1,... N} except
periodic coefficients with periodTz. By applying the for individual multiples off wg.
N-dimensional Floquet theorem we know that the solutions
can be found of the forn;(t) =€'“xi'Pg;(t), wherewy; is 2. Time-periodic fields

only determined moduleg and PR, (t+Tg) = Pg;(t). From In this section we consider time-periodic solutions
Eq. (17) the energies of the Floquet solutiddy;(t) are  y(x,t) to Eq.(9). We can derive general results concerning
ekj= —hoyj+phog, p=integer. Solving Eq(14) with K the quasienergy spectrum using the properties ofdpeo-
replaced by K'=K+(27/d)to/Tg we obtain solutions efficients. As we shall see, the interplay between the spatial
Cl'<,j(t) =gl ekj(t+io) P‘,Zj(t+t0) . Comparing with the Floquet periodicity and the temporal periodicity can have significant
solutionsCy;(t) =e'*k'I'P, (t) we conclude that; can ~ Consequences for the quasienergy spectrum.

be chosen to be independent i6f The energy spectrum is Specifically, let us consider a time-dependent electric field
then with periodT,.. Since the coefficients,k(t) in Eq. (16) are

periodic int and A(t+ T,.) =A(t) + A(T,.), we find that
e'=—fiwj+phwg; j=1,...N; p an integer. .
(18) Chk(t+Tae) =Chk+ak(t)e ' Tac™, (22

We see that the spectrum can be visualizella§/'S energy  \yhereAK = eA(T,.)/%. The quasienergy for a given solu-

ladders. _ _ ____tion Cy;(t) to Eq. (14) is only given mod#iw,., where
Another way to obtain the WS spectrum is to ehmmatewaczzwl-rac_

the K dependence in Eq14): the semiclassical motion of Let us now consider two special cases foK. First, if

k(t) is monotonic and can therefore be inverted to yieldyk =g mod 2r/d, as for a harmonic field, the condition Eq.

t(k):h(k_'ﬂigﬁ By use of the del?ienKi/tli:on (22) is equivalent to Eq(17) in the static case. All momenta
Dy(k)=cnie we obtain Cnk(t)=Dn[k(t)]€"". iy the BZ are then independent.
Equation(14) is then reduced to a system of equations thatis special case arises kK= (2/d)(p/q), with p and

independent of the initial momentuk, q integers’ Now a finite number of crystal momenta couple

oD, (K) and the quasienergies are determined from

= €DK =F 2 Ron (K)Dpy (k). (19)

CnK(t+qTac):CnK(t)eiieqTacm- (23
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The quasienergies are now only defined nfao,./g. The
Brillouin zone collapses tp— w/qd, w/qd] and the quasien-
ergy spectrum consists of fractional quasienergy ladders.

We have so far assumed that the system stays in equilib-
rium until t=0, when it is instantaneously coupled to the i
electric field. This is obviously an idealization, and it is natu-
ral to ask whether a finite switch-on period will change the ﬁmd(K)i

e(K)

e

< rmmemeee

general results. We have repeated the above analysis, but

allowed for a finite switch-on periofl0,T¢]. The upshot is K
that all formal results for the quasienergy spectrum still ap- Y ?A?
ply; however, one must change the initial momentum label . y
K. The new momentum valueK—K—eA(Ty)/% corre-
spond to a translation in reciprocal sp&ce.
B. Tight-binding model FIG. 1. Definitions of various energy parameters for the two-

in th ¢ thi id latti garand superlatticeA3" are the band midpointsA%® are their
n the rest of this paper we consider a superlattice MOd&ligins and #1wy(K) = ey(K) - €,(K) is the band separation

with only two bandsn=a,b. The Hamiltonian is at K. Also, in the text, the following are usedi)
Awy(l)=ma{ wy(K)]—minfwy(K)],Kel; (i) @4(K)=wy(K)
+FX_/# [hereX_=X2—X", whereX' are defined in Eq(24)];
(iii) (wq) , Which is the average aby(K), over a given part of the
Brillouin zonel; (iv) wo={w4(K)) 5z, i.e., the average band sepa-

b b T A"i‘ T + ration over the entire Brillouin zone; and, finally(v)
+[Ao—F(OXP=F(Dld]b/b — 7= (aj ;@ +ajay+1) Bo=wo+FX_/h.

H =E| [A2—F(t)X2—F(t)ld]a/a,

b the field is finite, we depart from the procedure used in Ref.

1
+ T(bfﬂbﬁbfbm)— F()X**(abi+ba) (. (24 30 by applying the discrete Fourier transformation

The terms involving the constar¥€ and X® describe a site- , ) iKld
independent shift, due to the electric field, of the unperturbed U :; Uge™",
energiesAd andA3, while the band coupling is described by
the term involving the constast®”. The remaining terms in
the Hamiltonian involve the site-dependent potential energy uy=——> ule Kl (27)
—F(t)Ild and the hopping between nearest-neighbor sites. Np“T

Due to the terms involving? andX® the model represents a ) o, b i eKIF
generalization of the two-band model, which was solved irdirectly on Eq.(25. With the notationuy =P e'"™ the
Ref. 30. The reason for introducing these parameters is th&gSult is

we can construct, as shown below, a mapping between the

tight-binding model and a general two-band moghen the 9 [Pk} [(K)-Fx*  —FX® Pk
band couplings are described with the paramem,st, 'F(;_K Py | —Fxe® E(K)—Fx°/ | PR
andR?P). The various energy parameters describing the two- (29)

band superlattice are summarized in Fig. 1.
We shall first consider static electric fields. Then theand
Schralinger equatiorH su=eu in the site representation is
solved by making the ansatz=3,(u?a/+uPb/)|0) and Py onq=Pre ' €Te/h, (29)
projecting out theth component, which results in the fol-

lowing coupled equations for the expansion coefficients: ~ The form of Eq.(29) is analogous to Eq20). Furthermore,
Eq. (28) in the tight-binding model has the form of E{.9)

A2 if the bands are identical. In addition, the band couplings in
(AS—FXE‘—Fld)Uia—Z(Uf‘_pL ud, ;) —FX2PuP=eu?, the general model must be time independent and satisfy
X2=R?, XP=RP, andX?’=R2"=RP2, The last equation re-
b quires thatX®® is real. If these conditions are fulfilled, the
(AB—FXb—FId)uF+ ﬁ(uf’,lJruFH)—FXabuf‘: 6U|b. tight-binding model describes exactly the energy spectrum

4 Eq. (21). The conditionX®—R3=XP—R"=0 can be relaxed
(25  in the case where only the difference spectrum between the
two WS ladders is required to be exact. Then it is sufficient
that X3—R3=X"—RP=AR.3!

We now return to the solution of E@28). The diagonal
matrix elements in this equation can be eliminated by trans-

corresponding to the  plane-wave solutionsforming Py =Prexd —(i/F)f§(e’~FX*)dK']. One then
ud=eKld yP=0 andu?=0, uP=e"', respectively. When finds*® P}

For vanishing field the spectrum consists of two bands

€*P(K)=A2PF (A%P/2)cogKd), (26)
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PPPE 1@y IPE _ with AK=eA(T,.)/%, as above. A comparison of E(36)
K2 +i F K +(X3)2p2=0, (300  with Eq.(14), and Eq.(37) with Eq. (22), shows that in order

to obtain a correspondence we must set the Fourier variable
where we defined®y(K)= wy(K)+FX_/#A. Here the band K equal to the initial crystal momentum in the general
separation is given bf wy(K)=€°(K) — €3(K), and we also model. The(difference quasienergy spectrum in the tight-

introducedX_=X2—XP. The boundary condition is binding model and thédifference spectrum obtained in the
_ _ . general model are then seen to be identical under the same
P2, 4=Pae (72T FXITg/h (31)  conditions as in the static case.

Let us next consider a paltof the Brillouin zone, where

wq(K) is a weak function oK (i.e., the bands are almost IIl. RESPONSE

flat). Specifically, we demand thak wy(l)=maxq wy(K)]

We have thus far examined the general properties of the
energy spectrum and the wave functions of a superlattice in
an external field. The next step is to compute the physical
quantities, such as densities or drift velocities. To this end
Pa _ g ih(@a=opKi2F (32) we must construct an appropriat'e kinetic equation. The sjm—

K ' plest approach would be to consider the Boltzmann equation.
Here the frequencyw, is given by w|2=w§+?5§ with H_owever, since we are int_ereste_d_in the properties of systems
we=2(]X?"/d)wg . Let us define the mean band separationWith two or more occupied minibands, where a coherent
wo={wq)p and Bo=wy+FX_/#. The integration interval band-to-band transfer plays an essential role, it is necessary
can be extended to the whole Brillouin zone whento use a method that allows one to consider quantum-

Awy(B)<|@|. The solutions Eq(32) then correspond to mechanical tunneling. In the following sections we shall use
the spectrum the density-matrix description.

—minfwyg(K)], Kel, is small compared to
[{wg),+FX_/#| (the average is calculated ovey. In this
case Eq(30) is easily solved and one finds

AZ+AS X, hQ :
— 7i7+phw3, p aninteger
In order to describe the coherent transport we shall start
Ol= w2+ @2, (33  from the equations of motions for the density matrix in the
. . _ limit where collisions may be neglected. Such equations of
whereX,, =X?+X. Thus the two interpenetrating WS lad- motions were derived by Krieger and lafrdfe? Thus we
ders are positioned symmetrically around the band midpointake as our starting point E¢51) of Ref. 27, adapted to the

*

et = A. Density-matrix equations of motion

translated by—FX,/2, and the ladder separation#€);.  case of two minibands. The density matrix is defined as
The exact form of the spectruf@3) can also be obtained in
a much more direct way by looking for localized solutions to v () = x,t)| p(x,t (G, 38
Eqg. (25). We restrict the solution to be confined within the ook (1= (Dl D] i (1) 38
pth unit cell. Solving and for coherent motion its diagonal element§ £ pakax
AS_F(xa+pd)—6 _anb etC) SatISfy
=0, (34
—FXxab AS—F(XP+pd)—e (39 apg(t) 1 t
| | | = SRel h(K,0) [ (K, )0pR() — etV Tae .
we find the spectruni@3). The difference spectrum obtained 9t 2 0
under the flat-bandor localization condition will reappear (39
in Sec. lll when we discuss the electronic response in a static
field in the case of nearly flat bands. (9pﬁ(t) 1 t
Next let us turn to time-periodic fields, when the right- = —Re[ h*(K,t)f h(K,t’)[pﬁ(t’)—pﬂ(t’)]dt’],
. . . ot 2 0
hand side of Eg.(25 acquires the additional terms (40)
i(7 ol at) ud®. Following Refs. 7-9 we substitute
U= Qexpli[ et+eA(t)Id]/%) (35 “Where
and Fourier transform, whence h(K.t)= 2F (1)RA[k(t)]
)= T
" d (Qﬁ) e’[k(t)]-F(t)x* —F(t)xaP
ih— = t
at\ Qg —F(t)XaP e’ [k(t)]—F(t)XP ><exp( —if {wg k() ]+ F(t)R_[k(t) /At
Qk ’
X E) (36) (41)
Qk )
— pa _ A — a
From the Fourier transform ¢85) we get the boundary con- and R_(k)=R"(k) =R"(k). Defining p..(K,t)=pk(t)

dition +pB(t) we get, from Eqs(39) and (40),

Qu(t+Ta0)=Qp s Tac’®, (37) p.(K,1)=0, (42)
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. .. .
b(K,t)z—Re{h(K,t)f h* (K,t")p_ (K t')dt'}, Po=u(up—ug). (49
0 43 From Eqgs.(43) and (47) above we get the boundary condi-

“3 tions p_(K,0)=0 andp_(K,0)=—u?p_(K,0). These equa-
where we definedz&p/ﬁt_ Equation(42) is simply a state- tions are readily numerically integrated, and a few special
ment of particle number conservation, while the integro-cases were described in our recent paper.
differential equatiori43) determines the kinetic properties of
our system.

As it stands, Eq(43) is unsuited for analytical applica-  The results derived above can be used to obtain an expres-
tions because of the non-Markovian “collision ternfiires-  sion for the drift velocityv (t). The result can be expressed
ently, the “collisions” consist of band-to-band transfers, as a sum of a semiclassical, intraband term and a term with

dressed with the effects of the external figlddowever, it quantum-mechanical origin, which incorporates Zener tun-
can be solved numerically by the technique described in Refeling.

32. We now prove that Eq43) can be reduced to a third- Omitting the details, we state our result:
order differential equation and then handled by standard nu-

Current

merical techniques, if we assume thet 0 except in equi- — Y ” ba ab
librium. In addition, it will be shown that the form of this 0()=2 pk(Dvi(t) +23 [Rep(HRe()
equation is invariant after a finite switch-on perip@ T,]. . .
At the end of this time interval the response belonging to an = Imp () Imuv>(1)], (50
initial momentumK depends only on the positidq(T,) of Where
the semiclassical motion df and on the boundary condi-
tions of p_ att=T,. , 1 9€e"Tk(t)]

Since the differenK components do not mix if43), we vp()=5——F—, (51

- . h ak
can keep the initial momentul fixed. In order to ease the
. . _a i .

nc_Jtatl(_)n yvg write Eq.(41)_as h _ue' . Then the. rglauon v;b(t):_de[k(t)]Rab[k(t)]_ (52)
uh=(u+iu¢)h holds. Using this and differentiating Eq. ] . ) a
(43) we get The nondiagonal density-matrix eIemeryj’,% can be ex-

pressed in terms of the diagonal elements

t
Up_=up_—UueR ihfh* _dt't—ulp_. (44 i t
p-—1p d’e{ o } p-. (44 u(t)pﬁa(t):—zh(K,t)fh*(K,t’)p_(K,t’)dt'.

0
An auxiliary function w is next defined by (53

l ¢ ) . .
w=—Im{hfoh*p_dt'}. It satisfies the equation Using the auxiliary functiorw defined in the previous sec-

tion, we obtain

UW=UW+udp_ . (45)
We proceed by expressing in terms of another auxiliary Re{u(t)p23(t)} = _; t&dtf, (54)
function w=uw. Usinguw= ¢p_, we obtain o u
TTAY ’ 1.
w(ty=u() [(EP=) 4, 49 Im{u() PR3O} =~ 5p (K., (59

o u(th

ab ; :
This allows one to rewrite Eq44) as If R® is real, Eq.(50) can be further reduced and one finds

— 1 :
v(0=2 pr(Ovk(V) = 5E 2 p-(KDhoIKD].
(56)

Finally, dividing Eq.(47) by U&, differentiating, and multi- In I_Eq. (50) or (56) the fil_’St sum is the semiclassical contri-
plying by u3¢2’ we arrive at the third-order differential bution to the dl’lft. velocilty, th|Ie thg second sum accounts
equation for Zener tunneling. Sinceg(t)+pg(t) = const (deter-
mined by the initial conditions we can express E@56) in
- : _ terms of p_(K,t) alone. Thus a numerical solution of the
P3p—+P2p—+P1p—+Pop-=0, 48 hird-order differential equation derived in the previous sec-
where tion, Eq.(48), is sufficient to determine the full time depen-
dence ofy (t). This, however, must be done for each initially
P3= u?e, occupiedK value and we leave applications for future work.

u. . (tdp_
'p,——p,+u2p,+u¢f LLEPWErS (47)
u o u

p,=—u(2uug+ ué}ﬁ), B. Zener tunneling

_ o The numerical calculations of Zener resonances based on
p1=(—ul+2u?+u*+u?¢?) ¢+ uude, (48) were discussed in our recent papeSince tunneling
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between bands plays an important role in the interpretatioplings R are independent of time and we dend®=R?,

of our results we now consider the condition for Zener tun-X?=RP , andX2°=R=RP2 \We have

neling in the present two-band model. The electrical field is
=F(>0).

assumed to be statie(t)=F(>0) u=2(|X2/d) wp=we,

1. Analytical considerations

(@ Weak coupling limitWe shall show how a two-band ¢=—(@ot w). 62)

version of Eq(14) can give Zener resonances, following the ) )
perturbative method used by Mullet al,3® which is valid ~ Equation(61) is then
for weak band coupling. The two-band system is

—(Bo+w1)p_+wip_— (Bt wy) (W24 (Bo+ w1)?)p-

Ca
K). (57) +w2wp_=0. (63

J (cﬁ) _(ea—FRa —FR?
Ck

i
"atlce) Tl —FRb2 P-FRO

The system is linear and time periodic with peribg. The We write Eq.(63) in the form

solution (Cﬁ(NTB),CE(NTB))t can then be obtained from

the initial state(C2(0),CE(0))! by applying the time propa- (LotLi+L)(potpitp)=0, (64)
gator Uy N times on the initial state. The propagator

Ug_ is found as follows. By defining Cg(t) wherelL, andp,, u=0,1r, are of the zeroth, first, and
=Cy(t)exd — (i/h) [t(e’—FR")dt’] the diagonal in Eq. higher order inw;. We get

(57) is eliminated,

- e 2

Lop—=—@op-—@Q{p-,
1%
ot

Ck
Ck

Cx

Ck

_(Gab)* 0

( 0 Gab

- P,
Lip-=—wip-twip-—w1(Q]+205)p-+wiwgp-,

where Gab:i(FRab/h)exp(—ifg%ddt’). We work in the . _

limit of small band coupling$G°(t) Tg|<1. To first order Lip—=~wi(3wg+wy)p- . (65)

in Fab:ngGabdt’ the initial state (1,0) develops in a

Bloch periong,% to (1,—('@)*)" and the orthogonal state  The boundary conditions arepy(K,0)=p_(K,0),

a _ ; . .
(0,1) to ('*",1)". The time propagator is then p1(K,0=p,(K,0=0,  p,(K,00=0, and  p,(K,0)
= —wgpM(K,O). The zeroth-order equatiolhgpg=0 is
i (Te readily integrated:
Up=ex ——f [ €2+ €~ F(R3+RP)]dt’

2h Jo

M raby ) po+ Q7 po=B5po(0). (66)

X (59

—(roM)* - M* Using the zeroth-order equation and E6) in the first-
order equatiorigp;+L1po=0 and integrating, we find
whereM=exp{(i/2)fg‘35ddt’]. According to Ref. 33, the

resonance condition is that there should be a phase difference

2mp, wherep is an integer, between the diagonal elements. p1tQ2p=—3,

In our case, the resonance condition is therefore
Tg~
JoPwqdt’ =2mp or

t

wl[Po_Po(O)]ﬁLj

0

wlbodt,:| . (67)

It is now clear thatp, contains only the frequenc, . If
w41(K) is an analytic function then the spectrum of is
i: i( p— &) p aninteger. (60) pwg, wWherep is an integer. From Eq67) we see that the
Fd fiwg d Fourier spectrum ofp; consists of the frequencies
O,+pwg, wherep is an integer.
(b). Static flat-band limit Let us now discuss the case Let us turn to the particular case with cosine bands Eq.

where the band coupling is not assumed to be small. For &£6). As shown in Sec. Il B, the cosine bands can be gener-
static field Eq.(48) reduces t& ated by a simple tight-binding model. For finite field values

the energy spectrum is given by E(R3). Performing the
e . e . integrals we obtain
dp_—dp_+ U+ d*p_—uPPp_=0.  (61)

. _ K,
We restrict ourselves to th'e'case whiesy | <|@g|, where po(K,t)= %20)(5% wicod)t),
w1= wq— wq. Furthermore, it is assumed that the band cou- [
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K.t)= Bo(AT+AD) wlpe(K,0)
T 2 OO wB) we

300 : T T T

5 :
o, 250F
o) [
X { wgCoKd+ wgcoq wgt +Kd) < 200f
o :
+(Q,— wg)coKdcod) t— Q,cog Qt+Kd) ‘g’ 150¢
o _
Q- wg o 100}
+ 5 cog (Q,+ wg)t+Kd] L ;
& 50}
Q+w 3 .
— —— 00 ()~ wg)t—Kd] |, (68) Nk
2 0.0 0.5 1.0 1.5 2.0
£=x"/d
where(), was defined in(33). Thus, to first order inw; the
response contains the first intra-WS transitiog and the FIG. 2. The first five Zener resonances as a function of the band
inter-WS transitiond);, Q,* wg. coupling parametef=X2"/d. The diamonds represent the field val-

The structure of the perturbative solutio8) seems to ues at which the distance between WS ladders has a local minimum.
suggest that the response frequency spectrum always corréhe solid lines give the local minima for the flat-band model. The
sponds to intra- and intertransitions betweeunasjenergy  error bars indicate at which field strengths the electronic response
ladders. This expectation is proven analytically in the Ap_shows a Zener resonance. The finite widths are a consequence of
pendix for static fields. The numerical examples in Ref. 2odispersion. See the text for further discussion. The superlattice pa-

. . . S _ _ _ b_
also support this conclusion for time-periodic fields. rameters ar =0, d=10 nm,A7=14 meV,A7=14 meV, and
AFP=AZ—A5=20 meV.
2. Numerical example

In our recent papéf we presented examples of a numeri- bandwidths and band separations are con.trolled by Mo pa-
cal solution of the equation of motion for the density matrix rameters expt«l) and exp(-«b), wherel is the barrier
p_(K=04). It was found that at certain, relatively sharp thickness separating the double well from the neighboring
defined values of the applied field the time dependence d;kznuble well,b is tr21e barrier between the pair of wells, and
p_(01) exhibited a full inversion, i.e., its values ranged from «“=2m(Vo—E)/%* with V,=0.3 eV ancE is the energy of
+1 (the initial value corresponding to a carrier in baajdto the bound state for an isolated quantum well. It is the.n pos-
— 1 (carrier in band). The sharp resonances, corresponding’s'ble to choose values fdr b, and the quantum-well width
to complete band-to-band transfer, were termed “Zener resg? SO that the band parameters are comparable to the ones
nances.” These features were shown to be intimately relatedS€d in our numerical work. The conclusion is thus that the
to the Wannier-Stark ladder structure of the system: Theersatility of the GaAs-AlGa, _,As system allows one to
resonances occurred when the level differences of the doubfée tune the miniband structure so that the conditions for
ladder (corresponding to the two-band systewas at mini- ~ €xperimental verification are present. .
mum. In the present section we describe the results of exten- The results of our numerical work, which consists of three
sive simulations that generalize our earlier results in the folSeparate calculations, are summarized in Fig. 2. The first
lowing two respects(i) We allow the interband coupling, calculatlon_con5|sts of an evaluauo_n of the Io_cal minima of
described by a parametér=X2b/d, to vary from zero to the normalized WS ladder separatias a function of field
large values andi) we examine the equation of motion for Strength. These are represented by diamonds in Fig. 2. The
41 differentK points, covering the entire Brillouin zone. normal_lzed WS Iadder_ separation is constructed in three

We next comment on the choice of the parameters definSteps:(i) Compute the differences of the energy levels in the
ing our model. Our numerical investigations show that thefWo WS ladders(ii) divide the differences byd, and iii )
plateaus are most clearly resolved when the following conSelect the part of the normalized difference spectrum that
ditions are met(i) The bandwidthsA® should be as large P€longs to[0,0.9. It is seen from Fig. 2 that by increasing
as possible andi) the band separation at the zone boundary{"€ interband coupling the local minima are shifted mono-
should be small. Under these conditions the inversion ofonical towards higher-field values and that they vanish in
p_(K,t) occurs on a time scale that is of the order of a fewSUCCeSSION. The local minima are ngmbgred from the h|gh-
Bloch periods, which is essential for distinguishing the pla-fi€!d €nd at zero band coupling. The first five local separation
teaus. minima are depictedwhen they existin Fig. 2.

One should next address the question whether these con- 1€ Second part of Fig. 2 is a comparison of part one with
ditions can be realized within existing semiconductor mate{N€ local minima of the WS ladder separation in the case
fials, such as GaAs-AGa, As heterostructures. We have Where the double ladder is given by E@3). The normal-
used equal bandwidths of 14 meV for the two minibands 2€d difference spectrureg=*(e" —e")/Fd is
and a band separation of 20 meV. A possible experimental - .
realization of such a system with two minibands can be ob- o \/4 2, AP+FX_ int
tained in a superlattice that containgair of quantum wells €ait = 0= 3 Fd » g aninteger.
in its unit cell>*31t is not difficult to see that in this case the (69)
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In our numerical example we have skf=XP=0: thus tion is developed and the resulting third-order differential
P AR guation is shown to be well suited for both analytic and

X-=0. The Inormahze(:] WS Iadder4 Sepa;t';)gdha_solocaﬁumerical studies of Zener tunneling in the two-miniband
minima (equal to zerpwheneverq— y4£"+( = system. We also give numerical results for Zener resonances,

or identified in our earlier work? and interpret them analyti-
cally applying the tools developed in this work.

1 1
= A2 _ A2
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In the limit of zero band coupllng we getF_ld—q/A , In eral Bloch problem.

exact agreement with the correct result. In the high-field
limit the local minima should be af=q/2. As seen from
Fig. 2, the flat-bandor localized model tends to overshoot APPENDIX: RESPONSE FREQUENCY SPECTRUM

the exact findings, but it provides an important hint about \We shall demonstrate that the response frequency spec-
where to find the local minima. In general, the flat-bandirum in a dc field consists of elements corresponding to intra-

model is not formally correct: the numerical calculationsand inter-WS transitions. In Sec. Il we found the linearly
show that the two WS ladders never coincigievel repul- independent solutions

sion) for nonzero band coupling. But even in our case, where

the bands are far from being flat, it estimates well the local

minima. _ _ WD =e7 S Cjnba(X) (A1)
The last part of Fig. 2, denoted by error bars, is a calcu- nK

lation of Zener resonances, based on examining the time de-

velopment ofp_(K,t). As shown in our papéf the number to the Schrdinger equation by using tHé-dimensional Flo-

of oscillations inp_(K,t) within a plateau increases when quet theorem. Now expanding a general solution as

the field is decreased. A plateau is better defined at the center

than at the terminal points where the deviation from a con-

stant value ofp_(K,t) is largest. Thus for Zener resonances P(x,0)=2 alyP(x1), (A2)

with high index it is not sufficient to calculatg™"(K). In- P

o o 5 PE1S,25 e e er s coan, for e diagonal lement () f the ey

Zener resonance is then a field value at which any of thé)peratorp(x,t)—|¢/x(x,t))<¢(x,t)|,

plateau center values have reachetl. For a fixed interband

coupling the first five Zener resonances have been estimated Pnk(t) ={¥nk(X,0)|p(X,1)|¢nk(X,1))

(when they existfor 41 evenly distributedK points in the

Brillouin zone. Some dispersion was detected, and this is = > a® PP P He—i(e;’,?ej",','tm
indicated by the height of the error bars in Fig. 2. In the N R

weak-coupling limit we find zero dispersion and the Zener K",j"n",p"

resonances coincide with E@O0). As seen from Fig. 2, there

is an excellent overall correspondence between local minima Xk (X, 1) sk )N Prrkr (X (X, 1))

of the normalized WS ladder separation on the one hand and (A3)

the Zener resonances on the other hand.

The ABS's are time-periodic functions with perid@ . Thus
IV. CONCLUSION pnk(t) contains only frequencies that are a subset of energy
differences between the WS ladders.
wave function for an electron in a periodic potential, such a In Sec. Ill the gauge was changed. We now show thgt the
' 5response frequency spectrum still consists of energy differ-

I(?in?e-sdimg:r?crl]ed; u(j;()i;orsr%pggi:trlizeﬁetlj dn?se;;hzn:jn;y?r?fsngfs @nces between the WS ladders for the scalar-potential Hamil-
P P . tonian. In the new gauge the ScHioger equation is of the

of accelerated Bloch states. The properties of the expansi
coefficients allow us to give a unified treatment of several

different results, obtained by a variety of techniques in the

literature, for the superlattice. In static fields, the Wannier- Pt
Stark ladder spectrum can be deduced for a superlattice with HaX D (x, ) =1k ot

a finite number of finite bands and in the time-dependent

case with a periodic external field; a fractional quasienergyye expand the wave function directly in the ABS's

spectrum emerges for certain values of the external figld.  (x t)==3 B« (t) ¥(x,t) and find the systeff
A mapping is constructed between a two-band tight-binding ’

model and the general system considered)inThis allows 9B, (1)

one to make several general statements concerning the propz Z=n€2 7 _ _ rp (V1B (1) — F(t R Tk(t) 1B, (t
erties of the two-band system, both in static and time- at enl k(1) [Buk(t) ()2; LK 1Bok(t),
dependent situationsiii) A density-matrix equation of mo- (A5)

Our main results can be summarized as follogs.The

. (A4)



17 700 JON ROTVIG, ANTTI-PEKKA JAUHO, AND HENRIK SMITH 54

which is identical to Eq(14). The integration method in Sec. pr(D)= > aKJ_,a;.”euwj,—wj”)tpg,n(t)P%”n*(t)_
Il gives us linearly independent solutions G ] ] )
(A7)

R(X,1)= 2>, Cin(t X,t). A6
i ; in(t) $nic(x.1) (A6) The diagonal elements have a different appearance as com-

pared to Eq.(A3), but the conclusion concerning the re-
Expanding the wave functiog(x,t) =2 ja; ﬁj(x,t), we  sponse frequency spectrum is the same as before the gauge
get change.
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