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Ab initio calculations of cohesive properties, elastic constants, and phonon dispersions for CoSi2 were
performed by means of the Viennaab initio molecular-dynamics package~VAMP!, which makes use of
ultrasoft pseudopotentials. In addition, the all-electron full-potential linearized augmented-plane-wave method
was used for the calculation of equilibrium properties as well as elastic constants derived from second deriva-
tives of total energies. For both methods, total energies, their derivatives, and related quantities are fully
converged with respect to basis sizes and number ofk points. Our results forC44 prove that atomic positions
in the strained crystal have to be fully relaxed in order to get quantitatively useful results. The results of both
methods obtained within the same type of local-density approximation are in very good agreement between
each other. Because elastic constants are very sensitive quantities for anab initio method in general, the
reproduction of high-quality all-electron data by VAMP demonstrates the power of suitably constructed
pseudopotentials even for systems containing transition elements. VAMP was also applied to calculate elastic
constants in two other ways, namely, directly from the stress-strain relations~which yielded the same results as
obtained from total-energy derivatives! and from acoustic branches of the phonon dispersion. In this case,
however, we only succeeded in getting a useful result forC44 whereas for the remaining two elastic constants
prohibitively large supercells would be needed. Finally, VAMP calculations were performed within the frame-
work of the generalized gradient approximation to density-functional theory. From that, data were derived
which are in very good agreement with experimental values.@S0163-1829~96!12327-4#

I. INTRODUCTION

For materials science CoSi2 is of interest because of po-
tential technological applications as a structural material due
to its low specific weight and excellent oxidation behavior.1

It also got particular attention for microelectronic devices2

because semiconductor/conductor interfaces can be manufac-
tured by growing the metallic conducting CoSi2 on Si
substrates.3 Recently, the mechanical properties in connec-
tions with its color became of interest for some possible
applications.4 Therefore, CoSi2 is a well-suited material to
apply computational materials science techniques to bulk,
interface, and surface problems.

Ab initio applications require a powerful and reliable nu-
merical method, which is provided by the Viennaab initio
molecular-dynamics package~VAMP!.5 For a crucial check
of this particular pseudopotential method we applied it for
the calculation of cohesive energies and elastic constants for
bulk CoSi2 and compared the results to data obtained by a
full-potential linearized augmented-plane-wave method
~FLAPW!.6 The FLAPW approach, which is an all-electron
method and does not require any shape approximations for
density and potential, is one of the most preciseab initio
state-of-the-art methods. It is, however, by construction less
fast and versatile than an efficient pseudopotential approach.

Furthermore, we also show that calculations of elastic
constants~in particular, for compounds! have to be done
carefully from both a numerical and a methodological point

of view. Because these quantities are important and sensitive
materials properties, the comparison of experimental andab
initio elastic constants provides a critical test for the useful-
ness ofab initio methods in the field of materials science in
general.

II. METHODS

VAMP ~Ref. 5! is based on pseudopotentials that are con-
structed according to Vanderbilt’s recipe for ultrasoft
pseudopotentials.7,8 There—in contrast to standard normcon-
serving pseudopotential methods—the total valence charge
density inside suitable atomic spheres is augmented in order
to correct for the deviation of the pseudo-charge-density
from the correct density, which is described by wave func-
tions with the proper nodal structure. Due to these correc-
tions additional formal complications~for solving Schro¨d-
inger’s equation as well as for forces! occur compared to
standard plane-wave methods. These disadvantages are by
far outweighed by a substantial gain in basis size and trans-
ferability, which makes the application of pseudopotentials
feasible to systems containing 3d-transition elements. There-
fore, moderate energy cutoffs~e.g., 300 eV for Co and
CoSi2) result in fully converged basis sets. For large super-
cells the energy cutoff was reduced to 200 eV, still yielding
converged results. For the actual calculation of ultrasoft
pseudopotentials for Co and CoSi2 the atomic cutoff radii
were chosen to be 2.7 a.u. for the Co atom~for s, p, andd
states!, and 2.5 a.u. for Si (s and p states!. The chosen
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atomic configurations were 3d84s14p0 for Co and 3s23p2

for Si. Partial core corrections9 were introduced to enable a
proper treatment of the nonlinear dependence of the
exchange-correlation functional. In addition to basis set con-
vergence VAMP total energies were also converged concern-
ing the number ofk points in the irreducible part of the
Brillouin zone using a special k-point sampling
technique.10,11

Within FLAPW ~Ref. 6! space is divided into nonoverlap-
ping atomic spheres and interstitial space. Inside the spheres
the basis functions consist of atomlike functions, which at
the sphere boundaries match continuously~by function value
and first derivative! onto plane waves. Because of this con-
struction the valence wave functions have the correct nodal
structure within the atomic spheres. Since all electronic
states are taken into account, core states also, have to be
calculated, which is done fully relativistically. According to
the space division described above, charge density and po-
tential are expanded in a natural way: in terms of spherical
harmonics inside the spheres and into plane waves outside.
Due to this mathematically well-defined expansion any shape
of charge density and potential can be treated. Usually, in
FLAPW basis sizes are smaller than in pseudopotential cal-
culations. However, for the present case for Co and CoSi2 an
extremely large energy cutoff of about 340 eV was chosen
resulting in 180 basis functions per atom. This was done to
ensure perfect convergency of the total energy. Inside the
atomic spheres all spherical harmonics expansions were
made up tol58. Particular care was also taken for the total-
energy convergence due tok-space integration, which in the
present case was done by application of the linear tetrahe-
dron method.12 Although for a moderate to medium number
of k points this method is less advantageous compared to
specialk-point techniques, it allows an useful extrapolation
of the total energy to the limit of an infinite number ofk
points ~Jansen and Freeman6!.

All FLAPW calculations were performed within the local-
density approximation~LDA ! of Hedin and Lundqvist13

~HL! for the many-body part of density-functional theory.
For the VAMP applications, however, three different types
of density-functional approximations have been considered:
~i! the HL expression,~ii ! the LDA formulation of Ceperly
and Alder,14 and~iii ! the generalized gradient approximation
~GGA! of Becke and Perdew.15

Therefore, when FLAPW and VAMP results are com-
pared they always refer to fully converged total energies
within the HL approximation.

III. RESULTS AND DISCUSSION

As a first test we calculated the equilibrium lattice param-
eter, cohesive energy and bulk modulus for~i! nonmagnetic
fcc-Co and for~ii ! CoSi2 , which crystallizes in theFm3m
~cubic CaF2) structure. From Table I for Co we find very
good agreement between the two calculated sets of values.
The maximum deviation is found for the bulk modulus,
which is about 3–4 % larger for the VAMP calculation. For
the derivation of the cohesive energies we chose the occupa-
tion (3d↑)5(3d↓)2.897(4s↑)1(4s↓)0.103 ~Ref. 16! for the
spin-polarized free-atom LDA calculation of Co.

Also for CoSi2 , FLAPW and VAMP data agree very well

between each other. Again, the largest deviations of about
0.5% are found for the bulk modulus at the calculated equi-
librium lattice parameters. The lattice parameters agree
within 0.2%. Because of the shortcomings of LDA the cal-
culated lattice parameters are smaller by 1.2% than the ex-
perimental result. When the bulk moduli are calculated at the
experimental volume then we achieve perfect agreement
with measured data. It should be noted that the now much
larger calculated cohesive energies again agree very well be-
tween each other, in particularly when one takes into account
that FLAPW and VAMP data are obtained by totally differ-
ent treatments for the bulk as well as for the free atom.
Obviously, the VAMP pseudopotential approach reproduces
the ground state results of the FLAPW full-potential all-
electron approach quite accurately in distinction to other
studies.17,18

Elastic constants are important parameters of a material
and their ab initio calculation requires precise methods.
Therefore, the quality of calculated elastic constants provides
a critical test for the quality of anab initio method.

The standard way to derive elastic constants fromab ini-
tio results is to calculate second derivatives of the energy
densityU(d) ~which is defined as total energy per volume!
as a function of properly chosen lattice distortionsd building
up the strain. For a cubic crystal structure there are only three
independent elastic constantsC11, C12, andC44, for which
one needs three independent strainse(d). We have con-
structed the strains in the following way:

ecomp5
1

3 S d 0 0

0 d 0

0 0 d
D , e tetr5

1

2S 2d 0 0

0 2d 0

0 0 2d
D ,

e trig5S d2 d d

d d2 d

d d d2
D . ~1!

The strainecomp describes volume compression whereas
e tetr ande trig refer to anisotropic tetragonal and trigonal lat-

TABLE I. Ground-state properties of nonmagnetic fcc-Co and
of CoSi2 calculated by VAMP and FLAPW. Columns:a0 ~equilib-
rium lattice spacing!, B0 ~bulk modulus ata0), Ecoh ~cohesive en-
ergy ata0). LDA expression of Hedin und Lundqvist and GGA of
Perdew and Becke were applied. ColumnBexp: bulk moduli calcu-
lated at experimental volume. Experimental values: Ref. 27 for
CoSi2 .

a0/Å B0/GPa Bexp/GPa E coh/eV

fcc-Co VAMP LDA 3.387 319.1 180.4 -6.65
FLAPW LDA 3.385 310.9 173.0 -6.67

CoSi2 FLAPW LDA 5.292 201.8 171.6 -20.38
VAMP LDA 5.283 200.2 168.4 -20.69
VAMP GGA 5.350 171.5 169.0
Experiment 5.365 171.563.4
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tice distortions, respectively. Then, the elastic constants~or
linear combinations of them! are calculated from the energy
density by

]2U~ecomp!

]d2
5
C1112C12

3
5B,

]2U~e tetr!

]d2
5
3

2
~C112C12!53C8,

]2U~e trig!

]d2
54C44. ~2!

Particular care was taken to converge the total energies
due to the number ofk points. For the specialk-point tech-
nique of VAMP 84, 550 and 670k points in the irreducible
part of the Brillouin zone were sufficient to obtain, corre-
spondingly,B, C8, andC44 within numerical fluctuations of
1 GPa. For the FLAPW calculation, however, the linear tet-
rahedron method was applied which is slower convergent but
allows the extrapolation to an infinite number ofk points.
There, for the largest set ofk points of 252, 1162, and 946
for B, C8, andC44, correspondingly, one achieves accura-
cies of 1%, 3%, and 2% when compared to the extrapolated
results. Table II compares the values obtained from FLAPW
and VAMP calculations~columnsE tot) showing very good
agreement. The maximum deviation of less than 3% is found
for C44

0 andC44.
For high-quality calculations of elastic constants it is nec-

essary that internal atomic positions are fully relaxed. This
problem arises whenever the chosen strain reduces the sym-
metry of the undistorted crystal structure in such a way that
additional degrees of freedom for the atomic arrangement
occur. Such relaxation effects are quite often neglected in
related studies. For cubic CoSi2 the trigonal straine trig ~Eq.
1! leads to Si positions which are not any more located at
inversion sites~space groupR3̄m). Now, one free geometry
parameter has to be relaxed along the~111! direction ~Fig.
1!. Within FLAPW the geometry was optimized by total-
energy minimization whereas for the VAMP application
atomic forces were minimized by a quasi-Newton-algorithm.
The relaxation influences the result forC44 drastically as
revealed by Table II: the elastic constantC44

0 referring to the

unrelaxed geometry is 60% larger~64 GPa! thanC44 for the
fully relaxed case. The relaxation gives rise to a softening of
C44.

According to Kleinman19 the extent of relaxation may be
expressed quantitatively by the internal strain parameterz
(0<z<1). The valuez51 describes the maximal relaxation
for which all Co-Si bond lengths remain equal in the strained
crystal. Forz50 the atoms would follow the macroscopic
strain without relaxation. Bothab initio methods applying
LDA yield the same valuez50.59.

The VAMP package was applied for two other exchange-
correlation approximations within density-functional theory.
The LDA formulation of Ceperley and Alder14 led to results
which were very similar to the tabulated values based on the
HL approximation. According to our experience, LDA de-
rived elastic constants calculated at theexperimentalvolume
agree well with experimental data~for CoSi2 , see Table III!.

Applying the GGA,15 however, changed the equilibrium
data significantly, causing a general softening not only of
isotropic volume-dependent quantities such as equilibrium
lattice parameter and bulk modulus but also ofC44 ~Table
III !. The internal strain parameter now is found to be
z50.67, which is significantly larger than the LDA value
given above. As a comparison for pure Si it was found that
ab initio LDA calculations always gave significantly lower
values forz ~0.53–0.57! than the experimental data~0.65–
0.73!. A similar trend was also observed for Ge, GaAs, and
AlAs.20

All GGA results seem now to reproduce in an excellent
manner the listed experimental values. However, this perfect
agreement might be somewhat misleading. One has to be
aware that for the construction of the pseudopotential the

TABLE II. Calculated elastic constants of CoSi2 at calculated
equilibrium volume. Elastic constants are derived from second total
energy derivatives (Etot), stress-strain relation~stress!, and phonon
dispersions~phonon!. C44

0 : values without geometry relaxations.
All values in GPa.

FLAPW VAMP VAMP VAMP
Etot Etot Stress Phonon

C11 273.3 273.1 271.5 236.4
C12 166.0 163.7 162.9 140.4
C44
0 168.4 164.1 164.1

C44 97.4 100.6 100.3 97.7
B 201.8 200.2 199.1 172.4

FIG. 1. Trigonal distortion: Crystal structure and strain–total-
energy dependence. Atomic relaxation indicated by arrows. Fitted
total energies with relaxation~full lines! and without relaxation
~dashed-dotted lines! for 525 ~a!, 946 ~b!, and extrapolated to an
infinite number~c! of k points.
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choice of the cutoff radius for the partial core corrections
might modify the GGA results.21 In all our VAMP calcula-
tions ~for LDA as well as GGA! the cutoff radius was de-
fined at the distance where the valence charge density was
equal to the core charge density.

Pursuing a physical argument, one should be careful when
comparing the experimental elastic constants, which were
measured at room temperature, to theab initio values, which
refer to T50 K strictly. Temperature effects generally re-
duce the size of the elastic constants and thereforeC44 ~for
which the GGA has the strongest impact! could be signifi-
cantly increased at low temperatures. To our knowledge, no
experimental data about the temperature dependence of elas-
tic constants for CoSi2 are available. From a previousab
initio22 and experimental23 study on Al3Li increases of about
20–30 % forC11 andC44 were found when comparing mea-
sured room temperature values to calculated results. The cal-
culated data, however, were in agreement with the experi-
mental results after extrapolation toT50 K. Summarizing,
the better agreement of GGA derived elastic constants—in
comparison to LDA results—with experimental data at room
temperature is no conclusive proof of the superiority of GGA
to LDA, at least for CoSi2 .

The power and flexibility of VAMP made it possible to
apply it also for other derivations of elastic constants. In a
pure plane-wave description for wave functions and Hamil-
tonian the stress tensors i j can be analytically derived in a
straightforward way from the second derivative of the total-
energy functional with respect to atomic coordinates~see
Kresse5!. Because of the stress-strain relations i j5Ci jkl ekl
the elastic constants can be directly expressed in terms of
stress tensor components by

C445
1

2

]s12

]e12
5
1

2

]s21

]e21
5
1

2

]s21

]d
,

C85
]s11

]e11
52

1

2

]s33

]e33
5

]s11

]d
,

B5
]s11

]e11
5

]s11

]d
, ~3!

applying the cubic symmetry to stress and strain. As shown
by Table II, the thus-derived VAMP results for the equilib-

rium volume are in perfect agreement with the results ob-
tained from total-energy derivatives.

Finally, by application of VAMP, dynamical properties in
terms of phonon spectra also were calculated. Preciseab
initio calculations of phonon spectra is still a demanding
task, even more so the derivation of elastic constants from
the phonon dispersions. For the computation we made use of
the force constant24 approach, which is based on supercells
for which all coordinate axes are orthogonal to each other.
Within the supercell a single atom is displaced in a particular
direction and induces now forces acting on the nuclei in the
neighboring shells. For making the computational effort rea-
sonable we oriented the displacement vectors always along
main symmetry directions when we calculated the force con-
stant matrix. The applicability of this approach and its accu-
racy are mainly limited by the size of the supercell box,
which depends on the range of the atomic interactions of the
studied material. In particular, for CoSi2 , due to the covalent
type of bonding we observed rather long-ranged effects
caused by the displaced atom. In order to derive elastic con-
stants from phonon dispersions we needed higher precision
and for that we made use of the concept of interplanar force
constants.25 In this scheme a tetragonally shaped supercell is
constructed by repeating the unit cell along the direction of
the chosen wave vector and the atoms in the perpendicular
planes are moving rigidly. By such a procedure a wider
range of neighboring atoms contributing to the acoustic vi-
bration in question can be treated.

Figure 2 shows the phonon dispersions for CoSi2 calcu-
lated from a tetragonal supercell with 36 atoms having its
stretched lattice vector along~100!. The agreement with the
experimental data26 is very good although the measured val-
ues show some scattering. It should be noted that the acous-
tic branches close to theG point appear perfectly linear with-
out any apparent anomality which makes it — at least in
principle — possible to derive the elastic constants from the
dispersions.

The elastic constants for a cubic system are extracted
from first derivatives of phonon branchesv(q) by

TABLE III. Elastic properties of CoSi2 . LDA: VAMP and
FLAPW results for the LDA expression of Hedin and Lundqvist at
experimental lattice spacing (a 5 5.365 Å!. GGA: VAMP calcula-
tion applying generalized gradient approximation~Ref. 15! at cal-
culated equilibrium lattice parameter (a0 5 5.350 Å!. Experimental
data are taken from Ref. 27. All values in GPa.

FLAPW VAMP VAMP Experiment
~LDA ! ~LDA ! ~GGA!

C11 233.8 227.6 225.0 224.764.4
C12 140.2 138.4 147.2 144.963.9
C44
0 150.3 145.0 150.9

C44 93.6 85.7 85.061.1
B 171.4 168.1 173.1 171.563.4

FIG. 2. Phonon dispersion for CoSi2 calculated by VAMP~full
lines! at experimental volume. Experimental data~circles! obtained
by neutron scattering~Ref. 26!.
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C445S dv

dqD 2r, qi~100! u'~100!

C115S dv

dqD 2r, qi~100! ui~100! ~4!

C85S dv

dqD 2r, qi~110! u'~110!,

in which q denotes the wave vector andu the polarization
vector of the vibrations, andr is the mass density of the
material.

Due to the long-ranged nature of the atomic interactions
only for C44 ~by applying a supercell with 36 atoms! we
could obtain a result which is of comparable quality toC44 of
the previous two derivations. The remaining two constants,
C11 and C8, deviate significantly from the high-precision
results, even when supercells of 48 atoms were used. A de-
tailed investigation of the convergence behavior depending
on the number of atoms in the supercell showed that the
series expansion into planar force constants is very slowly
converging forC11 andC8. The constantC11 is derived from
a longitudinal vibration mode. As is well known, longitudi-
nal modes cause perturbations which are more long ranged
compared to effects of transversal modes. Due to the con-
struction of a suitable supercell for the calculation ofC8, the
number of planes perpendicular toq was lower by a factor of
2 compared to the case forC11 and for C44. We did not
perform the corresponding very demanding calculations be-
cause all the other results already prove the power and pre-
cision of an up-to-dateab initio method.

IV. SUMMARY

We critically compared one of the most powerfulab initio
pseudopotential approaches~VAMP! to a high-quality all-
electron method~FLAPW! by studying cohesive properties

as well as elastic constants of the bulk phase of cubic
CoSi2 . The outstanding agreement of the data calculated by
these totally different methods emphasizes the reliability of
the ultrasoft pseudopotential as utilized by VAMP. For ap-
plying both methods we took care that total energies and
elastic constants are fully converged due to all numerical
parameters such as basis sizes and number ofk points. In
particular, we emphasized that for the calculation of elastic
constants all atomic positions of the corresponding strained
lattice have to be fully relaxed. Our very precise calculations
of the elastic constants demonstrate the usefulness ofab ini-
tio methods for the determination of materials properties. For
a proper comparison to experimental data, the elastic con-
stants within LDA have to be calculated at the experimental
volume in order to overcome the overbinding problem of
LDA. If GGA is applied we achieve almost perfect agree-
ment with experimental data and the elastic constants in par-
ticular. However, one should be aware that the measurements
were done at room temperature whereasab initio calcula-
tions refer toT50 K. By utilization of VAMP we calculated
the elastic constants also in two other ways. In addition to
deriving the elastic constants directly from the stress-strain
relations we also tried to determine them from the phonon
dispersions. A precise calculation ofC8 andC11 from proper
derivatives of the phonon branches proved to be not feasible
because such a task would require very large supercells.
Nevertheless, we obtained reliable results forC44 as well as
the dispersions themselves.
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