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Theory of electronic ferroelectricity
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We present a theory of the linear and nonlinear optical characteristics of the insulating phase of the Falicov-
Kimball model within the self-consistent mean-field approximation. The Coulomb attraction between the
itinerantd electrons and the localizefdholes gives rise to a built-in coherence betweendhend f states,
which breaks the inversion symmetry of the underlying crystal, leading)telectronic ferroelectricity(2)
ferroelectric resonance, afi@) a nonvanishing susceptibility for second-harmonic generation. As experimental
tests of such a built-in coherence in mixed-valent compounds, we propose measurements of the static dielectric
constant, the microwave absorption spectrum, and the dynamic second-order susceptibility.
[S0163-182696)10048-5

[. INTRODUCTION Solutions of the model without built-in coherence do not
have these properties. As experimental tests to distinguish
In this paper, we present a theory of ferroelectricity origi- between the two classes of solutions, we propose measure-
nating from an electronic phase transition, in contrast to thenents of the static dielectric constant, the microwave absorp-
conventional displacive ferroelectricity due to a latticetion spectrum, and the dynamic second-order susceptibility
distortion? The electronic ferroelectricity occurs in a of a mixed-valent compound, for example SgnB
strongly correlated electron system, namely, the insulating In recent years, four-wave-mixing~WM) spectroscopy
phase of the Falicov-Kimball model. has emerged as a powerful tool for studying coherence in
The Falicov-Kimball (FK) model was introduced optically pumped semiconductor systefnd’ In a three-
originally? as a simple model to explain the metal-insulatorbeam FWM experiment, two incoming beams of wave vec-
transitions observed in certain transition-metal and rare-earttorsk; andk, set up a transient polarization grating. A third
compounds. The model has since been applied extensively tocoming beam of wave vectd; diffracts off this grating to
the mixed-valent compounds and heavy-fermion materialsproduce an outgoing signal in the directiork,
The FK model introduces two types of electrons: itinerant=ks+k,—k;. Being a third-order process, FWM is allowed
d electrons and localizefl electrons. The valence transition in media with or without inversion symmetry. We pose the
is driven by the on-site Coulomb repulsion between the following question: what happens if the system being probed
andf electrons. Ad-f hybridization term may or may not be already has a polarization built into it by nature? An example
added to the model. The theoretical solutions for the grounaf such a system is the SCMF solution of the FK model
state of the FK model can be divided into two classes. On theesulting in the Bose-Einstein condensationdef excitons.
one hand, solutions witli occupation as a good quantum  As shown below, the built-in polarization leads to a non-
numbe?* do not have a built-in coherence betwerlec- linear optical response t®econdorder in the external field.
trons andf holes. On the other hand, solutions such as thé'he mixed-valent system has a nonvanishing susceptibility
self-consistent mean-fieldSCMP solutior? and the elec- x?(2w,w,w) for second-harmonic generation. The built-in
tronic polarofi do have a built-in coherence betwegrlec-  polarization replaces one of the incoming beams of the three-
trons andf holes. beam FWM experiment. In crystals with inversion symme-
The built-in coherence of the SCMF solution breaks thetry, second-harmonic generation is forbidden in the electric-
inversion symmetry of the FK Hamiltonian in the following dipole approximation. In the mixed-valent system the
way. The many-electron eigenstates of the Hamiltonian cabuilt-in polarization breaks the inversion symmetry, allowing
be classified into even- and odd-parity states. The SCMBecond-harmonic generation to take place. We present a cal-
ground states with even and odd parities are degenerate. @ulation of the second-harmonic susceptibility of a model
linear combination of the even- and odd-parity states formsnixed-valent system within the SCMF approximation. The
the appropriate ground state for the limit of a vanishing elecsecond-harmonic susceptibility is directly proportional to the
tric field. We shall argue that such degenerate ground statdslilt-in coherence\, showing that second-harmonic genera-
can exist for solutions withi occupation as a good quantum tion can be used as a test dff exciton condensation in
number. Thus, the inversion symmetry breaking is not lim-mixed-valent compounds.
ited to the SCMF solution. The existence of a built-in polarization in the ground state
The primary purpose of this pages to give a detailed also means that, according to the SCMF theory, mixed-
account of the linear and nonlinear optical characteristics o¥alent compounds are ferroelectric. Whereas in commonly
the SCMF solution. The inversion-symmetry-broken groundknown ferroelectrics the built-in polarization is due to the
state possesses the following distinctive properiigselec- relative displacement of positive and negative ions, the fer-
tronic ferroelectricity,(2) ferroelectric resonance, arf@) a  roelectricity in mixed-valent compounds is of purely elec-
nonvanishing susceptibility for second-harmonic generationtronic origin. Apart from possible Jahn-Teller distortions as a
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result of the electronic polarization, the valence transition A. SCMF solution

does not involve a change in the crystal structure. As shown 1ho sCMFE solution is analogous to the BCS theory of
below, the valence transition is accompanied byad'Vergenc§uperconductivity except that the pairing now occurs be-

of the static dielectric constant at the critical value of the . een ad electron of momenturk and anf hole of momen-

level energy. The divergence of '.[he static dielectric constant,, _ g (Ref. 11. Whereas a Cooper pair carries charge, an

should be observable in real mixed-valent compounds, fOgectron-hole pair is neutral. The SCMF solution therefore

example by varying the external pressure or temperature. gegcrines an insulator rather than a superconductor. Pairing
The continuous symmetry associated with the phase 0getween electrons and holes may also occur in a semicon-

A leads to a Goldstone mode in the excitation spectrum Of,ctor placed in an intense coherent laser fi8ld. that case,

the mixed-valent compound. In the pseudospin picture, thg,q pairing is externally enforced by the pump field. The

Goldstone mode corresponds to a uniform precession of thg o field decoupling of the Hamiltonida) yields the ef-
pseudospins around theaxis. Ferroelectric resonance 0C- ¢ ctive one-particle Hamiltonian

curs when an ac electric field is applied whose frequency

coincides with that of the Goldstone mode. This phenom-

enon is the electric analogue of magnetic resonance in ferro- H 22 (sk+Unf)dldk+(Ef’ +Und)2 flfk
k

magnetic insulators. The ferroelectric resonance frequency is K

proportional to the square root of the effective bias field, and N

may depend on the sample shape, domain structure, and + > (V= A)dlf+H.c.—NUngng+ U|A|2, 2
K

crystal fields. In real mixed-valent compounds, ferroelectric
resonance should occur in the microwave regime. _ :
The remainder of the paper is organized as follows. InwhereA— (U/N)Tzkwnldkl@ is the gap parameter and
Sec. Il we discuss the SCMF solution for the ground state ofa=(IN)Z(yldedyly)  and  ng=(IN)Z (ol fifil )
the FK model. We show that the SCMF ground state has 4 L~ Na @ré thed-band andf-level occupancies, respec-
built-in polarization, which breaks the inversion symmetry oft'Vely-T The SCMF ground state is |4) =i (Ui
the FK Hamiltonian. We calculate the static dielectric con-Tvkdkfk)[0), where|0) is the state with nd holes (the
stant of a model mixed-valent system using mean-fieli0rmal statg andu,=cos;fy (v=sinz6y) is the probabil-
theory. In Sec. Ill we calculate the linear susceptibility of theity amplitude for the pair statek(—k) to be occupiedun-
model system using the pseudospin formalism. We obtain aficcupied. The gap parametek and thef-level occupancy
analytical expression for the linear susceptibility in a uni-ny must be determined self-consistently from
form static electric field. We determine the ferroelectric reso-
nance frequency and analyze the shape of the infrared ab- A= BE A=V 3)
sorption spectrum. In Sec. IV we compute the second- N4 2E,
harmonic susceptibility of the model system. In Sec. V we
compare the results of the model calculation to experimental 1 £
data and propose experimental tests of coherence in real nf==— (1+—k)_ (4)
mixed-valent compounds. In Sec. VI we discuss the possibil- 2N% Ex
ity of ferroelectricity, ferroelectric resonance, and second- 5 . o .
harmonic generation for solutions of the FK moaeher  Here.Ex= kaT|A_Vk| is the quasiparticle excitation en-
than the SCMF solution. The main results are summarized i8'9Y, With &= 3(ex— Ey), whereE¢=E¢ +Un is the renor-
Sec. VII. malizedf-level energy anth=ngy—ns is the inversion. Since
neitherE; nor E{ are known from first principles, we shall
treatE; as the materials parameter. Equati¢8isand(4) are
Egs. (11 and (10) of Ref. 5 at temperaturd =0, with a
Ignoring the electron spin, the FK Hamiltonian is k-dependent hybridization. If the crystal has inversion sym-
metry, the hybridization must satisfy_,=—V,. The as-
sumption of &k-independent hybridization in, among others,
Ref. 5, is therefore incorrect. If, instead, we assume nearest-
neighbor hybridization, we find tha¥, is odd in k and
N E 2 at dtt 1 purely imaginary. As can be seen from K8), t'he imaginary _
N, o k+g-kik/—q k' part of A then vanlshes_ due to the cancellation of term_s with
o *k. The real part ofA is given by the BCS gap equation

1. MODEL

H=> s dide+E} >, fif+ > Vidif+H.c.
k k k

Here,dl creates a electron of momentunk and energy

&1, andfl creates arf electron of momenturk and energy A= u A
E;. The parametet is the Coulomb repulsion between the T N€ 2E,’
d andf electrons,V, is the hybridization energy, and is

the number of sites. We assume that théand and thd  whereE, = \/gk2+|vk|2+ A?. Calculation shows that a suffi-
level are derived frond andf orbitals on the same site. We ciently strong hybridization can destroy the gap. In the fol-
have chosen the and f orbitals to yield a finite dipole lowing we consider the limit wher®/, is negligible com-
moment between them in ttedirection. For simplicity, we pared toU.

consider a model system withdaband of bandwidttwW and The solution of Eqs(4) and (5) for our model system is
constant density of statgg=1/(2W). shown in Fig. 1. The figure shows the gap paramatemd

®)
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FIG. 1. f-level occupancy and gap parametey of the model
system as a function of thielevel energyE;. The Coulomb repul-
sion isU=3.0 W.

the f-level occupancyn; as a function of thd -level energy
E;. The gap parametek is the order parameter of the va-
lence transition. When thelevel is far below the bottom of
thed band, the system is in the normal state withfnlaoles
andA=0. As thef level is moved upward past the critical
valueE;= —E;, whereE.=W coth(WU) (in a real material
this is achieved by applying pressure or by alloyiny be-
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The states |) andA;lLt//) have built-in polarizations
(IPly) =P and(4|IPI|y)=—P), where

p= g; dif,+H.c. %
is the polarization operatop is the interband dipole matrix
element, which, for simplicity, we take to be independent of
k, and(} is the volume. One can show that in the thermody-
namic limit N—c, |) and J|¢) are orthogonal and un-
coupled byH. The proof relies on the fact that the infinite
product I, (v | 2= uy|?) is zero, sincd(|vy]?—|ugl?)|<1

for almost allk. .

BecauseH is invariant under inversiorjys) andJ|¢) are
degenerate. As in the case of the Ising model, the correct
ground state is selected by lifting the degeneracy with a bias
field E, and then choosing the lower-energy state. This yields
the statg ¢) with built-in polarization in the direction of.

We call this direction the direction. (Without crystal-field
terms, thez direction has no definite orientation with respect
to the crystal axes. Since u, is real, P
=Npu,(A+A*)/(QU), whereA is the built-in coherence.
The built-in polarization vanishes in the normal state where
A=0.

comes nonzero and the system undergoes a valence transi-

tion. In the mixed-valent state, tHelevel occupancy; lies

between 0 and 1. The gap parameter reaches the maximum

value A(0)=W/[ 2 sinhiMU)] when thef level lies at the
center of thed band E;=0). This is the half-filling point
n¢(0)=3. For still higherE;, the f level gradually empties
out into thed band. The solutions transform according to
A(Ef):A(_Ef) aﬂdnf(Ef):l_n(_Ef). At Ef:EC, the
system returns to a normal state with helectrons. Since
n{(E¢) has no discontinuities, the valence transition is con
tinuous for all values of the Coulomb repulsith

B. Inversion symmetry breaking

The key feature of the SCMF ground stat@ is that it
breaks the inversion symmetry of the FK Hamiltonian. In

general, symmetry breaking occurs when the ground statfe

has a lower symmetry than the Hamiltonian. As a well
known example in another area, the
Hising= —JZij,S'S] is invariant underS— — 7, all i. Yet
the ground state is either one of the broken-symmetry stat
with built-in magnetizationM,. The sign of the magneti-
zation is selected by applying an infinitesimal bias field
H,, and then choosing the lower-energy state.

In the case of the SCMF solution of the FK model, the
inversion symmetry in d-f site is spontaneously broken due
to the pairing ofd states of even parity with states of odd
parity. Applying the inversiond to | ) gives the state

3|</f>=13 (—up +ordifol v, (6)

which is linearly independent d¢f4). The form of the inver-
sion image follows from the even parity of tldeorbital and
the odd parity of thef orbital andu_,=uy andv _,=v§ .

Ising model

C. Electronic ferroelectricity

In commonly known ferroelectrics such as BaEiQhe
ferroelectric transition involves a change in the crystal struc-
ture. In the ferroelectric phase, the positive ions are displaced
relative to the negative ions, leading to a permanent electric-
dipole moment. The displacive ferroelectric transition occurs
when the transverse optical phonon frequency vanishes at
some point in the Brillouin zone. In an electronic ferroelec-

tric, the ferroelectric transition involves a change in the elec-
tronic structure rather than the crystal structuttdere we
neglect the electron-phonon coupling, which may cause a
lattice distortion as a secondary effect of the transijidm-
stead of a vanishing of the TO phonon frequency, dhE
exciton energy goes to zero at the critical value of the
f-level energy. The built-in polarization of an electronic
erroelectric is of the order of 12C/cm?, comparable to the
built-in polarization of perovskites.

Since the built-in polarization is continuous Bf=*+E,
see inset of Fig. R the valence transition is a second-order

rroelectric transition. In general, second-order ferroelectric
transitions are accompanied by a divergence of the static
dielectric constant in the direction of the spontaneous polar-
ization. For a temperature-driven transition, the dielectric
constant diverges asT(T.) * above T., and as
(TC—T)‘V' below. Almost all known ferroelectrics have
v=1 (Curie-Weiss lay Observed values of’ range from
1in TGS tot in SbSI®®

Here we calculate the static dielectric constant of the
model mixed-valent system at temperatufe=0, using
mean-field theory. The dielectric constant in theirection
is given by e, =1+4mx{y, where xW=limg
aP)/5E, is the static susceptibility. Fak real, the polar-
ization is P{Y=2Nu,A/(QU), so that x!Y=[2Ng,/
QU] IimEﬁo&A/aEz. The bias fieldg, leads to an addi-
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: . , . spectra*~1® as well as electron tunneling spectfashow
energy gaps of several meV in a number of mixed-valent
compounds. The crucial difference between the mixed-valent
compound and the superconductor is this: in the supercon-
ductor, the pairing occurs between telectrons whereas in
the mixed-valent compound the pairing occurs between an
electronand ahole This has important consequences for the
coherence factors that enter into the response of both systems
to different external probes. For example, it is a textbook
result® that a clean superconductor at temperafired can-
not absorb electromagnetic radiation because the coherence
factoru,v 1 q—vpUp4 o Vanishes for zero photon momentum
g. For the mixed-valent compound, the coherence factor en-
tering the electromagnetic absorption Usu,q—VpUp+q»
which remains finite for zero photon momentum. The coher-
00 1o 20 30 20 ence factor entering the electromagnetic absorption of the
E/E, ; mixed-valent compound is the same as the coherence factor
entering the acoustic attenuation rate of the super-
. . 9
FIG. 2. Static dielectric constant,, of the model system as a conductort
function of the f-level energyE. The inset shows the built-in We calculate the linear response of the mixed-valent sys-
polarization as a function d;. Thed bandwidth isw=40 mev, tem to an ac electromagnetic field in the presence of a dc bias
the Coulomb repulsion i) = 15 meV, and the electric-dipole ma- field. The bias field serves to select the direction of the
trix element isu,=3.7X10"2° Cm. The parameter values were built-in polarization. In a real material, the bias field is pro-
obtained by fitting the absorption spectrum of the model system twvided by the crystal field or the depolarization field due to
experimental data on SmBsee Fig. 2 of Ref. ) the sample boundary. We treat the interaction of the mixed-
valent system with the ac electromagnetic field in the
tional term—/szEZEKdIkar H.c. in the effective one-particle electric-dipole approximation. The interaction term in the
Hamiltonian. The self-consistency equation fbrthen be-  Hamiltonian isHiy = — 1,&,2,dif +H.c., whereé, is the

n
(=]
1

2
P, [pC/fem” ]
=

DIELECTRIC CONSTANT

comes component of the ac electric field along thelirection (i.e.,
the direction of the built-in polarizationOnly thez compo-

A= EZ At uk, ) nent of the ac electric field couples to the channel in which
N 2E, '’ the pairing takes place. The optical signatures-gfexciton

condensation occur only in this channel. We ignore the re-
whereE, = &+ (A + u,E,)%. The susceptibility is obtained sponse of the remaining optical channels.
by implicit differentiation of Eqs(4) and(8) with respect to The ac electric field sets up a polarizatiBg in the ma-
E.. The susceptibility of the normal staté €0) is terial, which in general can be a complicated nonlinear func-
tion of &,. In linear response, we expam, in powers of
9 & and keep only the first-order tern{M=x{V¢,. In the
electric-dipole approximation, the linear susceptibiljzzglz)
depends on the photon frequeneybut not on the photon
momentumg. The quantity measured in experiments is the
" 2NM§ 1+4A2A(0) reflectivity spectrum or the transmission spectrum. From
2= 7 TOU 1+ 4AZA(0)[1+4A%A(0)]+4A%B%(0) ) these one can extract the optlc;_:ll conductlvqt)_/z(a_)) by
(10) Kramer.s-Kronlg anal.ysll-s. The optical cpnductmty is related
to the linear susceptibility by, {w)=—iwx!}(w).

@ 2NuZ  arccothi|E¢|/w)
X2z =7 () W—Uarccoth[E{[/W) "

and the susceptibility of the mixed-valent statex0) is

Here A(0) andB(0) are given by Eq9A5) and(A6) of the
Appendix. Figure 2 shows the dielectric constant of the
model system as a function of tlidevel energy. The dielec-
tric constant diverges d4€;|=E.. From Eq.(9) we find We have calculated the linear susceptibiligft) both
Xglz)oc(|Ef|_Ec)—l as |E;| approache€, from above, and from the Kubo formgla gnd fro_m the o_ptical Blpch equa-
from Eq.(10) we find)(glz)oc(Ec—lEfl)‘l as|E;| approaches tions. The p_seudospm picture gives a nice physical descrip-
E. from below. Thus, the critical exponents according tolion of the linear and nonlinear responses o_f the system as
mean-field theory arg=7'=1. precessional modes of the pseudqspm vethp
=(S«k,Syk+S,k)- The optical Bloch equations describe the
time evolution of the pseudospin vector under the action of
the ac electric fieldt,. The components of the pseudospin
We first consider the linear optical response of the mixedvector are the expectation values of the pseudospin operators
valent system. The SCMF solution predicts an energy gap N t
2A in the absorption spectrum. The gap iA because the oy k= it fiedi,
incoming photon must createvo quasipatrticles, just as in a - +
superconductor. Far-infrared transmission and reflectivity oy k= ~i(def—fidi), 12

A. Optical Bloch equations

lll. LINEAR OPTICAL RESPONSE

(11)
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oy =did—ff, (13 =(—2u,£,0,0). We substitute the expansions into the
' Bloch equations and collect terms of the same order in the ac

in the ground statdy). The equations of motion for the electric field. To zeroth order we recover Ea6). To first
components of5, follow from the Heisenberg equations of order we get

motion for the pseudospin operatofs=1, i=X,y,2),
_ _ U~ (HO-MO@)x V- gOx MO=HDx g0 (17)
oi k= —i[ojk,H+Hiny]. (14 S X S-S S

Working out the commutators, we find that the right-handTakmg the inner product with the stationary solution gives

side contains products of pseudospin operatgrss; - (i SP.89=0. The ac electric field causes the pseudospin vec-
#j). The products occur because of the Coulomb interactor to precessabout the stationary direction. WiEBf(O) tilted
tion term in the Hamiltonian(1). A closed set of away from thez axis, the precession involves variations in
equations is obtained by replacing the average ofillthree cartesian componentsQf. The problem is simpli-
products (y|oj o |¥) by the product of averages fied by working in the spherical polar coordinate system. In
(loi ll){dloj |4y =S S - This gives the optical spherical polar coordinates, the stationary solution is the unit
Bloch equations vector in the radial directioe, . The precession aboet is
. decomposed into components along the polar and azimuthal
S.=(H,—M)XS,, (15  units vectorse, and e;: SV=S{)e,+S{e,. One must
oo (- 2u(E €00 E) and i [STETUE ek s vy wih e e e
=(U/N)=,Sc. The symbolX represents the vector cross ' P ' q

; (1) (1)
product. The optical Bloch equations describe the couple§ton forS;x andS; i are
motion of a collection ofN pseudospins. Each pseudospin

(1 1 1) _
precesses around a local “magnetic” fight,— M, which is Spk—2E Skt My =0, (18
the sum of an external field, and an average internal field .
—M, whereM is the pseudomagnetization. Skt 2Ex Sy — MG =2u,E,co8 . (19
B. Stationary solution Here M E;): (U/N)EKSE[H( and M%}&: (U/N)Z\,cos(

In the absence of the ac electric field, the optical Blochd 9kf)3(,ka- The.apiara.nﬁe of thedcqsme factomiy ":’j
equations have a stationary solutiﬁﬁ‘?). The stationary so- ue to the variation og, with 6. In deriving Eqs.(l% an
L . - 0) . (19 from Eq. (17), we have used the fact th& /=0,
lution is obtained by settin@” =0 in Eq. (15): : (1) o ko
which follows from S(=0 and the initial condition

0=(HY-M@)xg2. (16  SR(t=0)=0.

HereH(¥=(—2u,E,.0,6,—E{), andM©@=(U/N)=, S .
In the stationary state each pseudospin is lined up with the
local “magnetic” field. Then there are two possibilities: It is instructive to first calculate the absorption spectrum
g(o) is either parallel or antiparallel tHE(O)_ M©) The state n_eglecting _the Coulomb interaction bet\_/veen the opti_cally ex-
with S(ko) antiparallel toH(ko)—M(O) has the lower energy. cited quasiparticles. In the pseudospin picture, this corre-
- i it : onds to setting! V=M =0 in Egs.(18) and(19). The

Thus, in the ground state all pseudospins point in the direcSP My b,k gs.(18) and(19)
tion opposite to the local “magnetic” field. linear  susceptibility is x&Y=P{M/E,,  where P

For zero bias field ,=0), Eq. (16) is invariant under = (Ng,/Q)=,S{cosh, is the first-order polarization. Solv-
rotation about thez axis. If S is a solution, then so is ing Egs.(18) and(19) for S{\}, we obtain
R,(4)S?, whereR,(¢) is a rotation about the axis over
an angle¢. The angleg is the phase of the gap parameter 1) _ N,uf2 nﬁ,k nﬁ,k
A. For nonzero bias fields") lies in thex-z plane and the X2z= 770 4 \w—2E, w+2E,)’
gap parameter is real. Introducing spherical polar coordi-
natesS{”)= (sinf,,0,cos) andM©@=(2A,0,un). The tilt-  wheren, ,,=u,u, —vw, is a coherence factor. The fre-
ing angled, is the angle betwee®” and the positive axis. ~ quencyw is understood to have a small positive imaginary
The magnetizatioM () must be determined self-consistently part . The physical origin of the coherence factgry: can
from M(°)=(U/N)Eks(1<°). Thez component of this equation _be un_derstood as follow¥: In the absorption process, an
gives Eq.(4), and thex component gives Eq8). The sta- Incoming photon of momenturk—k’ creates a quasielec-

tionary solution of the optical Bloch equations is the SCMF!ron of momenturk and a quasihole of momentumk’.
solution given in Sec. II. This can be done in two different wayd) If the pair states

(k,—k) and k',—k'") are initially empty, it can be done by
adding ad electron ink and adding arf hole in —k’. This
process has amplitudg.u,.. (2) If the pair states K, —k)

To calculate the linear susceptibility from the optical and ’,—k’) are initially occupied, it can be done by re-
Bloch equations, we expand the pseudospin vector anghoving anf hole from —k and removing al electron from
pseudomagnetization to first order i: S|<=S‘,k°)+ Sﬂl) k’. This process has amplitudev .. The overall ampli-
and M=M©@+M®, Also, H=H@+H®M, with HY  tude for the creation process gy, —vyw =Ny y-

D. Noninteracting quasiparticles

(20

C. Pseudospin precession
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For the model system, the absorption spectrum can be In the normal state 4= 7) Eq. (23) yields the Wannier
found analytically. When thé level lies inside thed band  exciton. The pole of the vertex function gives the exciton

(|E¢|=W), the energy gap is®, and the absorption rises as binding energyE,=W coth@\/U)—W. The absorption spec-
[w—2A above threshold. When thelevel lies outside the trum of the normal state consists of an exciton line at
d band (E{|>W), the gap isy([E{]|— W)2+4AZ, and there o=Ey—E, and a contlnuum_ betweenw=E, and

is a discontinuous jump in the absorption at threshold. Thé’=Eg+2W, whereE,=—W—E; is thed-f band gap. The

single-quasiparticle result for the absorption spectrum afinal-state interaction enhances the absorptionatE, .

half-filling (E;=0) is shown by the dash-dotted line in Fig. !N the mixed-valent state the vertex function has three
2 of Ref. 7. components:
E. Final-state interaction I'(k,w)=—costI'1(w) +sindI'y(w) +T'3(w). (24)

The quasiparticles created in the optical transition intera
via the Coulomb potentidll. In the normal stateX=0) the Fihe componentd s (w) and I
final-state interaction leads to the Wannier exciton. In th
mixed-valent stateX>0) the final-state interaction leads to
ferroelectric resonance and a threshold singularity in the in-

»(w) are even inw, while
I';(w) is odd. Substitution of Eq24) into Eq.(23) yields a
Set of three algebraic equations for the vertex components:

frared absorption spectrum. In the pseudospin picture, the (0®=M?*)A(w) +R MB(w) wB(w)
final-state interaction corresponds M}’ andM{}). For a MB(w) 1+M2A(0) oMA(o)
separable Coulomb potential, EgEl8) and (19) can be wB() oMA(0)  ®?A(w)+R
solved analytically. The pseudospin components are given
by I'i(w) 1
" I(kw) T(K—o) x| a(w) | =| 0. (25)
Sik= ke R, T w1 2E, ) @D I'3(w) 0
D _ I'k,w) T(k,—w) Here M=2A+ u,E, and R=u,E,/(A+ w,E,). The func-
Sjk="imzE; w—2E, w+2E, | (22)  tions A(w) andB(w) are given by
where . Uz 1 %
(ko) — cosd uZ co[ (O— 6,) /2T (K", ) (0)=3 ' 2E(w—2E ) (w+2Ey)’ (
( ,w)_ co K Nk/ (,L)_ZEkr
U SIP[(8— 62T (K, — ) B(w)= o3 ek By 27

is a vertex function. In diagrammatic terms, the vertex func-For the model systerA(w) andB(w) can be found analyti-
tion is the sum of all ladder diagrams contributing to thecally. The explicit expressions are given in the Appendix.

propagation of the quasiparticle pair. Solving Eq.(25) for I'1(w) gives
|
r B (0> +RM?)A(w)+R -
1(“’)_[(w2— M?)A(w)+R][(w°+RM?)A(w)+R]—(w*+RM?)B4(w) 28)
|
The linear susceptibility is 2Np? A(w)
()= z _
X2 ()= 00 | (0?— 480 A%w)—B2w) 1) ©O
(1) 2N
Xzz (@) =5 (I'1(0)—1). (29)

The solid lines in Fig. 3 show the imaginary part of E80)

for several values dE; . When thef level lies far below the

bottom of thed band(top curve, the continuum absorption

of the mixed-valent state is very similar to the continuum
We first consider the absorption spectrum in the absencebsorption of the normal state. There is a slight enhancement

of a static electric field. We calculate the continuum absorphear the energy gap. As tlidevel approaches the bottom of

tion in zero bias field, settinyl =2A andR=0 in Eq.(28).  the d band, the enhancement becomes more and more pro-

For an energy gap of several meV, the continuum lies in théwounced. When thé level lies within thed band, the spec-

far infrared. The linear susceptibility in zero bias field is  trum has a threshold singularity at=2A. The spectrum for

F. Infrared absorption spectrum
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a contribution tdE is the depolarization field- NP, of the
20 L 1 sample boundary, whemd, is the depolarization factor. The

E=-30W /7 T—~__ effective field remains nonzero in the absence of the external
SN 20w bias field, yielding a finite resonance frequency for an unbi-
‘__JL | ased sample.

15 + . . .
Ferroelectric resonance is the electric analogue of ferro-

magnetic resonance in a ferromagnetic insulator. In the mag-
netic case, the alternating field causes a uniform precession
of real spins around the direction. The ferromagnetic reso-
nance frequency isy=yH,, wherey is the gyromagnetic
ratio, andH, is the bias field. In real sampld$, must be
replaced by an effective field .; depending on the sample
geometry, magnetic domain structure, and crystal magnetic
anisotropy?

Ferroelectric resonance does not occur in displacive fer-
roelectrics because the order parameter only has a discrete
, , ‘ ‘ ‘ ‘ symmetry. This means there is no Goldstone mode in the

0.0 1.0 2.0 3.0 4.0 5.0 excitation spectrum of a displacive ferroelectric. Ferroelec-
PHOTON ENERGY [ W] tric liquid crystalsdo have an order parameter with a con-
tinuous symmetry. The dielectric response of the Goldstone

FIG. 3. Absorption spectrum Y (w) of the model system as  mode has been obsen@dn ferroelectric liquid crystals by
a function of the photon energw for various values of the means of broadband dielectric spectroscopy.
f-level energyE; . The Coulomb repulsion i8/=3.0 W. The solid We now calculate the dependence of the ferroelectric
lines show the continuum absorption spectrum in zero bias fieldresonance frequency of an ideal system on the external bias
The dash-dotted line shows both the ferroelectric resonance pedte|d E, . For a real systenE, must be replaced bio¢. The
and the continuum absorption spectrum in a bias field offerroelectric resonance frequency is given by the equation
E,=0.01u,/W. D(wo)=0, whereD(w) is the denominator of Eq28). For

u-E, small compared ta, an approximate solution may be
E above the center of thtband is the same as the spectrumobtained by expandin@(w,) in a Taylor series around
for —E¢ below it. From Eq.(30) we find that when ,=0:D(w)=D(0)+ 3wsD"(0). Thelinear term vanishes
|E¢|<W, the threshold singularity iz~ “?4(€), and when pecauseéD(w) is even inw. Neglecting terms of ordeR? in
|Ef/=W the singularity is e YAn"*(e)f(e), where €  D(0) and of ordeR in D"(0), we find
=w—2A. When thef level lies outside thed band, the
singularity is cut off because the energy gap is larger than 12
2A. The singularity is due to the final-state interaction be- @™ ” \/E—z (31)
tween the optically excited quasiparticles. In the single-
guasiparticle treatment, the absorption rises continuouslubstituting the explicit expressions f@(0) and B(0)
from zero according ta&'2¢(€). The singularity isnot an  given in the Appendix yields
artifact of the simple model, and should be observable in real
materials. Roundoff may occur due to lifetime effects and AuAE; v
sample inhomogeneities. @Wo= U ‘/—Z

1.0

05

ABSORPTION [ N2 (2QW) ]

0.0 +

A(0)

I+ 7A%A%0) 1 B%0)

—4u,A

(32

whereE;=E.— U is the critical value o . A useful esti-
mate ofwg is the arithmetic mean of the gapj\2and the field
The dash-dotted line in Fig. 3 represents the absorptioenergyu,E,. For u,=10"2° Cm, 2A=1 meV, andE, be-
spectrum of the mixed-valent system in a bias field. Theween 10 and 10V/cm, w, is between 0.01 and 1 meV, i.e.,
spectrum consists of two parts: a peakvat wg, and a con-  in the microwave regime.
tinuum abovew=2A. We shall show thaty, is the ferro- The conditionD (wg) =0 is not sufficient for a peak in the
electric resonance frequency. The continuum part of the ababsorption spectrum ab= wy. One must also havBl(wg)
sorption spectrum is blue-shifted only slightly by the bias+# 0, whereN(w) is the numerator of Eq28). The strength
field. of the pole atwg is Zg=— 7N(wg)/D’(wg). Away from
Ferroelectric resonance occurs when an electronic ferrdaalf-filling, one finds Z,>0. Exactly at half-filling,
electric, placed in a bias fiel,, is acted upon by an alter- B(w)=0. As can be seen at once from E8), we then
nating field&, of frequencyw,. The ferroelectric resonance haveZy=0. The zero strength at half-filling is an artifact of
frequencywy is the frequency of the Goldstone mode in theour simple model, which has(e)=p(—¢€). For a realistic
bias fieldE,. The Goldstone mode corresponds to a uniformd band there will be a resonance peak at half-filling.
precession of the pseudospins aroundzlais. For an ideal An important problem in ferromagnetic resonance is how
systemwg vanishes at zero bias field. For a real system théo account for the width of the ferromagnetic resonance
external bias field, must be replaced by an effective inter- line.?® The line width is due to the relaxation of the uniform
nal field E.%, which may depend on the sample shape, theprecession by spin-spin and spin-lattice interactions. Various
domain structure, and the crystal anisotropy. An example oflamping terms may be added to the Bloch equations to de-

G. Ferroelectric resonance
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scribe the relaxation. A possible damping term isgq. (17) with e shows that the equation fcgﬁ() can be

f(&—gf’))lr, where 7 is a phenomlenolc.)gical relaxation \yritten as&(2=— &1 (. Upon integration, we find

time. In the equation of motion fog(", this leads to the ’

replacement ofd/dt by d/dt+ 1/7. Thus, the simplest ap- 2) 1 D) L o) o)

proach to dampingthe one we have adopted hgeig to add S(r,k: - §(Se,k50,k+ S4.kSe,k) - (34)

an imaginary part=1/r to w. A detailed study of the width

of the ferroelectric resonance line is left for future research. The equations of motion fd8{7) andS(Z) are obtained by
taking the inner product of Eq33) with e, ande, respec-

IV. SECOND-HARMONIC GENERATION tively. Apart from the more complicated source terms, a new

feature occurring in second order is ti8i) is now nonzero.

-Second-harmonlc-generatlon is the generation of an OUtris leads to an additional ternU(N) S, sin(6.— gk,)s(zk)’
going electromagnetic wave of frequencw Zrom two in- the left-hand side of th tion 62) . H r
coming waves of frequency. For incoming waves propa- O_n € left-hand side of the equ:;l !on bk owever,
gating alongk; and k,, the second-harmonic radiation is Since we have already solved f% in Eq. (34), the addi-

most effectively generated in the phase-matching directiofional term can be taken over to the right-hand side and
k,+k,. In this direction both energy and momentum aretreated as an extra source term. Combining all source terms

conserved. into driving forcesF(f} and FE;{(, the equations of motion

The ability of a medium to sustain second-harmonic genfor S%Zﬂ and SE;{( are
eration is characterized by the second-harmonic susceptibil-

ity tensor (2w, , ). Herei,j,k=x,y,z are the Carte- SA—2ESH+MP=FZ, (35
sian indices. The polarizatid?;(2w) induced in the medium ]
by incoming fields &(w) and &(w) is given by SA+2ESA-MA=F 7, (36)
Pi(20) = x{(20,0,0)&(0)E(w). For a medium with in- ith
version symmetry, the second-harmonic susceptibility must’
satisfy ()= — x3=0. Therefore, second-harmonic genera- FR = (2u,E,sin0,+ M) S, 37)
tion cannot occur in media with inversion symmetry. ’ ' ’

In the mixed-valent system, the inversion symmetry is F(d)%L:—(ZMZSZSinQﬁ M) SEh

spontaneously broken by the pairing of electronic states of

opposite parity. This leads to the appearance of a built-in U . 2)

polarization in thez direction. If the incoming fields have a - NZ SIN(Ok— ) S’y - (38)
component along the axis, second-harmonic generation can k

occur. We calculate the second-harmonic susceptibjiif, ~ Here ME’lIZ=(U/N)2k,sin(0k— Bkr)S(;ﬂ, . A very important
for incoming fields polarized along theaxis. For incoming observation is that since gipg=A/E,, all source terms are
fields polarized at an angle relative to thez axis, the proportional toA. The second-harmonic susceptibility van-

second-harmonic susceptibility is reduced by?gos ishes identically wheml =0.
A. Pseudospin nutation B. Independent quasiparticles
We calculate the second-harmonic susceptibilj(tgf) We first calculate the second-harmonic susceptibility ne-
zzZ

from the optical Bloch equations by expandiSgandM to g_lecting the _Coul_omb intera_ction between the optically ex-
second order i, . The external “magnetic” fieldH, has no C't(ez‘)j q(g;asmartlcles. This corresponds  to  setting
components of second or higher order. The equation of moMsk=Mg’=0 on the left-hand sides of Eq85) and(36),

tion for §2) is and F)=2u,E,S5)sing, and F7) = —2u,£,S{sing, on
the right-hand sides. The second-harmonic susceptibility is

2~ (HO-M©)x S2+ M@ x S0 P=PPie  where  PP=(Nu,/Q)2(Sicosh
K +S§’2k)sin0k) is the second-order polarization. The second-
=(HD - M<1))><§<1). (33 order polarization has a contribution from the radial compo-

nentS{3) . Solving Egs(35) and(36) for Si7), and using Eq.
Equation(33) has the same form as E(L7), except with a  (34) for S{?, we obtain
more complicated right-hand side. As before, we decompose '
S? into its radial, polar, and azimuthal components: 2 N,u§2 2my N
SP=59e +SPle,+SPe,. To second order, the pseu- X222~ " 4 | (0—2E) (20— 2Ey)
dospin has a nonzero radial componsﬁﬁ. This means the ) )
motion is no longer a regular precession: the pseudaspin N 2my Nk _ 2my Nk
tates during the precessior(Nutation is the up-and-down (0+2E)(2w+2Ey) (0—2E)(w+2Ey))"
motion of the precession axisThe nutation frequency is (39
twice the precession frequency. This can be shown as fol-
lows: the equation of motion foSEZ,() is obtained by taking The coherence factormy,. is given by my,
the inner product of Eq.33) with e . Using the vector iden- =uyv +uvUy,. The physical origin of the coherence factor
tity (AXB)-C=(CxA)-B and taking the inner product of my . is the scattering of a quasiparticle by the second
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incoming photon. The second photon can scatter either thelere we have used the orthonormality condition
quasielectron fronk to k', or the quasihole from-k’ to Snn=Zk k' AxnTkkAx n for the matrix of eigenvectors
—k. The overall amplitude for the scattering process isAy ,. Equations(43) and (44) apply to mth-harmonic gen-
2my . Sincem, = A/E,, the second-harmonic susceptibil- eration in general.

ity is directly proportional tQA. The computational task is summarized as follows. First,
compuiesﬁt,l}( anld S from Egs.(43) and (44) with m=1
C. Final-state interaction and F%,&=0, ng,izzﬂzgzcosgk- To avoid a singular de-

For a separable Coulomb potential, an analytic solution?ominator’w s given a small positive imaginary patt
) (2) (2) (2)
for the second-harmonic susceptibility including the final- hen computeSey from Eq. (34), andFj and Fy from

. (2) .
state interaction is possible in principle. However, the Iargézq_s'@?) and(38). Finally, computeS; , from Eq. (44) with

number of driving terms in Eq9.37) and (38) presents a '
J qs37) (38) p he Figure 1 of Ref. 7 shows the results of the calculation of

considerable challenge. We have instead approached t i . o
problem numerically. This is done in analogy with the clas-f[he amplitude and phase of the second-harmonic susceptibil-

. . 27 . (2) i
sical mechanics treatment of forced oscillations. The azilly Xzz42®,,) as a function of the photon energy, for
muthal componers,,  is the generalized coordinatg , and several values oE;, in zero bias field. The features of the
the polar componehSa . is the negative of the conjugate linear absorption spectrum are replicated in the amplitude of
momentump, . Egs. (35 and (36) are the Hamilton equa- the second-harmonic susceptibility, not only in the energy

tions of motion forg, andp, . The matricesT andV are range starting from the threshold at the full gapg-2A, but
also in the energy range from the threshold at the half gap

U o=A due to two-photon processes. In patrticular, the final-
T[i/=2Ek5k o — —COS O — 0,1, (400  state enhancement is reproduced near both thresholds. Our
’ ’ N theory of such features provides the suggestion of a possible
distinctive experimental test for the symmetry-broken state.
U Since the strength of the second-harmonic susceptibility is
N’ (41 directly proportional toA, the measured second-harmonic
generation can be correlated with other data, such as the
The first step is to find the normal modes of oscillation of thepolarization and dielectric constant discussed above, to dis-

system of pseudospins. The normal-mode equations are tinguish it from the possible second-harmonic generation due
to other causes, such as the surface.

Vk,k’ = 2Ek5k,k’ -

> Vi A n=(2E)2Y TiwAc n, (42 V. EXISTING EXPERIMENTAL EVIDENCE
k k' AND PROPOSED TESTS

where ZE, is the frequency of normal mode, andA, ,, is

the amplitude ofS,, in the normal moden. SinceT ‘and As experimental tests of electronic ferroelectricity in a

V are both real and symmetric, the frequencies are all rea[plxed-valent compound, we propose measurements of the

and positive. There is one Goldstone mode, whose frequen«f}faﬁc dielectric constant, the microwave absorption spec-

is the ferroelectric resonance frequensy. The remaining uml, and ths seScond+r;]armon|t<: ls%scetptlblllt])c/.SAs han ex-
N—1 frequencies form a continuum above the energy gap.amp e, consider Smg The crystal structure of SmBhas

The second step is to obtain the forced oscillation ofCUb'C symmetry, with i octahedra at the body center and

S%Zﬂ andSE;}( when driven b)FSfﬂ andFE;{(. This is done by Sm ions at the corners of a conventional bcc unit cell with

| S ¢ . lattice constana=4.13 A. The crystal has inversion symme-
solving for the motion in normal coordinates, and then taklngtry at the bcc lattice points. Through measurements of the
linear combinations to obtain the motion in the original €O~ 5nic radius, the valence of the Sm ion is found to be 2.53,

ordinates. The force driving the normal coordingte h(;*)s almost halfway between 2 and 3, so that thevel lies near

freq.ueni:)l/ 22" gnd amplitude Q= _EK(AK“FM _ the center of the conduction band.

+2i wAn,k'_:E»,b- This causes the normal coordinate to oscil-  The measured far-infrared absorption spectdif of

late  with ~ frequency @& and  amplitude gmB, can be interpreted in accordance with the SCMF so-

{n=Qn/(4E3—40?). The original coordinates oscillate with |ytion. In Fig. 2 of Ref. 7 we compare the mean-field and

frequency 2 and amplitudes S%LZEnAk,nﬁn and  single-quasiparticle results for the linear susceptibility to ex-

S =2i w3 A tint S TiwFEL . The complete motion  perimental data on Smptaken from Ref. 14. The data show

in the original coordinates ismj=?) an energy gap aroundA2=4 meV, and a sharp peak at
threshold. The mean-field theory fits the data very well in the

A (A M | iA=L p(m) ) threshold region, whereas the single-quasiparticle theory
sm=3 K TknT 0.k Ok gk (43  9ives a qualitatively wrong behavior. Away from threshold,
Pk nK' m’w?—4E] ’ discrepancies between mean-field theory and experiment oc-

cur because of our simple model. Further experimental indi-
1 ae2a-1 (M) (m) cation of the validity of the SCMF solution in SmBs pro-
sgm=3 Ank(4EiA 0 F g o = MioA nF g ) vided by the electron tunneling spectrdfmwhich can be
bk AEZ—mw? ' interpreted by analogy with Giaever tunneling in a supercon-
(44) ductor.
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Reference 14 also reports a measurement of the static die demonstrate this property for the exact solutions of a ring
electric constant of SmBat T=4 K. The large observed of four sites. We construct a ring of four sites wihand f
value e= 1500 provides further support for the theoretical states on alternate sites. The Hamiltonian, including all the
prediction of electronic ferroelectricity. An interesting test FK terms, has inversion symmetry with respect to dhand
would be the existence of the ferroelectric resonance in thi$ sites. There are three eigenstates that are even under inver-
compound. ForE;{=0, W=40 meV, U=15 meV, and sion with respect to al site and three that are odd. The
u,=3.7x10"2° Cm (the parameter values given in Fig. 2 of parameters are varied so that a degeneracy occurs between
Ref. 7, the ferroelectric resonance frequency istwo states of odd parity and one of even parity. The ground
wo=0.021JE, meV, whereE, is in V/cm. This estimate state in the limit of a vanishing electric field is a mixture of
from Eg. (32) was checked by the numerical solution of even and odd states with a finite polarization.
D(wg)=0 and was found to be in agreement to better than In Ref. 6, an electronic-polaron solution of the FK model
0.5% for fields up to 1® V/cm. For a reasonably strong is presented that may explain the anomalous properties of
applied electric field, the ferroelectric resonance lies easily irheavy-electron materials such as 4PtUBe;3, and
the range of frequency measured in Ref. 14 at zero stati€eCuySi,. It is proposed that the Coulomb interaction causes
electric field, since the lowest frequency measured there waée f electrons in these materials to propagate like polarons,
1 meV. with a screening cloud made up dfelectrons. The model is
Reference 24 reports measurements of the dielectric reshown to account for a large number of thermodynamic and
sponse of mixed-valent SgBe, and SmSe; from 20 Hz up  transport properties of heavy-electron materials.
to 1 GHz. The huge observed values of the static dielectric Here we show that the electronic polaron has a nonzero
constant €=30000 for SmSe, and €=4000 for built-in coherence
Sm,Se;) are consistent with electronic ferroelectricity.
Given the valug A=140 meV for the energy gap in A= BE Gyi(k,7=07), (45)
Sm;Se,, we predict a resonance frequency between 0.1 meV N“K
(10 GH2 and 10 meV (1 THE _ , ,
Reference 25 report(s transport measurements on mixedhere Gar(k,7)= _<Trdl§(7)fl(o)> is a mixed Green's
valent TmSg_:Te, s that show evidence of a condensation function —with  Fourier  transform = Gy((k,iw,)=
of free carriers into an excitonic insulator ground state. Due~ ¥ Gri(K,i@n)Gad(K,iw,), whereGyq and Gy are thed-
to the indirect nature of the energy gap, this material migh@nd f-electron propagators and, are the Matsubara fre-

not be suitable for the optical tests of coherence proposefiu€ncies. Expressing the Green's functions in the Lehmann
here. representation and summing over the Matsubara frequencies,

we find (at T=0)

VI. DISCUSSION OF OTHER GROUND STATES ©
A=VUAmcsd ma) do o *N,(w). (46)

We now discuss the possibility of electronic ferroelectric- 40

ity, ferroelectric resonance, and second-harmonic generation ) o
for solutions of the FK modedther thanthe SCMF solution.  Hereé,A anda are the forefactor and the singularity index of
There are two types of solutions we consider hétgsolu-  the f-electron spectral functiofsee Ref. § N, () is the
tions with a classical f-electron distribution and(2)  density ofd electron states in the upper branch, angs the
electronic-polaron solutions. The question we ask is: doe§€rmi level atf=0. Using Eq.(8) of Ref. 6 forN., (), we
the theoretical ground state have a built-in coherence be?Ptain
tweend electrons and holes? This coherence is necessary U
for electronic ferroelectricity and the concomitant optical A= —
signatures to occur. The answer is, for the two types of so- 4v

lutions: (1) no and(2) yes. A brief motivation for each an- whereW is the bandwidth andy the upper-branch threshold.

swer is given below. Taking the parameter values=0.8, wo=1.37, and
In Refs. 3 and 4 thé occupationff; is replaced by a U=I2(§]V frompRef. 6 we g\/etAu=3.28Wj po= =2

classical variabl&V;, whereW;=1 when sitei is occupied
by anf electron andV;=0 when it is not. With this replace-
ment, the FK model becomes a tight-binding model with an
on-site potential that can assume two different valueer In this paper we have investigated the linear and nonlinear
0. For a given configuration df electrons, the ground-state optical characteristics of the Falicov-Kimball model. The
energy is found by filling the lowest electron levels. The SCMF solution of the periodic model results in the Bose-
ground configuration is the configuration with the lowestEinstein condensation ai-f excitons. We found that the
ground-state energy. The question we ask is: what is th@airing ofd states of even parity with states of odd parity
value ofA=(U/N)=L (y|f1d;|)? Since each site is either breaks the inversion symmetry of the underlying crystal,
occupied (ini=l) or empty ﬁfi=0), every term in the leading to electronic ferroelectricity. The valence transition
sum vanishes, and =0 no matter what configuration df  is accompanied by a divergence of the static dielectric con-
electrons we choose. stant at the critical value of thielevel energy. The existence
However, we argue that there are degenerate states in tloé electronic ferroelectricity in a given mixed-valent com-
f-occupation representation, linear combinations of whichpound is predicated on the dominance of thé Coulomb
are ground states with finite polarization. It is straightforwardinteraction over the hybridization.

77)2&

— (47)
Mo

VIl. SUMMARY AND CONCLUSION
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We have calculated both the linear and the secondSuch a state on its own is not ferroelectric, does not exhibit
harmonic susceptibilities of a model mixed-valent systenferroelectric resonance, and cannot sustain second-harmonic
within the SCMF approximation. The absorption spectrum ofgeneration. We have argued that degenerate ground states in
the mixed-valent system, when placed in an additional statithe f-occupation representation can lead to ferroelectric
electric field, consists of a peak at the ferroelectric resonancground states. The explicit numerical demonstration of such
frequency and a continuum above the energy gap. The ferrground states is left for the future.
electric resonance frequency is proportional to the square
root of the effective bias field, which depends, in addition to ACKNOWLEDGMENTS
the applied static field, on the sample shape, domain struc- ) )
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final-state Coulomb interaction enhances the second-
harmonic conversion efficiency at=A andw=2A. As ex- APPENDIX

perimental tests of the electronic ferroelectricity in mixed- _In this appendix, we give the explicit expressions for the

Celectrc constant, the mictowaye abeorption Specirum, anCions A(s) and B(v) defined in Eqs(26) and (27
’ ption sp ' ANReplacing (M), by  [dep(e), with p(e)

the second-harmonic susceptibility. The measured far-" A .
infrared absorption spectrum of SrgBvas found to be con- B(W—|e[)/(2W), we obtain

sistent with the model calculation. U [(WE q 1
We haye also discu§sed the possibility of electronic fer_—A(“’)_ W W-E, fm(wz_ez_Mz) ' (A1)
roelectricity, ferroelectric resonance, and second-harmonic
generation for two other theoretical ground states of theB( ) U J'W—Ef q € (A2)
i _Ki iC- W)= =5 € .
Falicov-Kimball model. The electronic-polaron state does 2WJ _w_g, ’—52+M2(w2—62—M2)

have a built-in coherence comparable to the SCMF solution.
A ground state witif occupation as a good quantum numberThe integrals can be performed by elementary methods. We
has no built-in coherence betwednelectrons and holes.  find

Ao) U | \/(Ef+W)2+MZ\/wZ—M2+(Ef+W)w) l(\/(Ef—W)2+M2\/w2—M2+(Ef—W)w
= n —In
(o AW @\ w?—M? VE{+W)?+M?Jw?—M?—(Es+ W) VE{—=W)?+M?Jw?—M?—(Es—W)w
(A3)
and
U (Es+W)*+M?+ w (Es—W)*+M?+ w
B(w)= zzz=| In —In (A4)
VE+W)Z+M2—w VE—W)Z+M2—w

The frequencyw is understood to have a positive imaginary parfThe functionA(w) is even inE;, while B(w) is odd in
E¢. This meandB(w)=0 at half-filling.

The static susceptibility given by E@L0) involves the functionA(w) and B(w) evaluated atw=0. Taking the limit
w—0 in Egs.(A3) and (A4) we obtain

. WHE  W-E 8
O=2wen | S wre oM Jw_E) i)’

B(0)= ! - ! (A6)
0= 2w JW=E)2+M2  J(W+E()Z+M2/
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