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Effect of finite impurity mass on the Anderson orthogonality catastrophe in one dimension

H. Castella
Institut Romand de Recherche Nuigae en Physique des Mataux (IRRMA), PHB-Ecublens, CH-1015 Lausanne, Switzerland
and Department of Physics, Ohio State University, 174 West 18th Avenue, Columbus, Ohio 43210-1106
(Received 2 August 1996

A one-dimensional tight-binding Hamiltonian describes the evolution of a single impurity interacting locally
with N electrons. The impurity spectral function has a power-law singuld{iy) =|w— wo| ~1"# with the
same exponenB that characterizes the logarithmic decay of the quasiparticle w&ighith the number of
electronsN, Z«N~#. The exponeng is computed by1) perturbation theory in the interaction strength &2d
numerical evaluations with exact results for small systems and variational results for larger systems. A nonana-
lytical behavior of 8 is observed in the limit of infinite impurity mass. For large interaction strength, the
exponent depends strongly on the mass of the impurity in contrast to the perturbative result.
[S0163-182696)01348-3

[. INTRODUCTION approach in the nonperturbative regime. The results are
eventually compared to analytical calculations from Ref. 12,
Anderson studied the effect of a static impurity potentialwhich studied the heavy-mass and strong-coupling regime
on conduction electrons in metdisand showed that the using a path-integral formalism.
ground state of the electrons is strongly renormalized by the Section Il presents the model and the results. In Sec. Ill, a
local potential of the impurity and has an overlap with theperturbation analysis of the impurity spectral function is per-
unperturbed state, or quasipartic]e Wei@nt\/anishing ay formed along the line of Ref. 8. Section IV numerically cal-
«N~# with an increasing number of electroNs This effect, ~ culates the critical exponent using a variational approach.
known as the Anderson orthogonality catastrophe, has its
origin in an infrared singularity due to shake-up processes of Il. MODEL AND RESULTS
the electron sea in the presence of the impurity potefitial,
and signals the failure of the quasiparticle picture to describe This section presents the model and summarizes the
the low-energy excitations. known results on the impurity spectral function and the
The infrared singularity also affects the optical propertiesAnderson orthogonality catastrophe. At the end of the sec-
of metals. The core-level hole created by an x ray disturbdion, the main results of this work are briefly described.
the conduction electrons similarly to an impurity potential. The model describes a single impurity aht spinless
On one hand, the x-ray photoemission spectrum is asyrrﬁJectl’OﬂS moving on a chain &f sites with periodic bound-
metrically broadened above the threshtfdOn the other ary conditions. Within a tight-binding approximation with
hand, the x-ray-absorption spectrum has a strongly enhancégarest-neighbor hopping, the band energies-age,cok
threshold, the so-called Fermi-edge singulatity. and — 2t cok for the impurity and the electrons, respec-
These singularities in the optical spectra apply for a statidively. Further, the impurity and electrons feel an interaction
core hole, i.e., an infinite-mass holer impurity). For a U when they sit on the same site. Although this study is
finite-mass hole and an isotropic band dispersion, the infrarestricted to a single impurity, it is convenient to write the
red singularity does not occur in three dimensions, becausdamiltonianH in second-quantized form with creation op-
the hole recoil strongly restricts the number of |OW-energyeratorsciT for an electron on site, anddiT for an impurity:
excitations®’ as a consequence, the edge singularities disap-

pear. In one dimension, however, the infrared singularity L L

persists even for a finite-mass h8l@he observation of an H= _tE (CiTCi+1+ H-C-)_thE (d;rdi+1+ H.c.
enhanced threshold in UV-absorption spectra of doped semi- i=1 i=1

conductor quantum wires was interpreted as a Fermi-edge L

singularity? and stimulated renewed interest in the one- +UE didcle. 1)
dimensional problent®*? E3 TR

The present work studies the Anderson orthogonality for a
finite-mass impurity in a simple one-dimensional model, andThe interaction is attractive in order to describe a hole in a
focuses on the impurity recoil. Although the infrared singu-valence band. For this particular model, however, the repul-
larity occurs for both infinite- and finite-mass impurities in sive and attractive cases are related by a particle-hole trans-
one dimension, the recoil plays an important role on the critiformation for the electron?;'j:(— l)JCJ-T. In the rest of the
cal exponentB which does not extrapolate to the static- paper all the results are presented for the repulsive case; the
impurity value in the infinite-mass limit. The dependence ofcorresponding results for the attractive interaction are ob-
the exponent on the impurity mass is investigated analytitained by the transformatiop— 1— p, wherep=N/L is the
cally by perturbation theory, and numerically by a variationaldensity of conduction electrons.
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The spectral function of the hol@r impurity) A(q, ) 15
describes the photoemission response within the sudden ap- I
proximation, i.e., neglecting interaction with the outgoing
electron'® It has a spectral decomposition in terms of eigen- 8
states|,), and eigenenergiek,,, of the Hamiltonian(1) in e
the presence of the impurity, and of the ground-state wave- 10 RN Sl
function|¢y) and energyE, in the absence of the impurity: Ec P ) ”L}gff’ o U=2t, p=1/2
A . ) o o U=4t, p=1/2
1 ~ & PR 0 o U=8t, p=1/2
A(g,®) = — IMGq(w) =2 [ d| bo)*5(w—Eq+Eo). & e /,@/;,,::*X i U ptf2
" @ o E v Useo, p=1/3
o
In the spectral decomposition df(g=0,w), the spectral filled symbols : t.=0
weight of the ground statfé=|(¢o|d;:0|¢o>|2 may remain open symbols : t,>0
finite in the thermodynamic limit, giving rise to a quasipar- %0 05 10 15
ticle peak in the spectral function. This is the usual situation G/t

when the quasiparticle picture applies. _ _
Static impurity(t,=0). The interaction causes the quasi- FIG. 1. Exponents(t,)/B(t,=t) normalized to the analytical

particle picture to break dowhthe spectral weight scales to value B(t,=t) in Eq. (5) as a function of the mass rattq/t for

zero with increasing number of fermiois as Z«N ™8, the different interaction strengtis and densitiep. The filled symbols

ground state of the interacting system being orthogonal to th&t tn=0 are the exact results in E(B) for the static impurity. The

quasipartce statell ) for N—ee. This is known as the 2 200, s L 30 10 S0 e ® e e wit
Anderson orthogonality catastrophe. The exponent is relateﬁl/NZ:OI the largest sizes beiny;=159 and 121 at half-

to the phase shifise of an electron at the Fermi energy _ 4 one-third-filling, respectively
scattered off the static impurity: ' '

B(t,=0)=(5¢/m)2. 3) The present work presents calculations of the exponent
B(t,) for different hopping parameters,,, interaction
For the present model, the phase shift dependd @and on  strengthdJ, and electron densitigs. The exponenp(t,) is
the density of states at the Fermi eneldy=1/(27 sinkg): computed(1) analytically using perturbation theory id,
8= —arctanUNg). Furthermore, the spectral function has, and (2) numerically in the nonperturbative regime using a
instead of a quasiparticle peak, a power-law singularity avariational wave function proposed by Edwatd3he expo-
the threshold wo= EO_EOr with the critical exponent nent is extracted numerically from finite-size results using a
1-B(t,=0):* precise scaling law foZ as a function oN and a numerical
fit of the data adN— . The main results of this study are
summarized now. Sections Ill and IV will give a detailed
(4) description of the perturbation calculations and the numerical
simulations, respectively.
This singularity inA(w) is observed in x-ray photoemission ~ Mass dependence of the exponeftie perturbative re-
of metals® sults indicate that the exponefit to order (U/t)?, is inde-
Finite-mass impurity(t,>0). While an infinite-mass im- Pendent oft,, for t,>0, and equalsNg)*/2. For a finite
purity acts as an external potential on the electrons, the imJ, however, the exponergi(ty) calculated numerically does
purity recoil further complicates the many-body problem.depend orty,, and its dependence increases with increasing
Despite this complexity, the eigenenergies and eigenstates bk, as illustrated in Fig. 1, which shows the exponent normal-
H are known exactly for the special calgg=t.'® Using the  ized t0 its value fort,=t, S(ty)/5(ty=1), as a function of
exact solution, the spectral function fge=0 is computed in  th- In the strong-coupling limitU =<, 3 varies quasilin-
Ref. 16. It has no quasiparticle peak because of the Andersd#fly withty.

orthogonality catastrophe, and has a power-law singularity Discontinuous exponent in the heavy-mass lifftie per-
with an exponent turbative calculations predict a discontinuous exponent in the

limit of a flat impurity dispersion: lim _oB(th)
ﬂ(th:t):2(5'F/7T)2- (5) = B(t,=0)/2. This discontinuity is due to the irrelevance of

backscattering processes fqr-0 because of the finite recoil
The exponent is given by the phase shift of a single electroenergy involved. The numerical results in Fig. 1 illustrate the
at kg scattering off a finite-mass impurity ¢  nonanalyticity for a finiteU: whent,—0 the exponent does
= —arctanfUNg/2). Notice the similarity in the exponents not extrapolate to the static value which is indicated by the
for t,=t andt,=0, which are both expressed in terms of filled symbols att,=0. The numerical results can be com-
phase shifts. The phase shifts, however, differ since the nunpared to calculations by Rosch and Kdpfor the exponent
ber of states contributing to the Anderson orthogonality isin the heavy-mass and strong-coupling regime. Their analy-
reduced fromUNg to UNg/2 between a static and finite sis, based on an effective action for the long-time behavior of
mass impurity, respectively. The origin of this difference isthe impurity propagator, also predicts a discontinuity
discussed in Sec. Il for the perturbative results. Iimth_,oﬁ(th)/ﬁ(t)= a+ B(0)/B(t), and givese= 3, at half-

A o=
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0.40 : : ‘ ‘ ‘ InNZ=— B(ty)INN+ ay(ty) + aq(ty)/N+O(1N?).  (7)
3244 o . ) .
o The logarithmic term dominates for lar$g and gives rise to
030 | Q/D’ the Anderson orthogonality. The finite-size corrections are
324 o e used in Sec. IV for the numerical study gf
e T e The main result of this section is the evaluation of
E 020 Ne=32 l//j}iji/,"'i/r/r/‘/ , B(th):
= R -
- B L. a
e e o =0 B(0)=(UNg)* for t,=0,
SR et b= 4
0.10 | e . th=103t 8 8
=10t
12 * t:=10'2t B(ty)=3(UNg)? for t,>0.
0% a0 so lsfcI)\I 00 120 140 The exponeng(ty,) is independent of, as far ag,>0. The
n

infrared singularity is caused by forward-scattering processes
with small momentum transfek, —k,|<kg , which are gap-
less excitations for antf,. The hoppind,, is irrelevant since
the impurity recoil energy §(cosk;—ky,)—1) is negligible

FIG. 2. Logarithmic decay of the quasiparticle weightwith
number of electrondN from the perturbative result in Eq6) at

half-filling, and for different impurity hopping parametetis. The

dashed lines are the asymptotic behaviors with the analytical expd”-lS compared to the particle-hole e.nergy'(‘bskz—.coskl).
nentB(t,) in Eqg. (8). The arrows indicate the estimate of the cross- Further, the exponent has a discontinuity in the heavy-

over sizeN, from Eq. (A10). mass limit Iitho,B(th)=/8(th=0)/2. The difference be-
tween the infinite- and finite-mass exponents is simply re-
filling and a=£2=0.339 at one-third-filling. The numerical lated to scattering of one electron from one side of the Fermi
results in Fig. 1 suggest=0.25 for both half- and one-third- surface to the other. These so-called backscattering pro-
fillings. The result at half-filling is therefore in good agree- cesses, which involve a large momentum transfer
ment with their prediction, while at third filling the value of |k,—k;|=2kg, do not contribute to the infrared divergence
a is significantly smaller. Note, however, that the presenfor t,>0, since the impurity recoil opens a gap
work relies on a variational approach. 2ty (cosX-—1). Fort,=0 however, both backscattering and
Crossover behavior in the heavy-mass linfit.detailed forward-scattering processes are gapless. The number of
analysis of the perturbative results figr<t reveals a cross- low-energy excitations contributing to the infrared singular-
over in the scaling behavior of Inas a function of IN, as ity is thus reduced by a factor of 2 for a finite-mass impurity,
shown in Fig. 2. While 1@ closely follows the static- as compared to its value for the static impurity.
impurity behavior with a slopeB(t,=0) for a number of The discontinuity in the exponent is an asymptotic result
fermions smaller than a crossover valg, it adjusts to the Vvalid only for N—co. For a finite number of fermions and a
finite-mass behavior only foN>N.. Further,N. diverges large but finite mass @t,<t, however, IiZ has a crossover
as t/t, for t;—0. Therefore, the discontinuity is only an as a function of IN, illustrated in Fig. 2, where the spectral

asymptotic result, valid in the limiN— oo, weight is computed numerically from E¢B). The logarithm
of the spectral weight has the slopét,) only for a number
Ill. PERTURBATION THEORY of electrons larger than a crossover vaNg, while for a

) ) ) ) ) small N it follows the static-impurity behavior with a slope
This section evaluates the impurity spectral function andg(t, —0). The dashed lines indicate the asymptotic behav-
spectral weightZ perturbatively inU and for an arbitrary  jors — Inz=g(t,)InN— ag(t,), with the analyticalg from Eq.
hopping parametet;, in one dimension, following Ref. 8, (g) anda, fitted to the value of I for the largest size. The
that computesA\(q=0,w) for the equal-masses casg{t)  intercept of the asymptotes gives the crossover $ige
in connection with the stability of the ferromagnetic state inyhich agrees very well with the estimahe,=0.3244/t,,,
the Hubbard model. _ _ __presented in the Appendix. Notice thidt diverges ag/ty,
Spectral weightln the perturbative expansion, the first o, t,—0, and the asymptotic regime is reached for a larger
terms that renormalize the ground-state wave function cores mper of electrons the lowey, .
spond to the creation of a single particle-hole pair within the  gpeciral functionThe spectral function is computed only
Fermi sea by an impurity of momentugp=0. The excitation atq=0, where it has a power-law singularity. The propaga-
energy is Ae(ky,kp)=2tcok;—2tcodo+2t,—2t,cosks tor is
—ky). The spectral weight has a cumulant exparfstbat, up
to second order itJ, involves only these excitations:

? - - Gaeol 7) = —i{ | dqoexpl —iH 7! _g| o) 6EO (7).
lnz:_(g) s O (ke |k1|)®(|k22| Ke) © q q ! o
L) ke Ae(kq,kp)

The sum overk,,k, diverges logarithmically with an in- The propagator also has a cumulant expansion, and is written
creasing number of electrond, As shown in the Appendix, in terms of the density of particle-hole excitatioB&w) and
a largeN expansion gives a renormalized impurity energap:
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wave function ¥ ;) of total momentunm is represented by a

Gg=o(7)=—1i eXF{—i?oT_UZJ S(w) function f(jq, ... .jn) depending only on the positions of
0 the electrons:
l-exp—iw7)
Xz Jo|, (10) - 1 EL: aog!
K \/Eio=1 Jo
1 T T
S@)= | [ okl koo ke~ Ik -
(277) —aJ -7 XJ 2] . f(Jl_JO! "'!JN_IO)C]T]_"'CJTN|0>'
Treeen NT
X 8(w— A Ky ,ky))dKydk, . 1

The densityS has a linear frequency dependence for smallre variational ansatz fof is a determinant of single-

w: S(w)=(B(t,)/U?w, wherep(t,) is the exponent of the particle wave functiongb,:
Anderson orthogonality in Eq8). This linear behavior de-

termines the low-frequency spectral function which has a 1

power-law singularity at the threshold with the exponent f(ji, - )= def{ dm(j) Imi=1 .. n- (13
1-p: NI e
si(mB)T(1- ) B The expectation value of the energy is
A(q=0,w)=W®((u—eo). (11) L1

m(w

(=2

—t[exp(—iq)de{S)+c.c],

—tgo (@F () i(j+1)+c.c)+U|¢y(0)?

This is, however, only an asymptotic result for frequen-
cies smaller than a cutofV. Fort,=0, the cutoff is of the
order of the Fermi energyW=2t(1—coskg). For t,>0

however, the linear behavior & holds only for frequencies
smaller than the impurity recoil energy, and the cutoff is
given by W=min(2t(1—co%kg),2t,(1—coskg)). For a
heavy impurity the cutoff is of the order of the impurity
recoil energy 2,(1—cosXkg) rather than the Fermi energy,
and the asymptotic result is valid only in a very narrow fre-

guency range. Furthermore, the density of excitations exhib*

L-1

Smr= 2 #a(1+ 1 a()). (14
The variational parameteis,,(j) are found by minimization

of the energy using a steepest-descent algorithm. If one
chooses to start witl,(j) as the exact solution fan,=t,

its a crossover similarly to the spectral weight. This mightconvergence is reached after a relatively small number

give rise to a crossover in the spectral function as well.

of iterations even for hopping parameters very different
from t.

In summary the exponem in Eq. (8) characterizes the . - .
power-law singularity of the spectral function and the loga- Comparison of variational results to Lanczos exact diago-

rithmic decay of the quasiparticle weight. The exponent doedalizations and projection quantum Monte Carlo simula-
not depend on the mass of the impurity except in the statilons: Only small systems are accessible by exact diagonal-
limit t,=0, and it has a discontinuity at=0. Notice that ization because the dimension of the Hilbert space increases

the perturbative results agree with the snmélexpansions of very rapidly with the number of lattice sites. For th? half-

the exponent fot,=0 andt,=t. filed band, the biggest closed-shell system studied has
L=22, whereas fop=13 it hasL=20. For larger systems,

Monte Carlo simulations are required.

IV. NUMERICAL STUDY The projection quantum Monte Carlo simulation gives a

This section presents a numerical Study of the exponerﬁtatistical gstimate of ground-state eXpeCtation values of ob-
B(t,) based on a variational approach. The variational preservablesO by a projection of a trial wave functiohyr)
dictions for the energy and correlation functions are com-onto the ground state with the operator exp):*°
pared to results from Lanczos exact diagonalizations and
projection quantum Monte Carlo simulations. Then the
variational calculations are used to extract the exponent.

The variational wave function was originally proposed for
the single spin-flip problem in the two-dimensional Hubbard
model in reference to the stability of the ferromagneticThe algorithm used here closely follows Ref. 20. The
state!” It was also used to study numerically the quasiparti-imaginary-time evolution exp{zH) is performed sequen-
cle weight in two dimension¥ Furthermore, this variational tially for small time intervalsA , and a Trotter decomposi-
approach is equivalent to the approximation used in Ref. 11tion is used for the kinetic-energy and interaction terms in
In one dimension, the variational class of wave functionshe Hamiltonian. Eventually the two-body term is repre-
contains all the eigenstates of the modgl for t,=t, as sented by discrete Hubbard-Stratonovitch fields that mediate
shown by Edward$’ The variational approach is thus ex- the interaction. For the present calculations a rather large
pected to include much of the relevant correlations even fom=15 is necessary in order to converge the relevant corre-
t,#t. lation functions, and the results are extrapolated\te—0

In the reference frame comoving with the impurity, a using several values of the time interval.

(irr|exp(— nH) O exp — pH)| o)
lexp(— 7H) | g2

(olOl gy =lim,, ...
(15)
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TABLE |. Comparison of correlation energg.= EO—EO—Up, whereE, andEO are the ground-state
energies of the interacting and noninteracting systems, respectively, computed by Lanczos exact diagonal-
izations, projection quantum Monte CaflBQMC), and Edwards’s variational wave function, as a function
of the number of fermion® at half- and quarter-filling pi:N/L:% and %1, respectively, for t,=0.5% and
U=4t. The last line gives the energy extrapolated for the infinite system both from either Lanczos or PQMC
results, and the variational results by a linear fit iN.1/

eC eC

N (p=1/2 Lanczos PQMC Variational N (p=1/4) Lanczos PQMC Variational
5 -0.9028 -0.9025 5 -0.6102 -0.6101

7 -0.9230 -0.9227 7 -0.619 -0.6190

9 -0.9340 -0.9336 9 -0.623 -0.6239

11 -0.9408 -0.9404 11 -0.622) -0.6271

13 -0.945%2) -0.9451 15 -0.632) -0.6309

o -0.9727 -0.9720 o -0.6424) -0.6413

The energy is computed for the ground state, which hasulations are in good agreement. These last results illustrate
zero total momentum. The relevant quantity is the correlatiorihe robustness of the variational wave function even in the
energye.=Ey—Eo—Up, whereE, andE, are the interact-  Strong-coupling regime. _ N
ing and noninteracting energies, respectively. Notice ¢at _ Finite-size scaling analysis of the exponefibe finite-
is of order 1, whileE, is of orderN. Table | givese, for ~ SiZ€ corrections to the Anderson orthogonality catastrophe in

several system sizes at half- and quarter-filling, and for afrd: (7), (‘jNh'Ch \t/veretder;ved frqm 'ilhetﬁerturbatlvetal?al%/ssl, d
interaction equal to the bandwidth—4t and a hopping pa- | * G Ce it 2CCRilte Cions contrast with the
rametert,,=0.%. The variational ansatz is not exact fogr : Wi

#1t, since the variational energy departs significantly fromSIOWIy decaying In N corrections expected for the para-

! . magnetic phase of the one-dimensional Hubbard mddel.
the exact energy. Nevertheless it always remains very close The exponent is extracted from numerical data on finite

to the ground-state energy. The relative difference betweegystemS by scaling the slope ofZias a function of IN: the
the exact and the varlatlongl energy remains smaller _th_anectraI weight&Z, andZ, are computed for systems with
O..l% even wh_en extrapolating to the |nf|n|te-.system limit ,,mbers of fermiondl, andN,, respectively, at a fixed den-
with a 1N scaling law. For the sake of comparison the cor-gjty and a fixed ratio = N, /N,; from the perturbative analy-
relation energy for thg ynrestrlcted Hartree-Fock solution is;ig i Eq.(7), the slopes (I, —InZ,)/(INN,—InN;) have a
—0.438Q at quarter-filling, a value much larger than the polynomial expansion in N, N being the mean number of

variational energy-0.6413. - .
Thek=0 component of the momentum distribution func- electronsN=(N; +Ny)/2:

tion of the impurityn(k=0) has the same scaling law s

when the Anderson orthogonality catastrophe occurs. Both  '° ‘ ‘ ‘ ‘ 15
Z andn(k=0) are computed in order to test the relevance of « Lanczos U=4t, £,=0.5t

the variational calculations to extract the expong@ntigure + PQMC

3 shows the ratio of the exact momentum distribution 1.00 I fffff P o 1 12
n(k=0), calculated by either exact diagonalization or quan- «p=172

var

tum Monte Carlo methods depending on the system size, to
the variational estimata(k=0),,, as a function of M at
quarter-filling and half-filling, fold =4t andt,=0.5. If the
variational result reproduced correctly the scaling behavior
of n(k=0) with N, the ration(k=0)/n(k=0),,, should be
constant as a function of M/ At half-filling, the ratio re-
mains indeed always close to 1, and the variational approach
seems to correctly describe the scaling behavior. At quarter- -
filing, however, the comparison relies mostly on Monte 070 L . ‘ ‘ 05
Carlo simulations, where the estimatengk=0) has strong 0.00 005 010 UN 015 020 025
statistical fluctuations for large system sizes, large autocor-

relation times having an essential contribution to the eror -,z 3 Ratio of the momentum distribution functionfk) at
bars. The comparison to the variational results is thereforg_g caiculated with the Lanczos diagonalization or projection
delicate, but still the ratio remains close to 1 within the errorgyantum Monte Carlo, to its variational estimaték=0),,, as a
bars. Finally, exact-diagonalization results férare pre-  fynction of 1N for half- and quarter-filling, and fot)=4t and
sented in Fig. 4 fotJ =0, p=73 and differentt,. The slope t,=0.5. The circles are the Lanczos results and the squares the
of InZ as a function of I\ is an estimate of the exponent Monte Carlo results with the corresponding error bars. The left axis
B, and both exact-diagonalization results and variational calrefers to half-filling, and the right axis to quarter-filling.

n(k=0)/n(k=0)
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o1 =
E 1,=0.7t N/N,=0.7
1% 80 2.00 220 2.40 260 09% 000 0.010 0020 0.030
InN /(N +N,)
FIG. 4. Comparison of the exact spectral weighfrom Lanc- FIG. 6. Sloped In(Z)/dIn(N) normalized to the analytical value

zos diagonalization to its variational estimate as a function of numyf (1, —t) in Eq. (5) as a function of the inverse mean number of
. 1 . .
ber of electrons\ in the log-log plot fortd =, p=3 and different  g|ectrons 2/4;+N,) for t,=t and different interaction strengths
th. The open symbols are the variational results, and the filledy—2 4 and 8 at half-filling, and forN; /N,=0.7. The spectral
symbols the Lanczos results. weightZ is computed with the Bethe's ansatz wave function in Eq.
(13). The dashed lines are numerical fits of the data as a third-order
InZ,—1InZ, 1-r21 ( 1 polynomial in 2/(N;+ N;). The inset is an enlargement around the
= —+
N

m =—-B+ alzr Inr (@) F) . (16) origin.

(6). The inset shows that the scaling procedure is well be-
haved even for very largd. Furthermore, the scaling analy-
sis is essential to determine the dependengg ofi t;,, since

The exponenp is estimated by a numerical fit of the slopes
as N—. In practice, it is not possible to keep the ratio

Nllll;lz exactly fti)xed &/\_/hilte (;ncreaﬁirt‘g"vt/b’\']'t the numl?]er of the finite-size corrections differ in both sign and magnitude
gec rons can be adjusted such théi/N, approaches a for differentt,. Note also that the nonlinear terms inN1/
fixed valug for largeN. All the results presented here have become increasingly important with decreasingThe spec-
been obtained foN, /N,=0.7. , . tral weightZ is computed numerically fap, =t and different
The scaling procedure is tested both in the perturbatlvet| using the Bethe’s ansatz wave functitt®), and the re-

regime for d|f_ferenlth.and at_flnlteU for th=t, vyhereﬂ 'S sults are fitted with a third-order polynomial inNL/ The
known analytically. Figure 5 illustrates the scaling procedure

. . . relative accuracy of the fitting procedure in extractjpge-
for the perturbative regime wheredns computed from Eqg. mains of the or}:jer of T0f egvepn for a strong inte’?ag:tion

U =8t, as illustrated in Fig. 6. Although the scaling behavior

0.07

108 o t=0.1t was derived in the perturbative regime, it seems to hold for
* £,=0.25t any interaction strengthl.
0.05 |- i 4 1,=0.5t For a finiteU andt,#t, the exponent is not known, and
| Ty T v =t its evaluation relies on the variational approach and the
& o008 e finite-size scaling analysis. Figure 7 illustrates the scaling
2 2008 e o P p_rocedure in the strong-coupling regiﬂje=<_>o, fpr p:% and
E ot e differentt;,. Fort,,>0.1t, the exponent, which is obtained by
2 / e an extrapolation of the data &— o, depends only slightly
N B e AR +oee on the order of the polynomial used in the fit. Rge=0.1t,
SR I however, the fitting procedure is not well behaved, and a
N=89 "w. 1 relative error of a few percent is expected in the extraction of
o0l U—0 61 4'7**\,\‘ B. A precise investigation of the heavy-mass regitpe&t
p=1/2 37 \3‘3*\2,9\ would require the study of even larger systems due to the
0.05 ‘ . important nonlinear corrections inN/

Mass dependence of the exponditte study of3(ty) is
based on the variational approach and the scaling analysis
FIG. 5. Slopesd In(Z)/dIn(N)=(InZ;—InZ,)/(InN;—InN,) nor- presented above. Figure 1 presents the exponent normalized

malized to the analytical value ¢f(t,) in Eq. (8) as a function of (O its value att,=t, B(tn)/B(ty=t), as a function oft,/t.
the inverse mean number of electronsN/¢-N,) in the perturba-  FOr @ finite U, the exponent does depend on the hopping
tive regime and for different hopping parametéss The spectral parameter t,, in contrast to the perturbative result
weight Z is computed numerically from Ed6). The dashed lines B(th)/B(th=1t)=1 indicated by the dotted line. Furthermore,
are numerical fits of the data as polynomials inN%/¢N,). The  this dependence increases with increasig and in the
inset is an enlargement around the origin. strong-coupling regimé& =o the exponent varies quasilin-

0.010
2/(N+N,)
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with the numerical results fot,<t. Therefore forward-

i tﬁ:g';gt U=eo p=1/2 scattering processes alone cannot account for the discontinu-
015 | . :;O:It N/N,=0.7 ity, and backscattering has to be invoked.
——— 3" order fit
,,,,,, th - V. CONCLUSIONS
0.10 4" order fit

This study of the one-dimensional Anderson orthogonal-
ity catastrophe, combining analytical and numerical calcula-
tions, has focused on the effect of the impurity recoil. The
numerical study requires a finite-size scaling analysis, since
the Anderson orthogonality catastrophe results from a loga-
rithmic decay of the quasiparticle weight with the number of
fermions. The present work shows, however, that a reliable

0.05

-d In(Z)/d In(N)/B-1

0.00

-0.05 -

61 . - . . .
numerical analysis of the quasiparticle renormalization can
-0.10 : : be achieved if a precise scaling hypothesis is established, and
0.000 0.010 0.020 0.030
/(N,+N,) large enough systems are accessed.

Within perturbation theory, the infrared singularity that
FIG. 7. Slopesl In(2)/d In(N) normalized to the fitte@(t,) asa  Signals the orthogonality catastrophe occurs for an impurity
function of the inverse mean number of electrondN2A N,) for ~ band of any dispersion. Still, there is a discontinuity between
U =, different hopping parametetg=0.5, 0.25, and Otl at half-  the zero-band-width exponent and the finite-band-width ex-
filling. The spectral weight is computed with the variational wave ponent. This discontinuity is related to the impurity recoil,
function. The solid and dashed lines are numerical fits of the data aghich opens a gap in the spectrum of particle-hole excita-
third-order and fourth-order polynomials in BI{+N,), respec- tions for backscattering of one electron from the Fermi mo-
tively. mentumkg to —Ke .

Outside the perturbative regime, the numerical analysis
early witht, /t. For smallt, and at half-filling, the exponent demonstrates the discontinuous behavior of the exponent,
only slightly departs from the linear behavior. Furthermore,and agrees at half-filling with a study of the heavy-mass and
the exponent depends on the density, since the data feftrong-coupling regime in Ref. 12. At one-third-filling, how-
U= and p= 3 significantly differ from the exponents for ever, the numerical results differ from the analytical predic-
p=13. This contrasts with the exact exponent fge=0 and tion.
tp=t, which are independent of the density. However, the The discontinuity of the exponent is an asymptotic result
limiting value lim, _oB(tn) seems to be independent of the valid only in the limit of an infinite system. For a finite
density. number of electrons and a heavy but finite-mass impurity,

The numerical results demonstrate the discontinuity of théhe quasiparticle weight has the same logarithmic behavior
exponent at,=0 for a finiteU. The numerical data, indeed, as a static impurity up to a critical number of electro¥s
do not extrapolate to the exact results fgr=0 indicated by ~ Where the former weight shows a crossover to the true as-
the filled symbols in Fig. 1. A precise extraction of the lim- ymptotic decay for a finite-mass impurity. Furthermokg,
iting value lim,_oB(t,), however, would require an inves- dlverges with increasing mass of the impurity. Th_|s Cross-
tigation of larger systems. over is also expected in the low-frequency behavior of the

The occurrence of the nonanalyticity at=0 is not sur- spectral function.
prising, since the translational symmetry is broken at this
point. Still the role played by the recoil of the impurity in the ACKNOWLEDGMENTS
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U APPENDIX
H=—2t>, cokclc,+ T > clew. 17
K

o This appendix derives the scaling 1d# from the pertur-

bative expression for the spectral weightand estimates the
In this picture, the only effect of the impurity recoil is the crossover sizeN.. The calculations are presented for the
restriction to forward-scattering processes. Since the poterialf-filled band in detail, and the density dependencl ois
tial is static, the exponent is expressed in terms of phasbkriefly discussed at the end.
shifts. A calculation of the phase shift gives the same expo- Forward-scattering processe#\n electron with momen-
nent as the result fay=t in Eq. (5). This is not compatible tum k; is scattered into an empty state with momentkyn
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such thatk;k,>0. The infrared singularity is caused by ex- 1/N. The extraction of the finite-size corrections for the third
citations around the Fermi momentukp=7/2, whose en- term, however, requires the evaluation of the discrete’$um
ergy vanishes linearly with the momentum trandfer k.

For k, and k,>0, the momenta are written as 1
ki=ke—2mn; /L andky=kg+2mn,/L, and the excitation N no iy N+,
energy is

N/2  N/2

1
In2— =

=In2+ 5

(A5)

1+O
N

ﬁz .

Backscattering processeghe initial and final momenta
have a different sigrk;k,<0, and, fork;>0 andk,<0, the
(A1) .
momenta are written as k;=kg—2wn;/L and

While the linearization of the energies allows an exact catke= ~ke=2mn,/L. The linearized excitation energy is

culation of the exponeng(ty,), it provides only an estima-
tion of the remaining terms in Eq7). The contribution of Ae(kl,kz,)=4(th+
forward-scattering processes to the spectral weight is

n
Af(kl,k2)2477t

1+ n3 thm(ng+ny)
2N 2Nt

t7T(n1+ n2)

2N (A6)

For t,,=0, backscattering processes are gapless excitations,

_ B) ;2 and make the same contribution Zoas forward-scattering
L /kioe0 Ae(ky,kp) processes, as given in EG4). For t,>0, however, they
N2 N2 have a gap, and their contribution, which is finite, is com-
— — L(UNp)? E 2 puted by an integral representation of the sum.
2 Fli&o sy Finally, all the terms, for both forward-scattering and
1 2 . . . . .
backscattering, give finite-size corrections of ordex.1Fur-
% 1 thermore the coefficient in Eq. (7) is evaluated explicitly
(ny+ny)2(L+ wt (N +n,)/(2N1))? in order to extract the crossover sike:
(A2) ao(ty=0)=— B(0)(1+C—2In2), (A7)
The fraction in the sum is expanded in four different terms:
2t(wty+2t)
1 ao(th>0)=—B(t,)| 1+ C+In-——
(arty,+4t)
(n1+ n2)2(1+ ’7Tth(n1+ nz)/(ZNt))z
. mty oty + 2t N (mt+4t,)?
I S 1 " £ Vat 4t gty (mtt 2t |’
(gt ny? (g ny+2Nt/(wty))? Nt(ng+ny) (A8)
. mth (A3) The crossover sizBl is the solution of the equation,
Nt(n1+ n2+ 2Nt/(7Tth)) '
, , o = B(0)INNg+ ag(0) = — B(tp) INN+ ag(ty).  (A9)
The first term gives the logarithmic divergefte _
The crossover occurs fap<<t, whereag(t,,) diverges loga-
N2 NP2 N LG 2 o 1 ‘o 1 ) rithmically. As a consequenc®\, is proportional tot;, /t:
———=In —2In2+ — — |,
ny=0 ny=1 (nl+n2)2 N N? mt t
(A4) Ne=-—exp—1— C):0.3241—. (A10)

where C=0.5772 is Euler's constant. The contributions of

all other terms remain finite fol—o. For the second and Arbitrary density.The scaling law(7) applies to any den-
fourth terms in Eq(A3), the discrete sum can be replaced bysity. Furthemore, the crossover size is proportional/tg,
an integral. Further, the finite-size corrections are of ordeand diverges asp in the limit p—1.
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