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Gradient expansion of the exchange energy from second-order density response theory
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The basic idea behind the present work is that an atom is not a linear perturbation of the electron gas. We
have thus analyzed the exchange energy of the inhomogeneous electron gas to third order in the deviation from
a constant density. We give the symmetry properties obeyed by the corresponding second-order response
functionLx , and demonstrate howLx gives rise to gradient corrections to the exchange energy. The expansion,
which is taken up to sixth order in the density gradient, also includes the Laplacian of the density. In the case
of a statically screened Coulomb interaction, we have calculated the coefficients of second- and fourth-order
gradient terms both analytically and numerically. In analogy with the corresponding results from linear-
response theory, the fourth-order coefficient is shown to diverge as the screening is made to vanish. For the
bare Coulomb interaction we have not succeeded in obtaining analytical results, and, due to numerical prob-
lems at small-q vectors, our numerically obtained coefficients have an estimated uncertainty of 20%.
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I. INTRODUCTION

The utility and success of density-functional theory1,2

with regard to the ground-state properties of solids is by n
an established fact. Already, within the simple local-dens
approximation~LDA !,2 one obtains remarkably accurate v
brational frequencies and equilibrium distances.3 Also, the
trends in binding energies are usually correctly predicted,
absolute numbers are, unfortunately, not accurate enoug
a proper description of, e.g., chemical reactions at surfa
In order to approach chemical accuracy,;0.1 eV, in calcu-
lated binding energies, much effort has been devoted to fi
ing improvements on the LDA. Since the LDA becomes e
act when the electron density is slowly varying, correctio
involving the gradient of the density seem to be a natu
extension of the LDA.1 In the literature, one finds, howeve
numerous arguments against a straightforward gradient
pansion of the exchange-correlation energy~Exc!. Instead,
different cutoff procedures are used to account for the
that distances over which electrons are correlated in real
inhomogeneous systems are determined more by ac
variations in the density profile than by the screening len
of an electron gas at the local value of the density.4,5

Nevertheless, the slowly varying limit~the long-
wavelength limit in reciprocal space! of most existing exten-
sions of the LDA are tailored according to linear-respon
theory. Exceptions to this rule are, e.g., real-space pro
dures like the weighted-density approximation of Gunna
son, Jonson, and Lundqvist,6 and the phenomenological ap
proach followed by Becke for smaller molecules.7,8 Even so,
nearly all tested so-calledgeneralized gradient approxima
tions ~GGA’s! have only the first gradient of the density
an additional ingredient above the local density for co
structing the full functionalExc[n]. It appears as if linear-
response theory has formed a basis for most reciprocal-s
attempts to go beyond the LDA, something that we find
culiar in view of the fact that an atom isnot a linear pertur-
bation of the electron gas. As a matter of fact, much eff
has gone into finding successively more accurate approx
tions of the coefficient of the lowest-order gradient corre
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tion to the LDA using sophisticated treatments of correlat
effects in the homogeneous gas.9–12 These efforts, although
interesting per se, seem to have overlooked the fact that
ergy contributions from higher-order gradients are usua
larger than differences between lowest-order gradient cor
tions resulting from electron-gas theories of different degr
of sophistication. Consequently, we would like to encoura
attempts also to include higher-order gradient correctio
Such attempts inevitably lead to second- and higher-or
response treatments of the electron gas, the complication
which probably explain why little has been done in this r
gard.

Our conjecture concerning the importance of higher-or
gradient corrections is further supported by the knowledge
the inadequacy of linear-response theory as far as the
energy of simple metals is concerned. Linear-response th
cannot distinguish between the total energies of differ
crystal structures having the same volume per atom.
directional dependencies of the energy are introduced onl
second-order response theory with a nonisotropic respo
function depending on the angle between two momen
Second-order response theory also gives rise to gradient
rections involving the Laplacian~second derivatives! of the
density, a quantity clearly more susceptible to finer details
the density profile as compared to the gradient. The low
order gradient correction as well as nearly all GGA’s invol
only the square of the density gradient, and it is well kno
that all these extensions of the LDA essentially do nothing
correct the errors in the LDA as far as the so-calleds-p or
s-d transfer energies are concerned.13

Since this work represents an attempt at obtaining gra
ent corrections from second-order response theory, we
start by considering exchange only. We writeexchange only
as opposed toHartree-Fock~HF! since we have in mind the
Talman-Shadwick scheme,14,15 sometimes referred to as th
optimized potential method~OPM!. Here we will not dwell
upon the details of this method, but refer to the origin
papers,14,15 or to discussions of the method in oth
papers.4,16 Here we just state that, within the OPM, the e
pression for the exchange energy is the same as in the
17 402 © 1996 The American Physical Society
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54 17 403GRADIENT EXPANSION OF THE EXCHANGE ENERGY . . .
approximation, while the orbitals are all solutions to a on
electron Schro¨dinger equation with a local potential. Th
potential then acts as the variational parameter to minim
the expectation value of the Hamiltonian with respect to
Slater determinant consisting of those orbitals.

In Sec. II we set down some basic formulas, and sh
how one obtains gradient corrections from that second-o
response function which gives the exchange energy to t
order in the density deviations. The defining equations
the response function is deferred to Appendix A. Appen
B contains important symmetry relations obeyed by the
sponse function. These symmetry relations, of which so
have been mentioned earlier,17 are very useful in the deriva
tion of possible gradient terms. Section III contains deta
concerning the calculation of the actual gradient coefficie
both numerically and analytically. In Sec. IV we give o
conclusions.

II. BASIC FORMULAS

For a system without spin polarization, the exchange
ergy is given by

Ex@n#52 1
4 E un~r ,r 8!u2v~r ,r 8!d3r d3r 8, ~1!

wheren~r ,r 8! is the one-electron density matrix

n~r ,r 8!52(
k
nkwk~r !wk* ~r 8!, ~2!

in terms of the one-electron orbitalswk~r ! which satisfy the
Kohn-Sham equation

H 2 1
2¹21w1E vn d3r 81vxJ wk5ekwk . ~3!

Here,w is the external potential,v is the Coulomb interac-
tion, v~r ,r 8!51/ur2r 8u, n~r !5n~r ,r ! is the particle density,ek
is the Kohn-Sham eigenvalue, andvx is the exchange poten
tial of the exchange-only theory given by

vx~r !5
dEx@n#

dn~r !
. ~4!

The nk’s in Eq. ~2! are occupation numbers, being 1 f
occupied states and 0 for unoccupied states.~We use atomic
units throughout the paper.!

The functionalEx[n], being a differentiable functional o
the densityn, can be expanded in the deviationdn from a
constant density~n0! appropriate to the homogeneous ele
tron gas:

Ex@n#5Ex@n0#1E vx~r1 ;n0!dn~r1!d
3r 1

1 1
2 E Kx~r1 ,r2 ;n0!dn~r1!dn~r2!d

3r 1d
3r 2

1 1
6 E Lx~r1 ,r2 ,r3 ;n0!dn~r1!dn~r2!

3dn~r3!d
3r 1d

3r 2d
3r 31••• , ~5!

where
-

e
a

w
er
rd
r
x
-
e

s
t,

-

-

Kx~r1 ,r2!5
dvx~r1!
dn~r2!

5
d2Ex@n#

dn~r1!dn~r2!
~6!

and

Lx~r1 ,r2 ,r3!5
dKx~r1 ,r2!

dn~r3!
5

d3Ex@n#

dn~r1!dn~r2!dn~r3!
. ~7!

Since our main interest is in obtaining gradient corrections
the local-density approximation, we remind the reader of
expression for the latter:

Ex
LDX@n#5E ex„n~r !…n~r !d3r . ~8!

We have here used the exchange-only version of the L
~designated by LDX! and consequentlyex(n) is the ex-
change energy per particle of a homogeneous electron ga
densityn. Thus ex(n)523kF/(4p), wherekF is the local
Fermi wave vector of the gas,k F

353p2n. Also the energy
Ex
LDX of the LDA can be expanded to third order in th

density deviations from a constant density of the elect
gas:

Ex
LDX@n#5Ex@n0#1

]„nex~n!…0
]n E dn~r !d3r

1
1

2

]2„nex~n!…0
]n2 E @dn~r !#2d3r

1
1

6

]3„nex~n!…0
]n3 E @dn~r !#3d3r . ~9!

Here, the small index 0 on the derivatives indicate that th
are to be evaluated at the constant densityn0. Since the LDA
is exact for constant densities, the first term of this expr
sion is the same as the first term on the right-hand side of
~5!. We will find this useful when subtracting Eq.~9! from
Eq. ~5! in order to obtain the corrections beyond the LD
We will also find it convenient to go to reciprocal spac
Because of the translational invariance of the gas, we
write

Kx~r1 ,r2 ;n0!5(
q
Kx~q;n0!e

iq•~r12r2! ~10!

and

Lx~r1 ,r2 ,r3 ;n0!5(
q,q8

Lx~q,q8;n0!e
iq•~r12r3!e2 iq8•~r22r3!,

~11!

where(q is short for*d3q~2p!23 and the dependencies o
the constant densityn0 have been clearly indicated. Wit
these definitions we now obtain, to third order indn,

Ex@n#5Ex
LDX@n#1 1

2(
q

$Kx~q;n0!2Kx~0;n0!%udnqu2

1 1
6 (
q,q8

$Lx~q,q8;n0!

2Lx~0,0;n0!%dnqdn2q8dnq82q . ~12!
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Here the quantitydnq is defined through the relationn(r )
5n01(qdnqe

iq•r.
At this point we take the opportunity to derive two, as

turns out, important derivative theorems relating the fu
tional derivativesvx , Kx, andLx . From Eq.~6! we have

vx@r1 ,n01dn#5vx@n0#1E dvx@r1 ,n0#
dn~r2!

dn~r2!d
3r 2

5vx~n0!1E Kx~r1 ,r2 ;n0!dn~r2!d
3r 2 .

Specializing to a constant density changedn and going to
reciprocal space, we then obtain

]vx
]n0

5Kx~q50;n0!. ~13!

Notice thatvx(n0)52kF/p and thusKx~q50;n0!52p/k F
2.

Similarly, from Eq.~7!,

Kx~r1 ,r2 ;n01dn!5Kx~r1 ,r2 ;n0!

1E Lx~r1 ,r2 ,r3 ;n0!dn~r3!d
3r 3 ,
-

giving

]Kx~q;n0!

]n0
5Lx~q,q;n0!, ~14!

a relation that puts severe restrictions on the actual form
Lx~q,q8;n0!, and without which the gradient expansion b
comes ill-defined~see below!. Notice also that theq50 limit
of Eq. ~14! givesLx~0,0;n0!52p3/k F

5.
In order to transform the equation above to actual grad

corrections, a constraint beyond the assumption of small
plitudes dn has to be imposed. In addition, we will now
consider density changesdn which are slowly varying in
space, i.e., densities with appreciable Fourier compon
dnq only for q,2kF . Both response functionsKx and Lx
turn out to be singular atq5q85uq2q8u52kF . At
q5~q85uq2q8u!50 we will assume that they are analyti
and they are, in fact, reasonably well described by poly
mial expansions aroundq50. As we will now see, it is this
small-q limit of the kernels which is of interest here. Equ
tions ~B3! and ~B16! in Appendix B and theq50 results
above then give the following expressions:
r a few
Kx~q;n!5Kx
~0!~n!1Kx

~2!~n!q21Kx
~4!~n!q41•••

52
p

kF
2 $11K2Q

21K4Q
41•••%,

Lx~q,q8;n!5Lx
~0!~n!1Lx

~2!~n!~q21q822q•q8!1Lx
~4!~n!~q21q822q•q8!21Lx8

~4!~n!„q2q822~q•q8!2…1•••

5
2p3

kF
5 $11L2~Q

21Q822Q•Q8!1L4~Q
21Q822Q•Q8!21L48„Q

2Q822~Q•Q8!2…1•••%, ~15!

whereQ5q/kF .
Gradient corrections can now be constructed by first inserting the right-side expressions of Eq.~15! into Eq. ~12!, and

subsequently Fourier transforming back to real space. We will only illustrate this rather straightforward procedure fo
important cases:

(
q
Kx

~2!~n0!q
2udnqu25(

q
Kx

~2!~n0!E dn~r1!dn~r2!q•qe
iq•r1e2 iq•r2d3r 1d

3r 2

5E Kx
~2!~n0!¹ r1

„dn~r1!…¹ r2
„dn~r2!…d~r12r2!d

3r 1d
3r 25E Kx

~2!~n0!u¹dn~r !u2d3r

and

(
q,q8

Lx
~2!~n0!q

2dnqdn2q8dnq82q52 (
q•q8

E Lx
~2!~n0!dn~r1!dn~r2!dn~r3!~¹ rW1

2 eiq•r1!e2 iq8•r2ei ~q82q!•r3d3r 1d
3r 2d

3r 3

52E Lx
~2!~n0!„¹

2dn~r1!…dn~r1!dn~r3!d~r12r3!d~r32r2!d
3r 1d

3r 2d
3r 3

52E Lx
~2!~n0!„dn~r !…2¹2dn~r !d3r52E Lx

~2!~n0!dn~r !u¹dn~r !u2d3r .
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54 17 405GRADIENT EXPANSION OF THE EXCHANGE ENERGY . . .
The contributions fromL x
(2)(n)~q822q•q8! can be similarly

computed, and in total we obtain

(
q,q8

1
6Lx

~2!~n0!~q
21q822q•q8!dnqdn2q8dnq82q

5 1
2 E Lx

~2!~n0!dn~r !u¹dn~r !u2d3r . ~16!

It should be noted that in going from reciprocal to real spa
‘‘surface terms’’ have been neglected, i.e., we assume
the system at hand can be contained within a large sur
with zero electronic density.

In many important applications, like say, total-energy c
culations on atomic clusters or molecules, it is difficult
define a background or average densityn0 unambiguously.
Here one usually makes the substitutionn0→n~r !, n being
the local densityn~r !. The gradient functional arising from
K x

(2)
„n~r !…q2 can then be viewed as an infinite summatio

the first two terms of which are

1
2 E Kx

~2!
„n~r !…u¹n~r !u2d3r

5 1
2 E Kx

~2!~n0!u¹n~r !u2d3r

1 1
2 E S ]Kx

~2!~n!

]n D
n5n0

dn~r !u¹n~r !u2d3r1•••

5 1
2 E Kx

~2!~n0!u¹n~r !u2d3r

1 1
2 E Lx

~2!~n0!dn~r !u¹n~r !u2d3r1••• . ~17!

The last line in Eq.~17! above is a consequence of th
following relation between the coefficientsK x

( j ) andL x
( j ),

Lx
~ j !~n!5

]Kx
~ j !~n!

]n
, j50,2, . . . . ~18!

Notice that Eq.~18! is a simple consequence of Eq.~14!. A
comparison of Eqs.~16!–~18! demonstrates an often ove
looked but very important point regarding gradient corre
tions. Equation~18! in short ensures that real-space ter
from theq2 part of Lx arealready accounted forin the ex-
pansion ofK x

(2)(n) above. A violation of Eq.~18!, on the
other hand, would lead to the appearance of terms of
form *dn~r !u¹dn~r !u2d3r . Such terms would be difficult to
calculate without a completely unambiguous separation
the density in a constantn0 and variable partdn~r !. As a
matter of fact, the very existence of gradient expansions
applied to real systems, relies on the validity of Eq.~14!.

The contribution fromK x
(4)(n)q4 can be similarly ex-

panded to show that terms of the form*dn~r !(¹2dn)2d3r do
not occur in the final gradient-expansion given below,
,
at
ce

-

,

-
s

e

f

as

Ex@n#5Ex
LDX@n#1 1

2 E Kx
~2!~n!u¹n~r !u2d3r

1 1
2 E Kx

~4!~n!u¹2n~r !u2d3r

1 1
4 E „Lx

~4!~n!2Lx8
~4!~n!…u¹n~r !u2¹2n~r !d3r

5AxE n~r !4/3d3r1Bx
~2!E u¹n~r !u2

n~r !4/3
d3r

1Bx
~4!E u¹2n~r !u2

n~r !2
d3r

1Cx
~4!E u¹n~r !u2¹2n~r !

n~r !3
d3r . ~19!

The coefficients in Eq.~19! are related to the small-q expan-
sion coefficients as follows:

Ax52
3

4 S 3p D 1/3,
Bx

~2!52
1

6p~3p2!1/3
K252

5

216p~3p2!1/3
,

Bx
~4!52

1

18p3 K452
73

64800p3 ,

Cx
~4!5

1

54p3 ~L42L48!. ~20!

TheK2 andK4 coefficients were first calculated analytical
by Engel and Vosko.18 Their values were later confirmed b
analytical calculations using two completely differe
techniques.16,19 These coefficients have also been availa
from numerical work by Kleinman20 ~K2! and, much earlier,
by Geldart and Taylor.21

The unprimedLx coefficients can then easily be calc
lated from Eq.~18! as

L j5
1
2 ~ j12!Kj , ~21!

which yieldsL252K25
5
18 , andL453K45

73
1200.

As pointed out in Appendix B,L48 ~and, consequently
Cx

(4)! can only be found by evaluating Lx~q,q8! for values of
q not parallel toq8. Possible schemes for obtaining this c
efficient will be the subject of Sec. III.

When applied to real systems with regions of small
vanishing electronic densities, both the third and fourth ter
in the gradient expansion will give large and spurious co
tributions. This is not, however, an inherent deficiency of t
gradient scheme, since the conditionq!2kF for a givenq
will be violated asn, kF→0. Some quantitative criterion fo
when gradient corrections shouldnot be applied is therefore
clearly necessary. In actual calculations such a criterion m
be introduced into the gradient part of the exchange-ene
functional as a cutoff or soft regularization. The followin
often used condition~with first-order gradient corrections!
has the merit of reducing toq!2kF when the density is
dominated by oneq value:
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u¹2nu
2kFu¹nu

!1. ~22!

In this context, withKx and Lx expanded up to and in
cluding theq4 term, the condition above is, however, som
what too strict. It can be shown thatKx~q! differs from the
truncated form in Eq.~15! by less than 1% up toQ.1.2. It
would thus seem reasonable to replace! with , in Eq. ~22!
above.

Finally, we again want to stress that each contribution
Eq. ~19! represents a summation to infinite order~in dn!
while still originating in the response functions of no high
than second order. The expression is therefore somewh
suited to ascertain the order-by-order convergence of thq
space expansion ofEx[n]. This question will be addressed i
a forthcoming paper.22

III. CALCULATING THE SECOND-ORDER COEFFICIENT

We will now turn our attention to the actual calculation
the unknown coefficientL48 . The requirement ofq not being
parallel to q8 will be satisfied by choosing, for exampl
q85q' , whereq5q' andq•q'50. The determining equa
tion ~A6! for Lx then takes the form

„x0~q!…2x0~&q!Lx~q,q'!

5IS~q,q'!1I V~q,q'!2x0~q,q'!

3@2Kx~q!x0~q!1Kx~&q!x0~&q!#, ~23!

sinceKx~q!5Kx(q) andx0~q!5x0(q).
We now proceed to expand the equation above in its

tirety to fourth order inQ, thus enabling us to findL48 . So
far, we have only managed to achieve this analytically wit
statically screened Coulomb interaction,

v~q!5
4p

q21l2 , ~24!

wherel is an inverse screening length.
All expansion coefficients ofKx andLx will in this case

consequently bel dependent:

Kx~q;n,L!52
p

kF
2 $K0~L!1K2~L!Q21K4~L!Q41•••%,

Lx~q,q' ;n,L!5
2p3

kF
5 $L0~L!12L2~L!Q2

1~4L4~L!1L48~L!!Q41•••%, ~25!

x0~q;n!52
kF
p2 $12 1

12 Q
22 1

240 Q
41•••%,

x0~q,q' ;n!5
1

p2kF
$11 1

6 Q
21 11

240 Q
41•••%,

whereL5l/kF .
-

n

ill

n-

a

The last equation above is a special case of the gen
small-q expansion of Eq.~A15!:

x0~q,q8;n!5
1

p2kF
$11 1

12 ~Q21Q822Q•Q8!

1 1
80 ~Q21Q822Q•Q8!2

2 1
240 „Q

2Q822~Q•Q8!2…%. ~26!

Finally, we may assume that~all other parts being expand
able! I5IS1I V can be expanded as well:

I ~q,q' ;n,L!5
1

p3kF
2 $I 0~L!1I 2~L!Q21I 4~L!Q41•••%.

~27!

L48(L) can now formally be expressed as

L48~L!5 41
1440 K0~L!1 1

12 K2~L!13K4~L!2 7
720 L0~L!

1 2
3 L2~L!24L4~L!2 1

2 I 4~L!. ~28!

The coefficientsKj ~L! up to j54 can be found by first
expanding theintegrandsin Eq. ~29! of Svendsen and von
Barth16 up to orderQ4. The ensuing integrals are sufficient
simple to be carried out analytically, and we find

K0~L!512 1
4 L2 lnS 41L2

L2 D ,
K2~L!5

1

~41L2!2
$ 14

9 1 3
2 L21 1

4 L4%

2 1
16 L2 lnS 41L2

L2 D , ~29!

K4~L!5
1

L2~41L2!4
$ 32
45 1 608

225 L21 974
135 L41 103

27 L6

1 7
9 L81 1

18 L10%2 1
72 L2 lnS 41L2

L2 D .
A method due to Geldart and Taylor21 for calculating
Kx~q;n,L50! numerically can be used to calcula
Kx~q;n,L! for the less subtle case of, say,L; 1

2 with very
high accuracy. We may then extract the coefficientsKj ~L!
for given values ofL by a least-squares polynomial fit. Re
sulting figures from this ‘‘integration first and expansion a
terwards’’ approach can then be compared to results from
opposite procedure above by defining@see Eq.~25!#

J~Q,L!5
2p21kF

2Kx~q;n,L!2K0~L!2K2~L!Q2

K4~L!Q4 ,

~30!

where the values ofKj ~L! are taken from the analytic calcu
lations, whereasKx~q;n,L! is calculated numerically. If ana
lytic and numerical work are equivalent, we would expe
J(Q,L) to approach 1 smoothly asQ→0. From Fig. 1 we
see thatJ(Q,L) indeed has this feature for a number ofL
values. We may therefore safely conclude thatthe order in
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FIG. 1. J(Q,L) for a number of values ofL.
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which we perform, respectively, integrations and expansi
in q is immaterial as long asL.0.

From Eq.~18! we can generalize Eq.~21! to

L j~L!5 1
2 H ~ j12!Kj~L!1L

]Kj~L!

]L J . ~31!

This givesL0~L!, L2~L!, andL4~L!:

L0~L!511
L2

41L22
1
2 L2 lnS 41L2

L2 D ,

L2~L!5
1

~41L2!3 H 112
9 122L21 15

2 L41
3

4
L6J

2
3

16
L2 lnS 41L2

L2 D , ~32!

L4~L!5
1

L2~41L2!5
$ 256

45 1 6976
225 L21 85696

675 L41 2444
27 L6

1 751
27 L814L101 2

9 L12%2 1
18 L2 lnS 41L2

L2 D .
The only remaining unknown in Eq.~28!, I 4~L!, requires

an expansion ofI ~q,q' ;n,L! to Q4. This turned out to be a
rather formidable~albeit straightforward! task involving, for
example, derivatives like„]nSHF(k;L)/]kn…k5kF

up ton56.
In spite of the sheer complexity of such calculations we h
great confidence in the final results since the bulk of
actual work was checked with the help of a symbol mani
lating program~MATHEMATICA !. The analytical results are
also in very good agreement with numerical calculations oI
with L;0.5. These numerical results will be discussed
more detail shortly in the context of theL50 limit.
s

e
e
-

Without any further details we now finally give the resu
ing I 4~L! coefficient below as

I 4~L!52
1

L2~41L2!5
$ 896

45 2 38176
225 L21 4408

75 L4

1 1166
15 L61 1201

45 L81 361
90 L101 11

48 L12%

1 11
192 L2 lnS 41L2

L2 D . ~33!

Inserting into Eq.~28!, for L48 we then obtain

L48~L!52
1

L2~41L2!5
$ 64
15 1 9488

675 L21 3524
75 L4

1 1429
45 L61 2639

270 L81 7
5 L101 7

90 L12%

1 7
360 L2 lnS 41L2

L2 D . ~34!

To zeroth order inL ~L→0 being the unscreened limit!,
this gives

L48~L!52
1

240L22
23

2700
,

L4~L!5
1

180L2 1
7

300
. ~35!

~L4 expansion added for comparison!.
L42L48 and, by Eq.~20!, therefore also the gradient coe

ficient Cx
(4), are in other words singular asL→0. It can be

shown that the coefficientB x
(4) has this feature as well,16

which is rather disturbing considering the significance s
attached to the screenedB x

( j ) values. We would like to point
out, however, that the unscreenedL→0 limit of the above
coefficients doesnot, in any sense, imply infinite exchang
corrections. While the unscreened expansion can be vie
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as a limit ofl,q,2kF asl→0, in the screened case it ca
be shown~numerically! that Lx ~and Kx! can only be ex-
panded in a polynomial for values ofq,l(l,2kF). As the
above contributions toLx will be of orderq4/l2, Ex in Eq.
~12! will remain finite for an arbitrarily smalll. Unfortu-
nately, this also means that the range of validity of t
screened coefficients shrink asl→0, effectively rendering
them meaningless per se for calculations on anything
model systems. One could, of course, surmise that the si
larities are canceled by singularities of opposite sign fr
similarly ~screened! correlation gradient coefficients. If thi
turns out to be the case, it would still be necessary to sh
that the coefficients are insensitive to whetherq,l or l,q
as both approach 0.

The desired unscreened value ofL48 could possibly be
inferred from our screened analytic calculation by assum
say, the ratio between the screened liml→0(L48/L4), and un-
screened coefficients (L48/L4)l50 to be the same. This would
imply a value ofL4852 3

4L4.
Aside from such~in the absence of higher-order gradie

expansion coefficients of the correlation energy! rather
speculative considerations, there is, obviously, also the
tion of obtaining L48 from a numerical calculation o
I ~q,q8;n,L50! for selected values ofq and q8. Unfortu-
nately, no way of adding all the vertex- (I V) and self-energy
~IS! contributions in the style of Geldart and Taylors21 simi-
lar calculation suggests itself. Instead one is faced w
‘‘brute force’’ and rather lengthy calculations of the separ
contributions, where great care must be exercised when
tegrating over the bare~or almost bare! Coulomb interaction.
Of the technical aspects of the integration, we will just me
tion that both IS and I V can be reduced to a number
three-dimensional integrals to be performed numerica
Both the Green’s functions and the~bare! Coulomb interac-
tion give singularities in the integrand, which are, howev
all integrable. We have performed such calculations fo
number ofq8, q, andl values includingl50. The agreemen
e

ut
u-

w

g,

p-

h
e
n-

-

.

,
a

between the numerical calculations and the analytic res
given above forq,l is very good. To illustrate this, we
define the functionN,

N~Q,L!5
p3kF

2 I ~q,q' ;n,L!2I 0~L!2I 2~L!Q2

I 4~L!Q4 ,

~36!

where I ~q,q' ;n,L! is calculated numerically. A polynomia
least-squares fit toN(Q,0.5) then gives

N~Q,0.5!51.0020612.78383Q2219.5296Q41117.474Q6.
~37!

As we see from the fit,N(Q,0.5) here does indeed approa
1 asQ→0.

When turning to the numerical calculations
I ~q,q' ;n,L! with L.0 it should thus be kept in mind that th
basic correctness of the computer code for these calculat
has been verified for anyL. In practice, it will, of course, be
slightly more difficult to converge calculations properly wi
a ‘‘bare’’ Coulomb-interaction. Judging from rates of co
vergence, our final results appear to be fully converged t
least five digits of accuracy. However, since no direct a
lytic comparison exists in this case, subtle numerical di
culties cannot be entirely ruled out.

It is still rather surprising that the resulting values, wh
reproducing the constant term (I 053K022L051) quite
well ~better than 0.1%!, do not reproduce theQ2 coefficient
prescribed by the derivative theorem@Eq. ~14!, I 25

1
6K0

14K21
2
3L024L25

5
18 # with even closely the same accurac

~I n , with theL argument dropped implies, as forKn andLn ,
L50!. We should add that the calculated values ofI n follow
from a least-squares fit for values ofQ in the rangeQ50.1–
0.6. As noted previously, the fulfillment of the derivativ
theorem is a necessary requirement for the construction
gradient corrections. Therefore, a slightly erroneous value
I 2 can only be accepted if the value ofK2 is adjusted accord-
ingly. We do not consider this a viable option. There is,
FIG. 2. kF
5/(2p3)Lx~q,q' ;n! from numerical

calculation vs the polynomial fit from Eq.~38!.
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interaction. We worked out an analytical formula giving the
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now, quite ample evidence ~from a variety of
techniques21,23,18,16,19! for a value ofK25

5
36.

Whatever the reason for the present inaccuracy in the ‘
produced’’ valuesI 2 andK2—numerical error or a more fun
damental breakdown of the exchange-energy expansio
terms of response kernels—we suggest the following sch
to extract a value ofL48 as accurately as possible. We sol
the determining equation~23! with respect toLx~q,q'! for a
range ofQ values sufficiently large so as to ensure that c
tributions from ~and therefore relative errors in! terms of
orderQ4 are ~almost! of the same magnitude as terms
orderQ2. For the noninteracting response functionx0~q,q8!
we have here used a closed expression given by Lloyd
Sholl24. Since uQ2Q'u5&Q, we are restricted byQ,&.
We have performed calculations in this way for seven val
betweenQ50.5 andQ51.0. A least-squares fit to orderQ6

of these values gives the following result:

kF
5

2p3 Lx~q,q' ;n!50.999 22110.504 478Q210.152 542Q4

10.096 659 4Q6 ~38!

~see Fig. 2!. The Q2 coefficient which should properly b
2L2.0.556 is off by some 10%. Consequently, theQ4 coef-
ficient (54L41L48) can be expected to be in error by 20%
most. This yields an estimate ofL48520.09160.03 andL4
2L4850.1560.03.

We have also performed calculations ofLx~q,q8;n! with
q852q' within a somewhat narrower range ofQ values. In
this case the calculated property can be expressed as

kF
5

2p3 Lx~q,2q';n!5115L2Q
21~25L414L48!Q41••• .

~39!

A least-squares-fit to orderQ6 of ten calculated values be
tweenQ50.18 and 0.39 gives
-

in
e

-

nd

s

t

kF
5

2p3 Lx~q,2q' ;n!50.999 8511.269 34Q211.1244Q4

11.534 48Q6 ~40!

~see Fig. 3!. The expression above reproduces thecalculated
values typically to within 1026. Since 5L251.389 we see
again thatL2 is in error by some 10%. The value forL48 from
this fit, L48520.099 is rather more unreliable, since theQ2

term will dominate in this range. It is nevertheless wor
noting that it is consistent with the value forL48 above
~within the stated error limits!.

IV. CONCLUDING REMARKS

The basic idea underlying the present work is that an a
is not a linear perturbation on the electron gas. From
notion that a molecule or a solid is a collection of atoms
then follows that the construction of gradient approximatio
for such systems should be based on higher-order resp
functions of the homogeneous system. In this work we to
the first step beyond linear response, and tried to obtain
dient corrections from second-order response theory. T
leads to corrections to the LDA which involve the Laplaci
of the particle density—an ingredient absent from nearly
approximations presently in use. Some preliminary results
model solids22 indicate that the Laplacian is indeed a use
additional ingredient.

To start with the simplest possible realistic case, we h
here limited ourselves to the study of exchange energies
which accurate answers are easily provided by full calcu
tions. We chose the particular version of exchange known
the Talman-Shadwick scheme, or sometimes the optimiz
potential model, and here referred to as the exchange-
approximation~EXOA!. In this scheme exchange energi
are strictly linear ine2, i.e., the strength of the Coulom
.

FIG. 3. kF

5/(2p3)Lx~q,2q' ;n! from numeri-
cal calculation vs the polynomial fit from Eq
~40!.
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second-order response kernelLx defined to be the third func
tional derivative with respect to the density of the exchan
energyEx within the EXOA. In its most general form,Lx is
a three-point function or a function of three momenta
reciprocal space. Due to the translational and rotational
variance of the homogeneous electron gas,Lx is a function of
only three numbers and we have given the explicit poly
mial form thatLx must have at small momentum transfe
~small q’s!. We have considered polynomials up to six
order, and demonstrated how these polynomial represe
tions in reciprocal space give rise to gradient corrections
real space. We stress that the possibility of constructing
dient corrections is crucially dependent on the validity o
derivative theorem which relates the limit ofLx when one
momentum vanishes to density derivatives of the line
response kernelKx . The latter is the second functional d
rivative with respect to density ofEx .

The expression forLx has been evaluated numerically
different momentum transfersq’s for different values of the
screening length 1/l in a screened Coulomb interaction. A
small but finitel, the calculations are numerically stable f
all q’s and confirm the correctness of our analytical smalq
expansion ofLx . As was the case forKx ,

16 the coefficients
of the terms that are fourth order inq are shown to be sin
gular ~blow up! asl tends to zero.

Approaching the true Coulomb potential, i.e., the lim
l→0, the numerical calculations become unstable for cer
combinations of the independent momentum variablesq and
q8 when these are very small. This difficulty could be t
result of our inability to find a sufficiently stable form~in the
numerical sense! of the constituent integrals. It could als
have a more fundamental reason. In the case of a bare
lomb interaction, it could be thatLx is not analytic at zero
momenta and, therefore, that the gradient expansion doe
exist in the orthodox sense. Such a situation would be
prising in view of the fact thatKx is analytic at zero momen
tum ~q→0!. We remind the reader, however, thatKx is not
analytic in the HF approximation~not to be confused with
the EXOA!, ~Ref. 25! and that work by Langreth an
Vosko26 on density response in the high density electron
indicates that analyticity is not restored by taking correlat
into account.Kxc ~5Kx including correlation! has aq2 term
but the next-higher-order terms containq3 andq3 lnq.

Nevertheless, we have found it quite possible to obtain
accurate polynomial fit to our calculated values forLx~q,q8!
in the region of momenta from;0.5kF to ;kF . The coeffi-
cients of the fourth-order terms in a sixth-order polynom
fit to the numerical data are combined to form our result
the fourth-order gradient correction. The correspond
second-order coefficient is in slight violation~10%! of the
derivative theorem@Eq. ~14!#. Therefore, we believe our tota
gradient coefficient to be accurate to within 20%.

Response functions might or might not have a Taylor
pansion at small momenta. If they have, calculation of
corresponding coefficients could prove to be intractable
seems appropriate to recall the purpose of the entire pr
dure, namely, to approximate the response kernels over s
region of momenta between zero and;kF . It could well be
that the Taylor expansion is not the best way of achiev
this end. To illustrate the point, we might think of a wor
with a Yukawa interaction between electrons and only
e
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change effects. If the Yukawa screening length 1/l is much
larger than an atom, the HF treatment of that atom would
virtually the same in the real world and the Yukawa world.
gradient approximation based on a Taylor series at sm
momenta would have the coefficients given by Eqs.~29!,
~32!, and ~34!, which would give very bad results~see the
discussion at the end of Sec. III!. On the other hand, a gra
dient approximation with suitably chosen coefficients cou
still produce reasonable results. It is in this spirit that w
have obtained the gradient corrections of the present w
We suggest that gradient coefficients be determined by
ting appropriate gradient expressions to accurately calcul
exchange energies for weakly perturbed electron gases. S
work is presently in progress.22
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APPENDIX A

The first-order change inEx with respect to variations in
the effective potentialV5w1*nv1vx @Eq. ~3!# is easily
worked out directly from Eq.~1! and the definition ofvx @Eq.
~4!#:14,15

E x0~r ,r1!vx~r1!d
3r 1

52 1
2 E x0~r1 ,r2 ;r !v~r1 ,r2!n~r2 ,r1!d

3r 1d
3r 2 . ~A1!

In this and the following equations, a generalizednth-order
response function of noninteracting electrons is defined b

x0~r ,r 8;r1 ...,rn!5
dx0~r ,r 8;r1 ...,rn21!

dV~rn!

5
dn~r ,r 8!

dV~r1!•••dV~rn!
. ~A2!

A further variation ofEx with respect toV gives a determin-
ing equation forKx ,

E x0~r ,r ;r 8,r1!vx~r1!d
3r 1

1E x0~r ,r1!Kx~r1 ,r2!x0~r2 ,r 8!d3r 1d
3r 2

52 1
2 E x0~r1 ,r2 ;r ,r 8!v~r1 ,r2!n~r2 ,r1!d

3r 1d
3r 2

2 1
2 E x0~r1 ,r2 ;r !v~r1 ,r2!x0~r2 ,r1 ;r 8!d3r 1d

3r 2 .

~A3!

Still one further variation with respect toV produces the
determining equation forLx :
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E x0~r ,r ;r 8,r 9,r1!vx~r1!d
3r 11E x0~r ,r ;r 8,r1!Kx~r1 ,r2!x0~r2 ,r 9!d3r 1d

3r 2

1E x0~r 9,r 9;r ,r1!Kx~r1 ,r2!x0~r2 ,r 8!d3r 1d
3r 21E x0~r 8,r 8;r 9,r1!Kx~r1 ,r2!x0~r2 ,r !d

3r 1d
3r 2

1E x0~r ,r1!x0~r 8,r2!x0~r 9,r3!Lx~r1 ,r2 ,r3!d
3r 1d

3r 2d
3r 352 1

2 E x0~r1 ,r2 ;r ,r 8,r 9!v~r1 ,r2!n~r2 ,r1!d
3r 1d

3r 2

2 1
2 E x0~r1 ,r2 ;r ,r 8!v~r1 ,r2!x0~r2 ,r1 ;r 9!d3r 1d

3r 22
1
2 E x0~r1 ,r2 ;r 9,r !v~r1 ,r2!x0~r2 ,r1 ;r 8!d3r 1d

3r 2

2 1
2 E x0~r1 ,r2 ;r 8,r 9!v~r1 ,r2!x0~r2 ,r1 ;r !d

3r 1d
3r 2 . ~A4!
u

r

-

Now assuming translational invariance~electron-gas limit!
the Green’s function of the system can be written in the us
form

G~q!5G~k,v!5
1

v2ek1 id sgn~v2eF!
, d501.

~A5!

The determining equation ofLx above can then be Fourie
transformed to

x0~q!x0~q8!x0~q82q!Lx~q,q8!5IS~q,q8!1I V~q,q8!

1I x~q,q8!2x0~q,q8!@Kx~q!x0~q!1Kx~q8!x0~q8!

1Kx~q82q!x0~q82q!#, ~A6!

where

I V~q,q8!524(
q1q2

G~q1!G~q11q8!G~q11q!v~q12q2!

3$G~q2!G~q21q8!1G~q2!G~q21q!

1G~q21q!G~q21q8!%, ~A7!

IS~q,q8!524(
q1

G~q1!G~q11q8!G~q11q!
al
3$G~q1!S

HF~q1!1G~q11q8!SHF~q11q8!

1G~q11q!SHF~q11q!%, ~A8!

I x~q,q8!524vx(
q1

G~q1!G~q11q8!G~q11q!

3$G~q1!1G~q11q!1G~q11q8!%, ~A9!

andSHF is the HF-self-energy,

SHF~k!52(
q
v~k2q!n~q!. ~A10!

Furthermore

x0~q!52(
q1

G~q1!G~q11q!, ~A11!

x0~q,q8!54(
q1

G~q1!G~q11q!G~q11q8! ~A12!

represents the Fourier-transforms ofx0~r ,r ;r1! and
x0~r ,r ;r1,r2!, respectively. Here(q above should be inter
preted as*d3q dv(2p)24/ i . The frequency integrations in
Eqs.~A7!–~A12! are trivially carried out to yield
IS~q,q8!54(
q1

F 1

eq11q2eq1
S nq11q82nq1

eq11q82eq1
2
nq11q2nq11q8

eq11q2eq11q8
D SHF~q11q8!2SHF~q1!

eq11q82eq1

1
1

eq11q82eq1
S nq11q2nq1

eq11q2eq1
2
nq11q2nq11q8

eq11q2eq11q8
D SHF~q11q!2SHF~q1!

eq11q2eq1

1
nq11q82nq11q

~eq11q82eq11q!
2 S SHF~q11q!2SHF~q1!

eq11q2eq1
2

SHF~q11q8!2SHF~q1!

eq11q82eq1
D G ,

~A13!

I V~q,q8!524(
q1q2

1

eq11q2eq11q8
S nq11q2nq1

eq11q2eq1
2
nq11q82nq1
eq11q82eq1

D S nq21q2nq2
eq21q2eq2

1
nq21q82nq2
eq21q82eq2

1
nq21q2nq21q8

eq21q2eq21q8
D v~q12q2!,

I x50
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and

x0~q!52(
q1

nq11q2nq1
eq11q2eq1

, ~A14!

x0~q,q8!54(
q1

1

eq11q2eq11q8

3S nq11q2nq1
eq11q2eq1

2
nq11q82nq1
eq11q82eq1

D . ~A15!

Herenq5u(kF2q) andeq5q2/2. With I x50 andq85q'

we finally arrive at Eq.~23!. ~Note thatIS has been some
what rearranged to facilitate numerical evaluation.!

APPENDIX B

Here we will present some relations of importance for
kernels in Eqs.~6! and ~7!. Assuming full rotational, trans
lational and inversion symmetry, we may write:

Kx~r ,r 8!5Kx~r1R,r 81R!,

Kx~r ,r 8!5Kx~Rr ,Rr 8!, ~B1!

Kx~r ,r 8!5Kx~2r ,2r 8!,

whereR andR represent, respectively, arbitrary translatio
and rotations. SinceKx is then~spatially! only a function of
the relative coordinater2r 8 we obtain Eq.~10!.

Inverting Eq.~10!, we find

Kx~q!5E Kx~r ,0!e2 iq•rd3r , ~B2!

which, together with Eq.~B1!, gives Kx~Rq!5Kx~q! and
Kx~2q!5Kx~q!. ~The density,n, dependence of the respon
functions is suppressed, where it is not of importance to
reasoning!. The following ‘‘small-q’’ expansion must there-
fore be valid:

Kx~q;n!5Kx~0!$11K2Q
21K4Q

41K6Q
61...%.

~B3!

Similarly, for Lx we have full translational,

Lx~r1 ,r2 ,r3!5Lx~r11R,r21R,r31R!, ~B4!

and rotational

Lx~r1 ,r2 ,r3!5Lx~Rr1 ,Rr2 ,Rr3!, ~B5!

symmetry.
Furthermore, for a response function of the homogene

electron gas, we must require full symmetry in terms of
possible coordinate permutations:

Lx~r1 ,r2 ,r3!5Lx~r2 ,r1 ,r3!5Lx~r1 ,r3 ,r2!5Lx~r3 ,r2 ,r1!

5Lx~r2 ,r3 ,r1!5Lx~r3 ,r1 ,r2!. ~B6!

For the purposes of calculating gradient-correction coe
cients, we need to know the small-q (q,2kF) expansion of
the kernelL̃x~q1,q2,q3!, which is defined as
e

e

us
ll

-

L̃x~q1 ,q2 ,q3!

5E Lx~r1 ,r2 ,r3!e
2 iq1–r1e2 iq2–r2e2 iq3–r3d3r 1d

3r 2d
3r 3 .

~B7!

The fact that@Eq. ~B4!# Lx~r1,r2,r3! is only a function of the
coordinate differencesr12r3 and r22r3 was already explic-
itly taken into account in definingLx~q,q8!. We may now
insert Eq.~11! into Eq. ~B7! to obtain the relation

L̃x~q1 ,q2 ,q3!5~2p!3d~q11q21q3!Lx~q1 ,2q2!.
~B8!

From Eqs.~B5! and~B7! above, we see thatL̃x~q1,q2,q3!
is rotationally invariant as well.L̃x , when expanded aroun
q15q25q350, must therefore be expressible as a const
plus terms being multiples of$Q11,Q22,Q33,Q12,Q23,Q31%,
whereQi j5qi•qj . Now, sinceq11q21q350, Qi j , iÞ j are
all expressible as linear combinations of the diagonal te
Qii . We may then use$Q11,Q22,Q33% as the ‘‘building
blocks’’ to construct the general form ofLx to any order in
Q.

Finally, we utilize permutational invariance to establi
the proper linear combination of theQii . The group of op-
erations for permuting the argumentsq1, q2, andq3 as de-
scribed in Eq.~B6! is isomorphic toD3, that is, the rotation
group of order 3.

We are now in a position to work out the proper form
Lx to second order inQ. The three-dimensional represent
tion G~2! for which the $Qii %, i51,2,3 form a basis can b
decomposed in the irreducible representations ofD3 by in-
spection. We obtainG~2!5A11E. In order to obtain the com-
pletely symmetric function belonging toA1 we may operate
with the projection operatorP(A1)5 1

6 (RPR on, say,Q11. We
obtain

P~A1!Q115
1
6(

R
PRQ11;Q111Q221Q33. ~B9!

To fourth order inQ

$Q 11
2 ,Q 22

2 ,Q 33
2 ,Q11Q22,Q22Q33,Q33Q11%

form a six-dimensional representationG~4!. We decompose
again to obtainG~4!52A112E. In the same way as before
we project out the two functions belonging to the two rep
sentationsA1 in theG~4! decomposition:

P~A1!Q11
2 5 1

6(
R

PRQ11
2 ;Q11

2 1Q22
2 1Q33

2 , ~B10!

P~A1!Q11Q225
1
6(

R
PRQ11Q22

;Q11Q221Q22Q331Q33Q11. ~B11!

@The results in the equations above are, of course, the s
with the projection operator acting on anyQ ii

2 in Eq. ~B10!
andQiiQj j , iÞ j in Eq. ~B11!#.

Continuing to sixth order, we have a ten-dimensional re
resentationG~6! from the elements$Q ii

3 %, $Q ii
2Qj j %, and
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Q11Q22Q33; i , j51,2,3. Decomposing,G~6!53A11A213E.
Projecting out the three completely symmetric functions,
obtain

P~A1!Q11
3 5 1

6(
R

PRQ11
3 ;Q11

3 1Q22
3 1Q33

3 , ~B12!

P~A1!Q11
2 Q225

1
6(

R
PRQ11

2 Q22,

;Q11
2 Q221Q11

2 Q331Q22
2 Q11

1Q22
2 Q331Q33

2 Q111Q33
2 Q22, ~B13!

P~A1!Q11Q22Q335
1
6(

R
PRQ11Q22Q33;Q11Q22Q33.

~B14!

In short, we have now demonstrated that to orderQ6, Lx
can be written as

L̃ x~q1 ,q2 ,q3!5Lx~0,0,0!1 l 2~Q111Q221Q33!

1 l 4~Q11
2 1Q22

2 1Q33
2 !

1 l 48~Q11Q221Q22Q331Q33Q11!

1 l 6~Q11
3 1Q22

3 1Q33
3 !1 l 68~Q11

2 Q221Q11
2 Q33
l-
-

R

e
1Q22

2 Q111Q22
2 Q331Q33

2 Q111Q33
2 Q22!

1 l 69Q11Q22Q33. ~B15!

According to Eq.~B8! the ‘‘reduced’’ Lx contains~in our
case! the same information, and may as well be used as
full Lx~q1,q2,q3!. Now, settingq15q, q252q8 ~and conse-
quentlyq35q82q!, Eq. ~B15! may be rearranged to yield a
equation for the small-Q expansion ofLx . Here we have
chosen a different~but completely equivalent! combination
of the invariant polynomials given in Eqs.~B9!–~B14!. The
reason for our particular choice will shortly be apparent:

Lx~q,q8!5Lx~0,0!$11L2~Q
21Q822Q•Q8!

1L4~Q
21Q822Q•Q8!21L48„Q

2Q82

2~Q•Q8!2…1L6~Q
21Q822Q•Q8!3

1L68~Q
21Q822Q•Q8!„Q2Q822~Q•Q8!2…

1L69Q
2Q82~Q2Q8!21•••%. ~B16!

Insertingq5q8 into Eq. ~B16! and comparing with Eq.
~14!, we now see that a knowledge of the small-q expansion
of Kx also determines the coefficientsLi , while the primed
coefficients have to be determined by other means.
te
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