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Theory of electronic ferroelectricity

T. Portengen,* Th. Östreich,† and L. J. Sham
Department of Physics, University of California San Diego, La Jolla, California 92093-0319

~Received 28 May 1996; revised manuscript received 20 September 1996!

We present a theory of the linear and nonlinear optical characteristics of the insulating phase of the Falicov-
Kimball model within the self-consistent mean-field approximation. The Coulomb attraction between the
itinerantd electrons and the localizedf holes gives rise to a built-in coherence between thed and f states,
which breaks the inversion symmetry of the underlying crystal, leading to~1! electronic ferroelectricity,~2!
ferroelectric resonance, and~3! a nonvanishing susceptibility for second-harmonic generation. As experimental
tests of such a built-in coherence in mixed-valent compounds, we propose measurements of the static dielectric
constant, the microwave absorption spectrum, and the dynamic second-order susceptibility.
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I. INTRODUCTION

In this paper, we present a theory of ferroelectricity ori
nating from an electronic phase transition, in contrast to
conventional displacive ferroelectricity due to a latti
distortion.1 The electronic ferroelectricity occurs in
strongly correlated electron system, namely, the insula
phase of the Falicov-Kimball model.

The Falicov-Kimball ~FK! model was introduced
originally2 as a simple model to explain the metal-insula
transitions observed in certain transition-metal and rare-e
compounds. The model has since been applied extensive
the mixed-valent compounds and heavy-fermion materi
The FK model introduces two types of electrons: itinera
d electrons and localizedf electrons. The valence transitio
is driven by the on-site Coulomb repulsion between thed
and f electrons. Ad-f hybridization term may or may not b
added to the model. The theoretical solutions for the gro
state of the FK model can be divided into two classes. On
one hand, solutions withf occupation as a good quantu
number3,4 do not have a built-in coherence betweend elec-
trons andf holes. On the other hand, solutions such as
self-consistent mean-field~SCMF! solution5 and the elec-
tronic polaron6 do have a built-in coherence betweend elec-
trons andf holes.

The built-in coherence of the SCMF solution breaks
inversion symmetry of the FK Hamiltonian in the followin
way. The many-electron eigenstates of the Hamiltonian
be classified into even- and odd-parity states. The SC
ground states with even and odd parities are degenerat
linear combination of the even- and odd-parity states for
the appropriate ground state for the limit of a vanishing el
tric field. We shall argue that such degenerate ground st
can exist for solutions withf occupation as a good quantu
number. Thus, the inversion symmetry breaking is not li
ited to the SCMF solution.

The primary purpose of this paper7 is to give a detailed
account of the linear and nonlinear optical characteristics
the SCMF solution. The inversion-symmetry-broken grou
state possesses the following distinctive properties:~1! elec-
tronic ferroelectricity,~2! ferroelectric resonance, and~3! a
nonvanishing susceptibility for second-harmonic generat
540163-1829/96/54~24!/17452~12!/$10.00
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Solutions of the model without built-in coherence do n
have these properties. As experimental tests to disting
between the two classes of solutions, we propose meas
ments of the static dielectric constant, the microwave abso
tion spectrum, and the dynamic second-order susceptib
of a mixed-valent compound, for example SmB6.

In recent years, four-wave-mixing~FWM! spectroscopy
has emerged as a powerful tool for studying coherence
optically pumped semiconductor systems.8–10 In a three-
beam FWM experiment, two incoming beams of wave ve
torsk1 andk2 set up a transient polarization grating. A thir
incoming beam of wave vectork3 diffracts off this grating to
produce an outgoing signal in the directionk4
5k31k22k1. Being a third-order process, FWM is allowe
in media with or without inversion symmetry. We pose t
following question: what happens if the system being prob
already has a polarization built into it by nature? An exam
of such a system is the SCMF solution of the FK mod
resulting in the Bose-Einstein condensation ofd-f excitons.

As shown below, the built-in polarization leads to a no
linear optical response tosecondorder in the external field.
The mixed-valent system has a nonvanishing susceptib
x (2)(2v,v,v) for second-harmonic generation. The built-
polarization replaces one of the incoming beams of the th
beam FWM experiment. In crystals with inversion symm
try, second-harmonic generation is forbidden in the elect
dipole approximation. In the mixed-valent system t
built-in polarization breaks the inversion symmetry, allowin
second-harmonic generation to take place. We present a
culation of the second-harmonic susceptibility of a mod
mixed-valent system within the SCMF approximation. T
second-harmonic susceptibility is directly proportional to t
built-in coherenceD, showing that second-harmonic gener
tion can be used as a test ofd-f exciton condensation in
mixed-valent compounds.

The existence of a built-in polarization in the ground sta
also means that, according to the SCMF theory, mix
valent compounds are ferroelectric. Whereas in commo
known ferroelectrics the built-in polarization is due to th
relative displacement of positive and negative ions, the
roelectricity in mixed-valent compounds is of purely ele
tronic origin. Apart from possible Jahn-Teller distortions a
17 452 © 1996 The American Physical Society



io
w
n

ta
fo
.

o
th
t
c-
nc
m
rr
y
n
a
tri

I
o
s
o
n
el
he
a

ni
so
a
nd
we
nt
re
ib
nd

d

he

e

of
be-

an
re
iring
con-

he

d

-

-

ll

m-

s,
est-

ith

-
ol-

54 17 453THEORY OF ELECTRONIC FERROELECTRICITY
result of the electronic polarization, the valence transit
does not involve a change in the crystal structure. As sho
below, the valence transition is accompanied by a diverge
of the static dielectric constant at the critical value of thef
level energy. The divergence of the static dielectric cons
should be observable in real mixed-valent compounds,
example by varying the external pressure or temperature

The continuous symmetry associated with the phase
D leads to a Goldstone mode in the excitation spectrum
the mixed-valent compound. In the pseudospin picture,
Goldstone mode corresponds to a uniform precession of
pseudospins around thez axis. Ferroelectric resonance o
curs when an ac electric field is applied whose freque
coincides with that of the Goldstone mode. This pheno
enon is the electric analogue of magnetic resonance in fe
magnetic insulators. The ferroelectric resonance frequenc
proportional to the square root of the effective bias field, a
may depend on the sample shape, domain structure,
crystal fields. In real mixed-valent compounds, ferroelec
resonance should occur in the microwave regime.

The remainder of the paper is organized as follows.
Sec. II we discuss the SCMF solution for the ground state
the FK model. We show that the SCMF ground state ha
built-in polarization, which breaks the inversion symmetry
the FK Hamiltonian. We calculate the static dielectric co
stant of a model mixed-valent system using mean-fi
theory. In Sec. III we calculate the linear susceptibility of t
model system using the pseudospin formalism. We obtain
analytical expression for the linear susceptibility in a u
form static electric field. We determine the ferroelectric re
nance frequency and analyze the shape of the infrared
sorption spectrum. In Sec. IV we compute the seco
harmonic susceptibility of the model system. In Sec. V
compare the results of the model calculation to experime
data and propose experimental tests of coherence in
mixed-valent compounds. In Sec. VI we discuss the poss
ity of ferroelectricity, ferroelectric resonance, and seco
harmonic generation for solutions of the FK modelother
than the SCMF solution. The main results are summarize
Sec. VII.

II. MODEL

Ignoring the electron spin, the FK Hamiltonian is

H5(
k

«kdk
†dk1Ef8(

k
f k
†f k1(

k
Vkdk

†f k1H.c.

1
U

N (
k,k8,q

dk1q
† dk f k82q

† f k8. ~1!

Here, dk
† creates ad electron of momentumk and energy

«k , and f k
† creates anf electron of momentumk and energy

Ef8 . The parameterU is the Coulomb repulsion between t
d and f electrons,Vk is the hybridization energy, andN is
the number of sites. We assume that thed band and thef
level are derived fromd and f orbitals on the same site. W
have chosen thed and f orbitals to yield a finite dipole
moment between them in thez direction. For simplicity, we
consider a model system with ad band of bandwidthW and
constant density of statesr051/(2W).
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A. SCMF solution

The SCMF solution is analogous to the BCS theory
superconductivity except that the pairing now occurs
tween ad electron of momentumk and anf hole of momen-
tum2k ~Ref. 11!. Whereas a Cooper pair carries charge,
electron-hole pair is neutral. The SCMF solution therefo
describes an insulator rather than a superconductor. Pa
between electrons and holes may also occur in a semi
ductor placed in an intense coherent laser field.12 In that case,
the pairing is externally enforced by the pump field. T
mean-field decoupling of the Hamiltonian~1! yields the ef-
fective one-particle Hamiltonian

H5(
k

~«k1Unf !dk
†dk1~Ef81Und!(

k
f k
†f k

1(
k

~Vk2D!dk
†f k1H.c.2NUnfnd1

N

U
uDu2, ~2!

where D5 (U/N) (k^cu f k
†dkuc& is the gap parameter an

nd5(1/N)(k^cudk
†dkuc& and nf5(1/N)(k^cu f k

†f kuc&
512nd are thed-band andf -level occupancies, respec
tively. The SCMF ground state is uc&5)k(uk
1vkdk

†f k)u0&, where u0& is the state with nof holes ~the
normal state!, anduk5cos12uk (vk5sin12uk) is the probabil-
ity amplitude for the pair state (k,2k) to be occupied~un-
occupied!. The gap parameterD and thef -level occupancy
nf must be determined self-consistently from

D5
U

N(
k

D2Vk

2Ek
, ~3!

nf5
1

2N(
k

S 11
jk
Ek

D . ~4!

Here,Ek5Ajk
21uD2Vku2 is the quasiparticle excitation en

ergy, with jk5
1
2(«k2Ef), whereEf5Ef81Un is the renor-

malizedf -level energy andn5nd2nf is the inversion. Since
neitherEf nor Ef8 are known from first principles, we sha
treatEf as the materials parameter. Equations~3! and~4! are
Eqs. ~11! and ~10! of Ref. 5 at temperatureT50, with a
k-dependent hybridization. If the crystal has inversion sy
metry, the hybridization must satisfyV2k52Vk . The as-
sumption of ak-independent hybridization in, among other
Ref. 5, is therefore incorrect. If, instead, we assume near
neighbor hybridization, we find thatVk is odd in k and
purely imaginary. As can be seen from Eq.~3!, the imaginary
part ofD then vanishes due to the cancellation of terms w
6k. The real part ofD is given by the BCS gap equation

D5
U

N(
k

D

2Ek
, ~5!

whereEk5Ajk
21uVku21D2. Calculation shows that a suffi

ciently strong hybridization can destroy the gap. In the f
lowing we consider the limit whereVk is negligible com-
pared toU.

The solution of Eqs.~4! and ~5! for our model system is
shown in Fig. 1. The figure shows the gap parameterD and
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the f -level occupancynf as a function of thef -level energy
Ef . The gap parameterD is the order parameter of the va
lence transition. When thef level is far below the bottom o
thed band, the system is in the normal state with nof holes
andD50. As the f level is moved upward past the critica
valueEf52Ec , whereEc5Wcoth(W/U) ~in a real material
this is achieved by applying pressure or by alloying!, D be-
comes nonzero and the system undergoes a valence tr
tion. In the mixed-valent state, thef -level occupancynf lies
between 0 and 1. The gap parameter reaches the maxi
valueD(0)5W/@2 sinh(W/U)# when thef level lies at the
center of thed band (Ef50). This is the half-filling point
nf(0)5

1
2. For still higherEf , the f level gradually empties

out into thed band. The solutions transform according
D(Ef)5D(2Ef) andnf(Ef)512n(2Ef). At Ef5Ec , the
system returns to a normal state with nof electrons. Since
nf(Ef) has no discontinuities, the valence transition is co
tinuous for all values of the Coulomb repulsionU.

B. Inversion symmetry breaking

The key feature of the SCMF ground stateuc& is that it
breaks the inversion symmetry of the FK Hamiltonian.
general, symmetry breaking occurs when the ground s
has a lower symmetry than the Hamiltonian. As a w
known example in another area, the Ising mod
H Ising52J(^ i j &Si

zSj
z is invariant underSi

z→2Si
z , all i . Yet

the ground state is either one of the broken-symmetry st
with built-in magnetization6Mz . The sign of the magneti
zation is selected by applying an infinitesimal bias fie
Hz , and then choosing the lower-energy state.

In the case of the SCMF solution of the FK model, t
inversion symmetry in ad-f site is spontaneously broken du
to the pairing ofd states of even parity withf states of odd
parity. Applying the inversionĴ to uc& gives the state

Ĵuc&5)
k

~2uk*1vk* dk
†f k!uc&, ~6!

which is linearly independent ofuc&. The form of the inver-
sion image follows from the even parity of thed orbital and
the odd parity of thef orbital andu2k5uk* andv2k5vk* .

FIG. 1. f -level occupancynf and gap parameterD of the model
system as a function of thef -level energyEf . The Coulomb repul-
sion isU53.0 W.
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The states uc& and Ĵuc& have built-in polarizations
^cuP̂uc&5P(0) and ^cuĴP̂Ĵuc&52P(0), where

P̂5
m

V(
k
dk
†f k1H.c. ~7!

is the polarization operator.m is the interband dipole matrix
element, which, for simplicity, we take to be independent
k, andV is the volume. One can show that in the thermod
namic limit N→`, uc& and Ĵuc& are orthogonal and un
coupled byH. The proof relies on the fact that the infinit
product)k(uvku22uuku2) is zero, sinceu(uvku22uuku2)u,1
for almost allk.

BecauseH is invariant under inversion,uc& and Ĵuc& are
degenerate. As in the case of the Ising model, the cor
ground state is selected by lifting the degeneracy with a b
field E, and then choosing the lower-energy state. This yie
the stateuc& with built-in polarization in the direction ofE.
We call this direction thez direction. ~Without crystal-field
terms, thez direction has no definite orientation with respe
to the crystal axes.! Since mz is real, Pz

(0)

5Nmz(D1D* )/(VU), whereD is the built-in coherence
The built-in polarization vanishes in the normal state wh
D50.

C. Electronic ferroelectricity

In commonly known ferroelectrics such as BaTiO3, the
ferroelectric transition involves a change in the crystal str
ture. In the ferroelectric phase, the positive ions are displa
relative to the negative ions, leading to a permanent elec
dipole moment. The displacive ferroelectric transition occ
when the transverse optical phonon frequency vanishe
some point in the Brillouin zone. In an electronic ferroele
tric, the ferroelectric transition involves a change in the el
tronic structure rather than the crystal structure.~Here we
neglect the electron-phonon coupling, which may caus
lattice distortion as a secondary effect of the transition.! In-
stead of a vanishing of the TO phonon frequency, thed-f
exciton energy goes to zero at the critical value of t
f -level energy. The built-in polarization of an electron
ferroelectric is of the order of 10mC/cm2, comparable to the
built-in polarization of perovskites.1

Since the built-in polarization is continuous atEf56Ec
~see inset of Fig. 2!, the valence transition is a second-ord
ferroelectric transition. In general, second-order ferroelec
transitions are accompanied by a divergence of the st
dielectric constant in the direction of the spontaneous po
ization. For a temperature-driven transition, the dielec
constant diverges as (T2Tc)

2g above Tc , and as
(Tc2T)2g8 below. Almost all known ferroelectrics hav
g51 ~Curie-Weiss law!. Observed values ofg8 range from
1
2 in TGS to 1

6 in SbSI.13

Here we calculate the static dielectric constant of
model mixed-valent system at temperatureT50, using
mean-field theory. The dielectric constant in thez direction
is given by ezz5114pxzz

(1) , where xzz
(1)5 limEz→0

]Pz
(0)/]Ez is the static susceptibility. ForD real, the polar-

ization is Pz
(0)52NmzD/(VU), so that xzz

(1)5@2Nmz /
(VU)# limEz→0]D/]Ez . The bias fieldEz leads to an addi-



h
-

to

ed
ga

a
vit

ent
lent
on-

an
he
tems
ok

ence
m
en-

er-
the
ctor
r-

ys-
bias
he
o-
to
ed-
he
he

ich

re-

nc-

he
om

ed

a-
rip-
as

e
of
in
tors

a

-
e

54 17 455THEORY OF ELECTRONIC FERROELECTRICITY
tional term2mzEz(kdk
†f k1H.c. in the effective one-particle

Hamiltonian. The self-consistency equation forD then be-
comes

D5
U

N(
k

D1mzEz

2Ek
, ~8!

whereEk5Ajk
21(D1mzEz)

2. The susceptibility is obtained
by implicit differentiation of Eqs.~4! and~8! with respect to
Ez . The susceptibility of the normal state (D50) is

xzz
~1!52

2Nmz
2

V

arccoth~ uEf u/W!

W2Uarccoth~ uEf u/W!
, ~9!

and the susceptibility of the mixed-valent state (D.0) is

xzz
~1!52

2Nmz
2

VU S 11
114D2A~0!

4D2A~0!@114D2A~0!#14D2B2~0! D .
~10!

HereA(0) andB(0) are given by Eqs.~A5! and~A6! of the
Appendix. Figure 2 shows the dielectric constant of t
model system as a function of thef -level energy. The dielec
tric constant diverges atuEf u5Ec . From Eq. ~9! we find
xzz
(1)}(uEf u2Ec)

21 as uEf u approachesEc from above, and
from Eq.~10! we findxzz

(1)}(Ec2uEf u)21 asuEf u approaches
Ec from below. Thus, the critical exponents according
mean-field theory areg5g851.

III. LINEAR OPTICAL RESPONSE

We first consider the linear optical response of the mix
valent system. The SCMF solution predicts an energy
2D in the absorption spectrum. The gap is 2D because the
incoming photon must createtwo quasiparticles, just as in
superconductor. Far-infrared transmission and reflecti

FIG. 2. Static dielectric constantezz of the model system as
function of the f -level energyEf . The inset shows the built-in
polarization as a function ofEf . Thed bandwidth isW540 meV,
the Coulomb repulsion isU515 meV, and the electric-dipole ma
trix element ismz53.7310229 Cm. The parameter values wer
obtained by fitting the absorption spectrum of the model system
experimental data on SmB6 ~see Fig. 2 of Ref. 7!.
e

-
p

y

spectra,14–16 as well as electron tunneling spectra,17 show
energy gaps of several meV in a number of mixed-val
compounds. The crucial difference between the mixed-va
compound and the superconductor is this: in the superc
ductor, the pairing occurs between twoelectrons, whereas in
the mixed-valent compound the pairing occurs between
electronand ahole. This has important consequences for t
coherence factors that enter into the response of both sys
to different external probes. For example, it is a textbo
result18 that a clean superconductor at temperatureT50 can-
not absorb electromagnetic radiation because the coher
factorupvp1q2vpup1q vanishes for zero photon momentu
q. For the mixed-valent compound, the coherence factor
tering the electromagnetic absorption isupup1q2vpvp1q ,
which remains finite for zero photon momentum. The coh
ence factor entering the electromagnetic absorption of
mixed-valent compound is the same as the coherence fa
entering the acoustic attenuation rate of the supe
conductor.19

We calculate the linear response of the mixed-valent s
tem to an ac electromagnetic field in the presence of a dc
field. The bias field serves to select the direction of t
built-in polarization. In a real material, the bias field is pr
vided by the crystal field or the depolarization field due
the sample boundary. We treat the interaction of the mix
valent system with the ac electromagnetic field in t
electric-dipole approximation. The interaction term in t
Hamiltonian isH int52mzEz(kdk

†f k1H.c., whereEz is the
component of the ac electric field along thez direction~i.e.,
the direction of the built-in polarization!. Only thez compo-
nent of the ac electric field couples to the channel in wh
the pairing takes place. The optical signatures ofd-f exciton
condensation occur only in this channel. We ignore the
sponse of the remaining optical channels.

The ac electric field sets up a polarizationPz in the ma-
terial, which in general can be a complicated nonlinear fu
tion of Ez . In linear response, we expandPz in powers of
Ez and keep only the first-order term:Pz

(1)5xzz
(1)Ez . In the

electric-dipole approximation, the linear susceptibilityxzz
(1)

depends on the photon frequencyv but not on the photon
momentumq. The quantity measured in experiments is t
reflectivity spectrum or the transmission spectrum. Fr
these one can extract the optical conductivityszz(v) by
Kramers-Kronig analysis. The optical conductivity is relat
to the linear susceptibility byszz(v)52 ivxzz

(1)(v).

A. Optical Bloch equations

We have calculated the linear susceptibilityxzz
(1) both

from the Kubo formula and from the optical Bloch equ
tions. The pseudospin picture gives a nice physical desc
tion of the linear and nonlinear responses of the system
precessional modes of the pseudospin vectorSk
5(Sx,k ,Sy,k ,Sz,k). The optical Bloch equations describe th
time evolution of the pseudospin vector under the action
the ac electric fieldEz . The components of the pseudosp
vector are the expectation values of the pseudospin opera

sx,k5dk
†f k1 f k

†dk , ~11!

sy,k52 i ~dk
†f k2 f k

†dk!, ~12!

to
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sz,k5dk
†dk2 f k

†f k ~13!

in the ground stateuc&. The equations of motion for the
components ofSk follow from the Heisenberg equations o
motion for the pseudospin operators (\51, i5x,y,z),

ṡ i ,k52 i @s i ,k ,H1H int#. ~14!

Working out the commutators, we find that the right-ha
side contains products of pseudospin operatorss i ,ks j ,k8 ( i
Þ j ). The products occur because of the Coulomb inter
tion term in the Hamiltonian ~1!. A closed set of
equations is obtained by replacing the average
products ^cus i ,ks j ,k8uc& by the product of average
^cus i ,kuc&^cus j ,k8uc&5Si ,kSj ,k8. This gives the optical
Bloch equations

Ṡk5~Hk2M !3Sk , ~15!

where Hk5(22mz(Ez1Ez),0,«k2Ef8) and M
5(U/N)(kSk . The symbol3 represents the vector cros
product. The optical Bloch equations describe the coup
motion of a collection ofN pseudospins. Each pseudosp
precesses around a local ‘‘magnetic’’ fieldHk2M , which is
the sum of an external fieldHk and an average internal fiel
2M , whereM is the pseudomagnetization.

B. Stationary solution

In the absence of the ac electric field, the optical Blo
equations have a stationary solutionSk

(0) . The stationary so-

lution is obtained by settingṠk
(0)50 in Eq. ~15!:

05~Hk
~0!2M ~0!!3Sk

~0! . ~16!

HereHk
(0)5(22mzEz,0,«k2Ef8), andM

(0)5(U/N)(kSk
(0) .

In the stationary state each pseudospin is lined up with
local ‘‘magnetic’’ field. Then there are two possibilities
Sk
(0) is either parallel or antiparallel toHk

(0)2M (0). The state
with Sk

(0) antiparallel toHk
(0)2M (0) has the lower energy

Thus, in the ground state all pseudospins point in the dir
tion opposite to the local ‘‘magnetic’’ field.

For zero bias field (Ez50), Eq. ~16! is invariant under
rotation about thez axis. If Sk

(0) is a solution, then so is
Rz(f)Sk

(0) , whereRz(f) is a rotation about thez axis over
an anglef. The anglef is the phase of the gap paramet
D. For nonzero bias field,Sk

(0) lies in thex-z plane and the
gap parameter is real. Introducing spherical polar coo
nates,Sk

(0)5(sinuk,0,cosuk) andM
(0)5(2D,0,Un). The tilt-

ing angleuk is the angle betweenSk
(0) and the positivez axis.

The magnetizationM (0) must be determined self-consistent
fromM (0)5(U/N)(kSk

(0) . Thez component of this equation
gives Eq.~4!, and thex component gives Eq.~8!. The sta-
tionary solution of the optical Bloch equations is the SCM
solution given in Sec. II.

C. Pseudospin precession

To calculate the linear susceptibility from the optic
Bloch equations, we expand the pseudospin vector
pseudomagnetization to first order inEz : Sk5Sk

(0)1Sk
(1)

and M5M (0)1M (1). Also, Hk5Hk
(0)1H(1), with H(1)
c-

f

d

h

e

c-

i-

d

5(22mzEz,0,0). We substitute the expansions into t
Bloch equations and collect terms of the same order in the
electric field. To zeroth order we recover Eq.~16!. To first
order we get

Ṡk
~1!2~Hk

~0!2M ~0!!3Sk
~1!2Sk

~0!3M ~1!5H~1!3Sk
~0! . ~17!

Taking the inner product with the stationary solution giv
Ṡk
(1)
•Sk

(0)50. The ac electric field causes the pseudospin v
tor to precessabout the stationary direction. WithSk

(0) tilted
away from thez axis, the precession involves variations
all three cartesian components ofSk . The problem is simpli-
fied by working in the spherical polar coordinate system.
spherical polar coordinates, the stationary solution is the
vector in the radial directioner . The precession abouter is
decomposed into components along the polar and azimu
units vectorseu and ef : Sk

(1)5Su,k
(1)eu1Sf,k

(1) ef . One must
remember thater andeu vary with the tilt angleuk , while
ef is fixed, sinceSk

(0) lies in thex-z plane. The equations o
motion forSu,k

(1) andSf,k
(1) are

Ṡu,k
~1!22EkSf,k

~1! 1Mf
~1!50, ~18!

Ṡf,k
~1! 12EkSu,k

~1!2M u,k
~1!52mzEzcosuk . ~19!

Here Mf
(1)5(U/N)(kSf,k

(1) and M u,k
(1)5(U/N)(k8cos(uk

2uk8)Su,k8
(1) . The appearance of the cosine factor inM u,k

(1) is
due to the variation ofeu with uk . In deriving Eqs.~18! and
~19! from Eq. ~17!, we have used the fact thatSr ,k

(1)50,

which follows from Ṡr ,k
(1)50 and the initial condition

Sr ,k
(1)(t50)50.

D. Noninteracting quasiparticles

It is instructive to first calculate the absorption spectru
neglecting the Coulomb interaction between the optically
cited quasiparticles. In the pseudospin picture, this co
sponds to settingMf

(1)5M u,k
(1)50 in Eqs.~18! and ~19!. The

linear susceptibility is xzz
(1)5Pz

(1)/Ez , where Pz
(1)

5(Nmz /V)(kSu,k
(1)cosuk is the first-order polarization. Solv

ing Eqs.~18! and ~19! for Su,k
(1) , we obtain

xzz
~1!52

Nmz
2

V (
k

S nk,k
2

v22Ek
2

nk,k
2

v12Ek
D , ~20!

wherenk,k85ukuk82vkvk8 is a coherence factor. The fre
quencyv is understood to have a small positive imagina
partd. The physical origin of the coherence factornk,k8 can
be understood as follows:20 In the absorption process, a
incoming photon of momentumk2k8 creates a quasielec
tron of momentumk and a quasihole of momentum2k8.
This can be done in two different ways.~1! If the pair states
(k,2k) and (k8,2k8) are initially empty, it can be done by
adding ad electron ink and adding anf hole in2k8. This
process has amplitudeukuk8. ~2! If the pair states (k,2k)
and (k8,2k8) are initially occupied, it can be done by re
moving anf hole from2k and removing ad electron from
k8. This process has amplitude2vkvk8. The overall ampli-
tude for the creation process isukuk82vkvk85nk,k8.
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For the model system, the absorption spectrum can
found analytically. When thef level lies inside thed band
(uEf u<W), the energy gap is 2D, and the absorption rises a
Av22D above threshold. When thef level lies outside the
d band (uEf u.W), the gap isA(uEf u2W)214D2, and there
is a discontinuous jump in the absorption at threshold. T
single-quasiparticle result for the absorption spectrum
half-filling (Ef50) is shown by the dash-dotted line in Fi
2 of Ref. 7.

E. Final-state interaction

The quasiparticles created in the optical transition inter
via the Coulomb potentialU. In the normal state (D50) the
final-state interaction leads to the Wannier exciton. In
mixed-valent state (D.0) the final-state interaction leads
ferroelectric resonance and a threshold singularity in the
frared absorption spectrum. In the pseudospin picture,
final-state interaction corresponds toMf

(1) andM u,k
(1) . For a

separable Coulomb potential, Eqs.~18! and ~19! can be
solved analytically. The pseudospin components are gi
by

Su,k
~1!5mzEzS G~k,v!

v22Ek
2

G~k,2v!

v12Ek
D , ~21!

Sf,k
~1! 52 imzEzS G~k,v!

v22Ek
1

G~k,2v!

v12Ek
D , ~22!

where

G~k,v!52cosuk2
U

N(
k8

cos2@~uk2uk8!/2#G~k8,v!

v22Ek8

2
U

N(
k8

sin2@~uk2uk8!/2#G~k8,2v!

v12Ek8
~23!

is a vertex function. In diagrammatic terms, the vertex fu
tion is the sum of all ladder diagrams contributing to t
propagation of the quasiparticle pair.
n
rp

th
e

e
t

ct

e

-
e

n

-

In the normal state (uk5p) Eq. ~23! yields the Wannier
exciton. The pole of the vertex function gives the excit
binding energyEb5W coth(W/U)2W. The absorption spec
trum of the normal state consists of an exciton line
v5Eg2Eb and a continuum betweenv5Eg and
v5Eg12W, whereEg52W2Ef is thed-f band gap. The
final-state interaction enhances the absorption atv5Eg .

In the mixed-valent state the vertex function has th
components:

G~k,v!52cosukG1~v!1sinukG2~v!1G3~v!. ~24!

The componentsG1(v) and G2(v) are even inv, while
G3(v) is odd. Substitution of Eq.~24! into Eq. ~23! yields a
set of three algebraic equations for the vertex componen

S ~v22M2!A~v!1R MB~v! vB~v!

MB~v! 11M2A~v! vMA~v!

vB~v! vMA~v! v2A~v!1R
D

3S G1~v!

G2~v!

G3~v!
D 5S 10

0
D . ~25!

Here M52D1mzEz and R5mzEz /(D1mzEz). The func-
tionsA(v) andB(v) are given by

A~v!5
U

N(
k

1

2Ek~v22Ek!~v12Ek!
, ~26!

B~v!5
U

N(
k

«k2Ef

2Ek~v22Ek!~v12Ek!
. ~27!

For the model systemA(v) andB(v) can be found analyti-
cally. The explicit expressions are given in the Append
Solving Eq.~25! for G1(v) gives
G1~v!5
~v21RM2!A~v!1R

@~v22M2!A~v!1R#@~v21RM2!A~v!1R#2~v21RM2!B2~v!
. ~28!
m
ent
f
pro-
The linear susceptibility is

xzz
~1!~v!5

2Nmz
2

VU
~G1~v!21!. ~29!

F. Infrared absorption spectrum

We first consider the absorption spectrum in the abse
of a static electric field. We calculate the continuum abso
tion in zero bias field, settingM52D andR50 in Eq. ~28!.
For an energy gap of several meV, the continuum lies in
far infrared. The linear susceptibility in zero bias field is
ce
-

e

xzz
~1!~v!5

2Nmz
2

VU S A~v!

~v224D2!A2~v!2B2~v!
21D . ~30!

The solid lines in Fig. 3 show the imaginary part of Eq.~30!
for several values ofEf . When thef level lies far below the
bottom of thed band~top curve!, the continuum absorption
of the mixed-valent state is very similar to the continuu
absorption of the normal state. There is a slight enhancem
near the energy gap. As thef level approaches the bottom o
the d band, the enhancement becomes more and more
nounced. When thef level lies within thed band, the spec-
trum has a threshold singularity atv52D. The spectrum for
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Ef above the center of thed band is the same as the spectru
for 2Ef below it. From Eq. ~30! we find that when
uEf u,W, the threshold singularity ise21/2u(e), and when
uEf u5W the singularity is e21/2ln22(e)u(e), where e
5v22D. When the f level lies outside thed band, the
singularity is cut off because the energy gap is larger t
2D. The singularity is due to the final-state interaction b
tween the optically excited quasiparticles. In the sing
quasiparticle treatment, the absorption rises continuou
from zero according toe1/2u(e). The singularity isnot an
artifact of the simple model, and should be observable in
materials. Roundoff may occur due to lifetime effects a
sample inhomogeneities.

G. Ferroelectric resonance

The dash-dotted line in Fig. 3 represents the absorp
spectrum of the mixed-valent system in a bias field. T
spectrum consists of two parts: a peak atv5v0, and a con-
tinuum abovev52D. We shall show thatv0 is the ferro-
electric resonance frequency. The continuum part of the
sorption spectrum is blue-shifted only slightly by the bi
field.

Ferroelectric resonance occurs when an electronic fe
electric, placed in a bias fieldEz , is acted upon by an alter
nating fieldEz of frequencyv0. The ferroelectric resonanc
frequencyv0 is the frequency of the Goldstone mode in t
bias fieldEz . The Goldstone mode corresponds to a unifo
precession of the pseudospins around thez axis. For an ideal
systemv0 vanishes at zero bias field. For a real system
external bias fieldEz must be replaced by an effective inte
nal field Eeff , which may depend on the sample shape,
domain structure, and the crystal anisotropy. An example

FIG. 3. Absorption spectrum Imxzz
(1)(v) of the model system as

a function of the photon energyv for various values of the
f -level energyEf . The Coulomb repulsion isU53.0 W. The solid
lines show the continuum absorption spectrum in zero bias fi
The dash-dotted line shows both the ferroelectric resonance
and the continuum absorption spectrum in a bias field
Ez50.01mz/W.
n
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-
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a contribution toEeff is the depolarization field2NzPz of the
sample boundary, whereNz is the depolarization factor. The
effective field remains nonzero in the absence of the exte
bias field, yielding a finite resonance frequency for an un
ased sample.

Ferroelectric resonance is the electric analogue of fe
magnetic resonance in a ferromagnetic insulator. In the m
netic case, the alternating field causes a uniform preces
of real spins around thez direction. The ferromagnetic reso
nance frequency isv05gHz , whereg is the gyromagnetic
ratio, andHz is the bias field. In real samplesHz must be
replaced by an effective fieldHeff depending on the sampl
geometry, magnetic domain structure, and crystal magn
anisotropy.21

Ferroelectric resonance does not occur in displacive
roelectrics because the order parameter only has a dis
symmetry. This means there is no Goldstone mode in
excitation spectrum of a displacive ferroelectric. Ferroel
tric liquid crystalsdo have an order parameter with a co
tinuous symmetry. The dielectric response of the Goldst
mode has been observed22 in ferroelectric liquid crystals by
means of broadband dielectric spectroscopy.

We now calculate the dependence of the ferroelec
resonance frequency of an ideal system on the external
field Ez . For a real system,Ezmust be replaced byEeff . The
ferroelectric resonance frequency is given by the equa
D(v0)50, whereD(v) is the denominator of Eq.~28!. For
mzEz small compared toD, an approximate solution may b
obtained by expandingD(v0) in a Taylor series around
v050:D(v0)5D(0)1 1

2v0
2D9(0). Thelinear term vanishes

becauseD(v) is even inv. Neglecting terms of orderR2 in
D(0) and of orderR in D9(0), we find

v05F24mzDS 11
A~0!

4D2A2~0!1B2~0! D G
1/2

AEz. ~31!

Substituting the explicit expressions forA(0) and B(0)
given in the Appendix yields

v05S 4mzDEc8

U D 1/2AEz, ~32!

whereEc85Ec2U is the critical value ofEf8 . A useful esti-
mate ofv0 is the arithmetic mean of the gap 2D and the field
energymzEz . For mz510229 Cm, 2D51 meV, andEz be-
tween 10 and 104 V/cm,v0 is between 0.01 and 1 meV, i.e
in the microwave regime.

The conditionD(v0)50 is not sufficient for a peak in the
absorption spectrum atv5v0. One must also haveN(v0)
Þ0, whereN(v) is the numerator of Eq.~28!. The strength
of the pole atv0 is Z052pN(v0)/D8(v0). Away from
half-filling, one finds Z0.0. Exactly at half-filling,
B(v)50. As can be seen at once from Eq.~28!, we then
haveZ050. The zero strength at half-filling is an artifact o
our simple model, which hasr(e)5r(2e). For a realistic
d band there will be a resonance peak at half-filling.

An important problem in ferromagnetic resonance is h
to account for the width of the ferromagnetic resonan
line.23 The line width is due to the relaxation of the unifor
precession by spin-spin and spin-lattice interactions. Vari
damping terms may be added to the Bloch equations to

d.
ak
f
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54 17 459THEORY OF ELECTRONIC FERROELECTRICITY
scribe the relaxation. A possible damping term
2(Sk2Sk

(0))/t, where t is a phenomenological relaxatio
time. In the equation of motion forSk

(1) , this leads to the
replacement ofd/dt by d/dt11/t. Thus, the simplest ap
proach to damping~the one we have adopted here! is to add
an imaginary partd51/t to v. A detailed study of the width
of the ferroelectric resonance line is left for future resear

IV. SECOND-HARMONIC GENERATION

Second-harmonic generation is the generation of an
going electromagnetic wave of frequency 2v from two in-
coming waves of frequencyv. For incoming waves propa
gating alongk1 and k2, the second-harmonic radiation
most effectively generated in the phase-matching direc
k11k2. In this direction both energy and momentum a
conserved.

The ability of a medium to sustain second-harmonic g
eration is characterized by the second-harmonic suscep
ity tensorx i jk

(2)(2v,v,v). Here i , j ,k5x,y,z are the Carte-
sian indices. The polarizationPi(2v) induced in the medium
by incoming fields Ej (v) and Ek(v) is given by
Pi(2v)5x i jk

(2)(2v,v,v)Ej (v)Ek(v). For a medium with in-
version symmetry, the second-harmonic susceptibility m
satisfyx i jk

(2)52x i jk
(2)50. Therefore, second-harmonic gene

tion cannot occur in media with inversion symmetry.
In the mixed-valent system, the inversion symmetry

spontaneously broken by the pairing of electronic states
opposite parity. This leads to the appearance of a buil
polarization in thez direction. If the incoming fields have
component along thez axis, second-harmonic generation c
occur. We calculate the second-harmonic susceptibilityxzzz

(2)

for incoming fields polarized along thez axis. For incoming
fields polarized at an anglef relative to thez axis, the
second-harmonic susceptibility is reduced by cos2f.

A. Pseudospin nutation

We calculate the second-harmonic susceptibilityxzzz
(2)

from the optical Bloch equations by expandingSk andM to
second order inEz . The external ‘‘magnetic’’ fieldHk has no
components of second or higher order. The equation of
tion for Sk

(2) is

Ṡk
~2!2~Hk

~0!2M ~0!!3Sk
~2!1M ~2!3Sk

~0!

5~H~1!2M ~1!!3Sk
~1! . ~33!

Equation~33! has the same form as Eq.~17!, except with a
more complicated right-hand side. As before, we decomp
Sk
(2) into its radial, polar, and azimuthal componen
Sk
(2)5Sr ,k

(2)er1Su,k
(2)eu1Sf,k

(2) ef . To second order, the pseu
dospin has a nonzero radial componentSr ,k

(2) . This means the
motion is no longer a regular precession: the pseudospinnu-
tates during the precession.~Nutation is the up-and-down
motion of the precession axis.! The nutation frequency is
twice the precession frequency. This can be shown as
lows: the equation of motion forSr ,k

(2) is obtained by taking
the inner product of Eq.~33! with er . Using the vector iden-
tity (A3B)•C5(C3A)•B and taking the inner product o
.
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Eq. ~17! with er shows that the equation forSr ,k
(2) can be

written asṠr ,k
(2)52Ṡk

(1)
•Sk

(1) . Upon integration, we find

Sr ,k
~2!52

1

2
~Su,k

~1!Su,k
~1!1Sf,k

~1! Sf,k
~1! !. ~34!

The equations of motion forSu,k
(2) andSf,k

(2) are obtained by
taking the inner product of Eq.~33! with eu andef respec-
tively. Apart from the more complicated source terms, a n
feature occurring in second order is thatSr ,k

(2) is now nonzero.
This leads to an additional term (U/N)(k8sin(uk2uk8)Sr ,k8

(2)

on the left-hand side of the equation forSf,k
(2) . However,

since we have already solved forSr ,k
(2) in Eq. ~34!, the addi-

tional term can be taken over to the right-hand side a
treated as an extra source term. Combining all source te
into driving forcesFu,k

(2) andFf,k
(2) , the equations of motion

for Su,k
(2) andSf,k

(2) are

Ṡu,k
~2!22EkSf,k

~2! 1Mf
~2!5Fu,k

~2! , ~35!

Ṡf,k
~2! 12EkSu,k

~2!2M u,k
~2!5Ff,k

~2! , ~36!

with

Fu,k
~2!5~2mzEzsinuk1Mr ,k

~1!!Sf,k
~1! , ~37!

Ff,k
~2! 52~2mzEzsinuk1Mr ,k

~1!!Su,k
~1!

2
U

N(
k8

sin~uk2uk8!Sr ,k8
~2! . ~38!

HereMr ,k
(1)5(U/N)(k8sin(uk2uk8)Su,k8

(1) . A very important
observation is that since sinuk5D/Ek , all source terms are
proportional toD. The second-harmonic susceptibility va
ishes identically whenD50.

B. Independent quasiparticles

We first calculate the second-harmonic susceptibility
glecting the Coulomb interaction between the optically e
cited quasiparticles. This corresponds to sett
M u,k

(2)5Mf
(2)50 on the left-hand sides of Eqs.~35! and~36!,

and Fu,k
(2)52mzEzSf,k

(1) sinuk and Ff,k
(2) 522mzEzSu,k

(1)sinuk on
the right-hand sides. The second-harmonic susceptibilit
xzzz
(2)5Pz

(2)/Ez2 where Pz
(2)5(Nmz /V)(k(Su,k

(2)cosuk
1Sr ,k

(2)sinuk) is the second-order polarization. The secon
order polarization has a contribution from the radial comp
nentSr ,k

(2) . Solving Eqs.~35! and~36! for Su,k
(2) , and using Eq.

~34! for Sr ,k
(2) , we obtain

xzzz
~2!52

Nmz
3

V (
k

S 2mk,knk,k
2

~v22Ek!~2v22Ek!

1
2mk,knk,k

2

~v12Ek!~2v12Ek!
2

2mk,knk,k
2

~v22Ek!~v12Ek!
D .
~39!

The coherence factor mk,k8 is given by mk,k8
5ukvk81vkuk8. The physical origin of the coherence fact
mk,k8 is the scattering of a quasiparticle by the seco
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incoming photon. The second photon can scatter either
quasielectron fromk to k8, or the quasihole from2k8 to
2k. The overall amplitude for the scattering process
2mk,k8. Sincemk,k5D/Ek , the second-harmonic susceptib
ity is directly proportional toD.

C. Final-state interaction

For a separable Coulomb potential, an analytic solut
for the second-harmonic susceptibility including the fin
state interaction is possible in principle. However, the la
number of driving terms in Eqs.~37! and ~38! presents a
considerable challenge. We have instead approached
problem numerically. This is done in analogy with the cla
sical mechanics treatment of forced oscillations. The a
muthal componentSf,k is the generalized coordinateqk , and
the polar componentSu,k is the negative of the conjugat
momentumpk . Eqs. ~35! and ~36! are the Hamilton equa
tions of motion forqk andpk . The matricesT andV are

Tk,k8
21

52Ekdk,k82
U

N
cos~uk2uk8!, ~40!

Vk,k852Ekdk,k82
U

N
. ~41!

The first step is to find the normal modes of oscillation of t
system of pseudospins. The normal-mode equations are

(
k8

Vk,k8Ak8,n5~2En!
2(
k8

Tk,k8Ak8,n , ~42!

where 2En is the frequency of normal moden, andAk,n is
the amplitude ofSf,k in the normal moden. SinceT and
V are both real and symmetric, the frequencies are all
and positive. There is one Goldstone mode, whose freque
is the ferroelectric resonance frequencyv0. The remaining
N21 frequencies form a continuum above the energy ga

The second step is to obtain the forced oscillation
Su,k
(2) andSf,k

(2) when driven byFu,k
(2) andFf,k

(2) . This is done by
solving for the motion in normal coordinates, and then tak
linear combinations to obtain the motion in the original c
ordinates. The force driving the normal coordinatezn has
frequency 2v and amplitude Qn52(k(Ak,nFu,k

(2)

12ivAn,k
21Ff,k

(2) ). This causes the normal coordinate to osc
late with frequency 2v and amplitude
zn5Qn /(4En

224v2). The original coordinates oscillate wit
frequency 2v and amplitudes Sf,k

(2) 5(nAk,nzn and
Su,k
(2)52iv(nAk,n

21zn1(k8Tk,k8Ff,k8
(2) . The complete motion

in the original coordinates is (m52)

Sf,k
~m!5(

n,k8

Ak,n~Ak8,nFu,k8
~m!

1mivAn,k8
21 Ff,k8

~m!
!

m2v224En
2 , ~43!

Su,k
~m!5(

n,k8

An,k
21~4En

2An,k8
21 Ff,k8

~m!
2mivAk8,nFu,k8

~m!
!

4En
22m2v2 .

~44!
he
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Here we have used the orthonormality conditi
dn,n85(k,k8Ak,nTk,k8Ak8,n8 for the matrix of eigenvectors
Ak,n . Equations~43! and ~44! apply tomth-harmonic gen-
eration in general.

The computational task is summarized as follows. Fi
computeSf,k

(1) andSu,k
(1) from Eqs.~43! and ~44! with m51

and Fu,k
(1)50, Ff,k

(1) 52mzEzcosuk . To avoid a singular de-
nominator,v is given a small positive imaginary partd.
Then computeSr ,k

(2) from Eq. ~34!, andFu,k
(2) andFf,k

(2) from
Eqs.~37! and~38!. Finally, computeSu,k

(2) from Eq.~44! with
m52.

Figure 1 of Ref. 7 shows the results of the calculation
the amplitude and phase of the second-harmonic suscep
ity xzzz

(2)(2v,v,v) as a function of the photon energyv, for
several values ofEf , in zero bias field. The features of th
linear absorption spectrum are replicated in the amplitude
the second-harmonic susceptibility, not only in the ene
range starting from the threshold at the full gapv52D, but
also in the energy range from the threshold at the half
v5D due to two-photon processes. In particular, the fin
state enhancement is reproduced near both thresholds.
theory of such features provides the suggestion of a poss
distinctive experimental test for the symmetry-broken sta
Since the strength of the second-harmonic susceptibility
directly proportional toD, the measured second-harmon
generation can be correlated with other data, such as
polarization and dielectric constant discussed above, to
tinguish it from the possible second-harmonic generation
to other causes, such as the surface.

V. EXISTING EXPERIMENTAL EVIDENCE
AND PROPOSED TESTS

As experimental tests of electronic ferroelectricity in
mixed-valent compound, we propose measurements of
static dielectric constant, the microwave absorption sp
trum, and the second-harmonic susceptibility. As an
ample, consider SmB6. The crystal structure of SmB6 has
cubic symmetry, with B6 octahedra at the body center an
Sm ions at the corners of a conventional bcc unit cell w
lattice constanta54.13 Å. The crystal has inversion symm
try at the bcc lattice points. Through measurements of
ionic radius, the valence of the Sm ion is found to be 2.
almost halfway between 2 and 3, so that thef level lies near
the center of the conduction band.

The measured far-infrared absorption spectrum14–16 of
SmB6 can be interpreted in accordance with the SCMF
lution. In Fig. 2 of Ref. 7 we compare the mean-field a
single-quasiparticle results for the linear susceptibility to e
perimental data on SmB6 taken from Ref. 14. The data sho
an energy gap around 2D54 meV, and a sharp peak a
threshold. The mean-field theory fits the data very well in
threshold region, whereas the single-quasiparticle the
gives a qualitatively wrong behavior. Away from thresho
discrepancies between mean-field theory and experimen
cur because of our simple model. Further experimental in
cation of the validity of the SCMF solution in SmB6 is pro-
vided by the electron tunneling spectrum,17 which can be
interpreted by analogy with Giaever tunneling in a superc
ductor.
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Reference 14 also reports a measurement of the stati
electric constant of SmB6 at T54 K. The large observed
value e51500 provides further support for the theoretic
prediction of electronic ferroelectricity. An interesting te
would be the existence of the ferroelectric resonance in
compound. ForEf50, W540 meV, U515 meV, and
mz53.7310229 Cm ~the parameter values given in Fig. 2
Ref. 7!, the ferroelectric resonance frequency
v050.021AEz meV, whereEz is in V/cm. This estimate
from Eq. ~32! was checked by the numerical solution
D(v0)50 and was found to be in agreement to better th
0.5% for fields up to 103 V/cm. For a reasonably stron
applied electric field, the ferroelectric resonance lies easil
the range of frequency measured in Ref. 14 at zero st
electric field, since the lowest frequency measured there
1 meV.

Reference 24 reports measurements of the dielectric
sponse of mixed-valent Sm3Se4 and Sm2Se3 from 20 Hz up
to 1 GHz. The huge observed values of the static dielec
constant (e530 000 for Sm3Se4 and e54000 for
Sm2Se3) are consistent with electronic ferroelectricit
Given the value 2D5140 meV for the energy gap in
Sm3Se4, we predict a resonance frequency between 0.1 m
(10 GHz! and 10 meV (1 THz!.

Reference 25 reports transport measurements on mi
valent TmSe0.45Te0.55 that show evidence of a condensati
of free carriers into an excitonic insulator ground state. D
to the indirect nature of the energy gap, this material mi
not be suitable for the optical tests of coherence propo
here.

VI. DISCUSSION OF OTHER GROUND STATES

We now discuss the possibility of electronic ferroelectr
ity, ferroelectric resonance, and second-harmonic genera
for solutions of the FK modelother thanthe SCMF solution.
There are two types of solutions we consider here:~1! solu-
tions with a classical f -electron distribution and~2!
electronic-polaron solutions. The question we ask is: d
the theoretical ground state have a built-in coherence
tweend electrons andf holes? This coherence is necessa
for electronic ferroelectricity and the concomitant optic
signatures to occur. The answer is, for the two types of
lutions: ~1! no and~2! yes. A brief motivation for each an
swer is given below.

In Refs. 3 and 4 thef occupationf i
†f i is replaced by a

classical variableWi , whereWi51 when sitei is occupied
by an f electron andWi50 when it is not. With this replace
ment, the FK model becomes a tight-binding model with
on-site potential that can assume two different valuesU or
0. For a given configuration off electrons, the ground-stat
energy is found by filling the lowestd electron levels. The
ground configuration is the configuration with the lowe
ground-state energy. The question we ask is: what is
value ofD5(U/N)( i51

N ^cu f i
†di uc&? Since each site is eithe

occupied (f i
†f i51) or empty (f i

†f i50), every term in the
sum vanishes, andD50 no matter what configuration off
electrons we choose.

However, we argue that there are degenerate states i
f -occupation representation, linear combinations of wh
are ground states with finite polarization. It is straightforwa
di-
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to demonstrate this property for the exact solutions of a r
of four sites. We construct a ring of four sites withd and f
states on alternate sites. The Hamiltonian, including all
FK terms, has inversion symmetry with respect to thed and
f sites. There are three eigenstates that are even under i
sion with respect to ad site and three that are odd. Th
parameters are varied so that a degeneracy occurs bet
two states of odd parity and one of even parity. The grou
state in the limit of a vanishing electric field is a mixture
even and odd states with a finite polarization.

In Ref. 6, an electronic-polaron solution of the FK mod
is presented that may explain the anomalous propertie
heavy-electron materials such as UPt3, UBe13, and
CeCu2Si2. It is proposed that the Coulomb interaction caus
the f electrons in these materials to propagate like polaro
with a screening cloud made up ofd electrons. The model is
shown to account for a large number of thermodynamic a
transport properties of heavy-electron materials.

Here we show that the electronic polaron has a nonz
built-in coherence

D5
U

N(
k
Gdf~k,t502!, ~45!

where Gdf(k,t)52^Ttdk(t) f k
†(0)& is a mixed Green’s

function with Fourier transform Gdf(k,ivn)5
2VGf f(k,ivn)Gdd(k,ivn), whereGdd andGf f are thed-
and f -electron propagators andvn are the Matsubara fre
quencies. Expressing the Green’s functions in the Lehm
representation and summing over the Matsubara frequen
we find ~at T50)

D5VUAp csc~pa! E
m0

`

dv v2aN1~v!. ~46!

Here,A anda are the forefactor and the singularity index
the f -electron spectral function~see Ref. 6!, N1(v) is the
density ofd electron states in the upper branch, andm0 is the
Fermi level atT50. Using Eq.~8! of Ref. 6 forN1(v), we
obtain

D5
U

4V S h

m0
D 2a

W, ~47!

whereW is the bandwidth andh the upper-branch threshold
Taking the parameter valuesa50.8, m051.3 h, and
U520V from Ref. 6 we getD53.28W.

VII. SUMMARY AND CONCLUSION

In this paper we have investigated the linear and nonlin
optical characteristics of the Falicov-Kimball model. Th
SCMF solution of the periodic model results in the Bos
Einstein condensation ofd-f excitons. We found that the
pairing ofd states of even parity withf states of odd parity
breaks the inversion symmetry of the underlying cryst
leading to electronic ferroelectricity. The valence transiti
is accompanied by a divergence of the static dielectric c
stant at the critical value of thef -level energy. The existenc
of electronic ferroelectricity in a given mixed-valent com
pound is predicated on the dominance of thed-f Coulomb
interaction over the hybridization.
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We have calculated both the linear and the seco
harmonic susceptibilities of a model mixed-valent syst
within the SCMF approximation. The absorption spectrum
the mixed-valent system, when placed in an additional st
electric field, consists of a peak at the ferroelectric resona
frequency and a continuum above the energy gap. The fe
electric resonance frequency is proportional to the squ
root of the effective bias field, which depends, in addition
the applied static field, on the sample shape, domain st
ture, and crystal anisotropy. The continuum absorption h
threshold singularity when thef level lies within the conduc-
tion band. The second-harmonic susceptibility is direc
proportional to the amount of built-in coherenceD. The
final-state Coulomb interaction enhances the seco
harmonic conversion efficiency atv5D andv52D. As ex-
perimental tests of the electronic ferroelectricity in mixe
valent compounds, we proposed measurements of the s
dielectric constant, the microwave absorption spectrum,
the second-harmonic susceptibility. The measured
infrared absorption spectrum of SmB6 was found to be con-
sistent with the model calculation.

We have also discussed the possibility of electronic f
roelectricity, ferroelectric resonance, and second-harmo
generation for two other theoretical ground states of
Falicov-Kimball model. The electronic-polaron state do
have a built-in coherence comparable to the SCMF solut
A ground state withf occupation as a good quantum numb
has no built-in coherence betweend electrons andf holes.
rd
-

f
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ce
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-
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Such a state on its own is not ferroelectric, does not exh
ferroelectric resonance, and cannot sustain second-harm
generation. We have argued that degenerate ground stat
the f -occupation representation can lead to ferroelec
ground states. The explicit numerical demonstration of s
ground states is left for the future.
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APPENDIX

In this appendix, we give the explicit expressions for t
functions A(v) and B(v) defined in Eqs.~26! and ~27!.
Replacing (1/N)(k by *der(e), with r(e)
5u(W2ueu)/(2W), we obtain

A~v!5
U

2WE
2W2Ef

W2Ef
de

1

Ae21M2~v22e22M2!
, ~A1!

B~v!5
U

2WE
2W2Ef

W2Ef
de

e

Ae21M2~v22e22M2!
. ~A2!

The integrals can be performed by elementary methods.
find
A~v!5
U

4W2vAv22M2 F lnS A~Ef1W!21M2Av22M21~Ef1W!v

A~Ef1W!21M2Av22M22~Ef1W!v
D 2 lnS A~Ef2W!21M2Av22M21~Ef2W!v

A~Ef2W!21M2Av22M22~Ef2W!v
D G ,

~A3!

and

B~v!5
U

4W2v F lnS A~Ef1W!21M21v

A~Ef1W!21M22v
D 2 lnS A~Ef2W!21M21v

A~Ef2W!21M22v
D G . ~A4!

The frequencyv is understood to have a positive imaginary partd. The functionA(v) is even inEf , while B(v) is odd in
Ef . This meansB(v)50 at half-filling.

The static susceptibility given by Eq.~10! involves the functionsA(v) andB(v) evaluated atv50. Taking the limit
v→0 in Eqs.~A3! and ~A4! we obtain

A~0!5
U

2W2M S W1Ef

A~W1Ef !
21M2

2
W2Ef

A~W2Ef !
21M2D , ~A5!

B~0!5
U

2W2 S 1

A~W2Ef !
21M2

2
1

A~W1Ef !
21M2D . ~A6!
in
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