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Straightforward gradient approximation for the exchange energy ofs-p bonded solids

M. Springer, P. S. Svendsen, and U. von Barth
Department of Theoretical Physics, University of Lund, S-22362 Lund, Sweden

~Received 28 May 1996!

In the present work we perform a straightforward gradient expansion of the exchange energy of a perturbed
electron gas. Studied perturbations range from very weak to those that produce, e.g., a siliconlike band
structure with a band gap. The expansions involve density gradients up to fourth degree and we include all
terms originating in linear- and second-order response theory. The expansion reproduces our exactly calculated
exchange energies with an accuracy of the order of a few mRy per electron for metallic systems. For systems
with a bandgap the accuracy is reduced by an order of magnitude. When the coefficient of the fourth-degree
gradient originating in second-order response theory is used as a variable parameter, we find a best fit to
calculated exchange energies when the coefficient agrees with that obtained in previous work on second-order
response theory. Thus, the present results corroborate our previous analytical work. We emphasize the possi-
bility of obtaining very accurate exchange energies fors-p bonded solids and we discuss the possibility of also
including correlation energies within the same simple scheme.@S0163-1829~96!01547-0#
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I. INTRODUCTION

Numerous papers on density functional theory1,2 ~DFT!
start with the cliche´ that DFT has become the most wid
spread and accurate method for obtaining the ground-s
properties of solids and large molecules. With the adven
the generalized gradient approximations3–5 ~GGA’s! the
truth in this clichéis becoming even more obvious. Recent
a large community of researchers previously almost ex
sively using so-calledab initiomethods is gradually convert
ing to DFT. The accuracy of the GGA’s with regard to bin
ing energies of molecules is approaching 1 kcal/mol a
potential barriers are so well described that we might soon
able to use DFT to do realistic calculations on chemical
actions. There is, however, still a crucial distance in accur
to traverse before this fantasy becomes reality.

Most existing GGA’s involve only the first gradient of th
density and many of them, but not all, are supported us
arguments from linear response theory. In previous wor6,7

we have argued that the electronic density of an atom
certainly not a linear perturbation of the homogeneous e
tron gas. We have also suggested that higher-degree g
ents might be useful in attempts to model the true exchan
correlation or exchange functionals. Having said that, on
immediately facing the problem of how to obtain the prop
coefficients of such gradient terms. In that paper,7 we made a
not entirely conclusive effort to obtain the coefficient of t
term *n23u¹nu2¹2n coming from the small momentum ex
pansion of that response function which gives the third-or
change in the exchange energy of the perturbed electron
The difficulties were associated with the singular nature
the integrals defining the above-mentioned response fu
tion. As a matter of fact, we still do not know whether or n
the response function is analytic at zero momenta. Thu
gradient expansion might not even exist in the strict ma
ematical sense of originating in a Taylor expansion of
response function around the origin in momentum spa
This would, however, not mean that a gradient approxim
tion is useless. Let us here digress for a moment and give
540163-1829/96/54~24!/17392~10!/$10.00
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reader the chance to appreciate this subtle and rarely
cussed point. We first recall the normal procedure for obta
ing gradient expansions using exchange energies as an
trative example. The second-order change in the excha
energy of the electron gas is given by

dEx5
1

2E Kx~r ,r 8!dn~r !dn~r 8!d3r d3r 8, ~1!

wheredn is the deviation of the electron density from th
homogeneous densityn0. This equation actually defines th
kernelKx , which is a property of the homogeneous gas a
therefore only depends on the distance betweenr andr 8 and
the original densityn0. Going to reciprocal space gives

dEx5
1

2E Kx~q!udn~q!u2
d3q

~2p!3
. ~2!

The next step is to assume thatdn has appreciable Fourie
components only forq5uqu less thankF5(3p2n0)

1/3. If this
is the case, we will not lose much accuracy by replacing
kernelKx by its Taylor expansion around the origin in mo
mentum space. Thus,

Kx~q!52A12Bq21•••. ~3!

Then, returning to real space, we obtain

dEx5E A@dn~r !#2d3r1E Bu¹n~r !u2d3r . ~4!

In this way, we see how coefficients of gradient terms
related to derivatives of various response functions with
spect to momenta at zero momentum. Thus, gradient te
are generated in the usual way1 of simultaneously studying
the slowly varying limit of Eq.~3! and the linear respons
regime of Eq.~1!. Above, we have implicitly assumed tha
the largest part of the density lies close to the origin in m
mentum space. We also assumed that, in this region,
response function (Kx in our example above! is best approxi-
mated by its Taylor expansion around zero momentum. W
17 392 © 1996 The American Physical Society
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if the density has its largest Fourier components, say, aro
the local kF? An even more disturbing thought is that th
response function might be singular and have no, or disc
tinuous, derivatives at zero momentum. The latter possib
might not be that far fetched. Consider for a moment a wo
with a Yukawa interparticle interaction (e2lr /r ). Now
clearly, in that world, physical properties like, e.g., exchan
energies cannot be that different from those of the real wo
if the value ofl is very small. It is, by now, well known8–10

that Kx is analytic at zero momentum for alll including
l50 but that thel-dependent coefficientB above is discon-
tinuous atl50. This means that, at finitel, the kernelKx is
well represented by its Taylor expansion aroundq50, but
only in a very small region of radiusl around the origin.
Clearly, this region contains a very small part of the to
density. Outside this region,Kx is instead well represente
by a similar expression@Eq. ~3!#, but now with a quite dif-
ferentB corresponding tol50. Consequently, the gradien
approximation of Eq.~4! will be very bad in the ‘‘Yukawa
world’’ but might still give reasonable answers in the re
world.

Our example above is admittedly a contrivance. O
should keep in mind, however, that response functions
have singularities. It is, e.g., suggested by Langreth
Vosko11 that the kernelKxc is nonanalytic atq50. ~The
kernelKxc is defined similarly toKx above but includes also
correlation effects.!

The main message conveyed by the above example
however, that a gradient correction will work provided th
we find an accurate polynomial fit to the relevant respo
function over an extended region of momenta in which
particle density has appreciable Fourier components. Con
ering first the Fourier components of the density, nature
been kind to us. Most interesting molecules and solids h
densities with Fourier components which are large at sm
momenta and then decay relatively rapidly at larger m
menta. In fact, the criterion3,12 that ‘‘local’’ Fourier compo-
nents of the density is smaller than twice the local Fe
momentum,kF , is obeyed in most regions of solids an
molecules where the density is large enough to give a n
negligible contribution to the energy. We can thus conc
trate on finding polynomial fits to response functions in t
momentum region from zero to 2kF . This turns out to be a
feasible task which, as a premium, avoids possible nona
lyticities at zero momentum. This is the main idea behind
present work.

Furthermore, this idea can be generalized in an obvi
but, maybe to the purist, phenomenological way. From ba
theory, we can determine the analytical forms of possi
gradient terms involving, say, density gradients up to
fourth degree. The coefficients of these gradient terms
then be chosen in such a way that the resulting approxi
tion for the exchange-correlation energy is very accurate
a set of particular systems of our choice. Provided the cho
set spans the most important varieties of exchange an
correlation effects, one can hope to have found a gener
valid and accurate GGA. As we shall see later on, for
systems we have studied, i.e., not too strongly pertur
electron gases, the chosen coefficients deviate little fr
what is obtained fromab initio theory.
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In the present work, we have chosen to study excha
energies only. These are, in principle, exactly obtainable
serve as reference values to which we compare our diffe
gradient approximations. We note in passing, that once
are able to calculate correlation energies to the same lev
accuracy as exchange energies, the methods of the pre
work are easily extended to give accurate approximation
the full exchange-correlation functional of DFT. We als
stress here that what is referred to as exchange energi
the present work are energies of the Talman-Shadw
scheme,13 which is also called the exchange-only approxim
tion ~EXOA!. The difference between this scheme and
Hartree-Fock approximation is by now well known14,15 and
we will not dwell further upon this point here.

The calculation of exchange energies would appear to
a relatively easy and straightforward task. Our particular w
of obtaining gradient coefficients require, however, that
do not use too strong potentials and with weaker potent
the energy contributions from higher degree gradients
come very small. Consequently, exchange energies mus
calculated with a very high relative accuracy,;1024. Be-
cause of the long-range nature of the Coulomb interact
this turned out to be a difficult proposition, the efforts
which are described in Sec. II.

In the present work, we have basically used two ma
methods for obtaining gradient coefficients. One we refer
as the real-space method and it is described in Sec. III.
other method we call the reciprocal-space method and S
IV contains a full account of this method. Here we just me
tion the basic ideas behind the two methods. In the real-sp
method we chose a lattice potential represented by a se
Fourier components at some of the shortest vectors of
reciprocal lattice. The potential is considered to be the fu
self-consistent effective potential of the EXOA. The resu
ing density is obtained to infinite order in the lattice potent
by means of a plane-wave oriented band program and
orbitals are used to calculate the exact exchange ener
From the density in real space we then calculate the
change energy in the local-density approximation~LDX ! as
well as all gradient terms resulting from linear and seco
order response theory and containing at most fourth-deg
gradients. A gradient approximation is then constructed
adding to the LDX result a linear combination of the gradie
terms. For the low-degree gradient terms we use known, a
lytically obtained, coefficients while the coefficient of th
highest gradient,n23u¹nu2¹2n, from the second-order re
sponse theory is chosen so as to reproduce the exac
change energy. This procedure is repeated for different
tentials and, in the limit of small potentials, the resultin
coefficient is found to approach our analytical result obtain
previously from second-order response theory.7 Moreover,
we find that the results improve for each higher-degree g
dient that is added to the basic local-density approximati

In the reciprocal-space method the procedure for obta
ing densities and exchange energies is the same as in
real-space method. By multiplying the effective lattice p
tential by a scaling factor and calculating the exact excha
energies (Ex) for a range of scaling factors from zero and u
we can isolate that contribution toEx which originates in
second-order response~the third-order contribution!. Assum-
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ing that we knowLx , defined as the third-order derivative o
the functionalEx with respect to density, the third-order co
tribution toEx can be calculated exactly. Using potentials f
which the resulting density only has appreciable compone
at the shorter vectors of the reciprocal lattice, it would
enough to know the kernelLx at small momenta. One way t
achieve this is to study high-density systems, i.e., those w
many electrons per unit cell. We thus use a polynomial fi
the kernelLx in momentum space. The constant and theq2

coefficient are taken from analytical work6 and theq4 coef-
ficient is determined so as to reproduce our numerically
culated results. We again find aq4 coefficient close to tha
obtained in our analytical work.7

In several aspects of the present work, perturbation the
is a key issue. For sufficiently weak potentials, perturbat
theory is certainly appropriate in the mathematical sense
this we mean that, when scaling the potential from zero
up, there is a radius of convergence pertaining to the sca
factor. Below this radius, we can obtain successively be
results by going to a higher order in perturbation theo
Beyond that radius, we believe that, e.g., energies rem
analytic functions of the scaling factor while we can
longer expect to be able to systematically improve our res
by adding more terms in the perturbation expansion. T
latter might, however, represent an asymptotic expansio
the sense that, for stronger potentials, accurate results
obtained in low-order perturbation theory while the resu
deteriorate by adding more terms in the perturbation exp
sion. These points are discussed in Sec. V. Finally, in S
VI we give our conclusions.

II. THE EXACT EXCHANGE ENERGY

The basic quantity needed in order to pursue the id
presented in the introduction, is the exchange energy of
turbed electron gases. We will, in other words, expose
gas to some external potential and then calculate the re
ing density and exchange energy within the EXOA. In ord
to avoid the implied self-consistency procedure, here we
the usual trick of directly specifying the effective Kohn
Sham potentialV ~within the EXOA!. That is, we consider
V to include the external potential as well as the Hart
potential from the electron distribution, and the exchan
potential. For the purpose of solving the one-electron pr
lem with relative ease, we have chosen to study perio
potentials. This means that we solve a one-particle Sc¨-
dinger equation of the form

F2
1

2
¹21V~r !Gwk,n~r !5Ek,nwk,n~r !, ~5!

in which the potential has the form

V~r !5(
g
V~g!eig•r, ~6!

whereg is a vector of an fcc lattice. For the metallic system
we have chosen nonvanishing componentsV(g) of the total
potential only at the two shortest ‘‘stars’’ of the reciproc
lattice. This means, at most, two numerical values for
potential amplitudes — one for the eight vectors of the fo
(1,1,1) and one for the six vectors of the form (2,0,0). F
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the semiconductors, we have used potentials also with c
ponents at a few longer vectors of the reciprocal lattice.

Thus, the problem can be solved by using an ordin
band program based on plane waves. The zero of pote
energy is chosen such thatV(g50)50. The exchange en
ergy is given by

Ex52
1

4E un~r ,r 8!u2v~r2r 8!d3r d3r 8. ~7!

herev(r2r 8) is the bare Coulomb potential andn(r ,r 8) is
the density matrix, which for our spin-compensated syst
can be written as

n~r ,r 8!52(
k,n

wk,n~r !wk,n* ~r 8!nF~k,n!. ~8!

The Fermi-factornF(k,n) restricts the sums ink and n to
occupied states only. The electron densityn(r ) of the system
is obviously the diagonal of the density matri
n(r )5n(r ,r ).

We next define the square of the density matrix

m~r ,r 8!5un~r ,r 8!u2. ~9!

Since the density matrixn(r ,r 8) is periodic with respect to
simultaneous lattice translations inr andr 8, m(r ,r 8) has the
same symmetry and can be expanded in a Fourier serie

m~r ,r 8!5 (
gg8q

mgg8~q!ei ~g1q!re2 i ~g81q!r8, ~10!

whereq only runs over the first Brillouin zone~BZ!. Insert-
ing Eq.~10! into Eq.~7! and Fourier transforming, we obtai

Ex52
V

4(
gq

mgg~q!v~g1q!, ~11!

wherev(g1q)54p/ug1qu2 is the Fourier transform of the
Coulomb potential, andV is the volume of the full system
Due to the small-q singularity of the Coulomb potential, we
add and subtract a termm00(0) giving

Ex52
V

4(
gq

@mgg~q!2m00~0!#v~g1q!

2
V

4
m00~0!(

gq
v~g1q!. ~12!

The first term in the equation above is finite forg50 and
q→0. The second term contains no matrix elements and
be evaluated exactly. In practice, we add and subt
m00(0) only within the first BZ, that is forg50. In order to
avoid explicit evaluation of the second derivative
mgg8(q) with respect toq at q50, we use a mesh within the
first BZ which excludes the pointG(q50).

The diagonal elementsmgg(q) are given by a sum ove
the first BZ and contains all the Fermi-surface depende
through the two Fermi factors.
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mgg~q!5
4

V2 (
k,n,n8

nF~k,n!nF~k2q,n8!

3 z^k,nuei ~q1g!ruk2q,n8& z2. ~13!

Accurate evaluation of Eq.~13! is of crucial importance for
the success of the present work. As will be discussed la
the errors in the exchange energies must be smaller
contributions from high-degree gradient terms which
typically in the range 102321024 Ry for the systems stud
ied.

For the case of a metal, evaluation of Eq.~13! turns out to
be rather difficult. A straightforward integration using, e.
the tetrahedron method with Blo¨chl’s16 corrections is prohib-
ited by the coupling between the Fermi factorsnF(k,n) and
nF(k2q,n8). We have instead adopted two simpler me
ods, namely, broadening of the Fermi factors with some
nite temperature and so-called simple sampling.

The temperature dependence (T) of the exchange energ
of an electron gas displays an unphysicalT2lnT ~Ref. 17!
divergence. Moreover, for a real system the coefficients
the T2lnT and T2 terms are not known. However, one ca
still use a Fermi broadening and subsequently determine
zero temperature limit by fitting the result to the followin
form:

Ex~T!5C01C1T
2lnT1C2T

2, ~14!

whereC0 obviously represents the desired limitEx(T50).
For the even more robust sampling method we simply ad
the weight of the lastk point lying at the Fermi energy in
such a way so as to obtain the correct number of particl

We have tested these two methods versus known re
for the homogeneous electron gas. Somewhat surprisin
the simple sampling method turns out to work better tha
method based on a broadening of the Fermi surface. In
dition, the sampling method does not require any fine tun
of the broadening parameter. Therefore, the calculations
metallic systems reported here are done using the sim
sampling method. The price we pay is a nonuniform conv
gence. Using ak mesh with up to 18 points in each directio
an accuracy of better than 0.1% in the total exchange en
per electron is obtained.

III. THE REAL-SPACE METHOD

Having obtained accurate exchange energies from
method described in Sec. II, we are now in a position
proceed with our program described in the introduction. B
simultaneous study of the slowly-varying limit and the lim
of low-order response, both the forms and the coefficient
front of different gradient corrections can be determine6

We will now investigate the possibility of modeling the exa
exchange functional by retaining these forms, while us
the coefficients as adjustable parameters.

Defining the following separate gradient contributions,

ex
LDX@n#5AxE n~r !4/3

d3r

N
,

ex
GE1@n#5Bx

~2!E u¹n~r !u2

n~r !4/3
d3r

N
1Bx

~4!E u¹2n~r !u2

n~r !2
d3r

N
,

r,
an
e

,

-
-

f
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.
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gy

e
o
a

in
.

g

ex
GE2@n#5Cx

~4!E u¹n~r !u2¹2n~r !

n~r !3
d3r

N
, ~15!

the total exchange energy per electron,ex@n#, can be written
as

ex@n#5ex
LDX1ex

GE11ex
GE21•••, ~16!

whereN is the total number of electrons in the system. T
coefficients in Eq.~15! are given by6,8,10

Ax52
3

4 S 3p D 1/3,
Bx

~2!52
5

216p~3p2!1/3
,

Bx
~4!52

73

64800p3 ,

Cx
~4!5

1

54p3 ~L42L48!5
73

64800p3 2
1

54p3L48 . ~17!

In this work all quantities are in atomic units, except en
gies, which are in Rydbergs~Ry!.

The dimensionless numberL4 is known exactly from a
simple density derivative relation between the first- a
second-order exchange response kernelsKx andLx .

6 On the
other hand, the numberL48 has been approximately obtaine
from a study of the second-order response kernelLx .

7 We
obtained the valueL48.21.5L4, with a numerical uncer-
tainty of some 30%.

Note that, due to the appearance of the spatially dep
dent densityn(r ) in the denominators of Eq.~16!, we are not
exclusively confined to the study of densities which devi
little from a constant densityn0.

7 The fact that our forms are
based on density gradients does, however, mean that the
tems studied should not be too far from the slowly varyi
limit.

In a first attempt to reproduce exchange energies
means of Eq.~16!, we soon realized that adding terms fro
Eq. ~16! with the known coefficients from Eq.~17! led to
successively more accurate results. This can be seen in
Tables I and II where the contributionex

GE2 has been calcu-
lated using our previously obtained result f
L48(521.5L4). We notice that, with this value ofL48 , the
addition ofex

GE2 reduces the error by one order of magnitud
i.e., to a few tenths of a percent. With the purpose of furt
reducing this error, we decided to fix the coefficientsAx ,
Bx
(2) , andBx

(4) at their theoretical values, and to treat only t
less certain coefficientCx

(4) as adjustable.
As typical examples of metallics-p bonded systems, we

have chosen two sets of lattice potentials. One set is cha
terized byV1115V2005leF at the eight nearest neighbo
and the six next nearest neighbors of the reciprocal of the
lattice. Herel is a dimensionless strength parameter. A
other Fourier components of the potential are zero. For
other set of potentials we chooseV11151.5V2005leF as the
only nonvanishing 14 components. For each set of poten
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TABLE I. Calculated exchange energies per electron for different values of the effective potentialV. All
exchange energies are in Rydbergs. The rightmost columns are results from the GGA’s due to BeckeB) and
Perdewet al. (P), respectively.V111(5V200) is in units ofeF50.4765 Ry.

V111 Exact ex
LDX ex

LDX1ex
GE1 ex

LDX1ex
GE11ex

GE2 ex
GGA (B) ex

GGA (P)

0.038854 -0.3327 -0.3318 -0.3327 -0.3327 -0.3333 -0.3332
0.077709 -0.3425 -0.3388 -0.3424 -0.3425 -0.3445 -0.3445
0.116563 -0.3580 -0.3508 -0.3585 -0.3582 -0.3623 -0.3622
0.155417 -0.3778 -0.3668 -0.3797 -0.3781 -0.3847 -0.3846
0.165131 -0.3831 -0.3712 -0.3855 -0.3834 -0.3907 -0.3906
0.174844 -0.3884 -0.3757 -0.3914 -0.3887 -0.3968 -0.3967
0.184558 -0.3939 -0.3803 -0.3975 -0.3941 -0.4029 -0.4028
0.194271 -0.3993 -0.3849 -0.4036 -0.3996 -0.4091 -0.4089
0.203985 -0.4047 -0.3896 -0.4098 -0.4050 -0.4153 -0.4151
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we compute the exchange energies and the electron dens
We can thus define two functions of the parameterl as
follows:

D~l!5ex~l!2ex
LDX~l!2ex

GE1~l!, ~18!

and

G~l!5E u¹nl~r !u2¹2nl~r !

nl~r !3
d3r

N
. ~19!

Due to the previously described difficulties~Sec. II! asso-
ciated with obtaining very accurate exchange energies, t
is an inherent uncertainty inD(l) of the order of a few
tenths of a mRy (;1024 Ry!. Thus, the need for numericall
significant values ofD requiresl to be sufficiently large. For
our fitting procedure, yet to be described, we have cho
l values in the range 0.02–0.9 for the two sets of potent
the results of which are displayed in Tables I and II. W
these values, the quantityD is of the order of 0.5 mRy. Note
however, that we would not like to makel very large. At
small l, i.e., within the regime of linear response, the ele
tron density will have Fourier components only at the sa
reciprocal lattice vectors as the potential. The number
electrons per unit cell (3 in the calculations reported
Tables I and II! is such thatq/(2kF) is smaller than 1
@q/(2kF) is 0.77 and 0.89 for the vectors (1,1,1) a
(2,0,0), respectively#, and the criterion for a slowly varying
ies.

re

n
ls

-
e
f

density14 is thus obeyed. Whenl is made larger, a higher
order response will cause the density to acquire Fourier
plitudes at longer reciprocal lattice vectors. In such a cas
straightforward gradient expansion will become less app
priate, and might require the introduction of some cutoff p
cedure at largeq:s.

Assuming some systematic constant error,D0, in calcu-
lated exchange energies, we fit our calculatedD:s to the
form

D~l!5D01CG~l!, ~20!

whereC obviously represents the best possible choice
Cx
(4) . For the first set of potentials (V1115V200, Table I!, we

obtain D050.3 mRy, and a value ofC corresponding to
L48521.45L4. The largest error in this fit is indeed sma
~0.04 mRy!, thus giving us confidence in the procedure. F
the second set of potentials~Table II!, we obtain a value of
C corresponding toL48521.75L4. The corresponding pre
dicted systematic error~0.8 mRy! in the calculated exchang
energies is somewhat larger than we had expected from o
estimates. The maximum error in this fit is also larger th
before~0.16 mRy!—perhaps indicating that, in this case, w
are leaving the slowly varying limit at the higherl:s.

We note here, that we have no obvious reason to exp
that the phenomenological path followed in the present s
tion would lead to gradient coefficients equal to those o
tained from first principles. In this section, we wanted t
05
90
50
68
91
17
45
73
99
TABLE II. Same as in Table I, butV11151.5V200.

V111 Exact ex
LDX ex

LDX1ex
GE1 ex

LDX1ex
GE11ex

GE2 ex
GGA (B) ex

GGA (P)

0.023313 -0.3303 -0.3302 -0.3304 -0.3304 -0.3306 -0.33
0.069938 -0.3376 -0.3354 -0.3376 -0.3377 -0.3390 -0.33
0.116563 -0.3515 -0.3460 -0.3518 -0.3517 -0.3550 -0.35
0.163188 -0.3704 -0.3613 -0.3720 -0.3711 -0.3770 -0.37
0.186500 -0.3809 -0.3702 -0.3836 -0.3820 -0.3892 -0.38
0.209813 -0.3919 -0.3796 -0.3959 -0.3931 -0.4019 -0.40
0.233126 -0.4030 -0.3893 -0.4086 -0.4043 -0.4147 -0.41
0.256438 -0.4140 -0.3991 -0.4215 -0.4155 -0.4275 -0.42
0.279751 -0.4248 -0.4089 -0.4346 -0.4264 -0.4402 -0.43
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gradient corrections to absorb the deviation from a cons
density and at the same time the effects of higher-order
sponses.

Let us, however, consider the underlying theory in mo
detail. Suppose that our densities are within the slowly va
ing regime, but that the potentials are relatively strong.
should still be able to obtain our densities from perturbat
theory although of some very high order. These are preci
the criteria for the applicability of expansions like that
Eqs. ~15!, ~16!. Assuming that gradients of higher degr
than 4 can be neglected for our densities, no other terms
appear as gradient corrections but those of Eq.~15! plus a
term of the form*n24u¹nu4d3r from third-order response
theory ~not considered here!. Response theory of fourth o
higher order produce gradient terms containing gradient
the density of at least the sixth degree. They also prod
terms of lower powers of the density gradients but these
already included by using the full spatially dependent den
ties ~not just the original homogeneous density of the gas! in
the denominators of Eq.~15!.7 Moreover, the coefficient of a
certain contribution must be that which is predicted by
corresponding response function. We will return to this po
in Sec. V.

Strictly speaking, we should have included the third-ord
gradient term mentioned above. This term is, however,
higher order in perturbation theory than those conside
Contributions from such terms are expected to be so sm
that the numerical accuracy of our calculated exchange
ergies would not allow for a determination of one addition
gradient coefficient.

It is comforting that the gradient coefficients obtain
here are close to those obtained from the study of respo
functions. The fact that the corresponding gradient corr
tions lead to systematic improvements is indeed gratify
and the very small errors (;1024 Ry! obtained in realistic
model systems suggests a more universal applicability.
finally observe that the results obtained here are more
an order of magnitude more accurate than those of the
most commonly used GGA schemes due to Becke18 and Per-
dew et al.19 ~see Tables I and II!. Incidentally, we also see
that these schemes give very similar results.

IV. RECIPROCAL-SPACE METHOD

Encouraged by the success of the previous section,
will now investigate whether or not our calculated exchan
energies are accurate enough to allow for a more fi
principles determination of gradient coefficients. Note, ho
ever, that we will still avoid the cumbersome task of taki
derivatives at zero momentum of various response functio
To this end we will, as usual, simultaneously study the lim
of small deviations from a constant density and slowly va
ing densities. As a model system we consider one of the
of potentials described in Sec. III, namely, the one w
V1115V2005leF . The applicability of linear response is a
sured by choosing very small values ofl. The second crite-
rion, i.e., slowly varying densities, is guaranteed by a lar
number of electrons per unit cell (3, 5, and 7, respective!.
Being interested in the second-order response functionLx
giving a third-order contribution to the exchange energy,
will have to isolate that part of the exact exchange ene
nt
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which is strictly tothird order in the effective potentialV.
Let us first formally define a number of necessary

sponse functions the detailed definition of which can
found in Refs. 6 and 20.

d2T0@n#

dndn8
52x0

21 , ~21!

d3T0@n#

dndn8dn9
5x0

21x0
21x0

21f0 , ~22!

d2Ex@n#

dndn8
5Kx , ~23!

and

d3Ex@n#

dndn8dn9
5Lx , ~24!

Let us then, based on corresponding limits at small mome
introduce dimensionless scaled quantities as follows:

g5kFG, n~g!5n0ñ~G!, V~g!5eFṼ~G!. ~25!

and

x0~q;n0!52
kF
p2 x̃0~Q!,

f0~q,q8;n0!5
1

p2kF
f̃0~Q,Q8!, ~26!

Kx~g;n0!52
p

kF
2 K̃x~G!,

Lx~g,g8;n0!5
2p3

kF
5 L̃x~G,G8!. ~27!

Here,g is a reciprocal lattice vector of the fcc lattice,n0 is
the original homogeneous density of the gas,kF is the Fermi
momentum, andeF5kF

2/2 is the Fermi energy. Up to the
third order inñ(G), the exchange energy,ex@n#, can then be
written as7

ex@n#5ex@n0#F11
2

9(G K̃x~G!uñ~G!u2

2
4

81(GG8
L̃x~G,G8!ñ~G!ñ~2G8!ñ~G82G!1•••G ,

~28!
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where ex@n0#523kF/4p. A third-order expression for the
exchange energy requires the density response to the se
order inV.

ñ~G!52
3

2
x̃0~G!Ṽ~G!

1
3

8(G8
f̃0~G,G8!Ṽ~2G8!Ṽ~G82G!, ~29!
e

w

ia

y-
ond
Note thatG50 is excluded from all sums over reciproc
lattice vectors. Incidentally, we see from Eq.~29! that
uṼ(G)u!1 or uV(G)u!eF is roughly equivalent ton(G)
!n0 as a ‘‘linear response regime’’ requirement.

Equation~29! inserted into Eq.~28! gives an expansion o
the exchange energy which we give below to third order
Ṽ.
ex@n#5ex@n0#F11
1

2(G K̃x~G!ux̃0~G!u2uṼ~G!u2 ~30!

2
1

4(GG8
K̃x~G!x̃0~G!f̃0~G,G8!Ṽ~G!Ṽ~2G8!Ṽ~G82G!

1
1

6(GG8
x̃0~G!x̃0~G8!x̃0~G82G!L̃x~G,G8!Ṽ~G!Ṽ~2G8!Ṽ~G82G!1•••G .

~31!
Since Ṽ(G)5l for all the 14 shortest reciprocal lattic
vectors, Eq.~31! can be rewritten as

ex@n~l!#5ex@n0#@11a2l
21a3l

31•••#, ~32!

where the first coefficientsan are given by

a25
1

2(G K̃x~G!ux̃0~G!u2, ~33!

a3
~2!52

1

4(GG8
K̃x~G!x̃0~G!f̃0~G,G8!, ~34!

a3
~3!5

1

6(GG8
x̃0~G!x̃0~G8!x̃0~G82G!L̃x~G,G8!, ~35!

and it is understood that not only the vectorsG,G8 but also
G82G must belong to the 14 shortestG vectors. We have
here splita35a3

(2)1a3
(3) into a part,a3

(2), which is com-
pletely known,8,10,21,22and a part,a3

(3), containing the un-
known L̃x .

In order to enhance the accuracy of our calculations,
next take the difference Dex@n(l)#5ex@n(l)#
2ex@n(2l)# between calculations with the same potent
strengths but opposite sign ofl. From Eq.~32! we see that
the coefficienta3 is now given to the leading order by

Dex@n~l!#

2ex@n0#l
3 5a31a5l

2
•••. ~36!

From this we obtaina3
(3) as a3

(3)5a32a3
(2) . Being in the

slowly varying regime allows us to use the following pol
nomial expansion forL̃x

6 in Eq. ~35! above:
e

l

L̃x~G,G8!511L2~G
21G822G•G8!

1L4~G
21G822G•G8!2

1L48@G
2G822~G•G8!2#. ~37!

Having done this we finally solve Eq.~35! with respect to
L48 :

L485
6~a32a3

~2!!2F1

F2
, ~38!

where

TABLE III. Results from Eq.~34!, ~36!, ~39!, and~40!.

Nc l Dex /(2exl
3) a3

(2) F1 F2

3 0.009714 -24.33 -39.65 86.90 141.87
0.019427 -28.78
0.029141 -27.97
0.038854 -26.58
0.048568 -25.50
0.058281 -23.65

5 0.020730 -13.16 -28.15 91.08 101.30
0.027640 -14.61
0.034550 -13.67
0.041460 -13.56
0.048370 -11.13

7 -25.08 89.42 74.34
0.017669 -11.05
0.026503 -11.12
0.035338 -11.07
0.044172 -11.37
0.053007 -11.77
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TABLE IV. Exchange energies for Si and Si-related models. The symbolD indicates that the correspond
ing quantity is given as a difference to the exact result.

Model Exact Dex
LDX D(ex

LDX1ex
GE1) D(ex

LDX1ex
GE11ex

GE2) Dex
GGA (B) Dex

GGA (P)

Si -0.5321 0.0280 0.0072 0.0148 0.0058 0.0060
SiX -0.5539 0.0353 -0.0006 0.0219 0.0071 0.0074
M1 -0.5340 0.0233 0.0090 0.0125 0.0049 0.0050
M2 -0.5550 0.0283 0.0079 0.0157 0.0055 0.0057
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F15 (
GG8

x̃0~G!x̃0~G8!x̃0~G82G!

3@11L2~G
21G822G•G8!

1L4~G
21G822G•G8!2#, ~39!

and

F25 (
GG8

x̃0~G!x̃0~G8!x̃0~G82G!@G2G822~G•G8!2#.

~40!
The results of these calculations are given in Table

Here we used very small potentials and would thus exp
results forDex@n(l)#/(2ex@n0#l

3) to be almost constan
plus a small term quadratic in the potential. We see, ho
ever, from Table III that values scatter around such a beh
ior indicating numerical difficulties. The reason is, of cours
that small potentials lead to very small differences in e
change energies thus putting our numerical procedure
obtaining such energies to a very stringent test. When
three series of data in Table III are fitted to a constant plu
quadratic term, we obtainL48/L4521.6,21.8,21.0 for 3,
5, and 7 electrons in the unit cell, respectively. Any attem
to include higher powers of the potential in the fit will ju
cause the fit to try to follow numerical ripple.

As mentioned in the beginning of this section, we a
trying to simultaneously reach the slowly varying limit an
the limit of small density deviations. Our numerical accura
will, of course, determine how closely we can approach
latter limit, and it appears as if we are just on the verge
getting accurate results. With regard to the slowly vary
limit, we obviously need to be able to neglect terms of ord
G6 and higher in Eq.~37!. The importance of these term
will decrease with the number,Nc , of electrons per unit cel
~actually asNc

22 becausekF;Nc
1/3). With three electrons pe

unit cell the length of our longestG vector—(2,0,0) — is
1.77, i.e., rather close to the boundary of the slowly vary
regime, which isG52. In order not to have to worry abou
higher powers ofG, we have increasedNc up to 7. Unfor-
tunately, the calculation ofL48 from Eq. ~38! involves the
cancellation of large numbers such that a relative error in
extrapolateda3 becomes a ten times larger error inL48 . Tak-
ing an average of our obtained values ofL48 the results of the
present section suggest thatL48/L4521.460.5. Conse-
quently, we conclude that our present numerical accur
does not allow for the reciprocal-space method to impro
on our previous knowledge ofL48 . Still, this section demon-
strates how one, in principle, could obtain a very accur
.
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value of L48 , and we stress that the result here is entir
consistent with previous results~Sec. III and Ref. 7!.

V. APPLICATION TO SEMICONDUCTORS

In Sec. IV, we successfully applied the GEA to cases w
slowly varying and small density variations. In Sec. III w
increased the strength of the potential but still tried to s
within the slowly varying regime. Again the GEA gave a
accurate description of exchange energies. In this section
will further increase the strengths of the potentials until ba
gaps occur, and also include potentials with Fourier com
nents at longer lattice vectors. We will thus also leave
slowly varying regime. As our first example, we choose
pseudopotential for Si~Ref. 23! which gives a reasonable S
band structure. (V111520.21 Ry, V22050.04 Ry, V311
50.04 Ry.! The fact that Si has two atoms~and eight valence
electrons! in the primitive cell of the fcc lattice causes th
disappearance ofV200. In this case the ‘‘slowly varying cri-
terion’’ is obeyed for density components at the vecto
(1,1,1) and (2,0,0) butnot at (3,1,1) or for density compo
nents generated beyond the linear response.

In our next example we simply increased the previous
potential by 20%, thus making the band gaps larger. In
third example we consider a hypothetical material with
fcc structure, one atom per unit cell and eight valence e
trons. The potential was characterized byV111520.30 Ry,
V200520.15 Ry,V22050.03 Ry,V31150.05 Ry, and the re-
sulting band structure has a band gap. The small poten
componentsV220 andV311 were mainly added to cancel th
small density components at these reciprocal lattice vec
— components generated byV111 andV200 through response
of higher than linear order. Density components at other v
tors than (1,1,1) and (2,0,0) are thus very small. Finally,
fourth example is a slight modification of our third, and
obtained by changingV111 from 20.30 Ry to20.38 Ry.
Again several small potential components at longer recip
cal lattice vectors were added in order to nearly eliminate
density components at long vectors. The results are displa
in Table IV where Si and SiX label our first two examples
corresponding to normal silicon and silicon with a larg
band gap~SiX). The last two examples are labeledM1 and
M2 and correspond to systems which are in the slowly va
ing regime.

Though there are significant differences between the
sets of results, they have certain features in common. Wi
the LDX approximation all systems display an underestim
of the ~absolute value! of the exchange energies of the ord
of 526 %. This error is strongly reduced by adding gradie
corrections from linear response and including gradients
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FIG. 1. Total energy difference
DE5E2E02E12E22E3 for the noninteracting
solid versus strength of the effective potentia
HereE is the total energy andEn the nth-order
contribution from perturbation theory~arb. units!.
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the fourth degree. Here the term containing the fourth-deg
gradient correction carries a substantial amount of the t
linear contribution, more for systems with faster dens
variations. Notice that, in this section, we have made
attempt to adjust coefficients. They are fixed at the val
obtained from first- and second-order response theory.

At the level of linear response, the errors are of the or
of 122% and very similar to those of the GGA’s used f
comparison18,19. Unfortunately, the next correction from
second-order response theory and again including grad
up to the fourth degree makes things worse. Errors incre
up to some 4%. Consequently, the total gradient correc
cuts the LDX error in half, i.e., not a very impressive resu
The sign of the second-order correction is positive wh
probably is physically correct, but the negative contributi
from the linear response is too small to allow for a correct
of opposite sign from second-order response.

We can only speculate upon the reasons for this pa
failure. For the siliconlike examples, it is clear that som
Fourier components are beyond the convergence criterion
gradient corrections@ u¹nu/(2kFn),1#. The corrections
should perhaps have been cutoff whenever the gradien
the density exceeds this limit. In this way, the results for
and SiX would have improved, but not by much, and not
the cases ofM1 andM2. The reason is thus more profoun

We have argued that the real-space method does no
quire us to stay with potentials that can be treated wit
low-order response theory. Nevertheless, one should em
size that the whole gradient procedure relies on the existe
of a convergent perturbation series. Accurate results are
obtainable from finite-order perturbation theory, albeit o
very high order. It should thus be possible to expand phys
properties around the origin of a parameterl describing the
strength of the potential. Most likely, this is not a valid a
sumption. This does not mean that physical properties
not analytic functions of the strength parameterl. It means
that the radius of convergence of a Taylor series around
potential is smaller than the value where, e.g., a band
occurs. Physical properties might still be, and probably a
analytic functions ofl. As an example of a similar situation
we remind the reader of the well-known theorem by Ko
e
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and Majumdar24 stating that the charge density induced
an impurity in a metallic system remains analytic as a fu
tion of the strength of the impurity even beyond the po
where a bound state is pulled down from the continuu
Again the density can, however, not be described as a Ta
series around the origin of the strength of the impurity. T
point is illustrated in Fig. 1 showing the total energy per u
cell of a solid of noninteracting electrons as a function of t
strength of the lattice potential. From the total energy,E,
which in this noninteracting case is just the sum of the o
electron eigenvalues, has been subtracted the contribu
from zero-,E0, first-, E1, second-,E2, and third-order,E3,
perturbation theory. Displayed in the curve is the differen
DE5E2E02E12E22E3. We would thus expectDE to
start out asV4 which really is the case up toV;0.05. Be-
yond this point perturbation theory appears to break do
Of course, one could not exclude the possibility that high
order perturbation theory would make the curve turn arou
Knowing, however, that a band gap opens up atV;0.05 it is
much more tempting to blame the apparent breakdown
perturbation theory on this fact. The failure of perturbati
theory in connection with band gaps should, in princip
also affect the accuracy of our results for metals—especi
in the cases with many electrons per unit cell. This probl
is, however, expected to be less severe in metals, as
cussed by Harrison25, and is indeed so in the case of o
calculations~Sec. III!. We conclude this section with th
remark that the appearance of band gaps must someho
accounted for in the response functions in order to deal w
the problems discussed in this section.

VI. SUMMARY AND CONCLUSIONS

The aim of the present work has been to construct gra
ent corrections to the local-density approximation for e
change energies of itinerant electrons in solids. For this p
pose we have exposed the electron gas to weak and sl
varying periodic potentials, and we have calculated the
sulting exact exchange energies. By varying the strength
the potentials, gradient terms originating in different orde
of perturbation theory can be discerned. A further decom
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sition of the exchange energy into contributions from dens
components at different wavelengths leads to the possib
of identifying individual gradient terms and to determin
their coefficients. In this way we have obtained the coe
cient of the gradient correction*n23u¹nu2¹2n. Our coeffi-
cient is consistent with the result previously obtained by7

in a study of second-order response functions. Unfortunat
the proposed method relies on having access to extrem
accurate exchange energies~errors of,1025). In this work,
the accuracy has not been quite high enough to allow fo
more accurate determination of coefficients in compari
with previous work.

While staying within the slowly varying regime, we als
increased the strengths of potentials and applied a more
nomenological approach. A sum of gradient terms have b
fitted to reproduce exact exchange energies. Not surprisin
coefficients obtained in the fitting procedure closely ag
with those of moreab initiomethods like the one above or i
Ref. 7. We have given an explanation for why this is to
expected. Again, our accuracy is just good enough to c
roborate previous results, but not to improve upon them.
important conclusion of the present work is, in our opinio
that a straightforward gradient expansion gives us the po
bility of calculating exchange-energies of metallics-p
bonded systems with an extraordinary accuracy, a few m
per electron. This accuracy is an order of magnitude be
than that of presently available generalized gradient appr
re
.
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mations. Our investigation shows, however, that the ac
racy is reduced by an order of magnitude when the sa
technique is applied to semiconducting systems. It is th
found to be better to include only gradients originating
linear response theory. In that case, the accuracy beco
comparable to that of existing GGA’s. We have hinted at
cause of the problem, and suggested ways to remedy
situation.

Another important aspect of this work is the possibility
including correlation energies within the same framewo
Assuming that we are able to calculate accurate excha
correlation energies of perturbed electron gases, we co
apply the same fitting schemes as used here, in order to
tain accurate gradient approximations for exchange and
relation energies. What we have in mind is either us
Monte Carlo techniques or many-body perturbation the
for calculating correlation energies. We stress, however,
the problem of correlations is inherently more difficult tha
the problem associated with exchange energies. With co
lations included there is an additional length scale in
system given by the screening length, i.e., the inverse of
Thomas-Fermi wave vector,kTF . As a consequence, gradie
corrections should be cutoff at smaller values of the loc
density gradient. Another consequence is that the coeffici
of gradient terms no longer are dimensionless constants,
weakly density dependent functions. We will return to the
problems in a future publication.
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