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Theory of coherent time-dependent transport
in one-dimensional multiband semiconductor superlattices
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We present an analytical study of one-dimensional semiconductor superlattices in external electric fields,
which may be time dependent. A number of general results for the~quasi!energies and eigenstates are derived.
An equation of motion for the density matrix is obtained for a two-band model and the properties of the
solutions are analyzed. An expression for the current is obtained. Finally, Zener tunneling in a two-band
tight-binding model is considered. The present work gives the background and an extension of the theoretical
framework underlying our recent Letter@J. Rotviget al., Phys. Rev. Lett.74, 1831 ~1995!#, where a set of
numerical simulations was presented.@S0163-1829~96!04148-3#
na
tio

h

f
a
o

th
ui
c
ts
ca
o
tt
/o
e

ity
h
s
e

r-

f
d

u

W
d
ion

he
,
al
tan-
of
p-
r of
of
ofs

of
rk
ture
of

the
of
ply
tice
on
es-
nd
nti-
ng,
lts

an
e-

the
wo

d
ced
I. INTRODUCTION

Studies of Bloch electrons under the influence of exter
electric fields attract at present intensive theoretical atten
~some recent papers can be found in Refs. 1–14!; this is a
natural consequence of recent experimental advances, w
include the observation of Bloch oscillations15 and studies of
photon-assisted transport.16–18Thus the classic predictions o
Bloch19 and Zener20 finally have been verified, and the aren
is open for new investigations and ideas. The physics
superlattices in external fields is extremely rich due to
large number of parameters that can be controlled q
freely. Many of the physical properties are sensitive fun
tions of these parameters and hence slight adjustmen
their values allow one to move between different physi
regimes, both experimentally and theoretically. Examples
such parameters are the miniband structure of the superla
~which can be controlled by varying the composition and
thickness of the layers comprising the superlattice to m
the requirements of the particular investigation! or the inten-
sities and frequencies of the external fields. This flexibil
allows one to study many different physical phenomena. T
papers quoted above have addressed such varying phy
phenomena as~i! dynamical localization or band collaps
~originally discussed in Ref. 21! either in dc or ac electric
fields, ~ii ! interplay of field-induced localization and Ande
son localization due to disorder,~iii ! chaotic motion of
charge carriers, or~iv! full-scale numerical integration o
semiconductor Bloch equations, which allow one to stu
interaction effects, such as exciton dynamics.

Much of the interest has been caused by the need of
derstanding the interplay of Bloch oscillations~i.e., coherent
time-periodic motion of charge carriers in one band!, Zener
tunneling between Bloch bands, and interaction effects.
studied recently22 a two-band tight-binding model and foun
via a direct numerical solution of the density-matrix equat
540163-1829/96/54~24!/17691~10!/$10.00
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of motion a rather complicated temporal behavior for t
diagonal ~in miniband index! component. This structure
however, could be interpreted in terms of intuitive physic
arguments. Our numerical study was facilitated by a subs
tial amount of analytic background work, and the purpose
this paper is to provide a full account of the formal develo
ments. In subsequent sections we shall derive a numbe
formal results, which we believe to be generalizations
previously known results, and we give mathematical pro
of several statements made in our previous work22. We also
give a detailed discussion of the density-matrix equation
motion, upon which our previously reported numerical wo
was based, which can be used as a starting point for fu
studies, for example, consideration of relaxation or loss
phase coherence due to scattering.

The paper is organized as follows. In Sec. II we derive
energy spectrum for a superlattice with a finite number
finite bands, in static and time-dependent fields, and ap
the general results to the tight-binding two-band superlat
of Ref. 22. Section III is devoted to the equation-of-moti
analysis of the density matrix and a derivation of an expr
sion for the current, from which semiclassical intraband a
quantum-mechanical tunneling contributions can be ide
fied. We also give some analytic results for Zener tunneli
which we used in the interpretation of our numerical resu
of Ref. 22. Sec. IV gives our conclusions.

II. ENERGY SPECTRA

In this section we consider the energy spectrum of
electron in a superlattice in the presence of a static or tim
periodic electric field, which causes coupling between
bands. The general Bloch problem can be divided into t
cases: the zero-field spectrum consists of~i! an infinite num-
ber of finite bands and~ii ! a finite number of finite bands an
an upper infinite band. In general, the spectrum is repla
17 691 © 1996 The American Physical Society
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by resonances. For a recent review see Ref. 14. In this p
we considerN finite bands. As shown by Avronet al.23 the
spectrum is pointlike and can be thought of asN interpen-
etrating Wannier-Stark~WS! ladders. Below, it is shown
how our formulation allows a direct proof of this fact. In th
final part of this section we introduce the tight-binding mod
of a superlattice containing two minibands used in the sim
lations of Ref. 22 and establish a connection to the gen
results derived in the beginning of this section.

A. Electronic motion in a superlattice

We consider a semiconductor superlattice with a grow
direction parallel to thex axis. The lattice period is denote
by d and is repeatedNp5L/d times, whereL is the length of
the superlattice. In the effective-mass approximation24 the
wave function satisfies the usual Schro¨dinger equation with
the scalar-potential HamiltonianHf given by

Hf~x,t !5
px
2

2m
1Vc~x!1eE~ t !x, ~1!

wherem is the effective mass,Vc(x) is the periodic potentia
with periodd, andE(t)5„E(t),0,0… is the electric field. For
E(t)50, the eigenstate problemHf(x)c(x)5ec(x) is
solved by the usual Bloch states~BS’s!

fnK~x!5
1

AL
eiKxunK~x!, ~2!

with eigenvaluesen(K) associated with the miniband in
dexed byn. In a finite electrical field we follow26 and intro-
duce accelerated Bloch states~ABS’s! when calculating the
energy spectrum. We assume that the field is applied
t50 and define the vector potentialA(t)5„A(t),0,0… by
A(t)52*0

t E(t8)dt8. Then the semiclassical time evolve
ment of the crystal momentumk(t)5„k(t),0,0… is given by

k~ t !5K2~e/\!E
0

t

E~ t8!dt85K1eA~ t !/\. ~3!

At this point it is useful to introduce the HamiltonianHA in
which the electrical field is represented by the vector pot
tial instead of the scalar potential

HA~x,t !5
@px1eA~ t !#2

2m
1Vc~x!. ~4!

The ABS’s, defined as

cnK~x,t !5
1

AL
eiKxunk~ t !~x!, ~5!

are instantaneous eigenstates to the time-dependent H
tonianHA(x,t),

HA~x,t !cnK~x,t !5en@k~ t !#cnK~x,t !. ~6!

The set of ABS’s forms an orthonormal basis. The so-ca
Houston function25 fnk(t)(x) can be expressed in the AB
basis as
er
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fnk~ t !~x!5eieA~ t !x/\cnK~x,t !5eieA~ t !x/\
1

AL
eiKxunk~ t !~x!

5
1

AL
eik~ t !xunk~ t !~x!. ~7!

The Houston function is thus an ordinary BS correspond
to the wave vectork(t).

We shall write solutions to the Schro¨dinger equation

Hf~x,t !c~x,t !5 i\
]c~x,t !

]t
~8!

in the formc(x,t)5e2 i et/\u(x,t), whereu(x,t) is spatially
periodic with periodL. We thus have

Hf~x,t !u~x,t !5eu~x,t !1 i\
]u~x,t !

]t
. ~9!

For a static electric field the functionu can be chosen to be
independent of time ande is the energy. If the field is peri-
odic in time with a periodTac , Floquet’s theorem states tha
u will have the same periodicity. The Floquet solutions d
fine the quasienergye, which is a generalization of the en
ergy.

Now let us expandc(x,t) in the ABS’s according to

c~x,t !5(
n,K

CnK~ t !eieA~ t !x/\cnK~x,t !. ~10!

We then insert~10! into ~8! and use

i\
]cnK~x,t !

]t
5 i\

eiKx

AL
¹kunk~ t !~x!k̇, ~11!

where we definedk̇[]k/]t. Since¹kunk is a periodic func-
tion with periodd, it may be expanded in terms of the fun
tionsun8k according to

i¹kunk~ t !5(
n8

un8k~ t !Rn8n@k~ t !#, ~12!

where the expansion coefficientsRn8n are the matrix ele-
ments

Rn8n~k!5
i

dE2d/2

d/2

dxun8k
* ~x!¹kunk~x!. ~13!

Combining Eqs.~11! and~12! with k̇52eE/\ results in the
following coupled equations for the expansion coefficie
CnK(t):

i\
]CnK~ t !

]t
5en@k~ t !#CnK~ t !2F~ t !(

n8
Rnn8@k~ t !#Cn8K~ t !,

~14!

where F(t)52eE(t). Equations similar to Eq.~14! were
derived by Krieger and Iafrate.26 Our formulation differs
from theirs in that they use a gauge transformation in or
to eliminate the spatially nonperiodic termeE(t)x. We avoid
the gauge transformation and thereby keep the notion of
ergy. Instead we introduce a common factor exp@ieA(t)x/\# in
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54 17 693THEORY OF COHERENT TIME-DEPENDENT TRANSPORT . . .
the ABS expansion of the wave function. As seen from E
~10!, this is the same as using an ordinary BS expansion
the wave function:

c~x,t !5(
n,K

CnK~ t !fnk~ t !~x!

5e2 i et/\(
n,K

cnK~ t !fnK~x!, ~15!

wherecnK(t)5Cn,K2eA(t)/\(t)e
i et/\. The functionu is found

from Eq. ~15!,

u~x,t !5(
n,K

cnK~ t !fnK~x!. ~16!

The set of coupled equations~14! for the coefficients
CnK(t) together with a boundary condition will now be use
to derive properties for the~quasi!energy spectra.

1. Static fields

In the following we consider a model periodic potent
corresponding to a finite numberN of energy bands and
demonstrate the WS form of the spectrum in static fields.
a static field,F(t)5F(.0), thecnK’s in Eq. ~16! are inde-
pendent of time. From this condition and the periodicity
the cnK’s in K it follows that

CnK~ t1TB!5CnK~ t !e2 i eTB /\, ~17!

whereTB52p/vB andvB5Fd/\. For eachK in the Bril-
louin zone~BZ! there areN linearly independent solution
CK j (t), j51, . . . ,N, to the system Eq.~14!. From Eq.~17!
we see that the energy for a specific solutionCK j (t) is only
determined mod\vB . The system of equations~14! has
periodic coefficients with periodTB . By applying the
N-dimensional Floquet theorem we know that the solutio
can be found of the formCK j (t)5eivK j tPK j

0 (t), wherevK j is
only determined modulovB andPK j

0 (t1TB)5PK j
0 (t). From

Eq. ~17! the energies of the Floquet solutionCK j (t) are
eK j
p 52\vK j1p\vB , p5integer. Solving Eq.~14! with K
replaced by K85K1(2p/d)t0/TB we obtain solutions
CK8 j

8 (t)5eivK j (t1t0)PK j
0 (t1t0) . Comparing with the Floque

solutionsCK8 j (t)5eivK8 j tPK8 j
0 (t) we conclude thatvK j can

be chosen to be independent ofK. The energy spectrum i
then

e j
p52\v j1p\vB ; j51, . . . ,N; p an integer.

~18!

We see that the spectrum can be visualized asN WS energy
ladders.

Another way to obtain the WS spectrum is to elimina
the K dependence in Eq.~14!: the semiclassical motion o
k(t) is monotonic and can therefore be inverted to yie
t(k)5\(k2K)/F. By use of the definition
Dn(k)5cnke

2 i ek/F we obtain CnK(t)5Dn@k(t)#e
i eK/F.

Equation~14! is then reduced to a system of equations tha
independent of the initial momentumK,

iF
]Dn~k!

]k
5en~k!Dn~k!2F(

n8
Rnn8~k!Dn8~k!. ~19!
.
of

r

f

s

s

A direct calculation shows that

Dn~k12p/d!5Dn~k!e2 i eTB /\. ~20!

As before the energy is only determined mod\vB . If for a
definite solutionDj (k) to Eq. ~19! we make the replacemen
e→e1p\vB , where p is an integer, thencK j→cK je

iKpd.
Therefore the displaced energy corresponds to a spatial tr
lation of the solution by2pd, i.e., the eigenstates in terms o
the Dj (k)’s are only determined within a direct lattice dis
placement. The system of equations~19! has periodic coef-
ficients with period 2p/d. Appealing again to the
N-dimensional Floquet theorem, we conclude that the so
tions are of the formDj (k)5eikr jPj

1(k), j51, . . . ,N. The
Floquet functionsPj

1(k) are periodic with period 2p/d. By
calculatingDj (k12p/d) and using Eq.~20! we therefore
obtain the energy spectrum

e jp52Fr j1p\vB , j51, . . . ,N, p an integer.
~21!

We see again that the spectrum can be visualized asN WS
energy ladders. The relative positions of these are expre
in terms of the Floquet coefficientsr j . The system~19! and
~20! will later be used to evaluate the point spectrum fo
two-band superlattice.

It should be noted that thev j ’s and r j ’s are connected.
This can be demonstrated as follows. Floquet solutions
D(k) can also be found by using the Floquet solutions
CK(t). For an arbitrary choice of K we set
Dj (k)5e2 i eK/FCK j (k)5ei\v j k/Fe2 i (e1\v j )K/FPK j

0 (k). The
energy spectrum is thus given by Eq.~18!. Uniqueness of the
spectrum implies that the energies$\v j u j51, . . . ,N% are
equal to the WS ladder positions$Fr j u j51, . . . ,N% except
for individual multiples of\vB .

2. Time-periodic fields

In this section we consider time-periodic solutio
u(x,t) to Eq. ~9!. We can derive general results concerni
the quasienergy spectrum using the properties of theCK co-
efficients. As we shall see, the interplay between the spa
periodicity and the temporal periodicity can have significa
consequences for the quasienergy spectrum.

Specifically, let us consider a time-dependent electric fi
with periodTac . Since the coefficientscnK(t) in Eq. ~16! are
periodic in t andA(t1Tac)5A(t)1A(Tac), we find that

CnK~ t1Tac!5Cn,K1DK~ t !e2 i eTac /\, ~22!

whereDK5eA(Tac)/\. The quasienergye for a given solu-
tion CK j (t) to Eq. ~14! is only given mod\vac , where
vac52p/Tac .

Let us now consider two special cases forDK. First, if
DK50 mod 2p/d, as for a harmonic field, the condition Eq
~22! is equivalent to Eq.~17! in the static case. All momenta
in the BZ are then independent.

A special case arises ifDK5(2p/d)(p/q), with p and
q integers.9 Now a finite number of crystal momenta coup
and the quasienergies are determined from

CnK~ t1qTac!5CnK~ t !e2 i eqTac /\. ~23!
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17 694 54JON ROTVIG, ANTTI-PEKKA JAUHO, AND HENRIK SMITH
The quasienergies are now only defined mod\vac /q. The
Brillouin zone collapses to@2p/qd,p/qd# and the quasien
ergy spectrum consists of fractional quasienergy ladders

We have so far assumed that the system stays in equ
rium until t50, when it is instantaneously coupled to th
electric field. This is obviously an idealization, and it is na
ral to ask whether a finite switch-on period will change t
general results. We have repeated the above analysis
allowed for a finite switch-on period@0,T0#. The upshot is
that all formal results for the quasienergy spectrum still
ply; however, one must change the initial momentum la
K. The new momentum valuesK→K2eA(T0)/\ corre-
spond to a translation in reciprocal space.29

B. Tight-binding model

In the rest of this paper we consider a superlattice mo
with only two bandsn5a,b. The Hamiltonian is

H5(
l

H @D0
a2F~ t !Xa2F~ t !ld#al

†al

1@D0
b2F~ t !Xb2F~ t !ld#bl

†bl2
D1
a

4
~al11

† al1al
†al11!

1
D1
b

4
~bl11

† bl1bl
†bl11!2F~ t !Xab~al

†bl1bl
†al !J . ~24!

The terms involving the constantsXa andXb describe a site-
independent shift, due to the electric field, of the unpertur
energiesD0

a andD0
b , while the band coupling is described b

the term involving the constantXab. The remaining terms in
the Hamiltonian involve the site-dependent potential ene
2F(t) ld and the hopping between nearest-neighbor si
Due to the terms involvingXa andXb the model represents
generalization of the two-band model, which was solved
Ref. 30. The reason for introducing these parameters is
we can construct, as shown below, a mapping between
tight-binding model and a general two-band model~when the
band couplings are described with the parametersRa, Rb,
andRab). The various energy parameters describing the tw
band superlattice are summarized in Fig. 1.

We shall first consider static electric fields. Then t
Schrödinger equationHfu5eu in the site representation i
solved by making the ansatzu5( l(ul

aal
†1ul

bbl
†)u0& and

projecting out thel th component, which results in the fo
lowing coupled equations for the expansion coefficients:

~D0
a2FXa2Fld !ul

a2
D1
a

4
~ul21

a 1ul11
a !2FXabul

b5eul
a ,

~D0
b2FXb2Fld !ul

b1
D1
b

4
~ul21

b 1ul11
b !2FXabul

a5eul
b .

~25!

For vanishing field the spectrum consists of two bands

ea,b~K !5D0
a,b7~D1

a,b/2!cos~Kd!, ~26!

corresponding to the plane-wave solutio
ul
a5eiKld , ul

b50 andul
a50, ul

b5eiKld , respectively. When
b-

-

but

-
l

el

d

y
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n
at
he

-

the field is finite, we depart from the procedure used in R
30 by applying the discrete Fourier transformation

ul
n5(

K
uK

n eiKld ,

uK
n 5

1

Np
(
l
ul

ne2 iKld ~27!

directly on Eq. ~25!. With the notationuK
n 5PK

n ei eK/F the
result is

iF
]

]K S PK
a

PK
b D 5S ea~K !2FXa 2FXab

2FXab eb~K !2FXbD S PK
a

PK
b D

~28!

and

PK12p/d
n 5PK

n e2 i eTB /\. ~29!

The form of Eq.~29! is analogous to Eq.~20!. Furthermore,
Eq. ~28! in the tight-binding model has the form of Eq.~19!
if the bands are identical. In addition, the band couplings
the general model must be time independent and sa
Xa5Ra, Xb5Rb, andXab5Rab5Rba. The last equation re-
quires thatXab is real. If these conditions are fulfilled, th
tight-binding model describes exactly the energy spectr
Eq. ~21!. The conditionXa2Ra5Xb2Rb50 can be relaxed
in the case where only the difference spectrum between
two WS ladders is required to be exact. Then it is sufficie
thatXa2Ra5Xb2Rb5DR.31

We now return to the solution of Eq.~28!. The diagonal
matrix elements in this equation can be eliminated by tra
forming PK

n 5 P̃K
n exp@2( i /F)*0

K(en2FXn)dK8#. One then
finds30 P̃K

a

FIG. 1. Definitions of various energy parameters for the tw
band superlattice.D0

a,b are the band midpoints,D1
a,b are their

widths, and \vd(K)5eb(K)2ea(K) is the band separation
at K. Also, in the text, the following are used:~i!
Dvd(I )5max@vd(K)#2min@vd(K)#,KPI ; ~ii ! ṽd(K)5vd(K)
1FX2 /\ @hereX25Xa2Xb, whereXi are defined in Eq.~24!#;
~iii ! ^vd& I , which is the average ofvd(K), over a given part of the
Brillouin zone I ; ~iv! v05^vd(K)&BZ , i.e., the average band sep
ration over the entire Brillouin zone; and, finally,~v!
ṽ05v01FX2 /\.
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]2P̃K
a

]K2 1 i
\ṽd

F

] P̃K
a

]K
1~Xab!2P̃K

a50 , ~30!

where we definedṽd(K)5vd(K)1FX2 /\. Here the band
separation is given by\vd(K)5eb(K)2ea(K), and we also
introducedX25Xa2Xb. The boundary condition is

P̃K12p/d
a 5 P̃K

ae2 i ~e2D0
a
1FXa!TB /\. ~31!

Let us next consider a partI of the Brillouin zone, where
vd(K) is a weak function ofK ~i.e., the bands are almos
flat!. Specifically, we demand thatDvd(I )5max@vd(K)#
2min@vd(K)#, KPI , is small compared to
u^vd& I1FX2 /\u ~the average is calculated overI ). In this
case Eq.~30! is easily solved and one finds

P̃K
a5e2 i\~ṽd6v l !K/2F. ~32!

Here the frequencyv l is given by v l
25vc

21ṽd
2 with

vc52(uXabu/d)vB . Let us define the mean band separat
v05^vd&B and ṽ05v01FX2 /\. The integration interval
can be extended to the whole Brillouin zone wh
Dvd(B)!uṽ0u. The solutions Eq.~32! then correspond to
the spectrum

e65
D0
a1D0

b

2
2F

X1

2
6

\V l

2
1p\vB , p an integer

V l
25vc

21ṽ0
2 , ~33!

whereX15Xa1Xb. Thus the two interpenetrating WS lad
ders are positioned symmetrically around the band midpo
translated by2FX1/2, and the ladder separation is\V l .
The exact form of the spectrum~33! can also be obtained in
a much more direct way by looking for localized solutions
Eq. ~25!. We restrict the solution to be confined within th
pth unit cell. Solving

UD0
a2F~Xa1pd!2e 2FXab

2FXab D0
b2F~Xb1pd!2e

U50 , ~34!

we find the spectrum~33!. The difference spectrum obtaine
under the flat-band~or localization! condition will reappear
in Sec. III when we discuss the electronic response in a s
field in the case of nearly flat bands.

Next let us turn to time-periodic fields, when the righ
hand side of Eq. ~25! acquires the additional term
i (\ ]/]t) ul

a(b). Following Refs. 7–9 we substitute

ul
n5Ql

nexp$ i @et1eA~ t !ld#/\% ~35!

and Fourier transform, whence

i\
]

]t SQK
a

QK
b D 5S ea@k~ t !#2F~ t !Xa 2F~ t !Xab

2F~ t !Xab eb@k~ t !#2F~ t !XbD
3SQK

a

QK
b D . ~36!

From the Fourier transform of~35! we get the boundary con
dition

QK
n ~ t1Tac!5QK1DK

n e2 i eTac /\, ~37!
n

t,

tic

with DK5eA(Tac)/\, as above. A comparison of Eq.~36!
with Eq. ~14!, and Eq.~37! with Eq. ~22!, shows that in order
to obtain a correspondence we must set the Fourier vari
K equal to the initial crystal momentum in the gene
model. The~difference! quasienergy spectrum in the tigh
binding model and the~difference! spectrum obtained in the
general model are then seen to be identical under the s
conditions as in the static case.

III. RESPONSE

We have thus far examined the general properties of
energy spectrum and the wave functions of a superlattic
an external field. The next step is to compute the phys
quantities, such as densities or drift velocities. To this e
we must construct an appropriate kinetic equation. The s
plest approach would be to consider the Boltzmann equat
However, since we are interested in the properties of syst
with two or more occupied minibands, where a coher
band-to-band transfer plays an essential role, it is neces
to use a method that allows one to consider quantu
mechanical tunneling. In the following sections we shall u
the density-matrix description.

A. Density-matrix equations of motion

In order to describe the coherent transport we shall s
from the equations of motions for the density matrix in t
limit where collisions may be neglected. Such equations
motions were derived by Krieger and Iafrate.27,28 Thus we
take as our starting point Eq.~51! of Ref. 27, adapted to the
case of two minibands. The density matrix is defined as

rnKn8K8~ t !5^cnK~x,t !ur~x,t !ucn8K8~x,t !&, ~38!

and for coherent motion its diagonal elements (rK
a[raKaK

etc.! satisfy

]rK
a ~ t !

]t
5
1

2
ReH h~K,t !E

0

t

h* ~K,t8!@rK
b ~ t8!2rK

a ~ t8!#dt8J ,
~39!

]rK
b ~ t !

]t
5
1

2
ReH h* ~K,t !E

0

t

h~K,t8!@rK
a ~ t8!2rK

b ~ t8!#dt8J ,
~40!

where

h~K,t !52
2F~ t !Rab@k~ t !#

\

3expS 2 i E
0

t

$vd@k~ t8!#1F~ t8!R2@k~ t8!#/\%dt8D
~41!

and R2(k)5Ra(k)2Rb(k). Defining r6(K,t)5rK
a (t)

6rK
b (t) we get, from Eqs.~39! and ~40!,

ṙ1~K,t !50, ~42!
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ṙ2~K,t !52ReH h~K,t !E
0

t

h* ~K,t8!r2~K,t8!dt8J ,
~43!

where we definedṙ[]r/]t. Equation~42! is simply a state-
ment of particle number conservation, while the integ
differential equation~43! determines the kinetic properties o
our system.

As it stands, Eq.~43! is unsuited for analytical applica
tions because of the non-Markovian ‘‘collision term’’~pres-
ently, the ‘‘collisions’’ consist of band-to-band transfer
dressed with the effects of the external fields!. However, it
can be solved numerically by the technique described in R
32. We now prove that Eq.~43! can be reduced to a third
order differential equation and then handled by standard
merical techniques, if we assume thathÞ0 except in equi-
librium. In addition, it will be shown that the form of thi
equation is invariant after a finite switch-on period@0,T0#.
At the end of this time interval the response belonging to
initial momentumK depends only on the positionk(T0) of
the semiclassical motion ofK and on the boundary cond
tions of r2 at t5T0.

Since the differentK components do not mix in~43!, we
can keep the initial momentumK fixed. In order to ease the
notation we write Eq.~41! as h5ueif. Then the relation
uḣ5(u̇1 iuḟ)h holds. Using this and differentiating Eq
~43! we get

ur̈25u̇ṙ22uḟReH ihE
0

t

h* r2dt8J 2u3r2 . ~44!

An auxiliary function w is next defined by
w52Im$h*0

t h* r2dt8%. It satisfies the equation

uẇ5u̇w1uḟṙ2 . ~45!

We proceed by expressingw in terms of another auxiliary
functionw5uw̃. Usinguẇ̃5ḟṙ2 , we obtain

w~ t !5u~ t !E
0

tḟ~ t8!ṙ2~ t8!

u~ t8!
dt8. ~46!

This allows one to rewrite Eq.~44! as

r̈22
u̇

u
ṙ21u2r21uḟE

0

tḟṙ2

u
dt850 . ~47!

Finally, dividing Eq.~47! by uḟ, differentiating, and multi-
plying by u3ḟ2, we arrive at the third-order differentia
equation

p3r̂21p2r̈21p1ṙ21p0r250 , ~48!

where

p35u2ḟ,

p252u~2uu̇ḟ1uf̈ !,

p15~2uü12u̇21u41u2ḟ2!ḟ1uu̇f̈,
-

f.

u-

n

p05u3~ u̇ḟ2uf̈ !. ~49!

From Eqs.~43! and ~47! above we get the boundary cond
tions ṙ2(K,0)50 andr̈2(K,0)52u2r2(K,0). These equa-
tions are readily numerically integrated, and a few spec
cases were described in our recent paper.22

Current

The results derived above can be used to obtain an exp
sion for the drift velocityv̄(t). The result can be expresse
as a sum of a semiclassical, intraband term and a term
quantum-mechanical origin, which incorporates Zener t
neling.

Omitting the details, we state our result:

v̄~ t !5(
n,K

rK
n ~ t !vK

n ~ t !12(
K

@RerK
ba~ t !RevK

ab~ t !

2ImrK
ba~ t !ImvK

ab~ t !#, ~50!

where

vK
n ~ t !5

1

\

]en@k~ t !#

]k
, ~51!

vK
ab~ t !52 ivd@k~ t !#Rab@k~ t !#. ~52!

The nondiagonal density-matrix elementsrK
ba can be ex-

pressed in terms of the diagonal elements

u~ t !rK
ba~ t !52

i

2
h~K,t !E

0

t

h* ~K,t8!r2~K,t8!dt8.

~53!

Using the auxiliary functionw defined in the previous sec
tion, we obtain

Re$u~ t !rK
ba~ t !%52

u

2E0
tḟṙ2

u
dt8, ~54!

Im$u~ t !rK
ba~ t !%52

1

2
ṙ2~K,t !. ~55!

If Rab is real, Eq.~50! can be further reduced and one fin

v̄~ t !5(
n,K

rK
n ~ t !vK

n ~ t !2
1

2F~ t !(K ṙ2~K,t !\vd@k~ t !#.

~56!

In Eq. ~50! or ~56! the first sum is the semiclassical contr
bution to the drift velocity, while the second sum accoun
for Zener tunneling. SincerK

a (t)1rK
b (t) 5 const ~deter-

mined by the initial conditions!, we can express Eq.~56! in
terms of r2(K,t) alone. Thus a numerical solution of th
third-order differential equation derived in the previous se
tion, Eq. ~48!, is sufficient to determine the full time depen
dence ofv̄(t). This, however, must be done for each initial
occupiedK value and we leave applications for future wor

B. Zener tunneling

The numerical calculations of Zener resonances base
~48! were discussed in our recent paper.22 Since tunneling
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between bands plays an important role in the interpreta
of our results we now consider the condition for Zener tu
neling in the present two-band model. The electrical field
assumed to be staticF(t)5F(.0).

1. Analytical considerations

~a! Weak coupling limit. We shall show how a two-ban
version of Eq.~14! can give Zener resonances, following th
perturbative method used by Mullenet al.,33 which is valid
for weak band coupling. The two-band system is

i\
]

]t SCK
a

CK
b D 5S ea2FRa 2FRab

2FRba eb2FRbD SCK
a

CK
b D . ~57!

The system is linear and time periodic with periodTB . The
solution „CK

a (NTB),CK
b (NTB)…

t can then be obtained from
the initial state„CK

a (0),CK
b (0)…t by applying the time propa

gator U0 N times on the initial state. The propagat
U0 is found as follows. By defining CK

n (t)
5C̃K

n (t)exp@2( i /\)*0
t (en2FRn)dt8# the diagonal in Eq.

~57! is eliminated,

]

]t S C̃K
a

C̃K
b D 5S 0 Gab

2~Gab!* 0 D S C̃K
a

C̃K
b D , ~58!

whereGab5 i (FRab/\)exp(2 i*0
TBṽddt8). We work in the

limit of small band couplingsuGab(t)TBu!1. To first order
in Gab5*0

TBGabdt8 the initial state (1,0)t develops in a
Bloch periodTB to „1,2(Gab)* …t and the orthogonal stat
(0,1) to (Gab,1)t. The time propagator is then

U05expS 2
i

2\E0
TB

@ea1eb2F~Ra1Rb!#dt8D
3S M GabM

2~GabM !* M* D , ~59!

whereM5exp@( i /2)*0
TBṽddt8#. According to Ref. 33, the

resonance condition is that there should be a phase differ
2pp, wherep is an integer, between the diagonal elemen
In our case, the resonance condition is theref
*0
TBṽddt852pp or

1

Fd
5

1

\v0
S p2

^R2&
d D , p an integer. ~60!

~b!. Static flat-band limit. Let us now discuss the cas
where the band coupling is not assumed to be small. F
static field Eq.~48! reduces to22

ḟ r̂22f̈r̈21ḟ~u21ḟ2!ṙ22u2f̈r250 . ~61!

We restrict ourselves to the case whenuv1u!uṽ0u, where
v15vd2v0 . Furthermore, it is assumed that the band c
n
-
s

ce
.
e

a

-

plings R are independent of time and we denoteXa5Ra,
Xb5Rb , andXab5Rab5Rba. We have

u52~ uXabu/d!vB[vc ,

ḟ52~ṽ01v1!. ~62!

Equation~61! is then

2~ṽ01v1! r̂21v̇1r̈22~ṽ01v1!„vc
21~ṽ01v1!

2
…ṙ2

1vc
2v̇1r250 . ~63!

We write Eq.~63! in the form

~L01L11Lr !~r01r11r r !50 , ~64!

where Lm and rm , m50,1,r , are of the zeroth, first, and
higher order inv1. We get

L0r252ṽ0r̂22ṽ0V l
2ṙ2 ,

L1r252v1r̂21v̇1r̈22v1~V l
212ṽ0

2!ṙ21v̇1vc
2r2 ,

Lrr252v1
2~3ṽ01v1!ṙ2 . ~65!

The boundary conditions arer0(K,0)5r2(K,0),
r1(K,0)5r r(K,0)50, ṙm(K,0)50, and r̈m(K,0)
52vc

2rm(K,0). The zeroth-order equationL0r050 is
readily integrated:

r̈01V l
2r05ṽ0

2r0~0!. ~66!

Using the zeroth-order equation and Eq.~66! in the first-
order equationL0r11L1r050 and integrating, we find

r̈11V l
2r152ṽ0Fv1@r02r0~0!#1E

0

t

v1ṙ0dt8G . ~67!

It is now clear thatr0 contains only the frequencyV l . If
v1(K) is an analytic function then the spectrum ofv1 is
pvB , wherep is an integer. From Eq.~67! we see that the
Fourier spectrum of r1 consists of the frequencie
V l1pvB , wherep is an integer.

Let us turn to the particular case with cosine bands
~26!. As shown in Sec. II B, the cosine bands can be gen
ated by a simple tight-binding model. For finite field valu
the energy spectrum is given by Eq.~33!. Performing the
integrals we obtain

r0~K,t !5
r0~K,0!

V l
2 ~ṽ0

21vc
2cosV l t !,
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r1~K,t !5
ṽ0~D1

a1D1
b!vc

2r0~K,0!

2\V l
2~V l

22vB
2 !vB

3H vBcosKd1vBcos~vBt1Kd!

1~V l2vB!cosKdcosV l t2V lcos~V l t1Kd!

1
V l2vB

2
cos@~V l1vB!t1Kd#

2
V l1vB

2
cos@~V l2vB!t2Kd#J , ~68!

whereV l was defined in~33!. Thus, to first order inv1 the
response contains the first intra-WS transitionvB and the
inter-WS transitionsV l , V l6vB .

The structure of the perturbative solution~68! seems to
suggest that the response frequency spectrum always c
sponds to intra- and intertransitions between~quasi!energy
ladders. This expectation is proven analytically in the A
pendix for static fields. The numerical examples in Ref.
also support this conclusion for time-periodic fields.

2. Numerical example

In our recent paper22 we presented examples of a nume
cal solution of the equation of motion for the density mat
r2(K50,t). It was found that at certain, relatively sha
defined values of the applied field the time dependence
r2(0,t) exhibited a full inversion, i.e., its values ranged fro
11 ~the initial value corresponding to a carrier in banda) to
21 ~carrier in bandb). The sharp resonances, correspond
to complete band-to-band transfer, were termed ‘‘Zener re
nances.’’ These features were shown to be intimately rela
to the Wannier-Stark ladder structure of the system: T
resonances occurred when the level differences of the do
ladder~corresponding to the two-band system! was at mini-
mum. In the present section we describe the results of ex
sive simulations that generalize our earlier results in the
lowing two respects:~i! We allow the interband coupling
described by a parameterj5Xab/d, to vary from zero to
large values and~ii ! we examine the equation of motion fo
41 differentK points, covering the entire Brillouin zone.

We next comment on the choice of the parameters de
ing our model. Our numerical investigations show that
plateaus are most clearly resolved when the following c
ditions are met:~i! The bandwidthsD1

a,b should be as large
as possible and~ii ! the band separation at the zone bound
should be small. Under these conditions the inversion
r2(K,t) occurs on a time scale that is of the order of a f
Bloch periods, which is essential for distinguishing the p
teaus.

One should next address the question whether these
ditions can be realized within existing semiconductor ma
rials, such as GaAs-AlxGa12xAs heterostructures. We hav
used equal bandwidths of 14 meV for the two miniban
and a band separation of 20 meV. A possible experime
realization of such a system with two minibands can be
tained in a superlattice that contains apair of quantum wells
in its unit cell.2,13 It is not difficult to see that in this case th
re-
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bandwidths and band separations are controlled by two
rameters exp(2kl) and exp(2kb), where l is the barrier
thickness separating the double well from the neighbor
double well,b is the barrier between the pair of wells, an
k252m(V02E)/\2 with V0.0.3 eV andE is the energy of
the bound state for an isolated quantum well. It is then p
sible to choose values forl , b, and the quantum-well width
a so that the band parameters are comparable to the
used in our numerical work. The conclusion is thus that
versatility of the GaAs-AlxGa12xAs system allows one to
fine tune the miniband structure so that the conditions
experimental verification are present.

The results of our numerical work, which consists of thr
separate calculations, are summarized in Fig. 2. The
calculation consists of an evaluation of the local minima
the normalized WS ladder separationas a function of field
strength. These are represented by diamonds in Fig. 2.
normalized WS ladder separation is constructed in th
steps:~i! Compute the differences of the energy levels in t
two WS ladders,~ii ! divide the differences byFd, and ~iii !
select the part of the normalized difference spectrum t
belongs to@0,0.5#. It is seen from Fig. 2 that by increasin
the interband coupling the local minima are shifted mon
tonical towards higher-field values and that they vanish
succession. The local minima are numbered from the hi
field end at zero band coupling. The first five local separat
minima are depicted~when they exist! in Fig. 2.

The second part of Fig. 2 is a comparison of part one w
the local minima of the WS ladder separation in the ca
where the double ladder is given by Eq.~33!. The normal-
ized difference spectrumedif56(e12e2)/Fd is

edif5q6A4j21S Dab1FX2

Fd D 2, q an integer.

~69!

FIG. 2. The first five Zener resonances as a function of the b
coupling parameterj5Xab/d. The diamonds represent the field va
ues at which the distance between WS ladders has a local minim
The solid lines give the local minima for the flat-band model. T
error bars indicate at which field strengths the electronic respo
shows a Zener resonance. The finite widths are a consequen
dispersion. See the text for further discussion. The superlattice
rameters areX250, d510 nm,D1

a514 meV,D1
b514 meV, and

Dab[D0
b2D0

a520 meV.
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In our numerical example we have setXa5Xb50; thus
X250. The normalized WS ladder separation has lo
minima ~equal to zero! wheneverq2A4j21(Dab/Fd)250
or

1

Fd
5

1

DabAq224j2. ~70!

In the limit of zero band coupling we get 1/Fd5q/Dab, in
exact agreement with the correct result. In the high-fi
limit the local minima should be atj5q/2. As seen from
Fig. 2, the flat-band~or localized! model tends to overshoo
the exact findings, but it provides an important hint abo
where to find the local minima. In general, the flat-ba
model is not formally correct: the numerical calculatio
show that the two WS ladders never coincide~level repul-
sion! for nonzero band coupling. But even in our case, wh
the bands are far from being flat, it estimates well the lo
minima.

The last part of Fig. 2, denoted by error bars, is a cal
lation of Zener resonances, based on examining the time
velopment ofr2(K,t). As shown in our paper

22 the number
of oscillations inr2(K,t) within a plateau increases whe
the field is decreased. A plateau is better defined at the ce
than at the terminal points where the deviation from a c
stant value ofr2(K,t) is largest. Thus for Zener resonanc
with high index it is not sufficient to calculater2

min(K). In-
stead we define the center of a plateau as the time wher
oscillation amplitude ofr2(K,t) is at local minimum. A
Zener resonance is then a field value at which any of
plateau center values have reached21. For a fixed interband
coupling the first five Zener resonances have been estim
~when they exist! for 41 evenly distributedK points in the
Brillouin zone. Some dispersion was detected, and this
indicated by the height of the error bars in Fig. 2. In t
weak-coupling limit we find zero dispersion and the Zen
resonances coincide with Eq.~60!. As seen from Fig. 2, there
is an excellent overall correspondence between local min
of the normalized WS ladder separation on the one hand
the Zener resonances on the other hand.

IV. CONCLUSION

Our main results can be summarized as follows.~i! The
wave function for an electron in a periodic potential, such
in a semiconductor superlattice, under the influence o
~time-dependent! uniform electric field is expanded in term
of accelerated Bloch states. The properties of the expan
coefficients allow us to give a unified treatment of seve
different results, obtained by a variety of techniques in
literature, for the superlattice. In static fields, the Wanni
Stark ladder spectrum can be deduced for a superlattice
a finite number of finite bands and in the time-depend
case with a periodic external field; a fractional quasiene
spectrum emerges for certain values of the external field.~ii !
A mapping is constructed between a two-band tight-bind
model and the general system considered in~i!. This allows
one to make several general statements concerning the p
erties of the two-band system, both in static and tim
dependent situations.~iii ! A density-matrix equation of mo
l
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tion is developed and the resulting third-order different
equation is shown to be well suited for both analytic a
numerical studies of Zener tunneling in the two-miniba
system. We also give numerical results for Zener resonan
identified in our earlier work,22 and interpret them analyti
cally applying the tools developed in this work.
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APPENDIX: RESPONSE FREQUENCY SPECTRUM

We shall demonstrate that the response frequency s
trum in a dc field consists of elements corresponding to in
and inter-WS transitions. In Sec. II we found the linea
independent solutions

c j
p~x,t !5e2 i e j

pt/\(
nK

cK jnfnK~x! ~A1!

to the Schro¨dinger equation by using theN-dimensional Flo-
quet theorem. Now expanding a general solution as

c~x,t !5(
j ,p

a j
pc j

p~x,t !, ~A2!

we obtain, for the diagonal elementrnK(t) of the density
operatorr(x,t)5uc(x,t)&^c(x,t)u,

rnK~ t !5^cnK~x,t !ur~x,t !ucnK~x,t !&

5 (
K8, j 8,n8,p8
K9, j 9,n9,p9

a j 8
p8a j 9

p9* cK j 8n8
p8 cK9 j 9n9

p9* e2 i ~e
j 8
p8

2e
j 9
p9t/\

3^cnK~x,t !ufn8K8~x!&^fn9K9~x!ucnK~x,t !&.

~A3!

The ABS’s are time-periodic functions with periodTB . Thus
rnK(t) contains only frequencies that are a subset of ene
differences between the WS ladders.

In Sec. III the gauge was changed. We now show that
response frequency spectrum still consists of energy dif
ences between the WS ladders for the scalar-potential Ha
tonian. In the new gauge the Schro¨dinger equation is of the
form

HA~x,t !c~x,t !5 i\
]c~x,t !

]t
. ~A4!

We expand the wave function directly in the ABS
c(x,t)5(n,KBnK(t)cnK(x,t) and find the system26

i\
]BnK~ t !

]t
5en@k~ t !#BnK~ t !2F~ t !(

n8
Rnn8@k~ t !#Bn8K~ t !,

~A5!
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which is identical to Eq.~14!. The integration method in Sec
II gives us linearly independent solutions

cK j
A ~x,t !5(

n
CKjn~ t !cnK~x,t !. ~A6!

Expanding the wave functionc(x,t)5(K, jaK jcK j
A (x,t), we

get
F

e

et

n

rnK~ t !5 (
j 8, j 9

aK j 8aK j 9
* ei ~v j 82v j 9!tPK j 8n

0
~ t !PKj 9n

0 * ~ t !.

~A7!

The diagonal elements have a different appearance as c
pared to Eq.~A3!, but the conclusion concerning the re
sponse frequency spectrum is the same as before the g
change.
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