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The local binding properties and electronic structures of 4d transition metals are studied by using a cluster
model within the frame of density-functional theory. The equilibrium structures of all 4d transition-metal
clusters are obtained by maximizing the binding energy of each cluster. The obtained mechanical properties,
binding energies, and bond lengths well reproduced the trends displayed by corresponding set of bulk solids,
which reveal that local interactions play a significant role in determining variations of binding properties of 4d
transition metals. The bond lengths of clusters are found to converge more rapidly with cluster size toward
their bulk limits than the binding energies. The relative stabilities of all clusters are discussed in terms of their
ground-state electronic configurations. The contraction effect in valence-band widths~VBW’s! is founded in
clusters. The variation trend of VBW’s for one cluster relative to another also bears analogs to the trend
displayed by bulk solids. A striking correlation between magnetic moments and the magnitude of exchange
splittings is found and elaborated. The mechanism leading to nonzero magnetizations and giant magnetic
moments in some clusters is discussed in detail.@S0163-1829~96!04448-7#

I. INTRODUCTION

Recently, a lot of experimental and theoretical interest has
been given to the investigation of unique electronic and mag-
netic properties of atomic clusters.1–5 Among them,
transition-metal clusters are of particular interest due to their
promising practical applications in chemical industry and
high-density magnetic record devices.6,7 The efforts are
mainly concentrated on the following aspects:~1! the
ground-state geometries and relative structural stabilities;8–11

~2! the evolution of cluster properties such as ionization po-
tentials, binding energies, and so forth toward the bulk limits
with the increase of the cluster size;12–16 ~3! magnetic prop-
erties and their dependence on cluster size, geometric sym-
metry, interatomic spacings, and applied magnetic
fields;17–21 ~4! cluster chemistry including the reactivity, ca-
talysis, etc.7 Among those topics, one of the basic underlying
questions is how the various properties of clusters change as
the cluster size increases, and how many atoms it will take to
reproduce the properties of a crystal.22–27However, little has
been done concerning the property evolution with atomic
numbers.

Actually, it is physically important to investigate the
property evolution of transition-metal clusters with a fixed
number of atoms and geometry as their atomic numbers
change. It is also of physical importance to understand how
the property trends of clusters compare with trends in the
corresponding set of solids. The logical development of the
investigation of the latter started with elemental isolated
atoms,28 closely condensed systems29 to 3d transition-metal
clusters. By using the linear-combination-of-atomic-orbitals
molecular-orbital method within the scheme of density-
functional theory, Painter calculated the binding energies and
bond lengths of the 3d transition-metal clusters from Sc
through Cu.30 These clusters consist of only six atoms with
octahedral symmetry. His calculations revealed that binding
energies for small transition-metal clusters established a
trend with atomic number which accurately reproduces the

trend in cohesive energies which is exhibited by a corre-
sponding set of crystalline solids. In a subsequent paper,
Painter and Averill31 used the same method to examine the
trends in binding energies and interatomic spacings for all
metallic clusters from hydrogen to copper. Their calculations
further indicated that the variations of both binding energies
and bond lengths for one metallic cluster relative to another
are very similar to the relative variations of those of their
bulk counterparts. Their results provided good insight into
local metal-metal bonding characteristics which distinguish
one metal from another. Regarding 4d transition metals, no
systematic investigation of their local bonding trends and
local electronic structure has been conducted by a cluster
model, to the best of our knowledge.

In this paper, we calculated the binding energies, equilib-
rium interatomic spacings, and local electronic structures of
4d transition-metal clusters from Y through Cd by using a
linear-combination-of-atomic-orbitals molecular-orbital ap-
proach within the frame of density-functional theory. The
main object of this work is to understand how cluster prop-
erties relate to one another and to their bulk limit while pro-
gressing from one element to another, which is basically
similar in spirit to Painter’s work. In order to reduce the size
and structure effects on the cluster properties, we chose clus-
ters with only six atoms and octahedral symmetry as in the
case of Painter. The whole paper is arranged as follows. In
Sec. II, we describe the theory and computational methods.
In Sec. III, we concentrate on discussing the local binding
trends, local electronic structure, and the giant magnetic mo-
ments of clusters. Finally, we summarize our results in Sec.
IV.

II. THEORY AND METHODS

Our calculations are based on the density-functional
theory to which the local spin-density approximation is
adapted.32 Within this frame, the ground-state properties of
the clusters can be well described by Kohn-Sham~KS! equa-
tions. The spin-dependent exchange-correlation potential
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presented in KS equations is approximated in the Barth-
Hedin form.33 The linear-combination-of-atomic-orbitals
method is used to obtain molecular wave functions of the
clusters. Throughout our calculations, numerical atomic
wave functions of 4d, 5s, and 5p are used as the basis set.
The inner orbitals such as 1s, 2s, etc. are kept frozen in
order to reduce the computational efforts. The KS equations
are solved self-consistently using the discrete variational
method, which has been discussed in detail by Elliset al.34

Using the solutions of KS equations, the total energy of the
clusters can be readily obtained and the binding energy can
be calculated fromEb5Etot2Eref , whereEtot is the total
energy of the cluster andEref is the sum of the total energy of
the free atom. The equilibrium structures of the clusters are
obtained by maximizing the binding energyEb with respect
to the interatomic spacings. The Mulliken population analy-
sis has been used to obtain the occupation numbers of atomic
orbitals. The magnetic moments are defined as the differ-
ences of occupation number between the spin-up and spin-
down states. The partial density of states~DOS! of the spins
is obtained by expanding each discrete energy level accord-
ing to Lorentzian formula

Dnls
a ~E!5(

i
Anls i

a d/p

~E2« is!21d2
, ~1!

wherei is the index of energy level ands is the spin index.
Anls i

a is the Mulliken population of atomic orbital of atoma.
The total density of states of the spins is defined as the sum
of the partial density of states:

Ds~E!5(
nla

Dnls
a ~E!. ~2!

The vertical ionization potentials~IP’s! of clusters are cal-
culated self-consistently in terms of transition-state scheme,
which automatically takes into consideration electron relax-
ations.

III. RESULTS AND DISCUSSIONS

A. Local binding properties

We calculated the binding energy of each 4d transition-
metal cluster while keeping the octahedral symmetry con-
straint and allowing the clusters to relax radially. The bind-
ing energy as a function of the parameterD is shown in Fig.
1, whereD is the distance between the center of the cluster
and its vertex. For each curve presented in Fig. 1, there is an
energy minimum which corresponds to the equilibrium geo-
metric configuration. The obtained values of binding ener-
gies~eV/atom!, D ~a.u.!, ionization potentials~eV!, and mag-
netic moments~mB atom! are listed in Table I. From the
binding-energy curves depicted in Fig. 1, we may derive a
broad spectrum of mechanical properties of the clusters stud-
ied. First, the Cd cluster has a much smaller binding energy
and a much larger equilibrium interatomic spacing in com-
parison with those of the midrow members such as Nb, Tc,
Ru, and so on. The Y cluster also exhibited a relatively large
interatomic spacing and a relatively small binding energy.
We may conclude that the Y and Cd clusters are weakly
bonded, which well reproduces the bonding properties of the

corresponding bulk solids. On the other hand, the midrow
members such as Nb, Tc, Ru, Mo clusters all display rela-
tively small interatomic spacings and relatively large binding
energies, which indicates that those clusters are strongly
bonded. Therefore, it is apparent in results of our calcula-
tions that the clusters bear analogs to the corresponding bulk
solids in the aspects of bonding strengths and equilibrium
interatomic spacings. Second, the slope of the energy curve
determines the restoring force on the displaced atom and
elastic properties of respective cluster. From Fig. 1, we find
that the energy curves of members at both ends along the 4d
series in the Periodic Table~for example, Y, Cd, Zr, and Ag!
are flat, in strong contrast with those of the midrow members
such as Nb, Tc, Mo, Ru clusters, whose energy curves are
sharp. The energy curves of Rh and Pd fall between these
extremes. Accordingly, it is also apparent from the results of
our calculations that a qualitative correspondence exists be-
tween clusters and their bulk counterparts in the aspect of

FIG. 1. The binding energy for 4d transition-metal clusters as a
function of the distance from the center of the cluster to its vertex.

TABLE I. The binding energy (Eb), the displacement from the
center of cluster to its vertex (D), ionization potentials~IP’s! of 4d
transition-metal clusters, and averaged magnetic moment (m) per
atom.

Cluster Eb ~eV! D ~a.u.! IP ~eV! m ~mB!

Y6 3.53 4.40 6.22 0.00
Zr6 5.23 3.96 5.86 0.33
Nb6 5.07 3.64 7.40 0.67
Mo6 4.05 3.40 7.27 0.33
Tc6 4.91 3.36 6.88 0.33
Ru6 4.70 3.40 7.11 1.00
Rh6 4.03 3.48 7.42 0.99
Pd6 3.14 3.50 7.73 0.00
Ag6 1.56 3.76 8.04 0.33
Cd6 0.39 4.48 6.91 0.00
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elastic properties. Finally, the second derivative of the en-
ergy curve determines the bulk modulus of each cluster if we
define the cluster’s bulk modulus in the same way as those of
the bulk crystalline solids. Both experimental measurements
and theoretical calculations indicated that the bulk modulus
of the early 4d transition metals increase with the increase of
atomic number and those of the late 4d transition metals
decrease with the increase of the atomic number.29 Among
these members, Ru and Tc which are located at the center of
the 4d series have the largest values of 3.21 and 2.97, re-
spectively, and Y and Cd which lie at the ends of 4d series
have the smallest values of 0.366 and 0.467, respectively~all
in units of 1011 N/m2!, with those of Zr, Nb, Mo, Rh, Pd, and
Ag falling between these extremes. From Fig. 1, we can infer
that the bulk modulis of Y through Cd clusters generally
exhibit the same trends as their corresponding bulk crystal-
line solids.

In order to investigate the binding trends with atomic
number and convergence of the clusters’ binding energies
toward those of their bulk values, we plotted the binding-
energy curves of bulk solids including experimental mea-
surements and results of band-structure calculations in Fig.
2~a!.29,35,36 The binding-energy curves of clusters are also
presented in Fig. 2~a! for comparison. Experimental values
for crystalline solids are denoted by solid circles. Calculated
band-structure values for crystalline solids are represented by
solid squares, and solid triangles stand for the calculated val-
ues of clusters. From Fig. 2~a!, the binding energy of each
cluster is smaller than that of the measured value of the cor-
responding crystalline solid. The absolute differences be-
tween energy values for the corresponding elements of the
bulk and cluster systems vary from 0.75 to 2.77 eV per atom.
Comparing the energy values of local-density approximation
~LDA ! band-structure calculations on the crystalline solids
with the energy values of present LDA cluster calculations
on the cluster systems, we find that the energy differences
between corresponding midrow elements of bulk and cluster
systems such as Nb, Mo, Tc, and Ru are as high as about 2.7
eV per atom, for the early members such as Y and Zr, their
energy differences are about 1.4 eV per atom, for the late
members such as Pd, Ag, and Cd, their energy differences
are 0.54, 1.32, and 1.01 eV per atom. Although band-
structure calculations tend to overestimate the cohesive en-
ergy in most cases, the results from band-structure calcula-
tions show closer agreement with experimental results than
results from present cluster calculations. Therefore, it is rea-
sonable to infer that the cluster binding energy will converge
to the bulk LDA results as the sizes of clusters increase.
However, for the discussion of the binding trends, it is not
the absolute differences but the relative differences that play
a significant role. From Fig. 2~a!, we may find that although
the absolute energy differences between corresponding ele-
ments of cluster and bulk systems are large, these differences
are actually slowly varying. So, the trend exhibited by ex-
perimental binding energies is well reproduced by the clus-
ters as small as six atoms across the whole 4d transition-
metal series. Of course, there is a small deviation from the
experimental trend for Nb cluster. For the experimental case,
its binding energy is somewhat bigger than that of both its
left-hand neighbor Zr and its right-hand neighbor Mo; how-
ever, for the case of clusters, its binding energy is smaller

than that of its left-hand neighbor Zr even though its binding
energy is still larger than that of its right-hand neighbor Mo.
Because this deviation is not presented in the energy curve of
the LDA band-structure calculations for the corresponding
crystalline bulk, the origin of this discrepancy in the trend
cannot simply be attributed to the local-density approxima-
tion itself. This discrepancy probably originated with the
relatively large magnetization of Nb because magnetization
will lower the total energy of the system. Nb has a magnetic
moment of 0.67mB, which is twice that of Zr~0.33!.

In Fig. 2~b!, we plotted the Wigner-Seitz radii of the crys-
talline solids including results from experimental measure-
ments and LDA band-structure calculations.29,35,36 These
values are denoted by solid squares and solid circles,

FIG. 2. A Comparison of~a! crystalline and cluster binding
energies and~b! crystal and cluster Wigner-Seitz radii. Solid
squares denote experimental bulk cohesive energies. Solid circles
and triangles stand for bulk cohesive energies from LDA band-
structure calculations and present cluster binding energies, respec-
tively.
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respectively. The calculated equilibrium cluster bond lengths
are listed in Table I. In order to make a comparison with the
Wigner-Seitz radii from LDA band-structure calculations
and experimental measurements, we converted the equilib-
rium bond lengths of clusters to corresponding Wigner-Seitz
radii by formulas such asRWS52D/~16p/3!1/3 and
RWS5&D/~8p/3!1/3,30,31 whereD is the displacement be-
tween the cluster center and its vertex. The first formula is
suited to fcc crystals@the symmetry adopted by Morruzet al.
for all 4d transition metals except Nb and Mo~Ref. 29!#, and
the second is applicable to bcc crystals~Nb and Mo only!.
The resultant values for the cluster Wiggner-Seitz radii are
presented in Fig. 2~b! and indicated by the solid triangles.
From Fig. 2~b!, we find that bond lengths of the clusters
contract in comparison with both experimental and theoreti-
cal values for the corresponding crystalline solids with the
only exception of the Cd cluster, whose bond length is some-
what larger than its corresponding bulk value. The bond-
length contractions relative to calculated bulk parameters are
as small as about 5% for all elements except Nb and Mo of
which the bond-length contraction reaches about 12%. This
kind of contraction effect is not unique to the 4d transition-
metal clusters. It was also found in other metal clusters,37

which embodies the dominant role of near-neighbor interac-
tions in determining the lattice constants. As far as the bond-
ing trend is concerned, the cluster results reproduced the
trend of LDA Wigner-Seitz radii of crystalline solids espe-
cially well. However, there is a noticeable deviation from the
LDA band-structure calculations in the Mo-Tc sequence.
This discrepancy is understandable because in the implemen-
tation of LDA band-structure calculations, Moruzziet al.
adopted bcc structures for Mo and Nb but a fcc structure for
Tc and other elements. However, in the present cluster cal-
culations, we retained regular octahedral symmetry for both
Mo and Nb clusters without the tetragonal distortion charac-
teristic of the octahedral fragment of the bcc lattices.

As mentioned above, elastic properties, bulk modulus,
binding energies, and bond lengths of small 4d transition-
metal clusters well reproduced the trends exhibited by corre-
sponding crystalline solids. This kind of property correlation
between clusters and solids is closely related to a strongd
character in their valence states, and to their progressive fill-
ing of 4d shells while going from left to right along the 4d

series in the Periodic Table. First, based on the Mott-Slater
model,38 the binding nature of transition metals is mainly
determined by theird electrons; other factors such ass elec-
trons and magnetism are only details of secondary impor-
tance. Second, compared with the othersp valence orbitals
with comparable energy, 4d orbitals are much more concen-
trated. Their much smaller numbers of spherical nodal sur-
face allow them to decrease exponentially. As a result, they
are fairly localized; they can neither be strongly perturbed by
the lattice potential nor overlap very strongly with states of
other atoms. So neighbor interactions play a dominant role in
determining their properties. That is why a cluster with a
small number of atoms can well reproduce the binding prop-
erties of corresponding sets of solids. Finally, from Fig. 2~a!,
we can observe that the energy curves are nearly parabolic
for both clusters and solids. This is a consequence of the
change from bonding to antibonding character ofd orbitals.
For the materials at the beginning of the transition-metal
series, the bonding orbitals are being filled. The more the
bonding orbitals are being filled, the bigger the binding en-
ergy will be. This is simply because the mechanical attrac-
tion will increase while more and more bonding orbitals are
filled. The effect is maximized near the middle of the 4d
transition-metal series, when the bonding orbitals are filled;
then the trend is reversed, and the antibonding orbitals begin
to be filled.

B. Local electronic structures

In this section we will concentrate on the investigation of
the local ground-state electronic structure of 4d transition
metals. The obtained results are listed in Table II, whereB,
E, and T are symbols of the one-dimensional, two-
dimensional, and three-dimensional irreducible representa-
tions of the point group with octahedral symmetry.g andu
stand for even and odd, respectively. Up and down arrows
presented in Table II represent up and down spins, respec-
tively. From Table II, we find that the gap between highest
occupied molecular orbitals~HOMO’s! and lowest unoccu-
pied molecular orbitals~LUMO’s! displays large variations
through the entire 4d series. Ag and Cd clusters have gaps as
large as 2.34 and 1.54 eV, respectively. In contrast, Tc has a
quite small gap of 0.05 eV. The gaps for other members have

TABLE II. The calculated data of ground-state electronic structure and ground-state electronic configurations for 4d transition-metal
clusters.

Clusters
HOMO
eV

LUMO
eV

VBW
eV

HOMO
Symbols electrons configurations

Y 24.02 23.77 3.41 Bu↑ 1 closed
Zr 23.83 23.66 4.55 T2u ↑ 2 open
Nb 24.99 24.79 5.06 T1u ↓ 2 open
Mo 25.10 24.93 5.94 T1g ↑ 2 open
Tc 24.08 24.03 7.05 Eu↑ 2 closed
Ru 24.27 24.15 6.73 Eg↓ 1 open
Rh 24.54 24.51 5.93 Eg↓ 2 closed
Pd 28.65 28.50 5.10 T2g ↑ 3 closed
Ag 25.63 23.29 6.45 T2u ↓ 1 open
Cd 24.79 23.25 8.97 Eg↑ 2 closed
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a magnitude of 0.1–0.3 eV, falling between foregoing ex-
treme cases. Actually, there exists no explicit correction be-
tween atomic number and gap.

For a cluster, its electron number in the HOMO plays a
significant role in determining its ground-state electronic
configuration. From Table II, we may find that HOMO’s of
Nb, Ru, Rh, and Ag clusters are all occupied by up spin
electrons, and those for Y, Zr, Mo, Tc, Pd, and Cd clusters
are occupied by down spin electrons. This picture is quite
different from that obtained for 3d clusters of which the
HOMO’s are always occupied by up-spin electrons. On the
other hand, the ground-state electronic configuration of a
cluster determines its relative structural stability. From Table
II, we can see that Y, Tc, Rh, Pd, and Cd clusters have a
fully occupied HOMO which leads to a ground state with a
closed electronic shell. Thus these clusters are reasonably
expected to be quite stable. However, for the Zr, Nb, Mo,
Ru, and Ag clusters, each has an unfilled HOMO which
leads to a ground state with an open electronic shell. Hence,
they are apt to undergo the Jahn-Teller distortion which may
lower the cluster’s symmetry so as to reduce the degeneracy
of its ground state and finally lower its energy.

Another interesting result of calculations is that there is a
striking correlation between the valence-band width~VBW!
of clusters and that of corresponding crystalline solids. The
obtained VBW data for the 4d transition-metal clusters are
listed in Table I. In Fig. 3, we plotted the VBW curves for
both cluster and crystalline systems for comparison, where
solid circles stand for the former and solid triangles for the
later.29 From Fig. 3, we can see that the VBW of clusters are
smaller than that of corresponding crystalline solids with the
only exception of Tc cluster of which the VBW is nearly the
same as that of its crystalline solid. Here again, the trend in
the VBW of LDA band structure is rather well reproduced by
the clusters’ VBW. Progressing from Y through Cd, a devia-
tion from the LDA band-structure calculations only occur at

Tc. Hence, the VBW difference for one metal relative to
another is very accurately represented by the small octahe-
dral clusters.

In Fig. 4, we plotted the eigenvalue spectra for all the
clusters from Y through Cd. In each case, the Fermi level is
shifted to zero. The upper panel of each diagram is the ei-
genvalue spectrum of up-spin electrons, and the lower panel
the eigenvalue spectrum of down-spin electrons. From Fig.
4, we can see that there are no exchange splittings between
up- and down-spin bands for Y, Pd, and Cd clusters. The
other clusters exhibited exchange splitting at varying degrees
with Nb, Ru, and Rh having the largest magnitude of ex-
change splittings. Referring to Table I where we listed the
averaged magnetic moments per atom of each clusters, one
can find that Y, Pd, and Cd clusters carried no magnetic
moments. However, Ru, Rh, and Nb clusters sustained mag-
netic moments as large as 1.0, 0.99, and 0.67~mB/atom!,
respectively. Therefore, there is a striking correlation be-
tween the cluster magnetic moment and its magnitude of
exchange splittings. The larger the magnitude of exchange
splitting of a cluster, the larger the magnetic moment of the
cluster. It is understandable because the exchange splitting
may cause a shift of the spin-up band relative to spin-down
band, and this shift may result in a different occupation of
spin-up states and spin-down states. The net difference of
electron number between spin-up and spin-down states de-
termine the magnitude of magnetic moments of the whole
clusters. So generally, the larger the exchange splitting, the
larger the magnetic moment.

C. Giant magnetic moments

Magnetic properties of all clusters from Y through Cd
will also prove topical for the discussion. From Table I, we

FIG. 3. A comparison of crystal and cluster valence-band width.
Solid triangles represent the results from LDA band-structure cal-
culations. Solid triangles stand for present results for clusters.

FIG. 4. The energy spectra of 4d transition-metal clusters.
Fermi energy levels are shifted to zero. The upper panel is the result
of spin-up band, and the lower the result of spin-down band.
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may find that each cluster except Y, Pd, and Cd carries a
finite magnetic moment, with Ru and Rh clusters having gi-
ant magnetic moments of 1.0 and 0.99~mB/atom!, respec-
tively. This picture is quite different from the magnetic be-
haviors of their bulk solids. Although 4d transition metals all
have unfilled localizedd electronic shells, none of them are
magnetic. This nonzero magnetization phenomenon is not
unique to the 4d clusters. Recent calculations have predicted
magnetic ordering in 3d clusters whose corresponding bulk
materials are normally nonmagnetic.39–40 Most predicted
nonzero magnetizations have been confirmed later by Stern-
Gerlach experiments.41–43 There exists a consensus that the
nonzero magnetization in clusters whose bulk materials are
nonmagnetic or enhanced magnetic moments in clusters
whose bulk counterparts are already magnetic is due to the
clusters’ lower dimensionality and higher symmetry.40

Before discussing the origin of the giant magnetic mo-
ments of Ru6 and Rh6 clusters, we first review other predic-
tions of giant magnetic moments of Ru and Rh clusters with
a cluster size larger than six atoms. Galicia calculated mag-
netic properties of Rh13 cluster with octahedral symmetry
using a molecular-orbital approach.44 Because he adopted a
fcc crystal structure and bulk interatomic spacing for the
Rh13 cluster, his calculation actually was performed on a
relatively larger fragment of bulk rhodium. Based on his
spin-polarized calculations, he predicted a magnetic moment
of 1.0 ~mB/atom! which is the same as our result for octahe-
dral Rh6 cluster. Reddy, Khanna, and Dunlap

40 calculated the
magnetic moment of Ru13 cluster with icosahedral symme-
try, and predicted a giant magnetic moment of 1.02
~mB/atom!, which is also in the same order of the magnetic
moment obtained for Ru6 cluster. In fact, the predicted giant
magnetic moments for both Ru and Rh clusters were later
confirmed by the Stern-Gerlach experiment.45

In order to understand the origin of the giant magnetic
moments of Ru6 and Rh6 clusters, we depicted eigenvalue
spectra as well as the total density of states,sp andd partial
density of states of these clusters in Figs. 4 and 5. Figures
5~a! and 5~b! are results of Ru and Rh clusters, respectively.
Vertical dashed lines in Fig. 5 represent Fermi energy levels
which are shifted to zero. The upper panel stands for the
DOS of up spin, and the lower panels represent down spin.
The solid lines, dashed lines, and dotted-dashed lines stand
for the total DOS, 4sp partial DOS, and 4d partial DOS,
respectively. From Fig. 5 we can see that the total DOS for
both Ru and Rh clusters show a very large peak near the top
of the valence band, and Fermi energy levels (Ef) lie near
the large peak. This is different from their bulk counterparts
of which Fermi energy levels lie in a dip of DOS. This high
DOS contributes a lot to the giant magnetic moments be-
cause a small shift between two large peaks may result in a
non-negligible difference between up- and down-spin elec-
trons. In addition, as mentioned before, the magnitude of the
magnetic moments of cluster is obviously correlated with the
degrees of exchange splitting between up-spin and down-
spin bands. The larger the exchange splitting, the larger the
magnetic moments. Figure 4 shows that both Ru and Rh
have large exchange splittings between their spin-up and
spin-down bands. The magnitude of these exchange split-
tings is of the order of 0.5 eV for thesp band and 0.7 eV for
thed band. The obtained magnitude of exchange splittings of

the present calculations is very close to the result of Galicia
who obtained an exchange splitting of 0.6 eV.

Finally, it is worth mentioning the following.~1! There
are two factors which contribute to the high DOS near the
Fermi energy levels. First, the VBW of the cluster is nar-
rower than that of its bulk solid due to its reduced dimen-
sionality. The same number of electrons filling a narrower
band will necessarily result in a higher density of states.
Second, the high symmetry adopted in our calculations pro-
duced a large averaged degeneracy. So the same energy in-
terval may accommodate more isospin electrons for the sys-
tem with larger averaged degeneracy.~2! The DOS is mainly
contributed to byd electrons.s andp electrons make a small
fraction of the contribution to the total DOS, which can be
seen from Figs. 5~a! and 5~b!.

IV. CONCLUDING REMARKS

To sum up, we have made systemmatic investigations of
the mechanical, electronic, and magnetic properties of all 4d
transition metals from Y through Cd by a cluster model. All
our studies are carried out within the scheme of density-
functional theory to which local spin-density approximation
has been added. The equilibrium structures of the clusters
were obtained by maximizing the binding energy with re-
spect to interatomic spacings. The binding energies for all

FIG. 5. Total density of states~solid lines!, d partial density of
states~dashed lines!, andsp partial density of states~dotted dashed
lines! for ~a! Ru cluster and~b! Rh cluster. Up and down denote
spin up and spin down.
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clusters studied are smaller than those of their corresponding
bulk solids. The mechanical properties such as elasticity and
bulk modulus, binding energies, and bond lengths of clusters
well reproduced the trends exhibited by their bulk counter-
parts. However, we find that bond lengths are more rapidly
convergent with cluster size than binding energy. Concern-
ing local electronic structure, we find that VBW’s of all clus-
ters are smaller than the corresponding crystalline solids, ex-
cept the Tc cluster of which the cluster VBW is almost the
same as that of its crystalline solid. Based on our calcula-
tions, it is apparent that the clusters bear analogs to the cor-

responding solids in the aspect of the variations of VBW’s
for one element relative to another. We also find a striking
correlation between cluster magnetic moments and the mag-
nitude of exchange splittings. The larger the magnitude of
exchange splittings, the larger the magnetic moments. Non-
zero magnetizations are found for some 4d clusters; in par-
ticular giant magnetic moments are found for Ru and Rh
clusters. The mechanism leading to nonzero magnetizations
and giant magnetic moments is discussed in detail. The rela-
tive stabilities of clusters are analyzed in terms of their
ground-state electronic configurations, too.
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