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Semiconductor noise in the framework of semiclassical transport
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The paper describes an approach to semiconductor noise analysis that is entirely within the framework of the
semiclassical transport theory. The key aspect that differentiates this approach from other noise models is that
this approach directly connects noise characteristics with the physics of scattering in the semiclassical transport
model and makes no additional assumptions regarding the nature of noise. Employing the machinery of
stochastic differential equation theory, a method is developed to compute the autocovariance function and
spectral density of current fluctuations from the solutions of the Boltzmann transport equation~BTE!. As a
result, current fluctuations due to scattering are directly accounted for without the usualad hocaddition of the
‘‘Langevin source term’’ to the transport equation. Simulation results are presented for the noise spectral
density and autocovariance functions in silicon due to elastic-acoustic and optical-phonon scattering. The
autocovariance and spectral density are computed in bulk silicon for different electric fields and temperatures
based on the space-independent solutions of the BTE. In the practical case of Ohmic contacts, an explicit
expression for the current noise spectral density is derived in terms of the scattering transition rate, the
steady-state distribution function, and the average current density.@S0163-1829~96!02048-6#
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I. INTRODUCTION

Noise phenomena in semiconductors have attracted m
attention over the past years.1 With recent technologica
progress towards low-power and high-density devices, fl
tuations in the output signals of semiconductor devices
becoming an important issue both at the circuit and sys
levels. This paper describes a comprehensive approac
semiconductor noise analysis that is entirely within t
framework of semiclassical transport and makes no a
tional assumptions regarding the nature of noise. This
proach can be employed to study the noise characteristic
a wide spectrum of devices where the semiclassical trans
theory is applicable.

The mathematical framework of the noise model dev
oped in this paper is the machinery of stochastic differen
equations~SDE!. In semiclassical transport theory, the d
ferential equations that describe the motion of an electro
a semiconductor can be interpreted as stochastic differe
equations, which are driven by inhomogeneous rando
weighted Poisson processes. At the physical level, these
cesses model the random interband and intraband scatt
of electrons in momentum space. The solution to such
ferential equations is a Markov process, which can be ch
acterized by a transition probability density function. A
cording to the SDE theory, the transition probability dens
function satisfies the Kolmogorov-Feller equation, which,
the case of semiclassical transport, is identical to the lin
~nondegenerate! Boltzmann transport equation with appr
priate initial conditions.2,3 The primary goal of this paper i
to present an approach to compute the autocovariance f
tion and spectral density of current fluctuations by using t
transition probability density function. The key aspect th
differentiates this approach from other microscopic no
540163-1829/96/54~24!/17620~8!/$10.00
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models is that this approach is strictly within the framewo
of semiclassical transport and does not require anyad hoc
additions of ‘‘Langevin source terms,’’ which are genera
introduced into transport equations. As a result, this
proach directly connects the noise characteristics with
properties of the inhomogeneous randomly weighted Pois
processes, which describe the physics of scattering in
semiclassical transport model. In this sense, our framew
is similar to one used in Monte Carlo simulations of nois4

However, our approach heavily relies on the interpretation
the semiclassical-transport model as SDE’s and the mac
ery of the Kolmogorov-Feller equation. By using this m
chinery, it is shown that the key computations of the auto
variance function and the noise spectral density can
reduced to a special initial value problem for the BTE@see
formulas~19!–~21!#.

It is important to mention that a conceptually similar a
proach based on the transition probability density funct
~Green function! was proposed in Refs. 5 and 6 and w
extensively used for analytical calculations of current flu
tuations under therelaxation time approximation. However,
there are distinct differences between our work and res
reported in Ref. 5. First, we do not use the Green funct
directly in our calculations but rather proceed to derive f
mulas~19!–~21! and/or~25! in terms of effective distribution
functions,g~x,k,t! and G~x,k,v!, which substantiallysim-
plify numerical calculations. Second, in our approach we
not rely at all on the relaxation time approximation but rath
treat the collision integral in all its complexity. This is im
portant in order to accurately take into account the rand
scattering mechanisms, which are responsible in the
place for the very existence of noise. Finally, we apply o
approach not only to the silicon bulk computations but to
very important case of highly doped Ohmic contacts. For t
17 620 © 1996 The American Physical Society
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54 17 621SEMICONDUCTOR NOISE IN THE FRAMEWORK OF . . .
practically interesting case, we derive integral expressi
for the noise spectral density. In addition, it is worthwhile
remark that we justify our approach on the basis of S
theory, which allows one to clearly relate the semiclass
transport model to the Boltzmann–Green-function form
ism.

The paper is organized as follows. In Sec. II, we introdu
the basic equations of semiclassical transport theory, wh
can be construed as SDE’s. By employing the machinery
SDE theory, we show that the autocovariance function
spectral density of noise can be computed directly from
solutions of the BTE. In Sec. III, we look at the particul
case of noise in bulk silicon where we employ Legend
polynomials to compute the noise spectral density from
solution of the space-independent BTE. We present num
cal simulation results for the autocovariance function a
spectral density for different electric fields and temperatu
These results are shown to be in close agreement with
lished experimental and Monte Carlo results. In Sec. IV,
practical case of Ohmic contacts adjacent to highly do
regions is considered and an explicit expression for the n
spectral density is derived in terms of the scattering tra
tion rate, the steady-state distribution function, and the a
age current density. Finally, we reach our conclusions in S
V.

II. DERIVATION OF THE NOISE MODEL

According to semiclassical transport theory, an electron
a semiconductor drifts under the influence of electric a
magnetic fields and undergoes random jumps in its mom
tum due to various scattering mechanisms in the cry
caused by acoustic and optical phonons, ionized impurit
interface traps, etc. Neglecting the effects of magnetic fie
the motion of an electron can be described by the follow
differential equations:

dx

dt
5v~k!5

1

\
¹k«~k!, ~1!

\
dk

dt
52qE1Fr , Fr5(

i
\uid~ t2t i !, ~2!

wherex, v, andk are the electron position, drift velocity, an
wave vector~crystal momentum!, respectively,E is the elec-
tric field, «~k! is the energy–wave-vector relationship in t
given energy band, andFr is the random impulse force o
the electron due to scattering. The random force is cha
terized by thetransition rate W~k,k8!. By using this rate, we
have

Prob$t i2t i21.t%5expH 2E
t i21

t i211t

l„k~ t8!…dt8J , ~3!

wheret i is the random time at which a scattering event o
curs, whilel~k! is thescattering ratedefined as

l~k!5E W~k,k8!dk8. ~4!

Therefore, givenk, l~k!Dt is the probability that a jump in
the wave vectork will occur in a small time intervalDt.
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Assuming that a scattering event has occurred at some
t i , the probability density function for the jumpui is given
by

x~ui uk i !5
W~k i ,k i1ui !

l~k i !
, ~5!

where k(t i
2)5k i and k(t i

1)5k i1ui . The above equations
constitute the basis of semi-classical transport theory
they are extensively used in the Monte Carlo simulation
electron transport.8

It is clear that the random forceFr is the derivative of an
inhomogeneous randomly weighted Poisson process. For
reason, Eqs.~1! and ~2! can be interpreted as stochastic d
ferential equations. Solution of these equations is a Mar
process, which is discontinuous ink space. Such a process
usually characterized by atransition probability density
function or Green functionr~x8,k8,t;x,k,t1t! and it satisfies
the Kolmogorov-Feller equation with respect to the forwa
coordinatesx, k, andt ~for instance, see Refs. 9 and 10!. For
the stochastic process defined by the SDE’s~1! and ~2!, the
Kolmogorov-Feller~forward! equation can be written as fol
lows:

]r

]t
~x8,k8,t;x,k,t1t!1v~k!•“xr2

q

\
E~x,t1t!•“kr

5E r~x8,k8,t;x,k9,t1t!W~k9,k!dk92l~k!r, ~6!

where~x8,k8! are the initial electron position and wave ve
tor at some timet. By integrating the above equation ove
the initial conditions~backward coordinates!, one obtains the
well-known linear Boltzmann transport equation.

Generally, noise in semiconductors is characterized by
spectral density of current fluctuations. The spectral den
is defined as the Fourier transform of the autocovaria
function. The autocovariance function of any random p
cess can be found from the joint probability density functi
of the random process. With these facts in mind, conside
semiconductor understeady-stateconditions where a station
ary electron distribution functionf ~x,k! can be introduced. It
is clear that this distribution function is the stationary so
tion of Eq. ~6!. Let k8 andk be random electron wave vec
tors at time instancest and t1t, respectively. Since the sto
chastic process is stationary, the joint probability dens
function of these random vectors is a function oft only.
Consequently, the autocovariance matrix of the electron
locity v at some pointx can be computed as follows:

Ĉv~t!5Š@v~k!2^v&x#@v~k8!2^v&x#
T
‹

5E E @v~k!#@v~k8!#T

3@r~k8,0,k,t!2 f ~x,k! f ~x,k8!#dk dk8, ~7!

where

^v&x[E v~k! f ~x,k!dk. ~8!
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Here,r~k8,0,k,t! denotes the joint probability density func
tion of k8 and k and, for notational simplicity, the depen
dence of this probability density function on the spatial c
ordinatex is omitted. It is important to note that when th
electron charge density is defined asn~x!5*f ~x,k!dk, ^v&
given in Eq.~8! should be interpreted as^nv&. Consequently,
in this context,Ĉv~t! defined in Eq.~7! is the autocovariance
matrix of the normalized current densityJ/q. ~The instanta-
neous current is given byJ52qnv.!

The joint probability density function can be expressed
terms of the transition probability density function and t
stationary probability density function as follows:

r~k8,0,k,t!5r~k,tuk8,0! f ~x,k8!. ~9!

By substituting Eq.~9! into Eq. ~7!, one obtains the follow-
ing expression for the autocovariance matrix:

Ĉv~t!5E @v~k!#F E @v~k8!#T@r~k,tuk8,0!

2 f ~x,k!# f ~x,k8!dk8Gdk, ~10!

The transition probability density function is the transie
solution of Eq.~6!:

]r

]t
~x,k8,0;x,k,t!1v~k!•¹xr2

q

\
E~x!•“kr

5E r~x,k8,0;x,k9,t!W~k9,k!dk92l~k!r, ~11!

subject to the following initial condition:

r~x,k8,0;x,k,t!ut505d~k2k8!, ~12!

whered~k2k8! is the Dirac delta function and the followin
notation has been adopted:

r~k,tuk8,0![r~x,k8,0;x,k,t!. ~13!

As pointed out before, the distribution functionf is a station-
ary solution of Eq.~6!:

v~k!•“xf2
q

\
E~x!•“k f5E f ~k9!W~k9,k!dk92l~k! f .

~14!

The formal result presented in Eqs.~10!–~14! is the well-
known BTE–Green function approach to compute the no
autocovariance function~see, for instance, Ref. 5!. Here, we
prove this result by employing the machinery of SDE theo
where we interpret the equations describing semiclass
transport as SDE’s. It is important to note that the only s
chastic information that is needed is the electron scatte
rates of semiclassical transport theory. This is natural si
the source of noise is the random fluctuations of the elec
momentum due to scattering. Since this information is e
bedded in the corresponding Kolmogorov-Feller~BTE!
equation, there is no need to include additional random fl
tuations into the system. This is in contrast with the usua
held opinion that the BTE reflects the average behavio
the system and that a stochastic field term, referred to as
-
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‘‘Langevin source term,’’ must be added in order to accou
for the random fluctuations in the current~for instance, see
Ref. 11!.

From the computational point of view, the BTE–Gree
function approach has one major drawback. We note fr
Eq. ~10! that in order to compute the autocovariance matr
the transition probability density function needs to be co
puted for all initial conditionsk8 in momentum space. How
ever, this lengthy computation can be substantially simplifi
by using the following transformations. By subtracting E
~14! from Eq. ~11!, one finds that the difference of the tran
sient and stationary solutions,

z~k,tuk8,0![r~k,tuk8,0!2 f ~x,k!, ~15!

satisfies the equation

]z

]t
1v~k!•“xz2

q

\
E~x!•“kz

5E z~k9,tuk8,0!W~k9,k!dk9

2l~k!z, ~16!

subject to the initial condition:

z~k,tuk8,0!ut505d~k2k8!2 f ~x,k!. ~17!

Next we multiply both Eq.~16! and Eq.~17! by v~k8!f ~x,k8!
and integrate overk8. By defining

g~x,k,t![E dk8 v~k8! f ~x,k8!z~k,tuk8,0!, ~18!

it is easy to show that this function satisfies the followi
equation:

]g

]t
1v~k!•“xg2

q

\
E~x!•“kg5E g~k9,t!W~k9,k!dk9

2l~k!g, ~19!

subject to the initial condition:

g~x,k,t!ut505@v~k!2^v&x# f ~x,k!. ~20!

Here, Eq.~19! should be understood in a component-wi
sense. From the expression for the autocovariance ma
@Eq. ~10!# it then follows that

Ĉv~t!5E @v~k!#@g~x,k,t!#Tdk, t>0. ~21!

Thus, it can be seen that the autocovariance matrix can
computed for positivet by solving the transient Boltzman
transport equation~19! subject to the initial condition~20!
and substituting this solution into Eq.~21!. Since the autoco-
variance matrix has even symmetry with respect tot, the
solution of Eq.~19! for t>0 is sufficient.

By definition, the noise spectral density is the time Fo
rier transform of the autocovariance matrix. Noting t
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above symmetry of the autocovariance matrix, the spec
density of the electron velocity is given as follows:

Ŝv~v!5E
2`

1`

Ĉv~t!e2 jvtdt52 ReH E
0

1`

Ĉv~t!e2 jvtdtJ .
~22!

By substituting Eq.~21! into Eq. ~22!, one obtains

Ŝv~v!52 ReH E @v~k!#@G~x,k,v!#TdkJ , ~23!

where

G~x,k,v!5E
0

1`

g~x,k,t!e2 ivtdt. ~24!

The last expression suggests that the spectral density ca
computed directly in the frequency domain. Indeed, by t
ing the one-sided Fourier transform of Eq.~19! and by using
the initial condition Eq.~20!, we obtain the following equa
tion for G:

jvG2@v~k!2^v&x# f ~x,k!1v~k!•“xG2
q

\
E~x!•“kG

5E G~x,k9,v!W~k9,k!dk92l~k!G. ~25!

Hence, the spectral density of the electron velocity fluct
tions can be computed directly in the frequency domain
solving Eq.~25! and substituting the solution into Eq.~23!.

III. NOISE CHARACTERISTICS IN BULK SILICON

We shall next apply the above machinery to noise co
putations in bulk silicon. As is typically done in the expe
mental characterization of noise, we will determine the no
spectral density and autocovariance as functions of ele
field, average current, and temperature. In order to comp
the noise spectral density, one needs to solve the follow
space-independent equation:

jvG~k,v!2@v~k!2^v&# f ~k!2
q

\
E•“kG

5E G~k9,v!W~k9,k!dk92l~k!G. ~26!

We will consider bulk silicon with a spherical band structu
An ellipsoidal band structure can easily be incorporated i
the following derivations by employing the Herring-Vog
transformation.12 With a spherical band structure, all s
conduction-band valleys are equivalent and one can re
sent the state of the momentum space with only one val
For the space-independent problem considered here, the
erage electron velocitŷv& is in the direction of the electric
field E, which determines the axis of symmetry. In order
facilitate the derivations, it is convenient to introduce t
following coordinate system:

v~k!5v i~k!ai1v'~k!a' , k5kiai1k'a' , ~27!
al

be
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y
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e
ic
te
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.
o

e-
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av-

whereai anda' are unit vectors parallel and orthogonal
the average electron velocitŷv&, respectively. The axia
symmetry leads to

g~k,t!5gi~k,t!ai1g'~k,t!a' . ~28!

Consequently, from Eqs.~21!, ~27!, and~28!, one can derive
the following expression for the autocovariance matrix:

Ĉv~t!5E S v i~k!gi~k,t!

v'~k!gi~k,t!

v i~k!g'~k,t!

v'~k!g'~k,t! Ddk. ~29!

Since the average current flow is in the direction of the
erage electron velocity, the quantity of primary interest is
autocovariance function ofv i . It follows from Eq. ~29! that
the autocovariance function ofv i is given by the following
expression:

CI~t!5E v i~k!gi~k,t!dk. ~30!

From the definition of the spectral density~23!, it also fol-
lows that

SI~v!52 ReH E v i~k!Gi~k,v!dkJ , ~31!

whereGi satisfies the following equation:

jvGi~k,v!2@v i~k!2^v i&# f ~k!2
q

\
E•“kGi

5E Gi~k8,v!W~k8,k!dk82l~k!Gi . ~32!

At this point, it is useful to employ Legendre polynomials
order to evaluateSI~v!. For a spherical band structure, ele
tron energy is a function of the magnitude of the electr
wave vector,«~k!5«(k). Employing the dispersion relation
ship,g~«!5\2k2/2m, it can be shown that

v i~k!5a~k!ki5a~k!kP1~cosu!, a~k!5
\

mg8@«~k!#
.

~33!

The functionGi is expressed as follows:

Gi~k,v!5 (
n50

`

Gi
~n!~k,v!Pn~cosu!. ~34!

By substituting Eqs.~33! and~34! into Eq.~31! and by using
integration in spherical coordinate~k,u,f!, we obtain

SI~v!54p ReH (
n50

` E
0

`

dk a~k!k3Gi
~n!~k,v!

3E
0

p

du sinuP1~cosu!Pn~cosu!J . ~35!

Since

E
0

p

du sinuP1~cosu!Pn~cosu!5 2
3d1,n , ~36!
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the spectral density ofv i can be expressed only in terms o
the first-order Legendre polynomial expansion ofGi and it is
given by the following expression:

SI~v!5
8p

3
ReH E

0

`

dk a~k!k3Gi
~1!~k,v!J . ~37!

As a result, we have shown that the noise spectral density
bulk silicon can be computed directly from the first-orde
Legendre polynomial coefficient of the solution of the spac
independent BTE given in Eq.~32!.

The described machinery was employed to compute t
noise autocovariance function. The space-independent B
is solved by employing the Legendre polynomial method7

The following figures present numerical simulation resul
for bulk silicon when noise due to acoustic and optical ph
non scattering is considered. An ellipsoidal band structu
described in Ref. 8 is considered and the Herring-Vogt tran
formation is employed in order to simplify the computations
The electric field is assumed to be in the^111& crystallo-

FIG. 1. The normalized autocorrelation function of electron cu
rent parallel to the electric field at 77 K. The figure shows reduce
velocity correlation times as electrons gain energy from increasi
electric fields.

FIG. 2. The normalized autocorrelation function of electron cu
rent parallel to the electric field at 300 K. The figure shows reduc
velocity correlation times as electrons gain energy from increasi
electric fields.
in

e

e
E

s
-
e
s-
.

graphic direction and enables the computations to be pe
formed in only one conduction-band valley. Figures 1 and
show the autocovariance function of the electron curren
CI~t!, for small values of electric fields~2.5, 5.0, and 10
kV/cm! at the lattice temperatures 77 and 300 K, respec
tively. Both plots show that correlation times of electron cur
rent decrease as the magnitude of the electric field is in
creased. These figures also show that at these electric fie
the correlation time at 77 K is significantly larger than the
correlation time at 300 K, indicating the strong influence o
temperature on noise characteristics. Figures 3 and 4 sho
the corresponding spectral densitiesSI~v! at 77 and 300 K,
respectively. It can be seen that the spectral density broade
as a result of increased electric field and temperature. The
results are in good agreement with published results on bu
silicon computed by using the Monte Carlo noise simulation
technique.13 Figure 5 shows the autocovariance function for
a relatively higher field of 50 kV/cm at temperatures 77, 100
200, and 300 K. It is interesting to note that the effect o
temperature on the correlation time is significantly reduce
at high electric fields.

IV. NOISE SPECTRAL DENSITY AT OHMIC CONTACTS

In practice, current noise measurements are made
Ohmic contacts. Consequently, it is of interest to evaluate th
noise at Ohmic contacts where, due to high levels of doping
electric fields and¹x can be assumed to be negligible. Unde
these assumptions, it is easy to see thatGi satisfies the fol-
lowing equation:

jvGi~k,v!2E Gi~k8,v!W~k8,k!dk81l~k!Gi

5~v i2^v i&! f ~k!. ~38!

Furthermore, under these assumptions, it is also clear tha
single band distribution function accurately represents th
state of the momentum space.

-
d
g

-
d
g

FIG. 3. Spectral density of electron current parallel to the elec
tric field at 77 K. Corresponding to Fig. 1, the spectral density
broadens with increasing electric fields.
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For the case of isotropic scattering, the above equat
allows one to solve forG i

~1! explicitly in terms of the total
scattering rate and the steady-state distribution function.
this end, we shall represent each term of the above equa
in terms of Legendre polynomials. First, we note that fo
isotropic scattering, the total rate does not depend on
angle of the momentum and consequently,

l~k!5l~k!. ~39!

Furthermore, the transition rate only depends on the anglg
betweenk8 andk, hence, we can employ the following ex
pansion:

W~k8,k!5W~k8,k, cosg!5(
l50

`

al~k8,k!Pl~cosg!.

~40!

The above expression can be transformed by employing
addition theorem for spherical harmonics, which states th

Pl~cosg!5
4p

2l11 (
m52 l

l

Ylm* ~u8,f8!Ylm~u,f!. ~41!

FIG. 4. Spectral density of electron current parallel to the ele
tric field at 300 K. Corresponding to Fig. 2, the spectral densi
broadens with increasing electric fields.
n

o
on
r
e

he
t

As a result, the transition rate can be expressed in term
spherical harmonics, as follows:

W~k8,k!5(
l50

`

al~k8,k!
4p

2l11 (
m52 l

l

Ylm* ~u8,f8!Ylm~u,f!.

~42!

Furthermore, by substituting

Pn~cosu!5S 4p

2n11D
1/2

Yn0~u,f! ~43!

into Eq. ~34!, Gi can be expressed in terms of spherical h
monics as well:

Gi~k8,v!5 (
n50

`

Gi
~n!~k8,v!S 4p

2n11D
1/2

Yn0~u8,f8!.

~44!

Next, we substitute Eqs.~42! and ~44! into the collision in-
tegral and obtain

FIG. 5. The normalized autocorrelation function of the para
component of electron current at an applied electric field of
kV/cm for several values of temperature. The figure illustrates t
at high electric fields, the effect of temperature on noise autoco
lation function is small.

-
y

ote that
ral
E Gi~k8,v!W~k8,k!dk85E
0

`

dk8k82(
n50

`

Gi
~n!~k8,v!S 4p

2n11D
1/2

(
l50

`

al~k8,k!

3
4p

2l11 (
m52 l

l

Ylm~u,f!E
0

2p

df8E
0

p

du8sinu8Ylm* ~u8,f8!Yn0~u8,f8!. ~45!

Now, in order to simplify the above expression, we employ the orthogonality property of the spherical harmonics and n
the angular integration results ind l2ndm20. By using this fact and by employing~43!, one can show that the scattering integ
can be expressed in terms of Legendre polynomials as follows:

E Gi~k8,v!W~k8,k!dk85 (
n50

`

Pn~cosu!
4p

2n11 E
0

`

dk8k82an~k8,k!Gi
~n!~k8,v!. ~46!

Next we turn our attention to the right-hand side of Eq.~38! and expand it in terms of Legendre polynomials as well:
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~v i2^v i&! f ~k!5@a~k!k cosu2^v i&# (
n50

`

f ~n!~k!Pn~cosu!. ~47!

Substituting the following recursive relationship for Legendre polynomials into the above equation,

cosu Pn~cosu!5
n11

2n11
Pn11~cosu!1

n

2n11
Pn21~cosu!, ~48!

one can transform Eq.~47! as follows:

~v i2^v i&! f ~k!5 (
n50

`

Pn~cosu!F n

2n21
a~k!k f ~n21!~k!1

n11

2n13
a~k!k f ~n11!~k!2^v i& f ~n!~k!G . ~49!

Finally, we substitute Eqs.~34!, ~39!, ~46!, and~49! into Eq. ~38!, which results in the following integral equations forG i
~n! :

jvGi
~n!~k,v!2

n

2n21
a~k!k f ~n21!~k!2

n11

2n13
a~k!k f ~n11!~k!1^ki& f ~n!~k!2

4p

2n11 E
0

`

dk8k82an~k8,k!Gi
~n!~k8,v!

1l~k!Gi
~n!~k,v!50. ~50!

Since the noise spectral density depends only onG i
~1! , we consider the first equation:

@ jv1l~k!#Gi
~1!~k,v!2

4p

3 E
0

`

dk8k82a1~k8,k!Gi
~1!~k8,v!5a~k!k@ f ~0!~k!1 2

5 f
~2!~k!#2^v i& f ~1!~k!. ~51!
i
rin
ha
e
de

tio

ce
a

m
io
or

a
nt

sti-

ise
of
te.

xi-
ring

ds
is-

ons,
sid-
net
ill
y a

e
of
The above equation is derived for a highly doped Ohm
contact under the general condition that the scatte
mechanisms are isotropic. In the analysis below, we s
concentrate on the particular case when scattering is du
optical and elastic acoustic phonons, only. A detailed
scription of these scattering mechanisms can be found
Refs. 4 and 8. For optical phonons, the scattering transi
rate has the following form:

Wopt~k8,k!5Soptd„e~k8!2e~k!6\v0…, ~52!

which is independent of the momentum direction, hen
a1
opt[0. For acoustic phonons, the scattering transition r

has the following form:

Wa~k8,k!5sa~ uk82ku!d„e~k8!2e~k!6\v~ uk82ku!…,
~53!

which depends on the momentum direction, hence,a 1
aÞ0.

Due to this inelastic collision term, substitution ofa 1
a(k8,k)

into Eq. ~51! results in adifferenceequation forG i
~1! . In

order to avoid the solution of a difference equation, we e
ploy the commonly used elastic, equipartition approximat
for acoustic phonons, which results in the following form f
the scattering transition rate:4

Wa~k8,k!. s̃ad„e~k8!2e~k!…. ~54!

For this approximation, the acoustic scattering transition r
is independent of the momentum angle and, conseque
a 1
a.0. As a result, Eq.~51! is easily solved forG i

~1!~k,v! as
follows:

Gi
~1!~k,v!5

a~k!k@ f ~0!~k!1 2
5 f

~2!~k!#2^v i& f ~1!~k!

jv1l~k!
.

~55!
c
g
ll
to
-
in
n

,
te

-
n

te
ly,

Now, the noise spectral density is easily obtained by sub
tuting this last expression into Eq.~37!:

SI~v!5
8p

3
ReH E

0

`

dk a~k!k3

3
a~k!k@ f ~0!~k!1 2

5 f
~2!~k!#2^v i& f ~1!~k!

jv1l~k! J .
~56!

Thus, we have derived an explicit expression for the no
spectral density at a highly doped Ohmic contact in terms
the electron distribution function and the total scattering ra
In our derivations, the electric field and¹x terms are as-
sumed to be negligible, and the elastic, equipartition appro
mation has been used for the acoustic-phonon scatte
transition rate.

According to Eq.~56!, the noise spectral density depen
on the Legendre polynomial coefficients of the electron d
tribution function f . The choice of the distribution function
at Ohmic contacts is a subject of debate for many reas
mainly because the electrons at Ohmic contacts are con
ered to be in thermal equilibrium even when there is a
current flow into the contact. In our computations, we w
assume that the electron distribution function is given b
shifted Maxwellian:

f ~k!5
n\

A2pmkBT
expH 2

\2

2mkBT
uk2^k&u2J , ~57!

wheren is the electron density,kB is the Boltzmann con-
stant, andT is the lattice temperature. This choice of th
distribution function is only employed here for the sake
simplicity of computations and it is not strictly justified.5 In
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more sophisticated calculations, the distribution function c
be computed from the numerical solution of the station
BTE. The spherical harmonic expansion technique is q
suitable for this purpose since it leads directly to the de
mination of f (n)~k!.14

The above machinery was employed to compute the n
spectral densitySI~v! at a highly doped Ohmic contact b
substituting the corresponding Legendre polynomial coe
cients of Eq.~57! into Eq. ~56!. Figure 6 shows the nois
spectral density at a highly doped Ohmic contact at temp
tures 77 and 300 K. As expected, it can be seen that the n

FIG. 6. Spectral density of the parallel component of the el
tron current at a highly doped Ohmic contact at 77 and 300 K. T
figure illustrates the significant effect of temperature on the no
spectral density~or autocorrelation function! when the electric field
is assumed to be small.
on

y

-

n
y
te
r-

se

-

a-
ise

spectral density broadens at higher temperature, simila
previous results of bulk silicon computations.

V. CONCLUSION

An approach was presented to model noise in semic
ductors when electron motion is described by the semic
sical transport model. It is shown that the key computatio
of the autocovariance function and the noise spectral den
are reduced to a special initial value problem for the B
given by Eqs.~19!–~21!. The distinct feature of this ap
proach compared to other microscopic noise models is
this approach is strictly within the framework of semiclas
cal transport and does not require the addition of ‘‘Lange
source terms,’’ which are generally introduced into transp
equations in order to account for random fluctuations. A
result, this approach directly connects the noise characte
tics with the stochastic properties of scattering mechanis
in the semiclassical transport model. Based on this appro
a closed-form expression was derived for the noise spec
density at highly doped Ohmic contacts in terms of the sc
tering rate and the steady-state electron distribution funct
Illustrative numerical simulation results are presented for
autocovariance function and spectral density of current fl
tuations due to elastic acoustic and optical phonon scatte
in bulk silicon and highly doped Ohmic contacts. Simulat
results are found to be similar to those that are reported
noise computations employing the Monte Carlo method.13
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