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Gradient expansion of the exchange energy from second-order density response theory
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The basic idea behind the present work is that an atom is not a linear perturbation of the electron gas. We
have thus analyzed the exchange energy of the inhomogeneous electron gas to third order in the deviation from
a constant density. We give the symmetry properties obeyed by the corresponding second-order response
functionL, , and demonstrate holy, gives rise to gradient corrections to the exchange energy. The expansion,
which is taken up to sixth order in the density gradient, also includes the Laplacian of the density. In the case
of a statically screened Coulomb interaction, we have calculated the coefficients of second- and fourth-order
gradient terms both analytically and numerically. In analogy with the corresponding results from linear-
response theory, the fourth-order coefficient is shown to diverge as the screening is made to vanish. For the
bare Coulomb interaction we have not succeeded in obtaining analytical results, and, due to numerical prob-
lems at smally vectors, our numerically obtained coefficients have an estimated uncertainty of 20%.
[S0163-182696)10148-X

[. INTRODUCTION tion to the LDA using sophisticated treatments of correlation
effects in the homogeneous gas? These efforts, although
The utility and success of density-functional thédty interesting per se, seem to have overlooked the fact that en-
with regard to the ground-state properties of solids is by nowergy contributions from higher-order gradients are usually
an established fact. Already, within the simple local-densitylarger than differences between lowest-order gradient correc-
approximation(LDA),% one obtains remarkably accurate vi- tions resulting from electron-gas theories of different degrees
brational frequencies and equilibrium distanéeslso, the  of sophistication. Consequently, we would like to encourage
trends in binding energies are usually correctly predicted, buattempts also to include higher-order gradient corrections.
absolute numbers are, unfortunately, not accurate enough f&@uch attempts inevitably lead to second- and higher-order
a proper description of, e.g., chemical reactions at surfacesesponse treatments of the electron gas, the complications of
In order to approach chemical accuraey).1 eV, in calcu- which probably explain why little has been done in this re-
lated binding energies, much effort has been devoted to findyard.
ing improvements on the LDA. Since the LDA becomes ex- Our conjecture concerning the importance of higher-order
act when the electron density is slowly varying, correctionsgradient corrections is further supported by the knowledge of
involving the gradient of the density seem to be a naturathe inadequacy of linear-response theory as far as the total
extension of the LDA. In the literature, one finds, however, energy of simple metals is concerned. Linear-response theory
numerous arguments against a straightforward gradient exannot distinguish between the total energies of different
pansion of the exchange-correlation enef@y,). Instead, crystal structures having the same volume per atom. The
different cutoff procedures are used to account for the factlirectional dependencies of the energy are introduced only in
that distances over which electrons are correlated in realistisecond-order response theory with a nonisotropic response
inhomogeneous systems are determined more by actuinction depending on the angle between two momenta.
variations in the density profile than by the screening lengtiSecond-order response theory also gives rise to gradient cor-
of an electron gas at the local value of the den$hy. rections involving the Laplaciafsecond derivativesof the
Nevertheless, the slowly varying limittthe long- density, a quantity clearly more susceptible to finer details in
wavelength limit in reciprocal sparef most existing exten- the density profile as compared to the gradient. The lowest-
sions of the LDA are tailored according to linear-responseorder gradient correction as well as nearly all GGA'’s involve
theory. Exceptions to this rule are, e.g., real-space procesnly the square of the density gradient, and it is well known
dures like the weighted-density approximation of Gunnarsihat all these extensions of the LDA essentially do nothing to
son, Jonson, and Lundqvisand the phenomenological ap- correct the errors in the LDA as far as the so-caled or
proach followed by Becke for smaller moleculésEven so,  s-d transfer energies are concerriéd.
nearly all tested so-callegeneralized gradient approxima- Since this work represents an attempt at obtaining gradi-
tions (GGA’s) have only the first gradient of the density as ent corrections from second-order response theory, we here
an additional ingredient above the local density for con-start by considering exchange only. We wgechange only
structing the full functionaE,[n]. It appears as if linear- as opposed télartree-Fock(HF) since we have in mind the
response theory has formed a basis for most reciprocal-spad@lman-Shadwick schent&® sometimes referred to as the
attempts to go beyond the LDA, something that we find pe-optimized potential metho©OPM). Here we will not dwell
culiar in view of the fact that an atom i®ot a linear pertur- upon the details of this method, but refer to the original
bation of the electron gas. As a matter of fact, much efforpapersi*!® or to discussions of the method in other
has gone into finding successively more accurate approximaapers:® Here we just state that, within the OPM, the ex-
tions of the coefficient of the lowest-order gradient correc-pression for the exchange energy is the same as in the HF
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approximation, while the orbitals are all solutions to a one- Suy(rq) 52Ex[n]
electron Schrdinger equation with a local potential. This Ku(ry,rz)= Bn(r,) _ an(ro)an(ty) (6)
. . T 2 1 2

potential then acts as the variational parameter to minimize
the expectation value of the Hamiltonian with respect to aand
Slater determinant consisting of those orbitals.

In Sec. Il we set down some basic formulas, and show OKy(ry,r2) S°Ey[n]
how one obtains gradient corrections from that second-order Lry.r2.r5) = on(rj) - on(ry)dn(ry)on(rg) @
response function which gives the exchange energy to third o o o ] )
order in the density deviations. The defining equations forSiNCe our main interest is in obtaining gradient corrections to
the response function is deferred to Appendix A. Appendixthe Ioca!-densny approximation, we remind the reader of the
B contains important symmetry relations obeyed by the re€xpression for the latter:
sponse function. These symmetry relations, of which some
have been mentioneq earli€rare very_useful in thg deriva—. E;Dx[n]:f €,(n(r)n(r)d3r. @)
tion of possible gradient terms. Section Ill contains details

concerning the calculation of the actual gradient coefficientyye have here used the exchange-only version of the LDA
both nu_merically and analytically. In Sec. IV we give our (designated by LDX and consequently,(n) is the ex-
conclusions. change energy per particle of a homogeneous electron gas of
densityn. Thus e,(n)= —3kg/(47), wherekg is the local
Il. BASIC FORMULAS Fermi wave vector of the ga&2=3x?n. Also the energy
ELPX of the LDA can be expanded to third order in the

For a system without spin polarization, the exchange en= ) - p itV of the el
ergy is given by density deviations from a constant density of the electron

gas:
E,[Nn :—1f n(r,r)|%o(r,r)d3 d3’, (1) d(ne, (n
A== el R S K GL
wheren(r,r') is the one-electron density matrix
1 #?*(ney(n
: .o +—(E—X(2))°f[5n(r)]2d3r
n(r,r') =22 neen gk (r), 2) 2. on
. . . . 1 f93(n€x(n))o
in terms of the one-electron orbitas(r) which satisfy the tE T J [on(r)]3d®r. 9)

Kohn-Sham equation

Here, the small index O on the derivatives indicate that they
{ —3V2+w+ f vn d3r’+ux] =€\ Pp (3  areto be evaluated at the constant densjtySince the LDA
is exact for constant densities, the first term of this expres-
Here,w is the external potential; is the Coulomb interac- Sion is the same as the first term on the right-hand side of Eg.
tion, v (r,r')=1/r—r’|, n(r)=n(r r) is the particle densitye, (5. We will find this useful when subtracting E() from
is the Kohn-Sham eigenvalue, andis the exchange poten- Ed. (5) in order to obtain the corrections beyond the LDX.

tial of the exchange-only theory given by We will also find it convenient to go to reciprocal space.
Because of the translational invariance of the gas, we can
_ SOE,[n] 4 write
The n’s in Eq. (2) are occupation numbers, being 1 for Kx(rlvrzino)ZZq Ku(g;ng)e'd (f1=r2) (10
occupied states and O for unoccupied stafége use atomic
units throughout the paper. and

The functionalE,[n], being a differentiable functional of
the densityn, can be expanded in the deviation from a

; X ‘Na) = z ig9-(r1—rg)a—iq’-(ro=r3)
constant densityng) appropriate to the homogeneous elec- Lx(r1.:72.73:M0) 2 L«(0,9";ng)e™ " ee 2%
tron gas: e (11

B . . where X, is short for [d%q(2m)~ and the dependencies on
EXLn]=Ednol+ | vx(riing)dn(ry)dry the constant density, have been clearly indicated. With
these definitions we now obtain, to third orderdn,
+%J Ky(r1,r2:n0)8n(ry)én(r,)d3r,d3r,
Ex[n]=E;DX[n]+%§ {Kx(@:ng) — Ky(0;ng) H 8N
+%f Ly(ry,ra,rg;ng)on(ry)én(ry)

+§2 {Ly(a,a';no)
X&n(r3)d3r1d3r2d3r3+“‘ y (5) Gq,q’{ * 0

where —Lx(0,0;ng)} ngdn_q dngr _q. (12
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Here the quantitysn, is defined through the relation(r) giving
=No+Z40nge' .
At this point we take the opportunity to derive two, as it
turns out, important derivative theorems relating the func- K (g;Ng)

tional derivatives,, K,, andL,. From Eq.(6) we have o =Lx(q,9;no), (14
+(5 _ + 5UX[rl!n0] 5 d3
vl F1.No+ dN]=vx{No] sn(rsp) n(ra)dry a relation that puts severe restrictions on the actual form of
L,(g,9’;ng), and without which the gradient expansion be-
_ ) 3 comes ill-definedsee below. Notice also that thg=0 limit
UX(nO)Jrf KulT1:r2iM0) on(rz)dr. of Eq. (14) givesL,(0,0;ny) =21k 2.
Specializing to a constant density chande and going to In order to transform the equation above to actual gradient

corrections, a constraint beyond the assumption of small am-

plitudes én has to be imposed. In addition, we will now

Ay consider density changesn which are slowly varying in

oo~ Kd(@=0ino). (13)  space, i.e., densities with appreciable Fourier components
0 ong only for q<2kg. Both response functionk, andL,

Notice thatv,(ng) = —ke/7 and thusK,(q=0;ng)=—=/k2.  turn out to be singular atq=q'=|q—q'|=2ke. At

reciprocal space, we then obtain

Similarly, from Eq.(7), g=(q'=|q—q’[)=0 we will assume that they are analytic,
and they are, in fact, reasonably well described by polyno-
Ky (F1,F2:N0+ n) =K, (r1,r>:No) mial expansions aroungi=0. As we will now see, it is this

smallg limit of the kernels which is of interest here. Equa-
tions (B3) and (B16) in Appendix B and theq=0 results
. 3
+f Lx(F1.72,r3:M0) oN(r3)drs, above then give the following expressions:

Ky(g;m) =KL (n)+KZ(n)g?+KP(n)g*+- -

__ T 2 4
__k_§{1+K2Q +K Q%+ -1,

L(a,a’;m =L (m+L2(n)(@*+a'2=a-q)+ L (n)(a*+q"2=q-q") 2+ L, () (@*a'?~ (q-q')?)+ -
2 3
=5 (L@ Q-0 Q) +L(Q™+ Q- Q- Q)+ LAQPQ =(Q- Q)+, (15

whereQ=0g/kg .
Gradient corrections can now be constructed by first inserting the right-side expressions(df)Eqto Eq. (12), and

subsequently Fourier transforming back to real space. We will only illustrate this rather straightforward procedure for a few
important cases:

> K2 (ng)g?|ang2=2 KZ(ng) f an(ry)én(r,)q-ge'd e 9 g3 dr,
q q

= f K2 (o) V. (an(r 1))V, (n(r,))8(ry—r,)d%r 1d%r,= f Ki?(no) |V on(r)|2dr

and

> L (ng)g2onydn_q dng —q=— 2 fL§(2>(n0)6n(rl)5n(r2)5n(r3)(V§leiq'rl)e*iQ’-rzei(q'"‘)'r3d3rld3r2d3r3
a,9’ a-q'

=- f L2 (no)(V28Nn(r1))an(ry) 8n(rg) 8(ry—r3) 8(rz—r,)d% 1d% ,d%r g

=—f L;2>(n0)(5n(r))zvz(sn(r)d%=2f L{®(ng)&n(r)|V én(r)|?dr.
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The contributions fronL ((n)(q'2—q-q’) can be similarly Lox (e ) s
computed, and in total we obtain Exn]=E4 [n]+§j KX (n)|[Vn(r)|*d°r

O e +%fK;‘”(n>|V2n(r>|2d3r
2 sLZ (o) (0% + 02~ q') 8ngdn g dng: —q

a.9
+%f (L@ () =L (n))| Vn(r)|?V2n(r)dr
=%f L{?(ng)én(r)|V én(r)|?dr. (16) T

n(r

=Axf n(r)*dr+BY? | ——5 d°r
It should be noted that in going from reciprocal to real space, n(r)

“surface terms” have been neglected, i.e., we assume that |V2n(r)|2
. L (4) 3
the system at hand can be contained within a large surface + By n(r)?2
with zero electronic density.
In many important applications, like say, total-energy cal- " |Vn(r)|2v2n(r) 5
culations on atomic clusters or molecules, it is difficult to +C}, f B GL d°r. (19

define a background or average densigyunambiguously.
Here one usually makes the substitutiofi—n(r), n being  The coefficients in Eq(19) are related to the smatj-expan-
the local densityn(r). The gradient functional arising from sion coefficients as follows:
K 3)(n(r))g? can then be viewed as an infinite summation,
the first two terms of which are

lf K2 (n(r))|Vn(r)|2dr (2) 1 5
2 = — —
* Bx 6m(379) 7 K2= " 1320 T

—5 [ KPRl NP SR I
x 187 "% 648007°
K@ (n)
+%f (—;n an(n)|vn(r)|?d3r+--- w1 ,
g Ci¥ =553 (La—L)). (20)

The K, andK, coefficients were first calculated analytically
by Engel and Voskd® Their values were later confirmed by
analytical calculations using two completely different
techniques®!® These coefficients have also been available
from numerical work by Kleinma? (K,) and, much earlier,
by Geldart and Taylof*

The last line in Eq(17) above is a consequence of the The unprimedL, coefficients can then easily be calcu-

=3 J K{Z(ng)|Vn(r)|?d®

+%J L2 (ng)dn(r)|Vn(r)|2d3r+--- . 17

following relation between the coefficienks{’ andL {, lated from Eq.(18) as
Li=2(j+2)K;], (21)
(i) . .
L0 ()= IKx'(n) =02, ... (19 Which yieldsL,=2K,= 55, andL,=3K,= 1.
X on ' " As pointed out in Appendix BL; (and, consequently,

Cc ™) can only be found by evaluatingq,q’) for values of

Notice that Eq(18) is a simple consequence of Ed4). A g not parallel toq’. Possible schemes for obtaining this co-
comparison of Egs(16)—(18) demonstrates an often over- efficient will be the subject of Sec. Ill.
looked but very important point regarding gradient correc- When applied to real systems with regions of small or
tions. Equation(18) in short ensures that real-space termsvanishing electronic densities, both the third and fourth terms
from the g? part of L, arealready accounted foin the ex-  in the gradient expansion will give large and spurious con-
pansion ofK {?)(n) above. A violation of Eq(18), on the tributions. This is not, however, an inherent deficiency of the
other hand, would lead to the appearance of terms of thgradient scheme, since the conditigre 2k for a givenq
form f&n(r)|Vén(r)?d®r. Such terms would be difficult to  will be violated asn, ke—0. Some quantitative criterion for
calculate without a completely unambiguous separation o#hen gradient corrections shouhdt be applied is therefore
the density in a constant, and variable pardn(r). As a  clearly necessary. In actual calculations such a criterion must
matter of fact, the very existence of gradient expansions, ake introduced into the gradient part of the exchange-energy
applied to real systems, relies on the validity of Etd). functional as a cutoff or soft regularization. The following

The contribution fromK (Y(n)q* can be similarly ex- often used conditior(with first-order gradient corrections
panded to show that terms of the fofiin(r)(V26n)?d®r do  has the merit of reducing tq<2kr when the density is
not occur in the final gradient-expansion given below, dominated by ong value:
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|V2n| The last equation above is a special case of the general
2K V] <1. (220 smallq expansion of Eq(A15):
1
In this context, withK, and L, expanded up to and in- Xo(Q,9";n)= p {1+ & (Q*+Q'?-Q-Q")

cluding theq* term, the condition above is, however, some-
what too strict. It can be shown thKt(q) differs from the

1 0240'2—0.0"\2
truncated form in Eq(15) by less than 1% up tQ=1.2. It +5 (Q7+Q°-Q-Q")
would thus seem reasonable to replacavith < in Eq. (22) L - '
above. — 230 (Q°Q"°=(Q-Q"))}. (26)

Finally, we again want to stress that each contribution i”FinaIIy
Eq. (19 represents a summation to infinite ordém &n) ’
while still originating in the response functions of no higher
than second order. The expression is therefore somewhat ill 1
suited to ascertain the order-by-order convergence ofjthe 1(9,9, ;n,A)= gy {lo(A)+1(A)Q%+14(A)Q*+---}.
space expansion @&,[n]. This question will be addressed in R 27)
a forthcoming papet’

we may assume théall other parts being expand-
able I =I5 +1, can be expanded as well:

L4(A) can now formally be expressed as
I1l. CALCULATING THE SECOND-ORDER COEFFICIENT LQ(A)= %}10 Ko(A)+ 1_12 Ko(A)+3K4(A)— 7770 Lo(A)
We will now turn our attention to the actual calculation of
the unknown coefficierit ;. The requirement of not being + 5 Lo(A)=4L4(A) = 3 14(A). (28
parallel toq" will be satisfied by choosing, for example o ) ]

tion (A6) for L, then takes the form expanding thentegrandsin Eq. (29)_01c Svendsen an_d_von
Barth'® up to orderQ”. The ensuing integrals are sufficiently
(@) x0(VZA)L (0,4, ) simple to be carried out analytically, and we find
=15(9,9,) +1v(9,0.) — xo(,0.) Ko(A)=1— % A%1n 4—;/2\2 ,
X[2K () xo(a) +Kx(V2a) xo(V20)], (23)
sinceK,()=K,(a) and xo(q)=xo(d)- Ka(A)= ﬁ {$+3 A%+ 5 A%

We now proceed to expand the equation above in its en-

tirety to fourth order inQ, thus enabling us to find,. So 4+ A2
far, we have only managed to achieve this analytically with a — 15 A? In( A2 ) (29
statically screened Coulomb interaction,
— 1 32 608 2 974 4 103 6
0(q)= 4 , (24) KA(A)_W{E—FZ_ZSA + 3 AT ST A
q2+ G
4+ A%
where\ is an inverse screening length. + 5 A8+ 5 A — 5 AZn 12 )
All expansion coefficients oK, andL, will in this case
consequently ba dependent: A method due to Geldart and Tayforfor calculating

K,(q;n,A=0) numerically can be used to -calculate
K,(q;n,A) for the less subtle case of, say~3 with very
high accuracy. We may then extract the coefficielfgA)
for given values ofA by a least-squares polynomial fit. Re-

3 sulting figures from this “integration first and expansion af-

Kx(g;n,A)=— k—wg {Ko(A)+Ko(A)QZ+K4(A)Q*+--+1,

L(9,q, :n,A)= 2_7; {Lo(A)+2L(A)Q? terwards” approach can then be compared to results from the
ke opposite procedure above by definirape Eq.(25)]
+(4L4(A)+L4(A)Q -}, (25) — 7 HEK (0N, A) —Ko(A) —Ko(A) Q2
J(Q,A)= ,
QA K{(AQ

(30

where the values df;(A) are taken from the analytic calcu-
lations, wherea&,(q;n,A) is calculated numerically. If ana-
1 lytic and numerical work are equivalent, we would expect
‘nY — 1024 AL 4, ... '
Xo(9.0, )= 72Ke {1+5 Q% 55 Q'+, J(Q,A) to approach 1 smoothly &—0. From Fig. 1 we
see that)(Q,A) indeed has this feature for a number /of
where A=Kk . values. We may therefore safely conclude ttieg order in

k
Xo(dim=——5 {1~ % Q%= 7i Q"++-},
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FIG. 1. J(Q,A) for a number of values aA.
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0.4

which we perform, respectively, integrations and expansions Without any further details we now finally give the result-
in g is immaterial as long a&.>0. ing | 4(A) coefficient below as
From Eq.(18) we can generalize E@21) to
896 _ 38176 A2 #gg A4

1
|4(A)=—m{ 25 — 225

IK (A)
L(A)=3(j+2)Ki(A)+A — ] (31)
) : : IA + 1180 A6 1201 A8 361 7104 1L 12
This givesLy(A), Lo(A), andL 4(A): 4+ A2
g o(A), Lo(A) 4(A) LA A2 |n( - (33)
A? 44 A2 o , .
Lo(A)=1+ A 1 A2 In( el Inserting into Eq(28), for L, we then obtain
1
LQ(A): ;23 [ lle +22A%+ % A4+ § Ae]
(4+A?) 4 + R A+ AR+ LA+ S A
3 4+ A\? 4+ A2
_ A2
16A n( A2 y (32) + SL(SO A2 In Az (34)

To zeroth order inA (A—0 being the unscreened linit

256 | 6976 A 2, 85696 A 4, 2444 A 6 this gives
E‘*’zzsA"'msA"'nA 9

L= e R

23
4+ A2 La(A)=— 57— 55~
+ 15 AB44AL04 2 AT L A2 In( el 4 240A° 2700
1 7
The only remaining unknown in Eq28), 1,(A), requires Ly(A)= W”L 300° (35

an expansion of(g,q, ;n,A) to Q% This turned out to be a
rather formidablealbeit straightforwarfitask involving, for (L, expansion added for comparigon

example, derivatives liké" " (k; A)/dk") -y up ton=6. L,—Lj and, by Eq(20), therefore also the gradient coef-

In spite of the sheer complexity of such calculations we havdicient C (¥, are in other words singular as—0. It can be
great confidence in the final results since the bulk of theshown that the coefficierB (¥ has this feature as weff,
actual work was checked with the help of a symbol manipuwhich is rather disturbing considering the significance still
lating program(MATHEMATICA). The analytical results are attached to the screen&d!’ values. We would like to point
also in very good agreement with numerical calculationk of out, however, that the unscreenad-0 limit of the above
with A~0.5. These numerical results will be discussed incoefficients doesot, in any sense, imply infinite exchange
more detail shortly in the context of the=0 limit. corrections. While the unscreened expansion can be viewed
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as a limit ofA <q<2kg asA—0, in the screened case it can between the numerical calculations and the analytic results
be shown(numerically that L, (and K,) can only be ex- given above forq<\ is very good. To illustrate this, we
panded in a polynomial for values g\ (A<2kg). As the  define the functiorN,

above contributions th., will be of orderg*\?, E, in Eq.

(12) will remain finite for an arbitrarily smallk. Unfortu- m3kE1(g,0, 50, A) —1o(A)—1,(A)Q?
nately, this also means that the range of validity of the N(Q.A)= 1,(A)Q7 '
screened coefficients shrink as-0, effectively rendering (36)

them meaningless per se for calculations on anything but ) ) )
model systems. One could, of course, surmise that the singherel(q.,q, ;n,A) is calculated numerically. A polynomial
larities are canceled by singularities of opposite sign froml€@st-squares fit tbl(Q,0.5) then gives

similarly (screeneg correlation gradient coefficients. If this ) 4 6
turns out to be the case, it would still be necessary to shoW(Q,0.9=1.00206+ 2.7838R°— 19.5298" + 117.474Q".

that the coefficients are insensitive to whether\ or A<q (37)
as both approach 0. As we see from the fitN(Q,0.5) here does indeed approach
The desired unscreened value lof could possibly be 1 asQ—0.
inferred from our screened analytic calculation by assuming, When turning to the numerical calculations of
say, the ratio between the screened,lirp(L,/L,), and un-  1(q,g, ;n,A) with A=0 it should thus be kept in mind that the
screened coefficientd (/L ,), -, to be the same. This would basic correctness of the computer code for these calculations
imply a value ofL = —3L,. hgs been verifigq for ang. In practice, it w_iII, of course, bg
Aside from such(in the absence of higher-order gradient Slightly more difficult to converge calculations properly with
expansion coefficients of the correlation engrgather & “Pare” Coulomb-interaction. Judging from rates of con-
speculative considerations, there is, obviously, also the opt€r9ence, our final results appear to be fully converged to at
tion of obtaining L, from a numerical calculation of Iegst five digits of accuracy. However, since no direct ana-
. , ytic comparison exists in this case, subtle numerical diffi-
I(g,9";n,A=0) for selected values off and q’. Unfortu-

_ culties cannot be entirely ruled out.
nately, no way of adding all the vertextf) and self-energy y

o ) Srsimi It is still rather surprising that the resulting values, while
(Iy) contributions in the style of Geldart and Taylorsimi- reproducing the constant term o&=3K,—2L,=1) quite

lar calculation suggests itself. Instead one is faced withq (better than 0.1% do not reproduce the? coefficient
“brute force” and rather lengthy calculations of the separateyrescriped by the derivative theorefiq. (14), 1,= K,
contributions, where great care must be exercised when iny 4K, + 2| ,—4L,= 3] with even closely the same accuracy
tegrating over the bar@r almost bareCoulomb interaction. (| o» With the A argument dropped implies, as figr, andL,,,

Of the technical aspects of the integration, we will just men-A=0). We should add that the calculated values pfollow

tion that bothly and I, can be reduced to a number of from a least-squares fit for values @fin the rangeQ=0.1—
three-dimensional integrals to be performed numerically0.6. As noted previously, the fulfillment of the derivative
Both the Green'’s functions and tlieare Coulomb interac- theorem is a necessary requirement for the construction of
tion give singularities in the integrand, which are, howevergradient corrections. Therefore, a slightly erroneous value of
all integrable. We have performed such calculations for d, can only be accepted if the value 6% is adjusted accord-
number ofg’, g, and\ values including\=0. The agreement ingly. We do not consider this a viable option. There is, by

1.6 T T T T T T T T T
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1.45
1.4
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FIG. 2. k2/(27%)L(g,q, ;n) from numerical

13 calculation vs the polynomial fit from Eq39).
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now, quite ample evidence(from a variety of kﬁ

technique$- 2181819 for a value ofK ,==.. 53 Lx(0,20, ;) =0.999 85 1.269 302 +1.1244)%
Whatever the reason for the present inaccuracy in the “re- i

produced” values, andK ,—numerical error or a more fun- +1.534 4&)° (40)

damental breakdown of the exchange-energy expansion in

terms of response kernels—we suggest the following scheme

to extract a value of ; as accurately as possible. We solve (see Fig. 3. The expression above reproduces ¢hiulated
the determining equatiof23) with respect ta_,(q,q,) fora  values typically to within 10°. Since 3.,=1.389 we see
range ofQ values sufficiently large so as to ensure that con-again that, is in error by some 10%. The value fbf from
tributions from (and therefore relative errors)inerms of  thjs fit, L,=—0.099 is rather more unreliable, since B8
order Q* are (almos} of the same magnitude as terms of term will dominate in this range. It is nevertheless worth

order Q. For the noninteracting response functigffd.q’)  noting that it is consistent with the value fdr, above
we have here used a closed expression given by Lloyd a”@vithin the stated error limits
SholP%. Since|Q—Q,|=v2Q, we are restricted bR<v2.
We have performed calculations in this way for seven vésllues
betweenQ=0.5 ar_ldQ—l.O. A Ieast-squargs fit to ord€r IV. CONCLUDING REMARKS
of these values gives the following result:
The basic idea underlying the present work is that an atom
k2 is not a linear perturbation on the electron gas. From the
23 L«(9,9, ;n)=0.999 221 0.504 47>+ 0.152 548)* notion that a molecule or a solid is a collection of atoms, it
then follows that the construction of gradient approximations
+0.096 659 O° (39 for such systems should be based on higher-order response
functions of the homogeneous system. In this work we took

(see Fig. 2 The Q? coefficient which should properly be the first step beyond linear response, and tried to obtain gra-
2L,=0.556 is off by some 10%. Consequently, Bécoef-  dient corrections from second-order response theory. This
ficient (=4L,+L}) can be expected to be in error by 20% at leads to corrections to the LDA which involve the Laplacian

most. This yields an estimate &f,= —0.091+0.03 andL, of the particle density—an ingredient absent from nearly all
~L,=0.15-0.03 ¢ approximations presently in use. Some preliminary results on

model solid€? indicate that the Laplacian is indeed a useful
additional ingredient.

To start with the simplest possible realistic case, we have
here limited ourselves to the study of exchange energies for
8 which accurate answers are easily provided by full calcula-

F o 2 N4 tions. We chose the particular version of exchange known as
273 D820 =1+ 50,07+ (294 +4L) Q7 - the Talman-Shadwick scheme, or sometimes the optimized-

(39 potential model, and here referred to as the exchange-only
approximation(EXOA). In this scheme exchange energies
A least-squares-fit to orde®® of ten calculated values be- are strictly linear ine? i.e., the strength of the Coulomb
tweenQ=0.18 and 0.39 gives interaction. We worked out an analytical formula giving the

We have also performed calculations lof(g,q’;n) with
g'=2q, within a somewhat narrower range Qf values. In
this case the calculated property can be expressed as

1.24 T T T T T

FIG. 3. k2/(27%)L,(0,29, ;n) from numeri-
142 b 4 cal calculation vs the polynomial fit from Eqg.
(40).
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second-order response kerheldefined to be the third func- change effects. If the Yukawa screening length i¥/ much
tional derivative with respect to the density of the exchangdarger than an atom, the HF treatment of that atom would be
energyE, within the EXOA. In its most general fornt,, is  virtually the same in the real world and the Yukawa world. A
a three-point function or a function of three momenta ingradient approximation based on a Taylor series at small
reciprocal space. Due to the translational and rotational inmomenta would have the coefficients given by E®9),
variance of the homogeneous electron gads a function of (32, and(34), which would give very bad resultsee the
only three numbers and we have given the explicit polyno-discussion at the end of Sec.)lIOn the other hand, a gra-
mial form thatL, must have at small momentum transfers dient approximation with suitably chosen coefficients could

(small g's). We have considered polynomials up to sixth still produce reasonable results. It is in this spirit that we
order, and demonstrated how these polynomial representq2Ve obtained the gradient corrections of the present work.
e suggest that gradient coefficients be determined by fit-

tions in reciprocal space give rise to gradient corrections ir). it dient . i tel lculated
real space. We stress that the possibility of constructing gra—Ing appropriaté gradient expressions to accurately calculate

dient corrections is crucially dependent on the validity of aexchqnge energies for weaglgy perturbed electron gases. Such
derivative theorem which relates the limit bf when one work is presently in progress.
momentum vanishes to density derivatives of the linear-
response kerndk, . The latter is the second functional de-
rivative with respect to density d&, .

_The expression fok, has been evaluated numerically at  The guthors wish to thank C.-O. Aimbladh for many use-
different momentum transfecps for different values of the  f| giscussions during the course of this work.
screening length 1/in a screened Coulomb interaction. At
small but finite\, the calculations are numerically stable for
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expansion ofL, . As was the case fdK, , the coefficients

of the terms that are fourth order qare shown to be sin- The first-order change ik, with respect to variations in
gular (blow up) asA\ tends to zero. the effective potentiaV=w+ [nv+v, [Eq. (3)] is easily

Approaching the true Coulomb potential, i.e., the limit worked out directly from Eq(1) and the definition o, [Eq.
A—0, the numerical calculations become unstable for certaiid]:***
combinations of the independent momentum variaglesd
g’ when these are very small. This difficulty could be the
result of our inability to find a sufficiently stable fortm the Xo(T.ruy(ry)dry
numerical sengeof the constituent integrals. It could also
have a more fundamental reason. In the case of a bare Cou- L 3 3
lomb interaction, it could be thdt, is not analytic at zero ==3 | xo(ry,r2;1)v(ry,ra)n(ra,ry)d’r dr,. (Al
momenta and, therefore, that the gradient expansion does not

exist in the orthodox sense. Such a situation would be surfl this and the following equations, a generalizeti-order
prising in view of the fact thak, is analytic at zero momen- 'esponse function of noninteracting electrons is defined by

tum (g—0). We remind the reader, however, th&} is not

analytic in the HF approximatiofnot to be confused with . Oxo(r,r';ry...fn—1)

the EXOA), (Ref. 25 and that work by Langreth and Xo(ILr'5rg....fn) = V()

Voskd?® on density response in the high density electron gas

indicates that analyticity is not restored by taking correlation on(r,r')

into accountK,. (=K, including correlatioh has ag? term REVIABREVINE (A2)

but the next-higher-order terms contajf andq® Inq.

Nevertheless, we have found it quite possible to obtain ar further variation ofE, with respect td/ gives a determin-
accurate polynomial fit to our calculated values fgfq,q’)  ing equation forK,,
in the region of momenta from-0.5; to ~kg . The coeffi-
cients of the fourth-order terms in a sixth-order polynomial o, 3
fit to the numerical data are combined to form our result forf Xo(r,T31 7, Ta)uy(ry)dry
the fourth-order gradient correction. The corresponding
second-order coefficient is in slight violatidd0% of the a3 43
derivative theorerfiEq. (14)]. Therefore, we believe our total +f Xo(T.F)Kx(r1,r2) xo(r2,r")d*r1dr
gradient coefficient to be accurate to within 20%.

Response functions might or might not have a Taylor ex-
pansion at small momenta. If they have, calculation of the
corresponding coefficients could prove to be intractable. It
seems appropriate to recall the purpose of the entire proce-
dure, namely, to approximate the response kernels over some
region of momenta between zero and. . It could well be
that the Taylor expansion is not the best way of achieving (A3)
this end. To illustrate the point, we might think of a world Still one further variation with respect t&¢ produces the
with a Yukawa interaction between electrons and only ex-determining equation fok,:

= _%f )(o(rl,r2;r,r’)v(r1,r2)n(r2,rl)d3r1d3r2

_%f XO(rlarZ;r)v(rlurZ)XO(rZ:rl;rl)dgrldSrZ-
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| ot o0t | xolr s K oot
+f Xo(r".l’";r,rl)Kx(rl,rz)Xo(rz,f')d3r1d3r2+f Xo(r' /51", r K (ry,r2) xo(r2,rd3r,d,

+f Xo(rlrl)XO(r,1r2)X0(r”1r3)LX(rl1r21r3)d3rld3r2d3r3:_%j XO(r]JrZ;rvr,7r")v(rl1r2)n(r21rl)d3rld3r2

_%f Xo(F1,12;0,1)o(re,r)xo(ra,re;r")d3rdr,—

_%j Xo(rlyl’z;r',r")U(rlJz)Xo(rz,rl;r)dsrldSrz-

Now assuming translational invarian€electron-gas limijt

%f Xo(r1,r2;1",Dv(ry,r)xo(ra,re;r)d3r,d,

(Ad)

x{G(q,)2"(qy) +G(q:+9)2 (g +q")

the Green'’s function of the system can be written in the usual

form

1

0+
w—e+idsgnow—ep)’ '
(A5)

The determining equation df, above can then be Fourier
transformed to

G(g)=G(k,w)= o=

Xo(@)xo(d ) xo(d" —a)Lx(d,9")=1x(0,q") +1y(aq,9")
+14(0,9") — x0(d,9")[Ky(a) xo(Q) + Kyx(a") xo(q")

+K(q" =) xo(qd" =], (AB)
where

1V(9,9")=—42 G(a1)G(q:+9)G(d;+q)v(gy—0y)

+G(a;+ )X (g + o)}, (A8)

|x<q,q'>=—4vxq2 G(g1)G(a;+a")G(a; +9)

xX{G(a)+G(a1+a)+G(a:+q")}, (A9)
and3HF is the HF-self-energy,

2“F<k>=—§ v(k—a)n(q). (A10)

Furthermore

xO(q>=2qE G(91)G(g;+q), (A11)

XO(q.q')=4q2 G(d1)G(a;+a)G(g,+q") (AL2)

represents the Fourier-transforms ofy(r,r;r;) and
Xo(r,r;r1,ro), respectively. Herex, above should be inter-
preted asfd3q dw(27) #/i. The frequency integrations in
Eqgs.(A7)—(Al12) are trivially carried out to yield

Sy +a’)—2"F(qy)

4102
X{G(02)G(q2+9")+G(02)G(g,+q)
+G(d,+9)G(d,+q")}, (A7)
Iz<q,q'>=—4q2 G(d1)G(a;+9")G(a; +9)
1
|
n r—N
gq:+q qq
1s(0,9")=42 (
q1 | €q;+q~ €q; \ €q,+9’ "~ €q;

+

Ngy+a~ Moy Ngy+q™ Ny +a

”q1+q_nq1+q’)

€qy+q™ €ay+q’ €q;+q’ ~ €q;

1 (
€q,+q’ " €q; \ €a;+q” €q;

€q,+q™ €ay+q’

3o+ 9) -3 (a) 2" (qa+9)-2"(aqy)

) SHR(qy+a) —3HF(qy)

€q,+q™ €q;

Ng,+q' ~ N +q (

)

— 2 — —
(€q,+q' ~ €qy+0) €q,+q~ €qp €q,+q'~ €q,
(A13)
, 1 Ng,+q~ Mg, Ngy+q' ~Nay| [ Nay+a™ Mg,  Nay+a " Ng,  Ngy+q™ N+
I(0,9')=-42 — — — —+ —+ ——— v(di—da),
192 €a,+q~ €oy+a’ \ €a+q” €a;  €a+a9’ T €qy/ \ €a,+a” €a,  €op+q’ T €, €a,+q7 €yt

I'x

0
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and Lx(ququqS)
Ng,+q~ N, Q)T it Tom—i03-T3q3r  3r 3
Yolq=2> ———, (A14) = | Ly(rq,ry,rg)e'9re 92727193 "3d%r , d°r ,d°r 5.
a1 €a;+q €qp
(B7)
1 . .
Yo(9,9)=4>, ——M—M— The fact tha{Eq. (B4)] L(r4.r,,r3) is only a function of the
a1 €a;+g” €gy+aq’ coordinate differences;—rz andr,—r; was already explic-

itly taken into account in defining,(q,q’). We may now

Ng,+a~ Mg, Nag+g =Ny (AL5) insert Eq.(11) into Eq. (B7) to obtain the relation
€q,+q" €q,  €qy+ar €qy) ~
o ' L(01,02,03) = (27)38(dy + o+ ) Ly( A1, — Qo).
Heren,=6(ke—q) and e;=q?2. With 1,=0 andq’'=q, (B8)
we finally arrive at Eq(23). (Note thatly has been some- ~
what rearranged to facilitate numerical evaluation. From Eqs.(B5) and(B7) above, we see that,(q;,0,q3)

is rotationally invariant as wellL, , when expanded around
g:=0,=03=0, must therefore be expressible as a constant
plus terms being multiples ofQ11,Q22 Q33 Q12 Q23 Qa1
Here we will present some relations of importance for thewhere Q;; =g;-q; . Now, sinceq;+q,+0d;=0, Q;;, i#] are
kernels in Eqs(6) and (7). Assuming full rotational, trans- all expressible as linear combinations of the diagonal terms
lational and inversion symmetry, we may write: Qii- We may then usgQq;,Q,,Qz3f as the “building
blocks” to construct the general form &f, to any order in

APPENDIX B

Ky(r,r')=K,(r+R,r'+R), .
Finally, we utilize permutational invariance to establish

Kx(r,r")=K(Rr,Rr’), (B1)  the proper linear combination of th@;; . The group of op-
erations for permuting the argumergs, q,, andq; as de-
Ky(r,r")=Ky(—=r,—r"), scribed in Eq(B6) is isomorphic taD 3, that is, the rotation

group of order 3.

We are now in a position to work out the proper form of
L, to second order ifQ. The three-dimensional representa-
tion I'® for which the{Q;;}, i=1,2,3 form a basis can be
decomposed in the irreducible representation® gfby in-
spection. We obtaifi®=A, +E. In order to obtain the com-

Kx(q)=f K,(r,00e”19"d3r, (B2) pletely symmetric function belonging #,; we may operate
with the projection operatd?" =3Py on, sayQ,;. We
which, together with Eq(B1), gives K, (Rq)=K,(q) and obtain
K, (—g)=K(q). (The densityn, dependence of the response
functions is suppressed, where it is not of importance to the
reasoning The following “small-q” expansion must there-
fore be valid:

whereR andR represent, respectively, arbitrary translations
and rotations. SincK, is then(spatially only a function of
the relative coordinate—r’ we obtain Eq.(10).

Inverting Eq.(10), we find

PAYQ, = %; PrQ11~ Q11+ Q2o+ Qgs. (B9)

To fourth order inQ
Kx(a;n) =K, (0){1+K,Q%+ K4Q*+ KgQ0 + ...}

(B3) {Q%1,Q%2,Q33,Q11Q22 Q2:Q33 Qa:Q11}
Similarly, for L, we have full translational, form a six-dimensional representatidf’. We decompose
again to obtail"®=2A,+2E. In the same way as before,
Lu(ry,r2,r3)=Ly(ri+ R+ R,r3+R), (B4)  we project out the two functions belonging to the two repre-

and rotational sentationsA, in the I'® decomposition:

Lu(ry,ra2,r3)=Ly(Rry,Rry,Rry), (BS) P(Al)Qil: %; PRQ%f’Q%l"’ ng'i‘ Q§3a (B10)
symmetry.
Furthermore, for a response function of the homogeneous
electron gas, we must require full symmetry in terms of all PAYQ,1Q= £ > PrQ11Q2:
possible coordinate permutations: R
Lu(r1,r2,F3)=Lx(r2,r1,r3)=Ly(ry1,rs,ra)=Ly(rz,ra,ry) ~QuiQ+ Q235 Qedur- (BLY)
=L (Fpfauf 1) =Ly(F.l1.Fp). (B6) [The results in the equations above are, of course, the same

with the projection operator acting on afy? in Eq. (B10)
For the purposes of calculating gradient-correction coeffiandQ;Q;;, i#j in Eq.(B11)].
cients, we _need to know the small{g<2kg) expansion of Continuing to sixth order, we have a ten-dimensional rep-
the kernelL,(q;,0,,03), Which is defined as resentationl'® from the elements{Q3}, {Q7Q;}, and
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Q11Q2:Q33 1,j=1,2,3. DecomposingF<6>=3A_l+A2+_3E. +Q3Q11+ Q5Qss+ Q3:Q11+ Q5:Q22)
Projecting out the three completely symmetric functions, we
obtain +16Q11Q2Q33- (B1Y)

PAIQS =1 PrR3,~Q3+Q3,+Q%, (B12  According to Eq.(B8) the “reduced” L, contains(in our

R case the same information, and may as well be used as the
full L,(g;,,9,,05)- Now, settingq,;=q, g,=—q’ (and conse-
quentlyg;=q’—q), Eq.(B15) may be rearranged to yield an
equation for the smal) expansion ofL,. Here we have
chosen a differentbut completely equivalehtcombination
~Q%1Q20+ Q%1Q33+ Q5:Q11 of the invariant polynomials given in Eqé89)—(B14). The

reason for our particular choice will shortly be apparent:
+Q3Qast Q5:Qu1+ Q3Q2, (BLY)

PA)Q%,Q.= %; PrQI1Q2.

L(9,9)=Lx(0,0{1+Lo(Q*+Q"?~Q-Q")
+L(Q%+Q"?~Q-Q")*+L4(Q°Q"?
_ "2+L 2, 02-0.0")3
In short, we have now demonstrated that to or@ér L, (QQII+L(Q+Q7~-Q-QY)
can be written as +Lg(Q*+Q'*~Q-Q")(Q*Q"*~(Q-Q")?)
L(01,02,03) = L(0,0,0) +15(Qu1+ Qoo+ Qo) +L5Q%Q'(Q-Q)*+ -+ (B16)
+1,(Q2,+Q5,+Q3
o Quut QaoF Qad Insertingg=q’ into Eq. (B16) and comparing with Eq.
+12(Q11Q2+ Q25Q33+ Q33Q11) (14), we now see that a knowledge of the sntpkxpansion

3 3 3 L 5 of K, also determines the coefficierts, while the primed
+16(Q1y+ Q2+ Q39) +16(Q11Q22+Q11Q33  coefficients have to be determined by other means.

P*Q13Q,,Q33= %; PrQ11Q2:Q33~Q11Q2:Q33-
(B14)
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