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Semiconductor noise in the framework of semiclassical transport
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The paper describes an approach to semiconductor noise analysis that is entirely within the framework of the
semiclassical transport theory. The key aspect that differentiates this approach from other noise models is that
this approach directly connects noise characteristics with the physics of scattering in the semiclassical transport
model and makes no additional assumptions regarding the nature of noise. Employing the machinery of
stochastic differential equation theory, a method is developed to compute the autocovariance function and
spectral density of current fluctuations from the solutions of the Boltzmann transport eq(&fiBh As a
result, current fluctuations due to scattering are directly accounted for without theagshiataddition of the
“Langevin source term” to the transport equation. Simulation results are presented for the noise spectral
density and autocovariance functions in silicon due to elastic-acoustic and optical-phonon scattering. The
autocovariance and spectral density are computed in bulk silicon for different electric fields and temperatures
based on the space-independent solutions of the BTE. In the practical case of Ohmic contacts, an explicit
expression for the current noise spectral density is derived in terms of the scattering transition rate, the
steady-state distribution function, and the average current defS0{#63-18206)02048-4

I. INTRODUCTION models is that this approach is strictly within the framework
of semiclassical transport and does not require athyhoc
Noise phenomena in semiconductors have attracted muckdditions of “Langevin source terms,” which are generally
attention over the past yedrsWith recent technological introduced into transport equations. As a result, this ap-
progress towards low-power and high-density devices, flucproach directly connects the noise characteristics with the
tuations in the output signals of semiconductor devices arproperties of the inhomogeneous randomly weighted Poisson
becoming an important issue both at the circuit and systerprocesses, which describe the physics of scattering in the
levels. This paper describes a comprehensive approach semiclassical transport model. In this sense, our framework
semiconductor noise analysis that is entirely within theis similar to one used in Monte Carlo simulations of ndise.
framework of semiclassical transport and makes no addiHowever, our approach heavily relies on the interpretation of
tional assumptions regarding the nature of noise. This apthe semiclassical-transport model as SDE’s and the machin-
proach can be employed to study the noise characteristics ety of the Kolmogorov-Feller equation. By using this ma-
a wide spectrum of devices where the semiclassical transpochinery, it is shown that the key computations of the autoco-
theory is applicable. variance function and the noise spectral density can be
The mathematical framework of the noise model devel+educed to a special initial value problem for the B[dee
oped in this paper is the machinery of stochastic differentiaformulas(19)—(21)].
equations(SDE). In semiclassical transport theory, the dif- It is important to mention that a conceptually similar ap-
ferential equations that describe the motion of an electron iproach based on the transition probability density function
a semiconductor can be interpreted as stochastic differentigGreen function was proposed in Refs. 5 and 6 and was
equations, which are driven by inhomogeneous randomlgxtensively used for analytical calculations of current fluc-
weighted Poisson processes. At the physical level, these preuations under theelaxation time approximatiarHowever,
cesses model the random interband and intraband scatteritigere are distinct differences between our work and results
of electrons in momentum space. The solution to such difreported in Ref. 5. First, we do not use the Green function
ferential equations is a Markov process, which can be chamdirectly in our calculations but rather proceed to derive for-
acterized by a transition probability density function. Ac- mulas(19)—(21) and/or(25) in terms of effective distribution
cording to the SDE theory, the transition probability densityfunctions, g(x,k,7) and G(x,k,w), which substantiallysim-
function satisfies the Kolmogorov-Feller equation, which, inplify numerical calculations. Second, in our approach we do
the case of semiclassical transport, is identical to the lineanot rely at all on the relaxation time approximation but rather
(nondegenerajeBoltzmann transport equation with appro- treat the collision integral in all its complexity. This is im-
priate initial conditiong:® The primary goal of this paper is portant in order to accurately take into account the random
to present an approach to compute the autocovariance funseattering mechanisms, which are responsible in the first
tion and spectral density of current fluctuations by using thiplace for the very existence of noise. Finally, we apply our
transition probability density function. The key aspect thatapproach not only to the silicon bulk computations but to the
differentiates this approach from other microscopic noisevery important case of highly doped Ohmic contacts. For this
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practically interesting case, we derive integral expression&ssuming that a scattering event has occurred at some time
for the noise spectral density. In addition, it is worthwhile tot;, the probability density function for the jumyp is given
remark that we justify our approach on the basis of SDEby
theory, which allows one to clearly relate the semiclassical
transport model to the Boltzmann—Green-function formal- W(k; ,ki+u)
ism. x(uilkj) = ——~—, )
Th . . . N(Kk;)

e paper is organized as follows. In Sec. I, we introduce

the basic equations of semiclassical transport theory, Whicthherek(tf)=ki andk(t;")=k,+u, . The above equations

can be construed as SDE's. By employing the machinery ofnsitute the basis of semi-classical transport theory and
SDE theory, we show that the autocovariance function anghey are extensively used in the Monte Carlo simulation of

spectral density of noise can be computed directly from theyactron transpoft.

solutions of the BTE. In Sec. Ill, we look at the particular -t s clear that the random forde, is the derivative of an
case of noise in bulk silicon where we employ Legendreinnomogeneous randomly weighted Poisson process. For this
polyr_momlals to compu_te the noise spectral density from th"i"eason, Eqs(1) and (2) can be interpreted as stochastic dif-
solution of the space-independent BTE. We present nUmertsential equations. Solution of these equations is a Markov
cal simulation results for the autocovariance function andprocess which is discontinuouskrspace. Such a process is
spectral density for different electric fields and temperatureusua”y ,characterized by #ransition probability density
These results are shown to be in close agreement with pulyciion or Green functiom(x’ k' t;x,k,t+7) and it satisfies
lished experimental and Monte Carlo results. In Sec. IV, thgne kolmogorov-Feller equation with respect to the forward
practical case of Ohmic contacts adjacent to highly dopedsordinates;, k, andr (for instance, see Refs. 9 and)180r
regions is considered and an explicit expression for the noisg,e stochastic process defined by the SDE)sand (2), the

;pectral density is derived i_n terms of the_scattering tra”SiKolmogorov-FelIer(forward) equation can be written as fol-
tion rate, the steady-state distribution function, and the aver, s

age current density. Finally, we reach our conclusions in Sec.

V.
3—’; (X' K XKt 1) v(K) - Vo % E(X,t+7)-Vp
Il. DERIVATION OF THE NOISE MODEL
According to semiclassical transport theory, an electron in :f p(X' K XK t+ WK K)dk" =N (K)p,  (6)
a semiconductor drifts under the influence of electric and

interface traps, etc. Neglecting the effects of magnetic fielgdhe initial conditionsbackward coordinat¢sone obtains the

the motion of an electron can be described by the followingVell-known linear Boltzmann transport equation.
differential equations: Generally, noise in semiconductors is characterized by the

spectral density of current fluctuations. The spectral density
dx 1 is defined as the Fourier transform of the autocovariance
gt VK =7 Ve (k), (1)  function. The autocovariance function of any random pro-
cess can be found from the joint probability density function
dk of the random process. With these facts in mind, consider a
h—=—qE+F,, F,=2, Aus(t—t), (2)  semiconductor undeteady-stateonditions where a station-
dt i ary electron distribution functioh(x,k) can be introduced. It
is clear that this distribution function is the stationary solu-
tion of Eq. (6). Letk’ andk be random electron wave vec-
tors at time instancelsandt + 7, respectively. Since the sto-
chastic process is stationary, the joint probability density
Jdunction of these random vectors is a function obnly.
Consequently, the autocovariance matrix of the electron ve-
locity v at some poink can be computed as follows:

wherex, v, andk are the electron position, drift velocity, and
wave vector(crystal momentum respectivelyE is the elec-
tric field, (k) is the energy—wave-vector relationship in the
given energy band, anf, is the random impulse force on
the electron due to scattering. The random force is chara
terized by theransition rate Wk,k"). By using this rate, we
have

i +7 C = — "y — T
F>|ro|a{ti—ti_1>T}=exp|’—ft'1 )\(k(t’))dt’], 3) CUn) = Lvk) = (VIR = (VT
G-

. . . : =f f [v(k)lv(k)]T
wheret; is the random time at which a scattering event oc-
curs, whilex(k) is the scattering ratedefined as X[p(k’ 0k, 7) —fF(x,K)F(x,k')]dk dk’, (7)

?\(k)=f W(k,k")dk’. (4  where

Therefore, giverk, A(k)At is the probability that a jump in
the wave vectok will occur in a small time intervalAt.

(v)xzf v(k)f(x,k)dk. ®
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Here, p(k’,0k,7) denotes the joint probability density func- “Langevin source term,” must be added in order to account
tion of k' andk and, for notational simplicity, the depen- for the random fluctuations in the curreffior instance, see
dence of this probability density function on the spatial co-Ref. 1J).
ordinatex is omitted. It is important to note that when the  From the computational point of view, the BTE—Green
electron charge density is defined a&)=[f(x,k)dk, (v) function approach has one major drawback. We note from
given in Eq.(8) should be interpreted gav). Consequently, Eq. (10) that in order to compute the autocovariance matrix,
in this contextC,(7) defined in Eq(7) is the autocovariance the transition probability density function needs to be com-
matrix of the normalized current densifyg. (The instanta- puted for all initial conditionk’ in momentum space. How-
neous current is given by=—qnv.) ever, this lengthy computation can be substantially simplified
The joint probability density function can be expressed inby using the following transformations. By subtracting Eq.
terms of the transition probability density function and the(14) from Eq.(11), one finds that the difference of the tran-
stationary probability density function as follows: sient and stationary solutions,

p(k’,0,k,7)=p(k,7[k",0)f(x,k"). 9 L(k, 7k’ ,00=p(k,7k’,00— f(x,k), (15)

By substituting Eq(9) into Eq. (7), one obtains the follow-  gagisfies the equation
ing expression for the autocovariance matrix:
29

q
j [V(k')]T[p(k,T|k',0) E_—’_V(k)vxg_%E(X)ng

&= [ vl

—f(x,k)]f(x,k")dk' |dk, (10) =f {(K",7lk", 0)W(K", k)dk"
The transition probability density function is the transient -2 (Kk)¢, (16)
solution of Eq.(6):
subject to the initial condition:
ap . q
g7 XKLOXK D) FVK) - Vip = 5 B - Vi {61k 0)] o= 8(k—K) —F(xk). (A7)

, . , , Next we multiply both Eq(16) and Eq.(17) by v(k')f(x,k")
=f p(x,K",0:x,k", )W(k", k)dk"=X(K)p, (11)  and integrate ovek’. By defining

subject to the following initial condition:
g(x,k,r)zf dk’ v(k")f(x,k")¢(k,7]k’,0), (18

p(x,K",0x.k,7)|,-o= 8(k—k"), (12

wherea(k—k’) is the Dirac delta function and the following it is easy to show that this function satisfies the following

notation has been adopted: equation:
"y — ey d
p(k,'T“( ,O)=p(X,k ,O,X,k,T). (13) O-)_?_+V(k)'vxg_g E(X)ng:f g(k”,T)W(k”,k)dk”
As pointed out before, the distribution functiéns a station-
ary solution of Eq.(6): ~\(K)g, (19)

V(k) . fo _ % E(X) . ka — f f(k”)W(k",k)dk”— )\(k)f SUbjeCt to the initial condition:
(14) 9(X,K, 7) | 7= 0= [V(K) = (V)] F(X,K). (20)

The formal result presented in Eq40)—(14) is the well-  Here, Eq.(19) should be understood in a component-wise
known BTE—Green function approach to compute the noisgense. From the expression for the autocovariance matrix
autocovariance functiofsee, for instance, Ref)5Here, we  [Eqg. (10)] it then follows that
prove this result by employing the machinery of SDE theory
where we interpret the equations describing semiclassical - T
transport as SDE’s. It is important to note that the only sto- Cu T):f [v(k)I[g(x.k,7)]"dk,  7=0. (21)
chastic information that is needed is the electron scattering
rates of semiclassical transport theory. This is natural sinc&hus, it can be seen that the autocovariance matrix can be
the source of noise is the random fluctuations of the electronomputed for positiver by solving the transient Boltzmann
momentum due to scattering. Since this information is emiransport equatioril9) subject to the initial conditior{20)
bedded in the corresponding Kolmogorov-Fell@BTE)  and substituting this solution into ER1). Since the autoco-
equation, there is no need to include additional random flucvariance matrix has even symmetry with respectrtdhe
tuations into the system. This is in contrast with the usuallysolution of Eqg.(19) for =0 is sufficient.
held opinion that the BTE reflects the average behavior of By definition, the noise spectral density is the time Fou-
the system and that a stochastic field term, referred to as théer transform of the autocovariance matrix. Noting the
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above symmetry of the autocovariance matrix, the spectravhereg, anda, are unit vectors parallel and orthogonal to

density of the electron velocity is given as follows: the average electron velocitfv), respectively. The axial
symmetry leads to
~ +o ~ . +oo ~ .
S(w)= f Cy(r)e ierdr=2 R% Jo cv(ﬂe‘“”dr]- gk, ) =g,(k,7)a+g, (k,7)a, . (28)

(22 consequently, from Eq$21), (27), and(28), one can derive
the following expression for the autocovariance matrix:

: é(T):J oi(kgi(k, 7 vy(K)g, (k,7)
Sv<w>=2Re[ f [V<k>1[G<x,k,w>]Tdk], (23 v 0, (0gi(k,7) v, (K9, (K,7)

Since the average current flow is in the direction of the av-
erage electron velocity, the quantity of primary interest is the
e autocovariance function af;. It follows from Eq.(29) that
G(X,k,w)=f g(x,k,7)e" ' dr. (24) the autqcovariance function of, is given by the following
0 expression:

By substituting Eq(21) into Eq.(22), one obtains

dk. (29

where

The last expression suggests that the spectral density can be

computed directly in the frequency domain. Indeed, by tak- C|(T):f v (k)g(k, 7)dk. (30
ing the one-sided Fourier transform of Ed9) and by using

the initial condition Eq.(20), we obtain the following equa- From the definition of the spectral densit83), it also fol-
tion for G: lows that

JwG—[V(k)—<V>x]f(X,k)+V(k)'VxG_%E(X)'VkG Si(w)=2 R%f v (K)Gy(k,w)dk ¢, (31

whereG satisfies the following equation:
=f G(x,K", w)W(K" k)dk" —N\(k)G. (25
. q
Hence, the spectral density of the electron velocity fluctua- jwGy(k,) = [v(k) = (o) ] (k) - i E-ViGy
tions can be computed directly in the frequency domain by

solving Eq.(25) and substituting the solution into E®3). :j G (K", 0)W(K',K)dk' =\ (K)G, (32)

1. NOISE CHARACTERISTICS IN BULK SILICON At this point, it is useful to employ Legendre polynomials in
order to evaluaté, (w). For a spherical band structure, elec-
tron energy is a function of the magnitude of the electron
vave vectorg(k)=e(k). Employing the dispersion relation-
=#2%k?/2m, it can be shown that

We shall next apply the above machinery to noise com
putations in bulk silicon. As is typically done in the experi-
mental characterization of noise, we will determine the noise’ ©
spectral density and autocovariance as functions of electric"iP &)

field, average current, and temperature. In order to compute 7
the noise spectral density, one needs to solve the following v (k)= a(k)k,=a(k)kPy(cost), a(k)=——.
space-independent equation: my [8(k)](33)
ij(k,w)—[V(k)-(V)]f(k)—% E-V,G The functionG is expressed as follows:
- (n)
:j G(K", @)W(K" K)dK"— X (K)G. (26) Gi(kw)= 2, Gi"(kw)Pr(cos). (39

. . . , . By substituting Eqs(33) and(34) into Eq.(31) and by using
We will consider bulk silicon with a spherical band Strucwre'integration in spherical coordinatl,6,¢), we obtain

An ellipsoidal band structure can easily be incorporated into
the following derivations by employing the Herring-Vogt I
transformatiort? With a spherical band structure, all six S(w)=47 Re S f dk a(KK*G{" (k, »)
conduction-band valleys are equivalent and one can repre- n=0 Jo

sent the state of the momentum space with only one valley.

For the space-independent problem considered here, the av- f" .

erage electron velocityv) is in the direction of the electric 0 d@ SindP4(cosy) Py(cosh) (35)
field E, which determines the axis of symmetry. In order to

facilitate the derivations, it is convenient to introduce theSince

following coordinate system:

V) =v(Ka+u, (Ka, . k=ka+ka . @7 Jo dé sindP,(cosd) Pn(cosh) =551y, (36)
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FIG. 1. The normalized autocorrelation function of electron cur- -~ 5 Spectral density of electron current parallel to the elec-

rent parallel to the electric field at 77 K. The figure shows reduced[ric field at 77 K. Corresponding to Fig. 1, the spectral density
velocity correlation times as electrons gain energy from increasingg)roadens with inc.reasing electric fields Y

electric fields.

the spectral density of, can be expressed only in terms of graphic direction and enables the computations to be per-

the first-order Legendre polynomial expansiorGyfand itis ~ formed in only one conduction-band valley. Figures 1 and 2
given by the following expression: show the autocovariance function of the electron current,

C,(7), for small values of electric field&2.5, 5.0, and 10
8 = kV/cm) at the lattice temperatures 77 and 300 K, respec-
Si(w)=3- R@{ J dk a(k)k®G{V(k,w)}. (37 tively. Both plots show that correlation times of electron cur-
0 rent decrease as the magnitude of the electric field is in-

bulk silicon can be computed directly from the first-order the correlation time at 77 K is significantly larger than the
Legendre polynomial coefficient of the solution of the spacecorrelation time at 300 K, indicating the strong influence of
independent BTE given in Eq32). temperature on noise characteristics. Figures 3 and 4 show
The described machinery was employed to compute th&1€ corresponding spectral densit®¢w) at 77 and 300 K,
noise autocovariance function. The space-independent BTEESPectively. It can be seen that the spectral density broadens
is solved by employing the Legendre polynomial metfod. @ & result of increased electric field and temperature. These
The following figures present numerical simulation results'€Sults are in good agreement with published results on bulk
for bulk silicon when noise due to acoustic and optical pho-Silicon COFQPL_I'EEOI by using the Monte Carlo noise simulation
non scattering is considered. An ellipsoidal band structurdechnique Figure 5 shows the autocovariance function for
described in Ref. 8 is considered and the Herring-Vogt trans relatively higher field of 50 kV/cm at temperatures 77, 100,
formation is employed in order to simplify the computations. 200, and 300 K. It is interesting to note that the effect of

The electric field is assumed to be in tkEll) crystallo- €mperature on the correlation time is significantly reduced
at high electric fields.

1.00 ] ' ‘ B
] - : IV. NOISE SPECTRAL DENSITY AT OHMIC CONTACTS
0-85 14 T — 5 O O |’< . r
1 3 In practice, current noise measurements are made at

0.70 4 - . o .
1% - Eiéik/vc/;m i Ohmic contacts. Consequently, it is of interest to evaluate the

% 0.55 4 L": E=10kV/cm - noise at Ohmic contacts where, due to high levels of doping,
~ 1t r electric fields and/, can be assumed to be negligible. Under
3 0'40’: E these assumptions, it is easy to see (Bastatisfies the fol-
0.251 . lowing equation:
0.10 ‘ 5
] n:
—-0.05 1 V|’ - L T § JU)G”(k,(U)_J' GH(k,,w)W(k,,k)dk,+)\(k)GH
0.0 0.5 1.0 1.5 2.0
Ti
e (pe) == (k). (39

FIG. 2. The normalized autocorrelation function of electron cur-
rent parallel to the electric field at 300 K. The figure shows reduced=urthermore, under these assumptions, it is also clear that a
velocity correlation times as electrons gain energy from increasingingle band distribution function accurately represents the
electric fields. state of the momentum space.



54 SEMICONDUCTOR NOISE IN THE FRAMEWORK 6. . . 17 625

N 10‘9 ] 1 1 1 1 O L
. : 0]
; T=300K | - _
---------- E=2.50kY,/crm 67
2 I
c - — - - E=5kV/cm 1Y f—
g E=10kV/cm | o6} E SOKV/Cm L
€ I o 13 T=77 K
N . - S . i — — - T=100 K L
~ "\ =
: 5
<C B L
& 5, -
2 1o~ A
10 1 2 3 14 —0.2 4 ' ' ‘
10 10 10 0 10 0.0 0.2 0.4 0.6 08
logyolf (Hz)] . ' Time (ps) . ‘

FIG. 4. Spectral density of electron current parallel to the elec- FIG. 5. The normalized autocorrelation function of the parallel
tric field at 300 K. Corresponding to Fig. 2, the spectral densitycomponent of electron current at an applied electric field of 50
broadens with increasing electric fields. kV/cm for several values of temperature. The figure illustrates that

at high electric fields, the effect of temperature on noise autocorre-

For the case of isotropic scattering, the above equatiomtion function is small.
allows one to solve foGﬁl) explicitly in terms of the total
scattering rate and the steady-state distribution function. Tés a result, the transition rate can be expressed in terms of
this end, we shall represent each term of the above equati®pherical harmonics, as follows:
in terms of Legendre polynomials. First, we note that for
isotropic scattering, the total rate does not depend on the , ,
angle of the momentum and consequently, W(k',k)= E a(k’.k) 577 2|+1 2 Yim(0",8")Yim(0,).

A(K)=\(K). (39 (42

Furthermore, the transition rate only depends on the apgle
betweenk’ andk, hence, we can employ the following ex-
pansion: Pn(cosd) =

Furthermore, by substituting

1/2

Tl Yno(60,¢) (43

©

N , _ , into Eq. (34), G, can be expressed in terms of spherical har-
Wk’ k) =Wk’ k, cosy)= 2, a(K’,K)Pi(cosy). monics as well.

. (40)

The above expression can be transformed by employing the G, (k’,w)= 2 Gﬁ“)(k w)
addition theorem for spherical harmonics, which states that

oo

172

Yno(60',¢").

2n+1

(44)

NYin(0,4).  (41) Next, we substitute Eq$42) and (44) into the collision in-

Pi(co Y (0, ¢
i(cosy)= 2I+1 2 m( tegral and obtain

12 *

> a(k' k)

* - 4w
’ ' r— ryr2 ) 1
f G(k,w)W(k' k)dk fo dk’k nzo G{"(k ,w)(2n+1

A ! 27 T )
Ko 3 V0.9 | o' | Taosinn i 00 vit0 6. a9

Now, in order to simplify the above expression, we employ the orthogonality property of the spherical harmonics and note that

the angular integration results &_,,6,,,_o- By using this fact and by employing3), one can show that the scattering integral
can be expressed in terms of Legendre polynomials as follows:

f Gy(k",w)W(K’ k)dk' = 2 P,(cosd) f dk'k’2an(k".K)G(M(K',®). (46)

T
2n+1

Next we turn our attention to the right-hand side of E2B) and expand it in terms of Legendre polynomials as well:
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(vy= (o k) =[a(k)k 0089—<vu>]n§0 f™(k)Pr(cos). (47)

Substituting the following recursive relationship for Legendre polynomials into the above equation,

n+1 n
cosd P, (cosh) = nF 1 P,.+1(cos) + 1 P,_1(cosv), (48
one can transform Ed47) as follows:
S n (n-1) nti (n+1) m
(0= f(K)= 2 Pocosh)| 5o a(kKFM (k) + 5= alokf D00 —(0,)H0(K) | (49

Finally, we substitute Eq€34), (39), (46), and(49) into Eqg. (38), which results in the following integral equations fﬁq‘,”):

n+1

i (n) —
Jo G (k) 2n+3

a(k)kf"=D(k)— a(K)KFMD (1) + (k) £ (k) —

fdk’k’zan(k’,k)Gﬁ”)(k’,w)
0

2n—1 2n+1

+ (k)G (k,w)=0. (50

Since the noise spectral density depends onl)Géﬂ%, we consider the first equation:

[jw+x<k>]Gﬁ”<k,w>—4§ f:dk'k'za1<k',k>Gﬁ”<k',w):a<k)k[f<°><k>+éf<2><k>]—<v”>f<1><k). (51)

The above equation is derived for a highly doped OhmicNow, the noise spectral density is easily obtained by substi-
contact under the general condition that the scatteringuting this last expression into E37):

mechanisms are isotropic. In the analysis below, we shall

concentrate on the particular case when scattering is due to 8 o

optical and elastic acoustic phonons, only. A detailed de- Si(w)=—- Re{f dk a(k)k?

scription of these scattering mechanisms can be found in 0
Refs. 4 and 8. For optical phonons, the scattering transition (0) 2¢(2) _ (1)
rate has the following form: xa(k)k[f ()57 ]~ {wpt (k)

jo+A(k)
WPk’ k)=SP'5(e(k’) — e(K) = fwy), (52 (56)
wgytch is_independent of the momentum direction, hencenys we have derived an explicit expression for the noise
a;"=0. For acoustic phonons, the scattering transition ratpeciral density at a highly doped Ohmic contact in terms of
has the following form: the electron distribution function and the total scattering rate.
, , , , In our derivations, the electric field and, terms are as-
WACK" k) =s*(k" —k|) 8(e(k") — e(k) Ao (k' = k]), 3 sumed to be negligible, and the elastic, eé(uipartition approxi-
(53 mation has been used for the acoustic-phonon scattering
which depends on the momentum direction, herecd#0.  transition rate.
Due to this inelastic collision term, substitution @fgk’,k) According to Eq.(56), the noise spectral density depends
into Eq. (51) results in adifferenceequation forGHD. In on the Legendre polynomial coefficients of the electron dis-
order to avoid the solution of a difference equation, we emdribution functionf. The choice of the distribution function
ploy the commonly used elastic, equipartition approximationat Ohmic contacts is a subject of debate for many reasons,
for acoustic phonons, which results in the following form for mainly because the electrons at Ohmic contacts are consid-

the scattering transition rafe: ered to be in thermal equilibrium even when there is a net
_ current flow into the contact. In our computations, we will
WAk’ ,k)=526(e(k")— e(k)). (54) assume that the electron distribution function is given by a

. . . ) . . shifted Maxwellian:
For this approximation, the acoustic scattering transition rate

is independent of the momentum angle and,(c)onsequently, n 52
ad=0. As a result, Eq(51) is easily solved fOGHl (k,w) as f(k)= —— exp[ - |k—(k>|2 , (57
follows: V2mmkgT 2mkgT
©) 26(2) W wheren is the electron densitykg is the Boltzmann con-
GOk, w)= a(K)K[F (k) + 52 (K) ] = (v f (k) stant, andT is the lattice temperature. This choice of the
i@ jo+N(K) ' distribution function is only employed here for the sake of

(55 simplicity of computations and it is not strictly justifi@dn
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log;o[Si(4°/Hz)] (arbitrary scale)

T = 300K
——-T=77K

1‘0'12
log 15 [#(H2)]
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spectral density broadens at higher temperature, similar to
previous results of bulk silicon computations.

V. CONCLUSION

An approach was presented to model noise in semicon-
ductors when electron motion is described by the semiclas-
sical transport model. It is shown that the key computations
of the autocovariance function and the noise spectral density
are reduced to a special initial value problem for the BTE
given by Egs.(19—-(21). The distinct feature of this ap-
proach compared to other microscopic noise models is that
this approach is strictly within the framework of semiclassi-
cal transport and does not require the addition of “Langevin

source terms,” which are generally introduced into transport
equations in order to account for random fluctuations. As a
FIG. 6. Spectral density of the parallel component of the elecT€sult, this approach directly connects the noise characteris-
tron current at a highly doped Ohmic contact at 77 and 300 K. Théics with the stochastic properties of scattering mechanisms
figure illustrates the significant effect of temperature on the noisdn the semiclassical transport model. Based on this approach,
spectral densityor autocorrelation functionwhen the electric field a closed-form expression was derived for the noise spectral
is assumed to be small. density at highly doped Ohmic contacts in terms of the scat-
tering rate and the steady-state electron distribution function.

more sophisticated calculations, the distribution function Car{llustrative. humerical .simulation results are.presented for the
be computed from the numerical solution of the stationary"“m.)covar'"’mce func'tlon and §pectral dgnsﬂy of current flu'c-
BTE. The spherical harmonic expansion technique is quitéuatlons _d_ue to elast_lc acoustic and optlcal phonon scattering
suitable for this purpose since it leads directly to the deter!" bulk silicon and h|ghly_dqped Ohmic contacts. Simulated
mination of f (™ (k).14 res_,ults are foun_d to be S|m|llar to those that are reported for
The above machinery was employed to compute the noisBC!Se computations employing the Monte Carlo metfiod.

spectral density5,(w) at a highly doped Ohmic contact by
substituting the corresponding Legendre polynomial coeffi-
cients of Eq.(57) into Eq. (56). Figure 6 shows the noise This work was supported by the National Science Foun-
spectral density at a highly doped Ohmic contact at temperadation. The authors acknowledge and thank Alfredo J. Piazza
tures 77 and 300 K. As expected, it can be seen that the noiger the numerical simulations.

ACKNOWLEDGMENTS

1Special issue on fluctuation phenomena in electronic and photonic  (1993.

devices, IEEE Trans. Electron Devicés (11) (1999. 8C. Jacobini and L. Reggiani, Rev. Mod. Ph$s, 645 (1983.
2C. E. Korman and I. D. Mayergoy@npublishel °. I. Gihman and A. V. SkorohodStochastic Differential Equa-
3C. E. Korman, A. Piazza, P. Rugkwamsook, and |. D. Mayergoyz tions (Springer-Verlag, New York, 1972

(unpublished 10D, Kannan, An Introduction to Stochastic ProcesséNorth-
4C. Jacoboni and P. LuglThe Monte Carlo Method for Semicon- Holland, New York, 1978

ductor Device SimulatiofSpringer-Verlag, Wien, 1989 11K, M. van Vliet, J. Math. Phys12, 1981(1971).
SChristopher J. Stanton and John W. Wilkins, Phys. Re\858  2C. Herring and E. Vogt, Phys. Re%01, 944 (1956.

9722(1987. 13 . varani, L. Reggiani, T. Kuhn, T. Gonzalez, and D. Pardo,
6Christopher J. Stanton and John W. Wilkins, Phys. Re\386B IEEE Trans. Electron Device$l, 1916(1994.
1686 (1987). 14K. A. Hennacy, Y.-J. Wu, N. Goldsman, and I. D. Mayergoyz,

7K. A. Hennacy and N. Goldsman, Solid-State Electrg6, 869 Solid-State Electron38, 1498(1995.



