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We present the results of fixed-node diffusion Monte Carlo calculations of jellium surfaces for metallic
densities. We used a trial wave function of the Slater-Jastrow type, with the long-range part of the two-body
term modified to account for the anisotropy of the system. The one-body term is optimized so that the
electronic density from variational and diffusion Monte Carlo calculations agree with each other. The final
densities are close to the densities obtained from density-functional calculations in the local-density approxi-
mation and the surface energies to the results obtained using the Langreth-Mehl and Perdew-Wang generalized
gradient approximation at high densities (r s<2.07). At low densities (r s>3.25) they agree with the results of
the Fermi-hypernetted-chain calculations. The pair-correlation functions at regions near the surface are tabu-
lated, showing the anisotropy of the exchange-correlation hole in regions of fast-varying densities.
@S0163-1829~96!06848-8#

I. INTRODUCTION

The jellium surface is the simplest model for simple metal
surfaces and a prototype to study correlation effects in inho-
mogeneous systems. In systems with only a few electrons
correlation can be determined using quantum chemistry
methods; however, for extended systems such methods are
not feasible. Hohenberg and Kohn1 have shown that the ef-
fects of exchange and correlation can be formally expressed
in terms of an universal functional of the density,Exc@n#.
Although the theory is formally exact, in practice approxi-
mations to the exchange-correlation functional are needed.
Among them, the simplest, and the most used, is the local-
density approximation~LDA !,2 which assumes a slowly
varying density. Although LDA has enjoyed great success in
qualitatively and semiquantitatively explaining electron cor-
relation effects, its application to highly inhomogeneous sys-
tems is questionable. Corrections to the LDA, all assume, in
some degree, slowly varying densities. Because of their sim-
plicity, jellium surfaces play an important role in the devel-
opment of such approximations. It has been used both as a
case study and as a testing ground for the development of
new approximations. For this reason it would be very useful
to determine correlation effects in such systems exactly. In
this work we study jellium surfaces using fixed-node diffu-
sion Monte Carlo3 ~DMC!, which has been demonstrated to
determine accurately correlation effects in both homoge-
neous and inhomogeneous systems.

This work is the extension of the work of X.-P. Liet al.4

for a jellium slab~electron gas! at the average valence den-
sity of aluminum (r s52.07!. The surface energy computed in
their work was in agreement with results from a density-
functional theory ~DFT! calculation5 using the
Langreth-Mehl6 nonlocal exchange-correlation functional.

We study jellium slabs at five different densities
(r s51.87, 2.07, 2.66, 3.25, 3.93) using better-optimized
wave functions and conclude that the surface energies agree
with the DFT results using the Langreth-Mehl5 ~LM ! and
the Perdew-Wang7 functionals only at the high-density
regime (r s51.87, 2.07). In the low-density regime
(r s52.66, 3.25, 3.93) our results approach those from the
Fermi-hypernetted-chain~FHNC! calculations of Krotscheck
et al.8 The density profiles obtained using DMC differ from
the LDA calculations~in the same geometry! by about 2%
~roughly the uncertainty of the DMC!, confirming the initial
assumption that the LDA densities are quite accurate. The
work functions computed using DMC lie, on average, about
0.5 eV lower than those from LDA,5 in qualitative agreement
with the FHNC results, which lie about 0.3 eV lower than the
LDA results.

One of the key quantities computed in this work is the
pair correlation function, as there is an exact expression of
the exchange-correlation functional in terms of this
function.9–11We computed and tabulated the pair correlation
functions at regions near the edge of the slab. Inside the slab,
the exchange-correlation hole is nearly spherical but as the
electron is moved towards the edge of the slab, the hole
flattens out, elongated in the direction normal to the surface.

This paper is organized as follows. In the next section we
will discuss the jellium model and present a brief summary
of the main results in the literature. In Sec. III A we present
some basic aspects of diffusion Monte Carlo and the details
of the calculations in this work. In Sec. IV we discuss the
density profiles, work functions, surface energies, and pair
correlation functions. The conclusion follows. We tabulate
the pair correlation functions at various densities and they
are available from the Electronic Physics Auxiliary Publica-
tion Service~E-PAPS!.12
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II. THE JELLIUM MODEL

The jellium model of a metal consists of electrons moving
a uniform positive background of equal charge. The proper-
ties of the system are determined by its electronic density
(n0) or equivalently by its Wigner-Seitz radius
r s5(4p/3n0)

1/3. This model describes the simple~s-p
bonded! metals and is the starting point of the approxima-
tions of DFT, such as the LDA. A jellium surface can be
formed by terminating the positive background at a plane.
This positive background density will create an external po-
tentialv(z) in which the electrons move. The Hamiltonian of
the system~in atomic units! is then
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i
v~zi !1 const. ~1!

Lang and Kohn13,14performed the first self-consistent cal-
culation of jellium surfaces within the framework of DFT in
the LDA. Their work gives a qualitative and quantitative
description of jellium surfaces which are summarized in the
next paragraphs.

Typical electron densities from a LDA calculation fall off
exponentially outside the surface and exhibit Friedel-like os-
cillations in the bulk, with a characteristic wavelength of half
the Fermi wavelength.13 The amplitude of these oscillations
decays with the square of the distance from the surface plane
(z50). The spilling out of electrons from the positive back-
ground creates a dipole barrier at the surface, an important
contribution to the work function. Lang and Kohn14 showed,
in fact, that the work function can be rigorously written as

W5D̄2m̄, ~2!

where D̄5f(`)2f̄ and m̄5m2f̄ are the dipole barrier
and bulk chemical potential measured from the average elec-
trostatic potential inside the crystalf̄. The calculations of
the work functions by Lang and Kohn13,14 in the jellium

model showed a qualitative agreement with experiment, and
were further improved by including effects of the ionic lat-
tice using perturbation methods.13,14

Another important quantity is the surface energy, which is
defined as the work required to split the crystal along a given
plane, i.e.,

s5
~Es2Ec!

2A
, ~3!

whereEc is the energy of the crystal~in this case the electron
gas! before it is split,Es is the energy after it is split, and
A is the area of each surface formed. The LDA calculations
of Lang and Kohn showed that the surface energies in the
jellium models are negative at high densities (r s,2.4). The
origin of negative surface energies lies in the fact that the
electron gas is not at mechanical equilibrium at all densities.
A stabilized jellium model has been proposed that corrects
this problem.15

III. QMC SIMULATIONS OF JELLIUM SLABS

A. Computational details

We use a rectangular supercell~dimensionsLx , Ly , and
Lz) with periodic boundary conditions in all three directions.
Our model system is a finite slab of jellium separated by a
vacuum region. This kind of slab geometry has been widely
used in surface electronic structure calculations.8,16 It pro-
duces reliable results, provided the slab is sufficiently thick.
The positive background density is given by

n1~z!5H n0 , uzu<s

0, s,uzu,Lz/2,
~4!

where2s ands are the positions of the edges of the slab and
Lz is the length of the box in thez direction. The uniform
part of the electronic density plus the background density
gives rise to the parabolic potential

v~z!5H 2pn0@2s~Lz2s!~Lz22s!/3Lz1~Lz22s!z2/Lz#, uzu<s

2pn0@2s~Lz2s!~Lz22s!/3Lz1s~22z212uzuLz2sLz!/Lz#, s,uzu,Lz/2.
~5!

The electrostatic energy contribution due to the positive
background and the uniform component of the electronic
density is

Eel5LxLyLz
2pn0

2s2

3Lz
2 ~Lz22s!2. ~6!

For our calculation we used an orthorhombic supercell,
square in the xy plane, with dimensions Lx5Ly
55.57r s Å, Lz57.63r s Å, and s5Lz/4, with periodic
boundary conditions in all three directions. The thickness of
the slab was chosen to hold five layers of~bcc! sodium with
surface normal to the@110# direction. For the sake of com-
parison we kept the same aspect ratio for the simulations at
all densities. The vacuum region was chosen to have the

same thickness as the jellium slab to minimize interaction
between electrons in the vacuum regions from opposite sides
of the slab.

Two ground-state quantum Monte Carlo methods, varia-
tional Monte Carlo~VMC! and DMC, are used in this work.
Variational methods17 that use explicitly correlated wave
functions are particularly appealing since one can determine
in a more transparent way the nature of correlation effects.
However, such methods should be used with caution to com-
pute energy differences, like surface and cohesive energies,
since there can be a bias towards one of the systems, bulk or
surface. A more attractive approach is DMC, since the pro-
jection operator will eliminate most of this bias.

The trial wave function we used is of the pair-product
form ~Slater-Jastrow! with a one-body correlation term
x(r ),
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C~R!5D~↑ !D~↓ !expF(
i

x~r !1(
i, j

u~r i j !G . ~7!

The single-particle orbitals in the Slater determinants
D(↑)D(↓) are obtained from a LDA calculation using the
Perdew-Zunger18 parameterization of the electron gas corre-
lation energies of Ceperley and Alder.19 The two-body cor-
relation functionu(r i j ) used in QMC simulation of the three-
dimensional electron gas is obtained from the RPA, and its
form in Fourier space17 is

u~k!52
1

2S0~k!
1F 1

4S0~k!2
1
V~k!

k2 G1/2, ~8!

whereS0(k) is the static structure factor of the homogeneous
electron gas andV(k) is the Fourier transform of the inter-
particle potential@V(k)54pe2/k2#.

This function is long-ranged in real space, so it is usually
broken into a short-range part (us) in real space and a long-
range (ul) part, which is represented in Fourier space:

u~r i j !5us~r i j !1(
k
ul~k!exp~ ik–r i j !. ~9!

This two-body wave function gives very good results when
applied to nearly homogeneous systems, but its application
to jellium surfaces is poor. The VMC energies are higher
than the energies using only the single-particle part of the
wave function. X.-P. Li and co-workers4 have found it nec-
essary to modify the long-range part of Eq.~9!, by eliminat-
ing terms withkzÞ0. The use of this modified version of the
two-body wave function recovers about 90% of the differ-
ence between the single particle and exact~DMC! energies.
The cusp conditions are enforced in the short-range part of
the two-body term.

The role of the one-body term is to make corrections to
the density. Fahy and Louie20 observed that the two-body
wave function, the primary role of which is to create a cor-
relation hole, changes the density of the system with a ten-
dency towards a more homogeneous system~Fig. 1!. They
proposed a one-body wave function of the form

x~r !50.5a lnS nsp~r !

nVMC~r ! D , ~10!

wherea is an adjustable parameter andnsp andnVMC are the
densities obtained from the single-particle and VMC calcu-
lations, respectively. This term is adjusted until the VMC
and single-particle densities agree with each other. Details of
the optimization will be given below.

After the optimization of the trial wave function is com-
plete we are ready to perform a DMC simulation of the sys-
tem ~for details see Ref. 3!. In DMC the energies are com-
puted exactly but for other operators that do not commute
with the Hamiltonian we define a mixed estimate,21

^Ô&mix5
*dRF0~R!ĤC~R!

*dRC~R!F0~R!
. ~11!

The error associated with this estimate is linear in the differ-
ence between the ground state and the trial wave functions.
A better estimator is a simple linear extrapolation, which
preserves sum rules,

^Ô&ext52^Ô&mix2^Ô&var, ~12!

where ^Ô&var is the variational estimator. One can easily
show that the error from this estimator is quadratic in the
difference between the trial and ground-state wave functions.
For positive definite quantities like densities and pair corre-
lation functions, it is better to use a geometric
extrapolation,22

^Ô&ext5
^Ô&mix

2

^Ô&var
, ~13!

because this preserves positivity. In the limit of very accurate
wave functions both estimators yield the same answer and
both are correct to order (C2C0).

We use the fixed-node approximation3 to enforce anti-
symmetry in the wave function. The energy so obtained will
be an upper bound on the ground-state energy. There exist
exact fermion procedures known as the release-node23 or the
transient-estimate18 methods, but these methods are too slow

FIG. 1. Effects of the two-body term in the wave function on the
density of jellium surfaces. The solid line is the density from the
single-particle wave function. The dashed line is the density of the
single-particle plus two-body term wave function. VMC calcula-
tions of r s52.07.

FIG. 2. VMC density before smoothing~dashed line!. VMC
density after cubic spline smoothing~solid line!. Density at
r s52.07.
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for the many-electron system considered here. The fixed-
node approximation has been shown to give excellent results
for the electron gas.18,24

IV. RESULTS

A. Density profiles

Accurate determination of the work function and the pair
correlation functions depend on the accuracy of the density
profile. The electronic densities determine the dipole barrier
at the surface and consequently the work function of the
system. The output of a QMC simulation is the average den-
sity n̄(zi) at a pointzi with an errorDn̄(zi). Figure 2 shows
a typical density output from a VMC simulation at

r s52.07 with statistical error. To smooth the density out we
use a smooth functionns(zi ,$l j%) of parameters$l j%, and
minimize

x2~$l j%!5(
i51

Ndat S ns~zi ,$l j%!2n̄~zi !

Dn~zi !
D ~14!

with respect to$l j%. We choose a cubic spline interpolation
as our smoothing function,25 the variational parameters are
the values of the function at the chosen spline knots (zi ’s!. A
set of 15 knots was sufficient to smooth out the original data
set of 1000 grid points. This procedure yields very smooth
densities~see Fig. 1! without the oscillations coming from
the Fourier smoothing method used in Ref. 4.

FIG. 3. Electron densities of jellium slab at
r s51.87. The solid line is the DMC result. The
dashed line is the LDA result. The thin dashed
line is the difference (nDMC2nLDA)/n0. ~a!
r s51.87, ~b! r s52.07, ~c! r s52.66, ~d!
r s53.25, ~e! r s53.93.
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It is obvious from Fig. 1 that a good optimization of the
one-body term in the trial wave function is necessary to ob-
tain a reasonable VMC density. Since the density from the
LDA calculation is expected to be a reasonable approxima-
tion to the ground-state density, the first step in the optimi-
zation was to make the VMC and LDA densities as close as
possible. This was done by running a VMC simulation with-
out the one-body term and using that to estimate the correc-
tion through Eq.~10!. The procedure is then repeated with
the one-body term present in the trial wave function until
both the VMC and LDA densities agree. After a good guess
for the density is obtained, we perform a DMC simulation
and estimate the ground-state density. Finally, we adjust the
one-body term so that VMC and the density using the mixed
estimator Eq.~11! agree with each other. This corresponds to
maximizing the overlap betweenC andF.26 We then use
the extrapolated estimator Eq.~12! to obtain the final DMC
densities. The densities obtained with this procedure are
shown in Figs. 3. Also shown are the LDA densities~ob-
tained in a calculation with the same supercell! and the dif-
ference between the DMC and LDA densities divided by
n0.

The densities we obtained from DMC are in close agree-
ment with LDA densities, with differences of the order of
2%, with the exception ofr s52.66, where the differences are
more pronounced. Atr s52.66 there is a tendency to increase
the strength of the Friedel-like oscillations, a behavior not
observed at the other densities. Because there is no particular
pattern in the difference between the DMC and LDA densi-
ties, we cannot conclude that the differences are significant.

B. Work functions

To compute the work function we use Eq.~2!, derived for
a semi-infinite model of a jellium surface. The problem in

using such an expression is that in a slab of finite thickness
the Friedel oscillations have not completely died out at the
center of the slab, introducing an uncertainty in the compu-
tation of the electrostatic barrier. To correct for such an ef-
fect we computed the electrostatic barrier in the same super-
cell geometry using the LDA density profiles and compared
with the LDA results of Zhanget al. for the semi-infinite
jellium surface, using the Vosko-Wilk-Nussair27 formula for
exchange and correlation. The difference between them is an
estimate of the correction due to the finite thickness of the
slab.

Table I displays the work functions of a jellium slab com-
puted in a LDA calculation using the same supercell used in
the QMC calculations. Shown in the table are the chemical
potential, the electrostatic barrier, the work function of the
finite slab and the work function of the semi-infinite jellium.5

In Table II we present the electrostatic barrier, the finite
thickness correctionDWLDA5W (VWN)2W (LDA), and
the estimate of the work function computed using QMC. The
main difference between the LDA and QMC results for the
work function of the finite slab is the electrostatic barrier.
Tables I and II show that the electrostatic barriers in QMC
are smaller than those in LDA. The drop in the electrostatic
barrier does not follow any specific trend, ranging from
20.15 to20.86 eV, again suggesting that there is statistical
and systematic uncertainty in the determination of the QMC
density profiles. The change averaged over all densities is
20.54 eV, with a standard deviation of 0.28 eV. In Fig. 4 we
compare Zhanget al. work functions with the QMC work
function of Table II, the LDA work functions minus the av-
erage drop in the electrostatic barrier and the FHNC work
functions for a finite slab as computed by Zhanget al.. A
more accurate determination of the work function using
QMC requires much longer runs in order to eliminate the
statistical fluctuation in electron density profiles and a simu-
lation of slabs that are thick enough to avoid the rather un-
certain finite thickness correction.

Although the uncertainty in our calculation of the work
function is rather high, due to the uncertainty in the density
profiles and the finite thickness correction, our results indi-
cate that the work functions computed using QMC lie about

FIG. 4. Work functions computed with QMC~solid line with
error bars!, LDA ~dotted line!, FHNC ~dashed line! and LDA work
function minus the average drop of the QMC electrostatic barrier
with respect to LDA~long-dashed line!.

TABLE I. LDA work functions for a finite jellium slab.
W~LDA ! is the LDA work function for the finite slab using the
supercell geometry.W~VWN! are the LDA work functions for the
semi-infinite model of a jellium surface extrapolated from Ref. 5.

r s m̄5
1
2kF

21mxc D̄ W ~LDA ! W ~VWN!

1.87 3.99 8.92 4.93 3.84
2.07 2.28 5.15 2.87 3.79
2.66 -0.42 3.55 3.97 3.55
3.25 -1.51 2.05 3.56 3.26
3.93 -2.02 0.54 2.56 2.96

TABLE II. Contributions to the QMC work-function jellium
surface.D̄ is the electrostatic barrier.DWLDA is a correction due to
the finite thickness of the slab.W5D̄2m̄1DWLDA .

r s D̄ DWLDA W(QMC)

1.87 8.67 -1.09 3.59~28!
2.07 4.44 0.92 3.08~28!
2.66 2.68 -0.42 2.68~28!
3.25 1.90 -0.30 3.11~28!
3.93 -0.18 0.40 2.24~28!

54 17 203DIFFUSION MONTE CARLO STUDY OF JELLIUM . . .



0.5 eV lower than the LDA work functions. These results are
in agreement with the FHNC calculation of the work func-
tions as computed by Zhanget al., which lie about 0.3 eV
lower than LDA. The work functions from a DFT calculation
using the Perdew and Wang28 GGA are lower than LDA,
although for the cases studied the drop was not constant. In
contrast, the work functions computed using the
Langreth-Mehl5 GGA are higher by about 0.3 eV.

C. Surface energies

One of the surface properties most sensitive to correlation
effects is the surface energy. The surface energy is computed
from Eq.~3!. The energy of the homogeneous electron gas is
obtained from the Perdew-Zunger18 parametrization of the
Ceperley-Alder19 correlation energies. We studied equivalent
LDA calculations performed in a unit cell with sameLz as
the supercell, butLz and Ly are adjusted so the unit cell
contains only one electron. To obtain the single-particle or-
bitals and the energy corresponding to the supercell, the in-
tegrals inkx2ky space are performed usingk points corre-
sponding to theG point of the supercell. To obtain the full
LDA energy of the slab we used a large set of
Monkhorst-Pack29 special points in thexy plane. We then
made a finite size correction to the QMC data equal to the
difference between the full LDA energy and the energy of
the LDA calculation in the supercell.

Table III displays the energies in eV/electron of the jel-
lium slabs as a function ofr s . In order to show how impor-
tant correlation is and the accuracy of the pair-product wave
function, we show the trial energy for the single-particle~SP-
VMC! part of the wave function~Slater determinant of the
LDA orbitals!, the VMC energy with the optimized trial
wave function, including the one- and two-body terms and
the fixed-node energies. Also displayed are the LDA ener-
gies of the supercell and the energies from the full LDA
calculation for the slab geometry. The VMC energies recover
about 90% of the difference between the DMC and the
single-particle energies, typical values for a pair-product
wave function.23

Inspection of Table III shows that the LDA energies are
lower than the DMC energies by about 0.02 eV. This small
difference is very significant in the computation of the sur-
face energies, since the QMC and LDA energies for the ho-
mogeneous electron gas are identical. This can be seen by
comparing the surface energies in Table IV. The error bars
displayed in Table IV are estimated as a sum of several con-

tributions:~a! the time step error, which we believe is negli-
gible; ~b! the finite size error, which we roughly estimate as
10% of the LDA correction;~c! the fixed-node error, which
we estimate as the release-node correction of the homoge-
neous electron gas. Atr s52.07 this correction4 is 20.0023
eV or about 0.2% of the correlation energy of the homoge-
neous electron gas;~d! statistical error.

The agreement between the LDA surface energies ob-
tained from Table IV and the ones from Ref. 5 gives us
confidence that although our QMC numbers were computed
using a finite slab, the correction for the semi-infinite case
should be small. In Fig. 5 we compare the surface energies
obtained in this work with the surface energies of Zhang
et al., computed using the LDA~using the Vosko-Wilk-
Nussair formula27 for Ec) and the nonlocal Langreth-Mehl6

~LM-DFT! exchange-correlation functional. Also shown are
the surface energies obtained by Krotschecket al. using
FHNC. The calculations of Zhanget al. were performed in
the semi-infinite jellium model and can be considered the
extrapolation of our LDA energies for infinite slab thickness.
The agreement between our LDA energies~open circle! and
the LDA energies of Zhanget al. ~open triangles! suggests
that the correction from such extrapolation are small. A com-
parison of the DMC results~stars and dashed lines! with the
LM-DFT ~open squares! and FHNC~filled triangles! surface
energies show that at high densities the QMC results agree
with the LM-DFT and at low densities they approach the
FHNC results. Atr s52.07 our surface energy agrees, within
error bars, with the calculation of X.-P. Liet al. of
20.029 (3) eV/Å2.

Another important quantity is the correlation contribution
to the surface energy~surface correlation energy! defined as
the difference between the exact surface energy and the sur-
face energy in the HF approximation. Upper bounds for the

TABLE III. Energies in eV of a jellium slab as a function ofr s . SP-VMC is the VMC energy from the
single-particle part of the trial wave function. VMC is the energy using the optimized trial function. DMC are
the fixed-node energies. LDA1 is the LDA energy of the supercell calculation. LDA~full ! are the energies
from the fully converged LDA calculation of the slab geometry. The numbers in parentheses are the error
bars in the last digit.

r s LDA 1 LDA ~full ! SP-VMC VMC DMC

1.87 0.6056 0.5549 1.72~1! 0.721~4! 0.6444~8!

2.07 -0.2242 -0.2654 0.842~8! -0.125~5! -0.2090~5!

2.66 -1.4584 -1.4857 -0.48~1! -1.334~3! -1.4376~8!

3.25 -1.8957 -1.9134 -0.99~1! -1.787~3! -1.8659~5!

3.93 -2.0403 -2.0481 -1.212~5! -1.919~2! -2.0092~4!

TABLE IV. Surface energies in the jellium model.Ebulk is the
energy of the homogeneous electron gas. LDA is the surface energy
obtained from LDA. QMC is the surface energy obtained from the
DMC calculation corrected for finite size effects, with error bars.

r s Ebulk ~eV! LDA ~eV/Å2) QMC ~eV/Å2)

1.87 0.6671 -0.0986 -0.065~8!

2.07 -0.2140 -0.0368 -0.026~5!

2.66 -1.5119 0.0113 0.020~3!

3.25 -1.9620 0.0141 0.023~2!

3.93 -2.1062 0.0115 0.018~1!
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HF surface energies have been computed by Sahni and Ma30

and by Krotscheck and Kohn31 using the Talman-Shadwick
procedure32 for exchange-only calculations. We use the HF
energies of Krotscheck and Kohn, since they are lower than
the energies of Sahni and Ma. In Table V we compare the
surface correlation energies computed in this work with in-
terpolated values from Krotscheck and Kohn. As already
demonstrated in Fig. 5 they agree at high values ofr s , where
FHNC is expected to be accurate,33 while at low values34 of
r s the FHNC surface correlation energies are too low.

D. Pair correlation functions

The pair correlation function near the jellium surface pro-
vides useful information about the pair correlation in inho-
mogeneous systems. The exchange and correlation func-
tional has an exact expression in terms of pair correlation
functions9–11

Exc@n#5E drdr 8
n~r !n~r 8!

ur2r 8u E
0

e251
dl@gl~r ,r 8!21#

~15!

wheregl(r ,r 8) is the pair correlation function corresponding
to thee2e strength~charge! l.

FIG. 5. Surface energies. The open circles represent the LDA
calculation for this work. The open triangles are the LDA results of
Zhanget al. The open squares are the LM-DFT results of Zhang
et al.The filled triangles are the FHNC results of Krotschecket al.

FIG. 6. ~a! Contour plots of pair correlation functions for jellium
surfaces. Top figures,z150.86r sa0. Bottom figures,z151.72r sa0.
Left ~like spins!, right ~unlike spins!. The full lines are for
r s51.87. The dashed lines are forr s53.93. The vertical lines rep-
resent the edge of the positive background. The circles represent
z1. ~b! Contour plots of pair correlation functions for jellium sur-
faces. Top figures,z152.61r sa0. Bottom figures,z153.51r sa0.
Left ~like spins!, right ~unlike spins!. The full lines are for
r s51.87. The dashed lines are forr s53.93. The vertical lines rep-
resent the edge of the positive background. The circles represent
z1. ~c! Contour plots of pair correlation functions for jellium sur-
faces.z154.40r sa0. The full lines are forr s51.87. The dashed
lines are forr s53.93. The vertical lines represent the edge of the
positive background. The circles representz1.

TABLE V. Surface correlation energies in erg/cm2. sHF are
Hartree-Fock surface energies interpolated from the data computed
in Ref. 31.sc ~FHNC! are the surface correlation energies from
FHNC calculations.sc ~QMC! are the surface correlation energies
from QMC.

r s sHF sc ~FHNC! sc ~QMC!

1.87 -2068 1027
2.07 -1273 1021 856
2.66 -215 598 540
3.25 1 362
3.28 5 355
3.93 41 242
3.99 40 221
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In our model system, the inhomogeneity is along thez
direction, so we computed the pair correlation function for a
pair of electrons as a function ofz1 and z2, and their azi-
muthal distancer i5A(x12x2)

21(y12y2)
2,

g~z1 ,z2 ,r i!5
r~2!~z1 ,z2 ,r i!

r~1!~z1!r
~1!~z2!

. ~16!

Because local spin density methods~LSD! treat particles
with like and unlike spins differently, we have computed Eq.
~16! for like (↑↑ or ↓↓) and unlike spins (↑↓ or ↓↑), sepa-
rately. The pair correlation functions are computed in a
three-dimensional grid in real space. Smoothed pair correla-
tion functions are obtained using the same cubic spline fitting
used for the density profiles, with the additional constraints

g~z1 ,z1,0!50 for like spins, ~17!

dg~z1,z1,0!

dr i
5g~z1 ,z1,0!, ~18!

and

dg~z1,z2,0!

dr i
50 for z1Þz2 . ~19!

The first constraint is the Pauli principle, the second is one of
Kimball relations32 and the third is due to the fact that the
pair correlation function is analytic everywhere except when
the distance between the two particles is zero. The smooth-
ing of the pair correlation functions required 8 spline knots
for like spins, and 5 to 6, for unlike spins.

We tabulate the pair correlation functions as a function of
r i , for like and unlike spins, at ten different pairs ofz1 and
z2, near the edge of the positive background in tables depos-
ited in the E-PAPS. The effects of the inhomogeneity on the
pair correlation functions shown are seen in Figs. 6~a! and
6~b!, where we show the contour plots ofg(z1 ,z2 ,r i) for
fixed values ofz1. In Fig. 6~c! we show the contour plots for
values ofz1 closer to the surface edge. The inhomogeneity
effects are more pronounced in the exchange hole, since its
range is larger than the range of the correlation hole. In the
LDA the exchange-correlation hole is assumed to be spheri-

cally symmetric10 and centered around the electron position.
This assumption works fine in regions where the system in
nearly uniform, like the center of the slab, but it breaks down
in the surface where the density varies rapdly. Such effects
must be taken into account for a more accurate treatment of
exchange and correlation in inhomogeneous systems.

V. CONCLUSIONS

We have performed fixed-node DMC calculations for jel-
lium slabs at five different densities, corresponding to the
average valence densities of Be, Al, Mg, Li, and Na. The
final DMC densities differ from the LDA densities by about
2%, confirming the initial assumption that the densities from
LDA calculations are very good. The work functions com-
puted with DMC in the calculations of a jellium slab of finite
thickness were extrapolated to the semi-infinite bulk using
LDA data. The reported work functions lie, on average,
about 0.5 eV lower than the LDA work functions computed
by Zhang et al.5 This result agrees qualitatively with the
work function computed in Ref. 5 using the FHNC data of
Krotscheck et al.8 Calculations using the Langreth-Mehl5

GGA lie about 0.3 eV higher than LDA, while calculations
using the more recent Perdew-Wang7 GGA are lower, but
not in a consistent manner. The surface energies computed
with QMC are higher than the LDA energies.5 At high den-
sities they agree with the surface energies obtained with the
Langreth-Mehl5 GGA and at lower densities they agree with
the FHNC surface energies of Krotschecket al.8 This trend
is followed by the surface correlation energies. The pair cor-
relation functions computed in this work clearly show the
anisotropy of the exchange-correlation hole in regions where
the density changes rapidly. We tabulated the pair correlation
functions, for the range of densities computed in this work.
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