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In the present work we perform a straightforward gradient expansion of the exchange energy of a perturbed
electron gas. Studied perturbations range from very weak to those that produce, e.g., a siliconlike band
structure with a band gap. The expansions involve density gradients up to fourth degree and we include all
terms originating in linear- and second-order response theory. The expansion reproduces our exactly calculated
exchange energies with an accuracy of the order of a few mRy per electron for metallic systems. For systems
with a bandgap the accuracy is reduced by an order of magnitude. When the coefficient of the fourth-degree
gradient originating in second-order response theory is used as a variable parameter, we find a best fit to
calculated exchange energies when the coefficient agrees with that obtained in previous work on second-order
response theory. Thus, the present results corroborate our previous analytical work. We emphasize the possi-
bility of obtaining very accurate exchange energiessfprbonded solids and we discuss the possibility of also
including correlation energies within the same simple sch¢B®@163-18206)01547-0

I. INTRODUCTION reader the chance to appreciate this subtle and rarely dis-
cussed point. We first recall the normal procedure for obtain-

Numerous papers on density functional thédryDFT) ing gradient expansions using exchange energies as an illus-
start with the clichethat DFT has become the most wide- trative example. The second-order change in the exchange
spread and accurate method for obtaining the ground-staghergy of the electron gas is given by
properties of solids and large molecules. With the advent of
the generalized gradient approximatidns (GGA's) the SE :EJ K, (r,r')on(r)on(r)d3r d3r’ )
truth in this clicheis becoming even more obvious. Recently, 2 o ’
a large community of researchers previously almost exclu

. : o ) where én is the deviation of the electron density from the
sively using so-calledb initio methods is gradually convert-

) o9 ~~ homogeneous density,. This equation actually defines the
ing to DFT. The accuracy of the GGA’s with regard to bind- ernelK, , which is a property of the homogeneous gas and

ing energies of molecules is approaching 1 kcal/mol an herefore only depends on the distance betweandr’ and
potential barriers are so well described that we might soon bﬁwe original densitn.. Going to reciorocal space dives
able to use DFT to do realistic calculations on chemical re- 9 Mo- 9 P P 9

actions. There is, however, still a crucial distance in accuracy 1 d3q
to traverse before this fantasy becomes reality. 5Ex=§f KX(Q)|5H(Q)|2(ZT)3- (2
Most existing GGA's involve only the first gradient of the

density and many of them, but not all, are supported using The next step is to assume th#t has appreciable Fourier
arguments from linear response theory. In previous Wbrk components only foq=|q| less tharkg= (372ny)*2. If this

certainly not a linear perturbation of the homogeneous elecerne| K, by its Taylor expansion around the origin in mo-
tron gas. We have also suggested that higher-degree graghentum space. Thus,

ents might be useful in attempts to model the true exchange-

correlation or exchange functionals. Having said that, one is K. (q)=2A+2B0?+ - - -. ©)]
immediately facing the problem of how to obtain the proper.
coefficients of such gradient terms. In that papee made a
not entirely conclusive effort to obtain the coefficient of the
term [n~3|Vn|2V2n coming from the small momentum ex- 5EX=J A[&n(r)]2d3r+f B|Vn(r)|?d3r. 4
pansion of that response function which gives the third-order

change in the exchange energy of the perturbed electron gds. this way, we see how coefficients of gradient terms are
The difficulties were associated with the singular nature ofelated to derivatives of various response functions with re-
the integrals defining the above-mentioned response funspect to momenta at zero momentum. Thus, gradient terms
tion. As a matter of fact, we still do not know whether or not are generated in the usual Wayf simultaneously studying
the response function is analytic at zero momenta. Thus, the slowly varying limit of Eq.(3) and the linear response
gradient expansion might not even exist in the strict mathfegime of Eq.(1). Above, we have implicitly assumed that
ematical sense of originating in a Taylor expansion of thethe largest part of the density lies close to the origin in mo-
response function around the origin in momentum spacenentum space. We also assumed that, in this region, the
This would, however, not mean that a gradient approximafresponse functioni, in our example abovyés best approxi-
tion is useless. Let us here digress for a moment and give thmated by its Taylor expansion around zero momentum. What

Then, returning to real space, we obtain
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if the density has its largest Fourier components, say, around In the present work, we have chosen to study exchange
the localkg? An even more disturbing thought is that the energies only. These are, in principle, exactly obtainable and
response function might be singular and have no, or discorserve as reference values to which we compare our different
tinuous, derivatives at zero momentum. The latter possibilitygradient approximations. We note in passing, that once we
might not be that far fetched. Consider for a moment a worldare able to calculate correlation energies to the same level of
with a Yukawa interparticle interactione(/r). Now  accuracy as exchange energies, the methods of the present
clearly, in that world, physical properties like, e.g., exchangework are easily extended to give accurate approximations to
energies cannot be that different from those of the real worldhe full exchange-correlation functional of DFT. We also
if the value of\ is very small. It is, by now, well knowh®  stress here that what is referred to as exchange energies in
that K, is analytic at zero momentum for all including the present work are energies of the Talman-Shadwick
A =0 but that the\-dependent coefficiel® above is discon- schemé;?which is also called the exchange-only approxima-
tinuous at\ =0. This means that, at finite, the kerneK, is tion (EXOA). The difference between this scheme and the
well represented by its Taylor expansion aroupd0, but  Hartree-Fock approximation is by now well knol® and
only in a very small region of radius around the origin. we will not dwell further upon this point here.
Clearly, this region contains a very small part of the total The calculation of exchange energies would appear to be
density. Outside this regiorK, is instead well represented a relatively easy and straightforward task. Our particular way
by a similar expressiofEq. (3)], but now with a quite dif- of obtaining gradient coefficients require, however, that we
ferentB corresponding to.=0. Consequently, the gradient do not use too strong potentials and with weaker potentials
approximation of Eq(4) will be very bad in the “Yukawa the energy contributions from higher degree gradients be-
world” but might still give reasonable answers in the real come very small. Consequently, exchange energies must be
world. calculated with a very high relative accuracy 10 *. Be-

Our example above is admittedly a contrivance. Onecause of the long-range nature of the Coulomb interaction,
should keep in mind, however, that response functions déhis turned out to be a difficult proposition, the efforts of
have singularities. It is, e.g., suggested by Langreth an@hich are described in Sec. Il.

Voskad'! that the kernelK,. is nonanalytic atg=0. (The In the present work, we have basically used two major
kernelK . is defined similarly tK, above but includes also methods for obtaining gradient coefficients. One we refer to
correlation effects. as the real-space method and it is described in Sec. Ill. The

The main message conveyed by the above example i§ther method we call the reciprocal-space method and Sec.
however, that a gradient correction will work provided that!V contains a full account of this method. Here we just men-
we find an accurate polynomial fit to the relevant responséion the basic ideas behind the two methods. In the real-space
function over an extended region of momenta in which themethod we chose a lattice potential represented by a set of
particle density has appreciable Fourier components. Consid=ourier components at some of the shortest vectors of the
ering first the Fourier components of the density, nature hageciprocal lattice. The potential is considered to be the fully
been kind to us. Most interesting molecules and solids haveelf-consistent effective potential of the EXOA. The result-
densities with Fourier components which are large at smaling density is obtained to infinite order in the lattice potential
momenta and then decay relatively rapidly at larger mo-by means of a plane-wave oriented band program and the
menta. In fact, the criterior? that “local” Fourier compo-  orbitals are used to calculate the exact exchange energies.
nents of the density is smaller than twice the local FermiFrom the density in real space we then calculate the ex-
momentum,kg, is obeyed in most regions of solids and change energy in the local-density approximat{b®X) as
molecules where the density is large enough to give a norwell as all gradient terms resulting from linear and second-
negligible contribution to the energy. We can thus concenorder response theory and containing at most fourth-degree
trate on finding polynomial fits to response functions in thegradients. A gradient approximation is then constructed by
momentum region from zero tok2 . This turns out to be a adding to the LDX result a linear combination of the gradient
feasible task which, as a premium, avoids possible nonanderms. For the low-degree gradient terms we use known, ana-
lyticities at zero momentum. This is the main idea behind thdytically obtained, coefficients while the coefficient of the
present work. highest gradientn3|Vn|?V2n, from the second-order re-

Furthermore, this idea can be generalized in an obviousponse theory is chosen so as to reproduce the exact ex-
but, maybe to the purist, phenomenological way. From basichange energy. This procedure is repeated for different po-
theory, we can determine the analytical forms of possibldgentials and, in the limit of small potentials, the resulting
gradient terms involving, say, density gradients up to thecoefficient is found to approach our analytical result obtained
fourth degree. The coefficients of these gradient terms capreviously from second-order response thebivioreover,
then be chosen in such a way that the resulting approximawe find that the results improve for each higher-degree gra-
tion for the exchange-correlation energy is very accurate fodient that is added to the basic local-density approximation.
a set of particular systems of our choice. Provided the chosen In the reciprocal-space method the procedure for obtain-
set spans the most important varieties of exchange and/@ng densities and exchange energies is the same as in the
correlation effects, one can hope to have found a generallseal-space method. By multiplying the effective lattice po-
valid and accurate GGA. As we shall see later on, for thdential by a scaling factor and calculating the exact exchange
systems we have studied, i.e., not too strongly perturbeénergies E,) for a range of scaling factors from zero and up,
electron gases, the chosen coefficients deviate little fromve can isolate that contribution 8, which originates in
what is obtained fronab initio theory. second-order respongine third-order contribution Assum-
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ing that we knowL,, defined as the third-order derivative of the semiconductors, we have used potentials also with com-
the functionalg, with respect to density, the third-order con- ponents at a few longer vectors of the reciprocal lattice.
tribution to E, can be calculated exactly. Using potentials for  Thus, the problem can be solved by using an ordinary
which the resulting density only has appreciable componentband program based on plane waves. The zero of potential
at the shorter vectors of the reciprocal lattice, it would beenergy is chosen such th&(g=0)=0. The exchange en-
enough to know the kernél, at small momenta. One way to ergy is given by

achieve this is to study high-density systems, i.e., those with

many electrons per unit cell. We thus use a polynomial fit to 1

the kernellL, in momentum space. The constant and gfie Ex=— ;J In(r,r")%v(r—r")d% d3’. (7)
coefficient are taken from analytical wérknd theq* coef-

ficient is determined so as to reproduce our numerically calperey (r—r') is the bare Coulomb potential amdr,r’) is

obtained in our analytical work. can be written as

In several aspects of the present work, perturbation theory
is a key issue. For sufficiently weak potentials, perturbation
theory is certainly appropriate in the mathematical sense. By n(r,r'y=2>, oD@k, (rNe(k, v). (8
this we mean that, when scaling the potential from zero and kv
up, there is a radius of convergence pertaining to the scalin
factor. Below this radius, we can obtain successively bette
results by going to a higher order in perturbation theory.
Beyond that radius, we believe that, e.g., energies remai
analytic functions of the scaling factor while we can no™(r)=n(r,r). _ _
longer expect to be able to systematically improve our results W€ next define the square of the density maitrix
by adding more terms in the perturbation expansion. The
latter might, however, represent an asymptotic expansion in m(r,r’)=[n(r,r")?. 9
the sense that, for stronger potentials, accurate results are ] ) ) o
obtained in low-order perturbation theory while the resultsSince the density matrir(r,r’) is periodic with respect to
deteriorate by adding more terms in the perturbation exparsimultaneous lattice translationsirandr’, m(r,r’) has the
sion. These points are discussed in Sec. V. Finally, in Se¢a@me symmetry and can be expanded in a Fourier series,

VI we give our conclusions.

he Fermi-factomg(k,v) restricts the sums ik and v to
occupied states only. The electron densify) of the system
|s obviously the diagonal of the density matrix,

m(r,r')= >, Mgy (q)e'@rdre-i@+ar, (10
9g'q

The basic quantity needed in order to pursue the ideaﬁ/hereq only runs over the first Brillouin zoné3Z). Insert-

presented in the introduction, is the exchange energy of pef g £q (10) into Eq.(7) and Fourier transforming, we obtain
turbed electron gases. We will, in other words, expose the

gas to some external potential and then calculate the result- Q

ing depsﬂy qnd gxchange energy within the EXOA. In order E,=— _E My @0 (g+Q), (12)
to avoid the implied self-consistency procedure, here we use 475

the usual trick of directly specifying the effective Kohn-

Sham potentiaV/ (within the EXOA). That is, we consider Whereuv(g+aq)=4m/|g+q|? is the Fourier transform of the
V to include the external potential as well as the Hartre¢€coulomb potential, and} is the volume of the full system.
potential from the electron distribution, and the exchangd®ue to the smallj singularity of the Coulomb potential, we
potential. For the purpose of solving the one-electron probadd and subtract a termgy(0) giving

lem with relative ease, we have chosen to study periodic

Il. THE EXACT EXCHANGE ENERGY

potentials. This means that we solve a one-particle Schro Q
dinger equation of the form Ex=— Zé [Mgg(a) —Moo(0) Ju(g+0a)
1, Q
5 VIV @D =B il ©) - zmoo(0>2 v(g+q). (12)
9q

in which the potential has the form ] ) ] o
The first term in the equation above is finite fgr=0 and

. g—0. The second term contains no matrix elements and can
V(r)=2 V(ge'oT, (6)  be evaluated exactly. In practice, we add and subtract
g Mgo(0) only within the first BZ, that is fog=0. In order to

whereg is a vector of an fcc lattice. For the metallic systems,avoid explicit evaluation of the second derivative of
we have chosen nonvanishing componertg) of the total — myy(q) with respect tag atq=0, we use a mesh within the
potential only at the two shortest “stars” of the reciprocal first BZ which excludes the poidt(q=0).
lattice. This means, at most, two numerical values for the The diagonal elementsiy(q) are given by a sum over
potential amplitudes — one for the eight vectors of the formthe first BZ and contains all the Fermi-surface dependence
(1,1,1) and one for the six vectors of the form (2,0,0). Forthrough the two Fermi factors.
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4 |VNn(r)|2v2n(r) d3
— ’ G _ )
Mgo( @)= 52 kE ne(k, »)ne(k—g,»") & n=C| — iy w0 19
X |(k,v]e @9 k—q,v" ). (13)  the total exchange energy per electregi,n], can be written

Accurate evaluation of Eq13) is of crucial importance for

the success of the present work. As will be discussed later,
the errors in the exchange energies must be smaller than
contributions from high-degree gradient terms which argynereN is the total number of electrons in the system. The

typically in the range 10°—10"* Ry for the systems stud- oefficients in Eq(15) are given b§®1°
ied.

e[n]=e DX+ S CF2 .. (16)

For the case of a metal, evaluation of E43) turns out to 3(3\13
be rather difficult. A straightforward integration using, e.g., Ay=— Z(_) ,
the tetrahedron method with Bibl's'® corrections is prohib- ™

ited by the coupling between the Fermi factoggk,») and
ne(k—q,v"). We have instead adopted two simpler meth- B2 S

ods, namely, broadening of the Fermi factors with some fi- X T 216m(37%) R
nite temperature and so-called simple sampling.

The temperature dependence) (of the exchange energy 73
of an electron gas displays an unphysi@ZInT (Ref. 17 B§<4)= ~ 6480073

divergence. Moreover, for a real system the coefficients of
the T2InT and T2 terms are not known. However, one can

still use a Fermi broadening and subsequently determine the c@= 1 (Ly—L))= 3 _ 1 L., (17
zero temperature limit by fitting the result to the following X T B4g® 4 T4 76480070 54x° 4
form:

In this work all quantities are in atomic units, except ener-
El(T)=Co+C,TAnT+C,T?, (14)  gies, which are in RydbergRy).
, i i The dimensionless numbér, is known exactly from a
where C, obviously represents the desired lini{(T=0).  gimple density derivative relation between the first- and

For the_ even more robust _sampling method we simply aqjuséecond-order exchange response kerkiglandL, .° On the
the weight of the lask point lying at the Fermi energy in other hand, the numbdr; has been approximately obtained

such a way so as to obtain the correct number of particles. rom a study of the second-order response ketnel We
We have tested these two methods versus known resuIIsb . , : ) ke
obtained the valud.,=—1.89_,, with a numerical uncer-

for the homogeneous electron gas. Somewhat surpnsmgliainty of some 30% .

the simple sampling method turns out to work better than ° Note that, due to the appearance of the spatially depen-

method based on a broadening of the Fermi surface. In a ent densityn(r) in the denominators of EGL6), we are not

dition, the sampling method does not require any fine tunin ) i T . .
of the broadening parameter. Therefore, the calculations o.xcluswely confined to the study of densities which deviate

H 7
metallic systems reported here are done using the simpléttle from a constant density,.” The fact that our forms are

sampling method. The price we pay is a nonuniform conver-based on density gradients does, however, mean that the sys-

gence. Using & mesh with up to 18 points in each direction tems studied should not be too far from the slowly varying

an accuracy _of bettgr than 0.1% in the total exchange enerdﬂlml':]' a first attempt to reproduce exchanae eneraies b
per electron is obtained. p p g g y

means of Eq(16), we soon realized that adding terms from
Eqg. (16) with the known coefficients from Eql7) led to
successively more accurate results. This can be seen in the
Having obtained accurate exchange energies from th&ables I and Il where the contributiosf=* has been calcu-
method described in Sec. Il, we are now in a position toated using our previously obtained result for
proceed with our program described in the introduction. By d4(= —1.5L,). We notice that, with this value df,, the
simultaneous study of the slowly-varying limit and the limit addition ofeffE2 reduces the error by one order of magnitude,
of low-order response, both the forms and the coefficients i.e., to a few tenths of a percent. With the purpose of further
front of different gradient corrections can be determified. reducing this error, we decided to fix the coefficiets,
We will now investigate the possibility of modeling the exact B(), andB{" at their theoretical values, and to treat only the
exchange functional by retaining these forms, while usingess certain coefficier®{* as adjustable.

Ill. THE REAL-SPACE METHOD

the coefficients as adjustable parameters. o As typical examples of metallis-p bonded systems, we
Defining the following separate gradient contributions, hayve chosen two sets of lattice potentials. One set is charac-
4 terized byV1;=V,0=\eg at the eight nearest neighbors
LOXn]=A, | n(r)*3-— and the six next nearest neighbors of the reciprocal of the fcc
e [n]=Ac| n(nN*, _ t nearest nei
lattice. Here\ is a dimensionless strength parameter. All

) 3 5 ) 3 other Fourier components of the potential are zero. For the
¢SE ] =B [Vn(r)] d_r (4) [V2n(r)] d_r other set of potentials we choo%g;,;=1.5V,0;= A e as the
x X n(n* N x n(r)> N’ only nonvanishing 14 components. For each set of potentials
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TABLE I. Calculated exchange energies per electron for different values of the effective poteraial
exchange energies are in Rydbergs. The rightmost columns are results from the GGA'’s due tdBBesick (
Perdewet al. (P), respectivelyV,11(=V,qg is in units of e,=0.4765 Ry.

Vlll Exact E)IZDX G)IZDX + ESEJ' E;DX + EGE1+ E)((;Ez ESGA (B) ESGA (P)

0.038854 -0.3327  -0.3318 -0.3327 -0.3327 -0.3333 -0.3332
0.077709 -0.3425  -0.3388 -0.3424 -0.3425 -0.3445 -0.3445
0.116563 -0.3580  -0.3508 -0.3585 -0.3582 -0.3623 -0.3622
0.155417 -0.3778  -0.3668 -0.3797 -0.3781 -0.3847 -0.3846
0.165131 -0.3831  -0.3712 -0.3855 -0.3834 -0.3907 -0.3906
0.174844 -0.3884  -0.3757 -0.3914 -0.3887 -0.3968 -0.3967
0.184558 -0.3939  -0.3803 -0.3975 -0.3941 -0.4029 -0.4028
0.194271 -0.3993  -0.3849 -0.4036 -0.3996 -0.4091 -0.4089
0.203985 -0.4047  -0.3896 -0.4098 -0.4050 -0.4153 -0.4151

we compute the exchange energies and the electron densitiefensity* is thus obeyed. Wheh is made larger, a higher-

We can thus define two functions of the parameteas  order response will cause the density to acquire Fourier am-

follows: plitudes at longer reciprocal lattice vectors. In such a case, a
straightforward gradient expansion will become less appro-
priate, and might require the introduction of some cutoff pro-

AN)= e (N)— ePX(N) — €SFN), (18)  cedure at largey:s.
Assuming some systematic constant erdg, in calcu-
and lated exchange energies, we fit our calculates to the
form
[V, (r)[2V2ny(r) d®
()= NG W' (19)

AN)=Ay+CT(N), (20)

Due to the previously described difficulti€Sec. 1) asso-
ciated with obtaining very accurate exchange energies, ther\@herec obviously represents the best possible choice of
is an inherent uncertamty ih(\) of the order of a few CY". For the first set of potentiald/g;;= Vo0, Table ), we
tenths of a mRy £ 10™“ Ry). Thus, the need for numerically obtaln Ay=0.3 mRy, and a value o€ corresponding to
significant values oA requires\ to be sufficiently large. For L,=—1.48_,. The largest error in this fit is indeed small
our fitting procedure, yet to be described, we have chosef0.04 mRy, thus giving us confidence in the procedure. For
\ values in the range 0.02-0.9 for the two sets of potentialshe second set of potentia($able Il), we obtain a value of
the results of which are displayed in Tables | and Il. WithC corresponding td_,=—1.79.,. The corresponding pre-
these values, the quantilyis of the order of 0.5 mRy. Note, dicted systematic errd0.8 mRy in the calculated exchange
however, that we would not like to make very large. At  energies is somewhat larger than we had expected from other
small \, i.e., within the regime of linear response, the elec-estimates. The maximum error in this fit is also larger than
tron density will have Fourier components only at the saméefore(0.16 mRy—perhaps indicating that, in this case, we
reciprocal lattice vectors as the potential. The number ofre leaving the slowly varying limit at the highgrs.
electrons per unit cell (3 in the calculations reported in We note here, that we have no obvious reason to expect
Tables | and I} is such thatg/(2kg) is smaller than 1 that the phenomenological path followed in the present sec-
[a/(2kg) is 0.77 and 0.89 for the vectors (1,1,1) andtion would lead to gradient coefficients equal to those ob-
(2,0,0), respectively and the criterion for a slowly varying tained from first principles. In this section, we wanted the

TABLE Il. Same as in Table I, bu¥;,,=1.5V5qg.

Vi Exact €LDX €-DX 4 (BFL €LDX | (OEL, (GE2 5% (B) 5% (P)

0.023313 -0.3303 -0.3302 -0.3304 -0.3304 -0.3306 -0.3305
0.069938 -0.3376 -0.3354 -0.3376 -0.3377 -0.3390 -0.3390
0.116563 -0.3515 -0.3460 -0.3518 -0.3517 -0.3550 -0.3550
0.163188 -0.3704 -0.3613 -0.3720 -0.3711 -0.3770 -0.3768
0.186500 -0.3809 -0.3702 -0.3836 -0.3820 -0.3892 -0.3891
0.209813 -0.3919 -0.3796 -0.3959 -0.3931 -0.4019 -0.4017
0.233126 -0.4030 -0.3893 -0.4086 -0.4043 -0.4147 -0.4145
0.256438 -0.4140 -0.3991 -0.4215 -0.4155 -0.4275 -0.4273

0.279751 -0.4248 -0.4089 -0.4346 -0.4264 -0.4402 -0.4399




54 STRAIGHTFORWARD GRADIENT APPROXIMATION F® . .. 17 397

gradient corrections to absorb the deviation from a constanwhich is strictly tothird order in the effective potential.

density and at the same time the effects of higher-order re- Let us first formally define a number of necessary re-

sponses. sponse functions the detailed definition of which can be
Let us, however, consider the underlying theory in morefound in Refs. 6 and 20.

detail. Suppose that our densities are within the slowly vary-

ing regime, but that the potentials are relatively strong. We

should still be able to obtain our densities from perturbation 8°To[n] 1

theory although of some very high order. These are precisely snon’ X0 (22)

the criteria for the applicability of expansions like that of

Egs. (15), (16). Assuming that gradients of higher degree

than 4 can be neglected for our densities, no other terms can BTl Nn] o1

appear as gradient corrections but those of @§) plus a Snon on” X0 Xo Xo ®o, (22)

term of the form/n~*|Vn|*d® from third-order response

theory (not considered heyeResponse theory of fourth or

higher order produce gradient terms containing gradients of

2
the density of at least the sixth degree. They also produce i’m:K ' (23
terms of lower powers of the density gradients but these are onén’ X
already included by using the full spatially dependent densi:
ties (not just the original homogeneous density of the)gas
the denominators of Eq15).” Moreover, the coefficient of a
certain contribution must be that which is predicted by the 83E,[n]
corresponding response function. We will return to this point —— =Ly, (29
in Sec. V. onan’on

Strictly speaking, we should have included the third-order_et us then, based on corresponding limits at small momenta,
gradient term mentioned above. This term is, however, ofntroduce dimensionless scaled quantities as follows:
higher order in perturbation theory than those considered.
Contributions from such terms are expected to be so small
that the numerical accuracy of our calculated exchange en-
ergies would not allow for a determination of one additionalgng
gradient coefficient.

It is comforting that the gradient coefficients obtained
here are close to those obtained from the study of response Fo
functions. The fact that the corresponding gradient correc- Xo(G:No) =~ —7xo(Q),
tions lead to systematic improvements is indeed gratifying
and the very small errors~10~ % Ry) obtained in realistic

9=keG, n(g)=ny(G), V(g)=eV(G). (25

model systems suggests a more universal applicability. We 1 -
finally observe that the results obtained here are more than ¢O(q,q';no)=—2k—¢0(Q,Q’), (26)
T Kg

an order of magnitude more accurate than those of the two
most commonly used GGA schemes due to B&tkad Per-
dew et al® (see Tables | and )l Incidentally, we also see
that these schemes give very similar results. . T
e very Kx(g:no) =~ 1z K«(G),
F

IV. RECIPROCAL-SPACE METHOD

Encouraged by the success of the previous section, we
will now investigate whether or not our calculated exchange
energies are accurate enough to allow for a more first- ) _ ) o
principles determination of gradient coefficients. Note, how-Here, g is a reciprocal lattice vector of the fcc lattiog, is
ever, that we will still avoid the cumbersome task of takingthe original homogeneous density of the dasis the Fermi
derivatives at zero momentum of various response functionghomentum, andeg=kZ/2 is the Fermi energy. Up to the
To this end we will, as usual, simultaneously study the limitsthird order inn(G), the exchange energy,[n], can then be
of small deviations from a constant density and slowly vary-written as
ing densities. As a model system we consider one of the sets
of potentials described in Sec. Ill, namely, the one with
V111= Voo5= A € . The applicability of linear response is as-
sured by choosing very small values)af The second crite-
rion, i.e., slowly varying densities, is guaranteed by a larger
number of electrons per unit cell (3, 5, and 7, respectively
Being interested in the second-order response fundtipn
giving a third-order contribution to the exchange energy, we
will have to isolate that part of the exact exchange energy (28

! 27T3~ !
Li(9.'in0) = ©5 L,(G,G). @7
F

2g = o
&lnl=elnol| 1+ 52 Ky(G)R(G)I?

4 ~ _ -
—8—2 L(G,GHA(G)N(—G)N(G'—G)+--- |,
G!
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where €,[ ng]= — 3kg/47. A third-order expression for the Note thatG=0 is excluded from all sums over reciprocal
exchange energy requires the density response to the secolattice vectors. Incidentally, we see from E(9) that
order inV. 3 IV(G)|<1 or |V(G)|<e is roughly equivalent ton(G)
nG)=— —}'o(G)T/(G) <ng as a “linear response regime” requirement.
2 Equation(29) inserted into Eq(28) gives an expansion of
3. - _ _ the exchange energy which we give below to third order in
tg2 w(GGIV(-GIV(G'-6). @9 V.

1 ~ _ -
elnl=ednoll 1+ 52 KuG)Xo(G)?V(G)I? (30

l ~ - ~ ~ o~ -
- ZE Kx(G)x0(G) ¢o(G,G")V(G)V(-G)V(G'-G)

GG’

1o~~~ ~ ~  ~ ~
+52 Xo(G)xo(G)xo(G' = G)L(G,G)V(G)V(=G)HV(G'=G) +- - - |.
GG’

(3D
|
SinceT/(G)=)\ for all the 14 shortest reciprocal lattice EX(G,G’)=1+ Lo(G%+G'2~G-G')
vectors, Eq(31) can be rewritten as
+L4(G2+G'2—G-G')?
elN(N)]=enol[1+a\?+az\®+---1, (32 +L4[G?G'2—(G-G')?]. (37)
where the first coefficienta,, are given by Having done this we finally solve E¢35) with respect to
L,:
1S = ai~ 2 (2)
a=52 Ky(G)[Xo(G)[2, (33 ,_Slasmas)—Fy
2% L= (39
2
1 where
af?'= =22 K(G)Xo(G)ho(G,G") (34)
3 4GG, X ’ ’ TABLE lll. Results from Eq.(34), (36), (39), and(40).
1 N, A A /(26N%) o Fi F,
a<33>:€2 Xo(G)Xo(G)Xo(G'—G)Ly(G,G"), (35 3  0.009714 -24.33 -30.65 86.90 141.87
GG 0.019427 -28.78
and it is understood that not only the vect@sG’ but also 0.029141 -27.97
G’—G must belong to the 14 shorte&t vectors. We have 0.038854 -26.58
here splitay=a’?+af> into a part,a$?, which is com- 0.048568 -25.50
pletely known8'9???and a part.a$”, containing the un- 0.058281 -23.65
known L, . . 5  0.020730 -13.16 -28.15 91.08 101.30
In order to enhance the accuracy of our calculations, we 0.027640 14.61
next take the difference AeJn(N)]=¢€fn(N\)] 0'034550 13.67
—€[Nn(—N\)] between calculations with the same potential 0'0 50 i 3' 6
strengths but opposite sign &f From Eq.(32) we see that 0414 135
the coefficienta; is now given to the leading order by 0.048370 -11.13
7 -25.08 89.42 74.34
M = agtagh?---. (36) 0.017669 -11.05
26, No]A 0.026503 -11.12
_ e @) 2 o 0.035338 -11.07
From this we obte}ma3 asaz’'=az—ay”’. Belng'm the 0.044172 11.37
slowly varying regime allows us to use the following poly- 0.053007 1177

nomial expansion foFLUX6 in Eq. (35) above:
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TABLE IV. Exchange energies for Si and Si-related models. The symhntlicates that the correspond-
ing quantity is given as a difference to the exact result.

Model Exact AeP*  A(efPX+€CFY)  A(ePX+eSEMH €CFY)  ASCA(B)  AeSCA (P)
Si -0.5321 0.0280 0.0072 0.0148 0.0058 0.0060
SiX -0.5539 0.0353 -0.0006 0.0219 0.0071 0.0074
M1 -0.5340 0.0233 0.0090 0.0125 0.0049 0.0050
M2 -0.5550 0.0283 0.0079 0.0157 0.0055 0.0057
_ _~ value ofL,, and we stress that the result here is entirely
Flzg, Xo(G)xo(G') xo(G'=G) consistent with previous resultSec. Il and Ref. Y.
X[1+L,(G?+G'?~G-G")
V. APPLICATION TO SEMICONDUCTORS
+L4(G?+G'2-G-G")?], (39

In Sec. IV, we successfully applied the GEA to cases with
slowly varying and small density variations. In Sec. Ill we
increased the strength of the potential but still tried to stay
within the slowly varying regime. Again the GEA gave an
- - _ accurate description of exchange energies. In this section we
Fa= 2 Xo(G)Xo(G")Xo(G'~G)[G*G'*~(G-G")?]. will further increase the strengths of the potentials until band

GG (40) gaps occur, and also include potentials with Fourier compo-
nents at longer lattice vectors. We will thus also leave the

The results of these calculations are given in Table IlI. lowlv varving regime. As our first example. we choose a
Here we used very small potentials and would thus expec% y varying regime. P'€,

results for Ae,[n(\)]/(2e,ng]A%) to be almost constant pPseudopotential for SRef. 23 which gives a reasonable Si

L . band structure. \(111: -0.21 Ry, V220:0.04 Ry, V311
plus a small term quadratic in the potential. We see, how-" . i
ever, from Table Ill that values scatter around such a behav-, 0.04 Ry) The fact that Si has two atonfand eight valence

ior indicating numerical difficulties. The reason is, of course electron3 in the primitive cell of the fcc lattice causes the

that small potentials lead to very small differences in ex_dls.apeegrance Ofz00. In this case the “slowly varying cri-
rion” is obeyed for density components at the vectors

change energies thus putting our numerical procedure foza .
obtaining such energies to a very stringent test. When th 1,1,1) and (2,0,0) butotat (3,1,1) or for density compo-

three series of data in Table Il are fitted to a constant plus Qents generated beyond the' Ilnear response. . :
quadratic term, we obtain }/L,= —1.6,—1.8— 1.0 for 3 In our next example we simply increased the previous Si
! 44— -y -0, . y

. . : otential by 20%, thus making the band gaps larger. In the
S, fand ’ elgctrons in the unit cel, respgct!vely. Apy attemp hird example we consider a hypothetical material with an
to include h|gher powers of the pqtentlal in the fit will just fcc structure, one atom per unit cell and eight valence elec-
cause the fit to try to follow numerical ripple. ’

As mentioned in the beginning of this section, we aretrons. The potential was characterized By, = —0.30 Ry,

. . . . VZOO: —-0.15 Ry1V220: 0.03 Ry,V311:0.05 Ry, and the re-
trying to smultaneou;ly reaph_the slowly varying limit and sulting band structure has a band gap. The small potential
the limit of small density deviations. Our numerical accuracy

will, of course, determine how closely we can approach theCMPonents/z;, and Vs, were mainly added to cancel the

7 . . . fsmall density components at these reciprocal lattice vectors
latter limit, and it appears as if we are just on the verge o
— components generated My,, andV,, through response

getting accurate results. With regard to the slowly varying.¢ higher than linear order. Density components at other vec-
limit, we obviously need to be able to neglect terms of order,

6 : : : tors than (1,1,1) and (2,0,0) are thus very small. Finally, our
G. and higher n Eq(37). The importance of these_terms fourth example is a slight modification of our third, and is
will decrease with the numbeN,., of electrons per unit cell

_ ) obtained by changing/;;; from —0.30 Ry to —0.38 Ry.
(actually asN; ? becausd:~NX?). With three electrons per ) : .
X .~ Again several small potential components at longer recipro-
unit cell the length of our longest vector—(2,0,0) — is g b b J P

) .__cal lattice vectors were added in order to nearly eliminate the
1'7.7’ €., rgthgr close to the boundary of the slowly Varylngdensity components at long vectors. The results are displayed
regime, which isG=2. In ordgr not to have to worry about in Table IV where Si and i label our first two examples
higher powers of5, we have increaseM up to 7. Unfor- o, resnonding to normal silicon and silicon with a larger
tunately, the calculation ok, from Eg. (38) involves the 4 gap(SiX). The last two examples are labelbtiL and
cancellation of large numbers such that a relative error in a2 5nq correspond to systems which are in the slowly vary-
extrapolatedy; becomes a ten times larger errorify. Tak- ing regime.

ing an average of our obtained valued.gfthe results of the Though there are significant differences between the two
present section suggest thaf/L,=—1.4+0.5. Conse- sets of results, they have certain features in common. Within
quently, we conclude that our present numerical accuracthe LDX approximation all systems display an underestimate
does not allow for the reciprocal-space method to improveof the (absolute valugeof the exchange energies of the order
on our previous knowledge dfy . Still, this section demon- of 5—6 %. This error is strongly reduced by adding gradient
strates how one, in principle, could obtain a very accurateorrections from linear response and including gradients to

and
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the fourth degree. Here the term containing the fourth-degreand Majumda?* stating that the charge density induced by
gradient correction carries a substantial amount of the totan impurity in a metallic system remains analytic as a func-
linear contribution, more for systems with faster densitytion of the strength of the impurity even beyond the point
variations. Notice that, in this section, we have made navhere a bound state is pulled down from the continuum.
attempt to adjust coefficients. They are fixed at the valueé\gain the density can, however, not be described as a Taylor
obtained from first- and second-order response theory. series around the origin of the strength of the impurity. The
At the level of linear response, the errors are of the ordepoint is illustrated in Fig. 1 showing the total energy per unit
of 1-2% and very similar to those of the GGA'’s used for cell of a solid of noninteracting electrons as a function of the
comparisoff!® Unfortunately, the next correction from strength of the lattice potential. From the total energy,
second-order response theory and again including gradientghich in this noninteracting case is just the sum of the one-
up to the fourth degree makes things worse. Errors increasglectron eigenvalues, has been subtracted the contributions
up to some 4%. Consequently, the total gradient correctiofrom zero-,E,, first-, E;, second-E,, and third-orderEg,
cuts the LDX error in half, i.e., not a very impressive result. perturbation theory. Displayed in the curve is the difference
The sign of the second-order correction is positive whichAE=E—-E,—E;—E,—E3;. We would thus expecAE to
probably is physically correct, but the negative contributionstart out asv* which really is the case up td~0.05. Be-
from the linear response is too small to allow for a correctionyond this point perturbation theory appears to break down.
of opposite sign from second-order response. Of course, one could not exclude the possibility that higher-
We can only speculate upon the reasons for this partiabrder perturbation theory would make the curve turn around.
failure. For the siliconlike examples, it is clear that someKnowing, however, that a band gap opens up at0.05 it is
Fourier components are beyond the convergence criterion fanuch more tempting to blame the apparent breakdown of
gradient corrections[|Vn|/(2kgn)<1]. The corrections perturbation theory on this fact. The failure of perturbation
should perhaps have been cutoff whenever the gradient @aheory in connection with band gaps should, in principle,
the density exceeds this limit. In this way, the results for Sialso affect the accuracy of our results for metals—especially
and SK would have improved, but not by much, and not in in the cases with many electrons per unit cell. This problem
the cases oM 1 andM 2. The reason is thus more profound. is, however, expected to be less severe in metals, as dis-
We have argued that the real-space method does not reussed by Harrisdn, and is indeed so in the case of our
quire us to stay with potentials that can be treated withincalculations(Sec. Ill). We conclude this section with the
low-order response theory. Nevertheless, one should empheemark that the appearance of band gaps must somehow be
size that the whole gradient procedure relies on the existenacounted for in the response functions in order to deal with
of a convergent perturbation series. Accurate results are thuke problems discussed in this section.
obtainable from finite-order perturbation theory, albeit of a
very high order. It should thus be possible to expand physical
properties around the origin of a parametedescribing the
strength of the potential. Most likely, this is not a valid as- The aim of the present work has been to construct gradi-
sumption. This does not mean that physical properties arent corrections to the local-density approximation for ex-
not analytic functions of the strength parameterdt means change energies of itinerant electrons in solids. For this pur-
that the radius of convergence of a Taylor series around zenpose we have exposed the electron gas to weak and slowly
potential is smaller than the value where, e.g., a band gaparying periodic potentials, and we have calculated the re-
occurs. Physical properties might still be, and probably aresulting exact exchange energies. By varying the strength of
analytic functions oh. As an example of a similar situation, the potentials, gradient terms originating in different orders
we remind the reader of the well-known theorem by Kohnof perturbation theory can be discerned. A further decompo-

VI. SUMMARY AND CONCLUSIONS
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sition of the exchange energy into contributions from densitymations. Our investigation shows, however, that the accu-
components at different wavelengths leads to the possibilityacy is reduced by an order of magnitude when the same
of identifying individual gradient terms and to determine technique is applied to semiconducting systems. It is then
their coefficients. In this way we have obtained the coeffi-found to be better to include only gradients originating in
cient of the gradient correctiofin3|Vn|2V?2n. Our coeffi- linear response theory. In that case, the accuracy becomes
cient is consistent with the result previously obtained by uscomparable to that of existing GGA’s. We have hinted at the
in a study of second-order response functions. Unfortunatelycause of the problem, and suggested ways to remedy the
the proposed method relies on having access to extremebituation.
accurate exchange energi@srors of<10 °). In this work, Another important aspect of this work is the possibility of
the accuracy has not been quite high enough to allow for @ncluding correlation energies within the same framework.
more accurate determination of coefficients in comparisofAssuming that we are able to calculate accurate exchange-
with previous work. correlation energies of perturbed electron gases, we could
While staying within the slowly varying regime, we also apply the same fitting schemes as used here, in order to ob-
increased the strengths of potentials and applied a more phtain accurate gradient approximations for exchange and cor-
nomenological approach. A sum of gradient terms have beerelation energies. What we have in mind is either using
fitted to reproduce exact exchange energies. Not surprisinglyylonte Carlo techniques or many-body perturbation theory
coefficients obtained in the fitting procedure closely agredor calculating correlation energies. We stress, however, that
with those of moreab initio methods like the one above or in the problem of correlations is inherently more difficult than
Ref. 7. We have given an explanation for why this is to bethe problem associated with exchange energies. With corre-
expected. Again, our accuracy is just good enough to corkations included there is an additional length scale in the
roborate previous results, but not to improve upon them. Arsystem given by the screening length, i.e., the inverse of the
important conclusion of the present work is, in our opinion, Thomas-Fermi wave vectdtr-. As a consequence, gradient
that a straightforward gradient expansion gives us the posseorrections should be cutoff at smaller values of the local-
bility of calculating exchange-energies of metall&p density gradient. Another consequence is that the coefficients
bonded systems with an extraordinary accuracy, a few mRypf gradient terms no longer are dimensionless constants, but
per electron. This accuracy is an order of magnitude betteweakly density dependent functions. We will return to these
than that of presently available generalized gradient approxiproblems in a future publication.
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