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Effect of finite impurity mass on the Anderson orthogonality catastrophe in one dimension

H. Castella
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A one-dimensional tight-binding Hamiltonian describes the evolution of a single impurity interacting locally
with N electrons. The impurity spectral function has a power-law singularityA(v)}uv2v0u211b with the
same exponentb that characterizes the logarithmic decay of the quasiparticle weightZ with the number of
electronsN, Z}N2b. The exponentb is computed by~1! perturbation theory in the interaction strength and~2!
numerical evaluations with exact results for small systems and variational results for larger systems. A nonana-
lytical behavior ofb is observed in the limit of infinite impurity mass. For large interaction strength, the
exponent depends strongly on the mass of the impurity in contrast to the perturbative result.
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I. INTRODUCTION

Anderson studied the effect of a static impurity potent
on conduction electrons in metals,1 and showed that the
ground state of the electrons is strongly renormalized by
local potential of the impurity and has an overlap with t
unperturbed state, or quasiparticle weightZ, vanishing asZ
}N2b with an increasing number of electronsN. This effect,
known as the Anderson orthogonality catastrophe, has
origin in an infrared singularity due to shake-up processe
the electron sea in the presence of the impurity potent2

and signals the failure of the quasiparticle picture to desc
the low-energy excitations.

The infrared singularity also affects the optical propert
of metals. The core-level hole created by an x ray distu
the conduction electrons similarly to an impurity potenti
On one hand, the x-ray photoemission spectrum is as
metrically broadened above the threshold.3,4 On the other
hand, the x-ray-absorption spectrum has a strongly enha
threshold, the so-called Fermi-edge singularity.5

These singularities in the optical spectra apply for a st
core hole, i.e., an infinite-mass hole~or impurity!. For a
finite-mass hole and an isotropic band dispersion, the in
red singularity does not occur in three dimensions, beca
the hole recoil strongly restricts the number of low-ener
excitations;6,7 as a consequence, the edge singularities dis
pear. In one dimension, however, the infrared singula
persists even for a finite-mass hole.8 The observation of an
enhanced threshold in UV-absorption spectra of doped se
conductor quantum wires was interpreted as a Fermi-e
singularity,9 and stimulated renewed interest in the on
dimensional problem.10,11

The present work studies the Anderson orthogonality fo
finite-mass impurity in a simple one-dimensional model, a
focuses on the impurity recoil. Although the infrared sing
larity occurs for both infinite- and finite-mass impurities
one dimension, the recoil plays an important role on the c
cal exponentb which does not extrapolate to the stati
impurity value in the infinite-mass limit. The dependence
the exponent on the impurity mass is investigated ana
cally by perturbation theory, and numerically by a variation
540163-1829/96/54~24!/17422~9!/$10.00
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approach in the nonperturbative regime. The results
eventually compared to analytical calculations from Ref.
which studied the heavy-mass and strong-coupling reg
using a path-integral formalism.13

Section II presents the model and the results. In Sec. II
perturbation analysis of the impurity spectral function is p
formed along the line of Ref. 8. Section IV numerically ca
culates the critical exponent using a variational approach

II. MODEL AND RESULTS

This section presents the model and summarizes
known results on the impurity spectral function and t
Anderson orthogonality catastrophe. At the end of the s
tion, the main results of this work are briefly described.

The model describes a single impurity andN spinless
electrons moving on a chain ofL sites with periodic bound-
ary conditions. Within a tight-binding approximation wit
nearest-neighbor hopping, the band energies are22thcosk
and 22t cosk for the impurity and the electrons, respe
tively. Further, the impurity and electrons feel an interacti
U when they sit on the same site. Although this study
restricted to a single impurity, it is convenient to write th
Hamiltonian Ĥ in second-quantized form with creation op
eratorsci

† for an electron on sitei , anddi
† for an impurity:

Ĥ52t(
i51

L

~ci
†ci111H.c.!2th(

i51

L

~di
†di111H.c.!

1U(
i51

L

di
†dici

†ci . ~1!

The interaction is attractive in order to describe a hole in
valence band. For this particular model, however, the rep
sive and attractive cases are related by a particle-hole tr
formation for the electronsc̃ j5(21) j cj

†. In the rest of the
paper all the results are presented for the repulsive case
corresponding results for the attractive interaction are
tained by the transformationr→12r, wherer5N/L is the
density of conduction electrons.
17 422 © 1996 The American Physical Society
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54 17 423EFFECT OF FINITE IMPURITY MASS ON THE . . .
The spectral function of the hole~or impurity! A(q,v)
describes the photoemission response within the sudden
proximation, i.e., neglecting interaction with the outgoi
electron.14 It has a spectral decomposition in terms of eige
states,ucn&, and eigenenergies,En , of the Hamiltonian~1! in
the presence of the impurity, and of the ground-state wa
function uf0& and energyẼ0 in the absence of the impurity

A~q,v!5
1

p
ImGq~v!5(

n
z^cnudq

†uf0& z2d~v2En1Ẽ0!.

~2!

In the spectral decomposition ofA(q50,v), the spectral
weight of the ground stateZ5 z^c0udq50

† uf0& z2 may remain
finite in the thermodynamic limit, giving rise to a quasipa
ticle peak in the spectral function. This is the usual situat
when the quasiparticle picture applies.

Static impurity(th50). The interaction causes the qua
particle picture to break down:1 the spectral weight scales t
zero with increasing number of fermionsN asZ}N2b, the
ground state of the interacting system being orthogonal to
quasiparticle stated†uf0& for N→`. This is known as the
Anderson orthogonality catastrophe. The exponent is rela
to the phase shiftdF of an electron at the Fermi energ
scattered off the static impurity:

b~ th50!5~dF /p!2. ~3!

For the present model, the phase shift depends onU and on
the density of states at the Fermi energyNF51/(2p sinkF):
dF52arctan(pUNF). Furthermore, the spectral function ha
instead of a quasiparticle peak, a power-law singularity
the threshold v05E02Ẽ0, with the critical exponent
12b(th50):4

A~v!}
1

uv2v0u12b . ~4!

This singularity inA(v) is observed in x-ray photoemissio
of metals.3

Finite-mass impurity(th.0). While an infinite-mass im-
purity acts as an external potential on the electrons, the
purity recoil further complicates the many-body proble
Despite this complexity, the eigenenergies and eigenstate
Ĥ are known exactly for the special caseth5t.15 Using the
exact solution, the spectral function forq.0 is computed in
Ref. 16. It has no quasiparticle peak because of the Ande
orthogonality catastrophe, and has a power-law singula
with an exponent

b~ th5t !52~dF8 /p!2. ~5!

The exponent is given by the phase shift of a single elec
at kF scattering off a finite-mass impurity dF8
52arctan(pUNF/2). Notice the similarity in the exponent
for th5t and th50, which are both expressed in terms
phase shifts. The phase shifts, however, differ since the n
ber of states contributing to the Anderson orthogonality
reduced fromUNF to UNF/2 between a static and finit
mass impurity, respectively. The origin of this difference
discussed in Sec. III for the perturbative results.
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The present work presents calculations of the expon
b(th) for different hopping parametersth , interaction
strengthsU, and electron densitiesr. The exponentb(th) is
computed~1! analytically using perturbation theory inU,
and ~2! numerically in the nonperturbative regime using
variational wave function proposed by Edwards.17 The expo-
nent is extracted numerically from finite-size results usin
precise scaling law forZ as a function ofN and a numerical
fit of the data asN→`. The main results of this study ar
summarized now. Sections III and IV will give a detaile
description of the perturbation calculations and the numer
simulations, respectively.

Mass dependence of the exponent.The perturbative re-
sults indicate that the exponentb, to order (U/t)2, is inde-
pendent ofth for th.0, and equals (UNF)

2/2. For a finite
U, however, the exponentb(th) calculated numerically doe
depend onth , and its dependence increases with increas
U, as illustrated in Fig. 1, which shows the exponent norm
ized to its value forth5t, b(th)/b(th5t), as a function of
th . In the strong-coupling limit,U5`, b varies quasilin-
early with th .

Discontinuous exponent in the heavy-mass limit.The per-
turbative calculations predict a discontinuous exponent in
limit of a flat impurity dispersion: limth→0b(th)

5b(th50)/2. This discontinuity is due to the irrelevance
backscattering processes forth.0 because of the finite reco
energy involved. The numerical results in Fig. 1 illustrate t
nonanalyticity for a finiteU: when th→0 the exponent does
not extrapolate to the static value which is indicated by
filled symbols atth50. The numerical results can be com
pared to calculations by Rosch and Kopp12 for the exponent
in the heavy-mass and strong-coupling regime. Their an
sis, based on an effective action for the long-time behavio
the impurity propagator, also predicts a discontinu
limth→0b(th)/b(t)5aÞb(0)/b(t), and givesa5 1

4 , at half-

FIG. 1. Exponentb(th)/b(th5t) normalized to the analytica
valueb(th5t) in Eq. ~5! as a function of the mass ratioth /t for
different interaction strengthsU and densitiesr. The filled symbols
at th50 are the exact results in Eq.~3! for the static impurity. The
open symbols forth.0 are the exponents extracted asN→` from
the variational results for a sequence of finite systems w
N1 /N250.7, the largest sizes beingN15159 and 121 at half-
and one-third-filling, respectively.
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17 424 54H. CASTELLA
filling and a5 19
56.0.339 at one-third-filling. The numerica

results in Fig. 1 suggesta.0.25 for both half- and one-third
fillings. The result at half-filling is therefore in good agre
ment with their prediction, while at third filling the value o
a is significantly smaller. Note, however, that the pres
work relies on a variational approach.

Crossover behavior in the heavy-mass limit.A detailed
analysis of the perturbative results forth!t reveals a cross
over in the scaling behavior of lnZ as a function of lnN, as
shown in Fig. 2. While lnZ closely follows the static-
impurity behavior with a slopeb(th50) for a number of
fermions smaller than a crossover valueNc , it adjusts to the
finite-mass behavior only forN.Nc . Further,Nc diverges
as t/th for th→0. Therefore, the discontinuity is only a
asymptotic result, valid in the limitN→`.

III. PERTURBATION THEORY

This section evaluates the impurity spectral function a
spectral weightZ perturbatively inU and for an arbitrary
hopping parameterth in one dimension, following Ref. 8
that computesA(q50,v) for the equal-masses case (th5t)
in connection with the stability of the ferromagnetic state
the Hubbard model.

Spectral weight.In the perturbative expansion, the fir
terms that renormalize the ground-state wave function co
spond to the creation of a single particle-hole pair within
Fermi sea by an impurity of momentumq50. The excitation
energy is De(k1 ,k2)52t cosk122t cosk212th22thcos(k1
2k2). The spectral weight has a cumulant expansion

6 that, up
to second order inU, involves only these excitations:

lnZ52SUL D 2 (
k1 ,k2

Q~kF2uk1u!Q~ uk2u2kF!

De~k1 ,k2!
2 . ~6!

The sum overk1 ,k2 diverges logarithmically with an in-
creasing number of electrons,N. As shown in the Appendix
a large-N expansion gives

FIG. 2. Logarithmic decay of the quasiparticle weightZ with
number of electronsN from the perturbative result in Eq.~6! at
half-filling, and for different impurity hopping parametersth . The
dashed lines are the asymptotic behaviors with the analytical e
nentb(th) in Eq. ~8!. The arrows indicate the estimate of the cros
over sizeNc from Eq. ~A10!.
t

d

e-
e

lnZ52b~ th!lnN1a0~ th!1a1~ th!/N1O~1/N2!. ~7!

The logarithmic term dominates for largeN, and gives rise to
the Anderson orthogonality. The finite-size corrections
used in Sec. IV for the numerical study ofb.

The main result of this section is the evaluation
b(th):

b~0!5~UNF!2 for th50,
~8!

b~ th!5 1
2 ~UNF!2 for th.0.

The exponentb(th) is independent ofth as far asth.0. The
infrared singularity is caused by forward-scattering proces
with small momentum transferuk22k1u!kF , which are gap-
less excitations for anyth . The hoppingth is irrelevant since
the impurity recoil energy 2th„cos(k12k2)21… is negligible
as compared to the particle-hole energy 2t(cosk22cosk1).

Further, the exponent has a discontinuity in the hea
mass limit limth→0b(th)5b(th50)/2. The difference be-
tween the infinite- and finite-mass exponents is simply
lated to scattering of one electron from one side of the Fe
surface to the other. These so-called backscattering
cesses, which involve a large momentum trans
uk22k1u.2kF , do not contribute to the infrared divergenc
for th.0, since the impurity recoil opens a ga
2th(cos2kF21). For th50 however, both backscattering an
forward-scattering processes are gapless. The numbe
low-energy excitations contributing to the infrared singula
ity is thus reduced by a factor of 2 for a finite-mass impuri
as compared to its value for the static impurity.

The discontinuity in the exponent is an asymptotic res
valid only forN→`. For a finite number of fermions and
large but finite mass 0,th!t, however, lnZ has a crossove
as a function of lnN, illustrated in Fig. 2, where the spectra
weight is computed numerically from Eq.~6!. The logarithm
of the spectral weight has the slopeb(th) only for a number
of electrons larger than a crossover valueNc , while for a
smallN it follows the static-impurity behavior with a slop
b(th50). The dashed lines indicate the asymptotic beh
iors 2 lnZ5b(th)lnN2a0(th), with the analyticalb from Eq.
~8!, anda0 fitted to the value of lnZ for the largest size. The
intercept of the asymptotes gives the crossover sizeNc ,
which agrees very well with the estimateNc.0.3244t/th ,
presented in the Appendix. Notice thatNc diverges ast/th
for th→0, and the asymptotic regime is reached for a lar
number of electrons the lowerth .

Spectral function.The spectral function is computed on
at q50, where it has a power-law singularity. The propag
tor is

Gq50~t!52 i ^f0udq50exp~2 iĤ t!dq50
† uf0&e

iẼ0tQ~t!.
~9!

The propagator also has a cumulant expansion, and is wr
in terms of the density of particle-hole excitationsS(v) and
a renormalized impurity energyẽ0:

o-
-
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54 17 425EFFECT OF FINITE IMPURITY MASS ON THE . . .
Gq50~t!52 i expF2 i ẽ0t2U2E
0

`

S~v!

3
12exp~2 ivt!

v2 dvG , ~10!

S~v!5
1

~2p!2
E

2p

p E
2p

p

Q~ uk1u2kF!Q~kF2uk2u!

3d„v2De~k1 ,k2!…dk1dk2 .

The densityShas a linear frequency dependence for sm
v: S(v)5„b(th)/U

2
…v, whereb(th) is the exponent of the

Anderson orthogonality in Eq.~8!. This linear behavior de-
termines the low-frequency spectral function which has
power-law singularity at the threshold with the expone
12b:4

A~q50,v!5
sin~pb!G~12b!

p~v2 ẽ0!
12b Q~v2 ẽ0!. ~11!

This is, however, only an asymptotic result for freque
cies smaller than a cutoffW. For th50, the cutoff is of the
order of the Fermi energy:W.2t(12coskF). For th.0
however, the linear behavior ofS holds only for frequencies
smaller than the impurity recoil energy, and the cutoff
given by W.min„2t(12coskF…,2th„12cos2kF)…. For a
heavy impurity the cutoff is of the order of the impurit
recoil energy 2th(12cos2kF) rather than the Fermi energy
and the asymptotic result is valid only in a very narrow fr
quency range. Furthermore, the density of excitations ex
its a crossover similarly to the spectral weight. This mig
give rise to a crossover in the spectral function as well.

In summary the exponentb in Eq. ~8! characterizes the
power-law singularity of the spectral function and the log
rithmic decay of the quasiparticle weight. The exponent d
not depend on the mass of the impurity except in the st
limit th50, and it has a discontinuity atth50. Notice that
the perturbative results agree with the small-U expansions of
the exponent forth50 andth5t.

IV. NUMERICAL STUDY

This section presents a numerical study of the expon
b(th) based on a variational approach. The variational p
dictions for the energy and correlation functions are co
pared to results from Lanczos exact diagonalizations
projection quantum Monte Carlo simulations. Then t
variational calculations are used to extract the exponent.

The variational wave function was originally proposed f
the single spin-flip problem in the two-dimensional Hubba
model in reference to the stability of the ferromagne
state.17 It was also used to study numerically the quasipa
cle weight in two dimensions.18 Furthermore, this variationa
approach is equivalent to the approximation used in Ref.
In one dimension, the variational class of wave functio
contains all the eigenstates of the model~1! for th5t, as
shown by Edwards.17 The variational approach is thus e
pected to include much of the relevant correlations even
thÞt.

In the reference frame comoving with the impurity,
ll

a
t
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wave functionuCq& of total momentumq is represented by a
function f ( j 1 , . . . ,j N) depending only on the positions o
the electrons:

uCq&5
1

AL (
j 051

L

eiq j 0dj 0
†

3 (
j 1 , . . . ,j N51

L

f ~ j 12 j 0 , . . . ,j N2 j 0!cj 1
† . . . cjN

† u0&.

~12!

The variational ansatz forf is a determinant of single
particle wave functionsfm :

f ~ j 1 , . . . ,j N!5
1

AN!
det@fm~ j l !#m,l51, . . . ,N . ~13!

The expectation value of the energy is

^Ĥ&5(
l51

N F2t(
j50

L21

„f l* ~ j !f l~ j11!1c.c.…1Uuf l~0!u2G
2th@exp~2 iq !det~S!1c.c.# ,

Smn5 (
j50

L21

fm* ~ j11!fn~ j !. ~14!

The variational parametersfm( j ) are found by minimization
of the energy using a steepest-descent algorithm. If
chooses to start withf l( j ) as the exact solution forth5t,
convergence is reached after a relatively small num
of iterations even for hopping parameters very differe
from t.

Comparison of variational results to Lanczos exact diag
nalizations and projection quantum Monte Carlo simul
tions.Only small systems are accessible by exact diago
ization because the dimension of the Hilbert space increa
very rapidly with the number of lattice sites. For the ha
filled band, the biggest closed-shell system studied
L522, whereas forr5 1

4 it has L520. For larger systems
Monte Carlo simulations are required.

The projection quantum Monte Carlo simulation gives
statistical estimate of ground-state expectation values of
servablesÔ by a projection of a trial wave functionucT&
onto the ground state with the operator exp(2hĤ):19

^c0uÔuc0&5 limh→`

^cTuexp~2hĤ !Ô exp~2hĤ !ucT&
iexp~2hH !ucT&i2 .

~15!

The algorithm used here closely follows Ref. 20. T
imaginary-time evolution exp(2hĤ) is performed sequen
tially for small time intervalsDt, and a Trotter decomposi
tion is used for the kinetic-energy and interaction terms
the Hamiltonian. Eventually the two-body term is repr
sented by discrete Hubbard-Stratonovitch fields that med
the interaction. For the present calculations a rather la
h515 is necessary in order to converge the relevant co
lation functions, and the results are extrapolated toDt→0
using several values of the time interval.
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TABLE I. Comparison of correlation energy,ec5E02Ẽ02Ur , whereE0 and Ẽ0 are the ground-state
energies of the interacting and noninteracting systems, respectively, computed by Lanczos exact d
izations, projection quantum Monte Carlo~PQMC!, and Edwards’s variational wave function, as a functi
of the number of fermionsN at half- and quarter-filling (r5N/L5

1
2 and

1
4, respectively!, for th50.5t and

U54t. The last line gives the energy extrapolated for the infinite system both from either Lanczos or P
results, and the variational results by a linear fit in 1/N.

ec ec
N (r51/2! Lanczos PQMC Variational N (r51/4! Lanczos PQMC Variational

5 -0.9028 -0.9025 5 -0.6102 -0.6101
7 -0.9230 -0.9227 7 -0.619~4! -0.6190
9 -0.9340 -0.9336 9 -0.624~3! -0.6239
11 -0.9408 -0.9404 11 -0.627~2! -0.6271
13 -0.945~2! -0.9451 15 -0.632~2! -0.6309

` -0.9727 -0.9720 ` -0.642~4! -0.6413
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The energy is computed for the ground state, which
zero total momentum. The relevant quantity is the correlat
energyec5E02Ẽ02Ur , whereE0 andẼ0 are the interact-
ing and noninteracting energies, respectively. Notice thaec
is of order 1, whileE0 is of orderN. Table I givesec for
several system sizes at half- and quarter-filling, and for
interaction equal to the bandwidthU54t and a hopping pa-
rameterth50.5t. The variational ansatz is not exact forth
Þt, since the variational energy departs significantly fro
the exact energy. Nevertheless it always remains very c
to the ground-state energy. The relative difference betw
the exact and the variational energy remains smaller t
0.1% even when extrapolating to the infinite-system lim
with a 1/N scaling law. For the sake of comparison the c
relation energy for the unrestricted Hartree-Fock solution
20.4380t at quarter-filling, a value much larger than th
variational energy20.6413t.

Thek50 component of the momentum distribution fun
tion of the impurityn(k50) has the same scaling law asZ
when the Anderson orthogonality catastrophe occurs. B
Z andn(k50) are computed in order to test the relevance
the variational calculations to extract the exponentb. Figure
3 shows the ratio of the exact momentum distributi
n(k50), calculated by either exact diagonalization or qua
tum Monte Carlo methods depending on the system size
the variational estimaten(k50)var as a function of 1/N at
quarter-filling and half-filling, forU54t andth50.5t. If the
variational result reproduced correctly the scaling behav
of n(k50) with N, the ration(k50)/n(k50)var should be
constant as a function of 1/N. At half-filling, the ratio re-
mains indeed always close to 1, and the variational appro
seems to correctly describe the scaling behavior. At quar
filling, however, the comparison relies mostly on Mon
Carlo simulations, where the estimate ofn(k50) has strong
statistical fluctuations for large system sizes, large auto
relation times having an essential contribution to the er
bars. The comparison to the variational results is there
delicate, but still the ratio remains close to 1 within the er
bars. Finally, exact-diagonalization results forZ are pre-
sented in Fig. 4 forU5`, r5 1

2 and differentth . The slope
of lnZ as a function of lnN is an estimate of the exponen
b, and both exact-diagonalization results and variational
s
n

n

se
n
n
t
-
s

th
f

-
to

r

ch
r-

r-
r
re
r
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culations are in good agreement. These last results illust
the robustness of the variational wave function even in
strong-coupling regime.

Finite-size scaling analysis of the exponent.The finite-
size corrections to the Anderson orthogonality catastroph
Eq. ~7!, which were derived from the perturbative analys
are used now to extract numerically the exponent. It sho
be stressed that these 1/N corrections contrast with the
slowly decaying ln lnN corrections expected for the para
magnetic phase of the one-dimensional Hubbard model.21

The exponent is extracted from numerical data on fin
systems by scaling the slope of lnZ as a function of lnN: the
spectral weightsZ1 andZ2 are computed for systems wit
numbers of fermionsN1 andN2, respectively, at a fixed den
sity and a fixed ratior5N1 /N2; from the perturbative analy
sis in Eq. ~7!, the slopes (lnZ12lnZ2)/(lnN22lnN1) have a
polynomial expansion in 1/N̄, N̄ being the mean number o
electronsN̄5(N11N2)/2:

FIG. 3. Ratio of the momentum distribution functionn(k) at
k50, calculated with the Lanczos diagonalization or projecti
quantum Monte Carlo, to its variational estimaten(k50)var as a
function of 1/N for half- and quarter-filling, and forU54t and
th50.5t. The circles are the Lanczos results and the squares
Monte Carlo results with the corresponding error bars. The left a
refers to half-filling, and the right axis to quarter-filling.
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54 17 427EFFECT OF FINITE IMPURITY MASS ON THE . . .
lnZ12 lnZ2
lnN12 lnN2

52b1a1

12r 2

2r lnr

1

N̄
1OS 1

N̄2D . ~16!

The exponentb is estimated by a numerical fit of the slop
as N̄→`. In practice, it is not possible to keep the rat
N1 /N2 exactly fixed while increasingN̄, but the number of
electrons can be adjusted such thatN1 /N2 approaches a
fixed value for largeN̄. All the results presented here hav
been obtained forN1 /N2.0.7.

The scaling procedure is tested both in the perturba
regime for differentth and at finiteU for th5t, whereb is
known analytically. Figure 5 illustrates the scaling proced
for the perturbative regime where lnZ is computed from Eq.

FIG. 4. Comparison of the exact spectral weightZ from Lanc-
zos diagonalization to its variational estimate as a function of nu
ber of electronsN in the log-log plot forU5`, r5

1
2 and different

th . The open symbols are the variational results, and the fi
symbols the Lanczos results.

FIG. 5. Slopesd ln(Z)/d ln(N)5(lnZ12lnZ2)/(lnN12lnN2) nor-
malized to the analytical value ofb(th) in Eq. ~8! as a function of
the inverse mean number of electrons 2/(N11N2) in the perturba-
tive regime and for different hopping parametersth . The spectral
weight Z is computed numerically from Eq.~6!. The dashed lines
are numerical fits of the data as polynomials in 2/(N11N2). The
inset is an enlargement around the origin.
e

e

~6!. The inset shows that the scaling procedure is well
haved even for very largeN̄. Furthermore, the scaling analy
sis is essential to determine the dependence ofb on th, since
the finite-size corrections differ in both sign and magnitu
for different th . Note also that the nonlinear terms in 1/N̄
become increasingly important with decreasingth . The spec-
tral weightZ is computed numerically forth5t and different
U using the Bethe’s ansatz wave function~13!, and the re-
sults are fitted with a third-order polynomial in 1/N̄. The
relative accuracy of the fitting procedure in extractingb re-
mains of the order of 1024 even for a strong interaction
U58t, as illustrated in Fig. 6. Although the scaling behavi
was derived in the perturbative regime, it seems to hold
any interaction strengthU.

For a finiteU and thÞt, the exponent is not known, an
its evaluation relies on the variational approach and
finite-size scaling analysis. Figure 7 illustrates the scal
procedure in the strong-coupling regimeU5`, for r5 1

2 and
different th . For th.0.1t, the exponent, which is obtained b
an extrapolation of the data asN→`, depends only slightly
on the order of the polynomial used in the fit. Forth50.1t,
however, the fitting procedure is not well behaved, and
relative error of a few percent is expected in the extraction
b. A precise investigation of the heavy-mass regimeth!t
would require the study of even larger systems due to
important nonlinear corrections in 1/N.

Mass dependence of the exponent.The study ofb(th) is
based on the variational approach and the scaling ana
presented above. Figure 1 presents the exponent norma
to its value atth5t, b(th)/b(th5t), as a function ofth /t.
For a finiteU, the exponent does depend on the hopp
parameter th , in contrast to the perturbative resu
b(th)/b(th5t)51 indicated by the dotted line. Furthermor
this dependence increases with increasingU, and in the
strong-coupling regimeU5` the exponent varies quasilin

-

d

FIG. 6. Slopesd ln(Z)/d ln(N) normalized to the analytical value
of b(th5t) in Eq. ~5! as a function of the inverse mean number
electrons 2/(N11N2) for th5t and different interaction strength
U52, 4, and 8t at half-filling, and forN1 /N250.7. The spectral
weightZ is computed with the Bethe’s ansatz wave function in E
~13!. The dashed lines are numerical fits of the data as a third-o
polynomial in 2/(N11N2). The inset is an enlargement around t
origin.
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early with th /t. For smallth and at half-filling, the exponen
only slightly departs from the linear behavior. Furthermo
the exponent depends on the density, since the data
U5` and r5 1

2 significantly differ from the exponents fo
r5 1

3. This contrasts with the exact exponent forth50 and
th5t, which are independent of the density. However,
limiting value limth→0b(th) seems to be independent of th
density.

The numerical results demonstrate the discontinuity of
exponent atth50 for a finiteU. The numerical data, indeed
do not extrapolate to the exact results forth50 indicated by
the filled symbols in Fig. 1. A precise extraction of the lim
iting value limth→0b(th), however, would require an inves
tigation of larger systems.

The occurrence of the nonanalyticity atth50 is not sur-
prising, since the translational symmetry is broken at t
point. Still the role played by the recoil of the impurity in th
discontinuity of the exponent is not clear. The perturbat
calculations indicate that the discontinuity atth50 is due to
the irrelevance of the backscattering processes when
th.0; yet a simple argument can persuade us that this is
only in the small-U regime. Indeed let us first assume bac
scattering to be responsible for the nonanalyticity for allU.
One can devise an effective model for the heavy-impu
limit ( th!t), where the impurity is considered static but t
interaction with the electrons is restricted to forward scat
ing:

H522t(
k
coskck

†ck1
U

L (
kk8.0

ck
†ck8. ~17!

In this picture, the only effect of the impurity recoil is th
restriction to forward-scattering processes. Since the po
tial is static, the exponent is expressed in terms of ph
shifts. A calculation of the phase shift gives the same ex
nent as the result forth5t in Eq. ~5!. This is not compatible

FIG. 7. Slopesd ln(Z)/d ln(N) normalized to the fittedb(th) as a
function of the inverse mean number of electrons 2/(N11N2) for
U5`, different hopping parametersth50.5, 0.25, and 0.1t, at half-
filling. The spectral weight is computed with the variational wa
function. The solid and dashed lines are numerical fits of the dat
third-order and fourth-order polynomials in 2/(N11N2), respec-
tively.
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with the numerical results forth!t. Therefore forward-
scattering processes alone cannot account for the discon
ity, and backscattering has to be invoked.

V. CONCLUSIONS

This study of the one-dimensional Anderson orthogon
ity catastrophe, combining analytical and numerical calcu
tions, has focused on the effect of the impurity recoil. T
numerical study requires a finite-size scaling analysis, si
the Anderson orthogonality catastrophe results from a lo
rithmic decay of the quasiparticle weight with the number
fermions. The present work shows, however, that a relia
numerical analysis of the quasiparticle renormalization c
be achieved if a precise scaling hypothesis is established,
large enough systems are accessed.

Within perturbation theory, the infrared singularity th
signals the orthogonality catastrophe occurs for an impu
band of any dispersion. Still, there is a discontinuity betwe
the zero-band-width exponent and the finite-band-width
ponent. This discontinuity is related to the impurity reco
which opens a gap in the spectrum of particle-hole exc
tions for backscattering of one electron from the Fermi m
mentumkF to 2kF .

Outside the perturbative regime, the numerical analy
demonstrates the discontinuous behavior of the expon
and agrees at half-filling with a study of the heavy-mass a
strong-coupling regime in Ref. 12. At one-third-filling, how
ever, the numerical results differ from the analytical pred
tion.

The discontinuity of the exponent is an asymptotic res
valid only in the limit of an infinite system. For a finite
number of electrons and a heavy but finite-mass impur
the quasiparticle weight has the same logarithmic beha
as a static impurity up to a critical number of electronsNc
where the former weight shows a crossover to the true
ymptotic decay for a finite-mass impurity. Furthermore,Nc
diverges with increasing mass of the impurity. This cro
over is also expected in the low-frequency behavior of
spectral function.

ACKNOWLEDGMENTS

I would like to thank X. Zotos, R. Car, and J. Wilkins fo
their great help and support, as well as T. Kopp and
Rosch for useful discussions. This work was supported at
Institut Romand de Recherche Nume´rique en Physique de
Matériaux by the Swiss National Science Foundation and
University of Geneva, at Ohio State University by a you
investigator grant from the Swiss National Science Foun
tion, and by the DOE–Basic Energy Sciences, Division
Material Sciences.

APPENDIX

This appendix derives the scaling law~7! from the pertur-
bative expression for the spectral weightZ, and estimates the
crossover sizeNc . The calculations are presented for th
half-filled band in detail, and the density dependence ofNc is
briefly discussed at the end.

Forward-scattering processes.An electron with momen-
tum k1 is scattered into an empty state with momentumk2,

as
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such thatk1k2.0. The infrared singularity is caused by e
citations around the Fermi momentumkF5p/2, whose en-
ergy vanishes linearly with the momentum transferk12k2.
For k1 and k2.0, the momenta are written a
k15kF22pn1 /L andk25kF12pn2 /L, and the excitation
energy is

De~k1 ,k2!.4pt
n11n2
2N S 11

thp~n11n2!

2Nt D . ~A1!

While the linearization of the energies allows an exact c
culation of the exponentb(th), it provides only an estima
tion of the remaining terms in Eq.~7!. The contribution of
forward-scattering processes to the spectral weight is

2SUL D (
k1k2.0

1

De~k1 ,k2!
2

52 1
2 ~UNF!2 (

n150

N/2

(
n251

N/2

3
1

~n11n2!
2
„11pth~n11n2!/~2Nt!…

2 .

~A2!

The fraction in the sum is expanded in four different term

1

~n11n2!
2~11pth~n11n2!/~2Nt!!2

5
1

~n11n2!
2 1

1

„n11n212Nt/~pth!…
2 2

pth
Nt~n11n2!

1
pth

Nt„n11n212Nt/~pth!…
. ~A3!

The first term gives the logarithmic divergence22

(
n150

N/2

(
n251

N/2
1

~n11n2!
2 5 lnN111C22 ln21

1

N
1OS 1N2D ,

~A4!

whereC.0.5772 is Euler’s constant. The contributions
all other terms remain finite forN→`. For the second and
fourth terms in Eq.~A3!, the discrete sum can be replaced
an integral. Further, the finite-size corrections are of or
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