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We describe a modal expansion method with anR-matrix propagation algorithm that can be applied to
calculate the dispersion of surface and guided waves supported by a finite thickness photonic crystal. Easy to
implement, theR matrix has the advantage of inherent numerical stability and allows photonic crystals of
complex structure, which are many waves in thickness to be analyzed. This method is also computationally
simpler that the supercell method when looking for surface modes. It can also be applied to many other
dispersion problems including multilayer gratings and waveguides with internal structure. We apply this
method to calculate dispersion of surface waves supported by a slablike photonic crystal structure, which
consists of several rows of an infinitely periodic array of square dielectric cylinders. In the bulk, the periodic
array has a photonic band gap and for the finite thickness structure, we calculate dispersion of surface waves
that propagate along the boundaries at frequencies within the band gap. We vary the thickness of the cylinders
in the outer layer and calculate the change in dispersion. When the overall thickness of the photonic slab is
decreased, coupling and splitting between surface modes at each interface is observed.@S0163-1829~96!03727-
7#

I. INTRODUCTION

Recently, the authors have described calculation tech-
niques that utilize anR-matrix propagation algorithm, as ap-
plied to diffraction from deep sinusoidal gratings and disper-
sion in photonic media of infinite extent.1,2 In Ref. 1, we
considered an approach similar to that presented here except
that modal expansion solutions were obtained in a Fourier
space representation. In Ref. 2, we considered an approach
based on a numerical integration of Maxwell’s equations
represented in a frequency domain finite-difference approxi-
mation. The present method also uses a finite-difference ap-
proximation to Maxwell’s equations but solutions are ob-
tained as modal expansions in real space. In Sec. II, we
describe in detail the approach we use here to calculate the
dispersion of surface waves that propagate along the inter-
face~s! of a finite thickness photonic structure.

The instability of theT matrix due to evanescent waves is
well known. TheT matrix generally has elements dependent
upon exponential terms such as exp~6aDz! whereDz is the
distance between two interfaces. When the exponential term
is evanescent~a real!, numerical instability arises due to ex-
ponential overflow and underflow. TheR-matrix propagation
method has proven to be much more numerically stable than
T-matrix propagation schemes as it seeks a matrixR that
relates the derivative of a quantity~for the case considered
here, it is the magnetic field! to the quantity itself~electric
field!. For this reason, the elements of theR matrix tend to
be proportional to6aDz. This is especially important when
the structure under consideration is many wavelengths thick.
In addition to the original application of this method in
chemical physics,3 several authors have recently applied the
R-matrix approach to various problems of electromagnetic
theory.1,2,4–6

A photonic crystal offers the possibility of controlling the

flow of photons in a way analogous to an electronic crystal
and electrons. Many applications of photonic crystals have
been suggested. One such application is to make a high-Q
laser cavity by putting defects into a photonic crystal. In
addition to a regular defect mode, there is the possibility of
surface modes when the crystal is cleaved. Meadeet al.7

were the first to study and discuss the importance of surface
modes of truncated photonic crystals in the operation of
high-Q laser cavities. To calculate such modes they used a
supercell method to simulate a semi-infinite crystal. The su-
percell method is the standard technique to study defect
modes, but it is quite demanding on computer resources as
one needs to keep more plane waves in the expansion to
reflect the larger unit cell. TheR-matrix method we describe
here provides a way to calculate surface modes without this
additional burden.

II. THEORETICAL APPROACH

We assume the photonic crystal structure is infinitely pe-
riodic in the x̂ direction, uniform in theŷ direction, and of
finite thickness in theẑ direction. However, the following
discussion assumes the structure is not necessarily indepen-
dent of they coordinate. The substrate and superstrate re-
gions are homogeneous with permittivities«t and«r , respec-
tively. The photonic crystal structure is inhomogeneous
~piecewise homogeneous! and is described by a spatially
variable permittivity«~r ! wherer5(x,y,z). The basic pho-
tonic structure considered here, along with associated no-
menclature, is shown in Fig. 1. Figure 1 shows three rows of
cylinders with the middle cylinders having a square cross
section and the outer cylinders, having been truncated in the
z direction, having a rectangular cross section. In Sec. III, we
consider the example shown in Fig. 1 and also the case
where there are six rows of square cylinders between the
truncated outer rows. The square cylinders have cross section
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of dimensionh and the outer cylinders have dimensionh by
f h where f,1. This system has three distinct regions: the
homogeneous substrate, the photonic crystal, and the homo-
geneous superstrate. The fields in the two homogeneous re-
gions are just plane waves and are known. If we can obtain
the field in the photonic crystal, we can match boundary
conditions and solve for surface modes. The solution to the
general Maxwell’s equations can be obtained if there is noz
dependence in the dielectric permittivity~the homogeneous
system is a special case of this!. Therefore, we further divide
the photonic crystal into sublayers such that within each sub-
layer, we can approximate with az-independent permittivity.
Modal solutions within each sublayer can then be obtained.
Since the cylinders are of square or rectangular cross section,
this photonic structure is a simple geometry to obtain sub-
layers where the permittivity is independent of thez coordi-
nate. In Fig. 1, the sublayer divisions are shown by the long-
dashed lines. For circular or more complicated cross
sections, more sublayers can be used to approximate the ac-
tual shape. In any case, the sublayer modal solutions are used
to obtain anr matrix that relates the magnetic fields at the
boundaries of the sublayer to the electric fields. From the
boundary conditions between sublayers, we obtain a recur-
sive formula for adding twor matrices. The globalR matrix
is obtained by recursion through successive sublayers and
this matrix relates the fields at the boundariesz5z1 and
z5z2 of the whole finite thickness photonic structure.

A. Sublayer modal solution

The procedure outlined below parallels that given in Ref.
1, except that this work is done in real space whereas the
method of Ref. 1 is based on a Fourier-space representation.
The reason for going to a real-space representation is that the
Fourier representation can have convergence difficulties for
sharp discontinuities in the dielectric permittivity«~r !. We
now obtain the modal expansion solution for a sublayer of
the modulation region bounded betweenz→z1Dz. The sub-

layer has thicknessDz, which need not be small compared to
the wavelength. Within a sublayer, the permittivity can have
x dependence, but we require noz variation in the permit-
tivity within a sublayer. Because of this we can in general
evaluate the permittivity at thez coordinate zc where
zc5z1Dz/2 is the center of the sublayer. However, since we
have chosen a square or rectangular cross section, the per-
mittivity is the same for any value ofz within the sublayer
and this is a special case of the more general problem. We
now discretize thex coordinate over one perioda into nx
points separated byDx5a/nx . From the two Maxwell
equations “3E~r !5i (v/c)H~r ! and “3H~r !52i (v/
c)«~r !E~r !, we eliminate thez component of the fields and
arrive at a set of coupled equations:
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iv
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5
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Note that we use a finite-difference approximation for thex
derivative in Eq.~1!. These coupled differential equations
have coefficients that are independent ofz for a given sub-
layer. When we include the set of allnx discretex coordi-
nates, denoted byX, Eq. ~1! may be written in matrix form
as

]A~X,z!

]z
5M ~X,zc!A~X,z!, ~2!

where

A~X,z!5S Ex~X,z!

Ey~X,z!

Hx~X,z!

Hy~X,z!

D 5S Ẽ~X,z!

H̃~X,z!
D . ~3!

The Ẽ and H̃ represent abbreviated column vectors as

Ẽ5SEx

Ey
D , H̃5SHx

Hy
D . ~4!

SinceM is independent ofz within the sublayer, the solution
is straightforward by diagonalization ofM :

FIG. 1. Schematic of photonic structure of rows of dielectric
cylinders. The middle row consists of square cylinders of dimension
h50.74 mm. The outer rows are truncated in thez direction by
fraction f . The cylinders are infinitely periodic in thex direction
with perioda51.87 mm. The long dashed line indicates sublayer
divisions. The dotted line shows an example of the centerz coor-
dinatezc of the sublayer bounded fromz to z1Dz. Some of the
numerical results based on six rows are square cylinders between
the truncated outer rows.
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S Ẽ~X,z!

H̃~X,z!
D 5S~X,zc!e

LzC5SS11S21

S12
S22

D S elz

0
0

e2lzD SC1

C2
D .
~5!

The square matrixS~X,zc! has columns that are the eigen-
vectors ofM ~X,zc! ande

Lz is a diagonal matrix of exponen-
tial terms withL representing the set of eigenvalues associ-
ated withM ~X,zc!. C is a column vector of constants. In
the right-hand side of Eq.~5!, the matrices and column vec-
tor have been sectored. The columns of eigenvectors are sub-
divided into four matrices and the set of eigenvaluesL are
divided into two sets, denoted by1l and2l, such that the
members of one set are the opposite sign of the other. Note
that this division is for convenience only. Solutions given by
Eq. ~5! apply to a given sublayer and to complete the prob-
lem, the solutions for all sublayers are combined by a recur-
sive algorithm, as shown below.

B. RecursiveR-matrix algorithm

In this section, we describe the calculation of the sublayer
r matrix from the modal solution and the recursion formula
for the globalR matrix. The sublayerr matrix is defined as

S Ẽ~X,z!

Ẽ~X,z1Dz!
D 5r ~Dz!S H̃~X,z!

H̃~X,z1Dz!
D , ~6!

whereDz is the thickness of a sublayer. Ther matrix relates
the electric fields to the corresponding magnetic fields at the
sublayer boundaries. This matrix is dependent on the thick-
ness of the sublayer and the eigenvectors and eigenvalues of
the matrixM . Using the defining relation given in Eq.~6!
with Eq. ~5! we find that

r ~Dz!5S r11~Dz!

r21~Dz!

r12~Dz!

r22~Dz! D5S S11
S11e

lDz
S12

S12e
2lDzD

3S S21
S21e

lDz
S22

S22e
2lDzD 21

. ~7!

We also assume that a relation similar to Eq.~6! exists,
which includes an arbitrary number of sublayers ranging
from z5z1 to z5z2 and this defines the global matrixR as

S Ẽ~X,z1!
Ẽ~X,z2!

D 5R~z22z1!S H̃~X,z1!
H̃~X,z2!

D , ~8a!

where

R~z22z1!5SR11~z22z1!
R21~z22z1!

R12~z22z1!
R22~z22z1!

D . ~8b!

Using Eqs.~6!, ~7!, and~8! along with the continuity of the
column vectors in Eq.~5!, we obtain the following recursive
relationships:

R11~z22z1!5R11~z22Dz2z1!1R12~z22Dz2z1!

3@r11~Dz!2R22~z22Dz2z1!#
21

3R21~z22Dz2z1!, ~9a!

R12~z22z1!52R12~z22Dz2z1!@r11~Dz!

2R22~z22Dz2z1!#
21r12~Dz!, ~9b!

R21~z22z1!5r21~Dz!@r11~Dz!2R22~z22Dz2z1!#
21

3R21~z22Dz2z1!, ~9c!

R22~z22z1!5r22~Dz!2r21~Dz!@r11~Dz!

2R22~z22Dz2z1!#
21r12~Dz!. ~9d!

From Eqs.~6! and ~8a!, we see that we can setz25z11Dz
and initialize the globalR matrix byR(Dz)5r (Dz).

TheRmatrix can be calculated from Eq.~9! for any struc-
ture of interest by recursively addingnz successive sublayers
where ther matrix is calculated for each sublayer. It is im-
portant to point out that theR matrix dependsonly on the
thicknessz22z1 of the region. Because of this, we observe
that repeating inhomogeneous regions each of thickness
z22z1 can also be added by recursion, whole regions at a
time. This is accomplished by using Eq.~9! to calculate
R(z22z1) for a given structure. With this, we return to Eq.
~9!, set R(z22z1)[r (Dz) and applyN21 times, which
yields RN(N[z22z1]) for a structure that hasN identical
regions. This is very significant in terms of potential compu-
tational efficiency and experience has shown that the proce-
dure is numerically stable.

C. Calculation of surface and guided modes

Having found theR matrix for a given structure, we
match boundary conditions to include the superstrate and
substrate media. This yields

S Ẽt~X,z1!
Ẽr~X,z2!

D 5R~z22z1!S H̃t~X,z1!
H̃r~X,z2!

D . ~10!

Since the superstrate~denoted byr ! and substrate~denoted
by t! are homogeneous, theẼ and H̃ fields have a simple
relation in Fourier space,

H̃ j~K ,z!5Z j~K ,pj !Ẽ
j~K ,z!, ~11!

where j5r or t and

Z j~K ,pj !5S 2
KxKy

~v/c!pj
pj
21Kx

2

~v/c!pj

2
pj
21Ky

2

~v/c!pj
KxKy

~v/c!pj

D , ~12!

with pj5A(v/c)2« j2K2, K5uK u, K5(Kx ,Ky), and «j is
the permittivity of the medium denoted byj . The four quad-
rants of Eq.~13! represent diagonal matrices. To get a real-
space analog of Eq.~11!, we just apply a Fourier transform
to Eq. ~11!,

Ẽj~X,z!5F~X,K !Ẽj~K ,z!, H̃ j~X,z!5F~X,K !H̃ j~K ,z!,
~13!

whereF~X,K ! is a square Fourier transform matrix.
Using Eqs.~11! and ~13! in Eq. ~10! yields the homoge-

neous matrix equation

S I2R̄11Z
t~K ,2pt!

2R̄21Z
t~K ,2pt!

2R̄12Z
r~K ,pr !

I2R̄22Z
r~K ,pr !

D S Ẽt~K ,z1!
Ẽr~K ,z2!

D 50,

~14!
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whereI is the identity matrix andR̄5F21RF. Equation~14!
may also be written in the form of an eigenvalue equation as

S R̄11Z
t~K ,2pt!

R̄21Z
t~K ,2pt!

R̄12~K ,pr !
R̄22Z

r~K ,pr !
D 5S Ẽt~K ,z1!

Ẽr~K ,z2!
D

5S Ẽt~K ,z1!
Ẽr~K ,z2!

D .
~15!

Either Eq.~14! or ~15! can be used to obtain the band struc-
ture associated with infinite~bulk! or truncated photonic
crystals. In Eq.~14!, zeros in the matrix determinant yield
~K ,v! solutions for surface and guided modes. In Eq.~15!,
unit eigenvalues of the matrix yield similar solutions with the
associated eigenvector.

III. NUMERICAL RESULTS

We examine here the case of polarization parallel to the
cylinder axis. We do not consider polarization perpendicular
to the rods because the photonic band gap is quite small.2 For
polarization parallel to the axes of the rods and for propaga-
tion perpendicular to the axes of the rods, the bulk photonic
crystal has a complete band gap for the approximate normal-
ized frequency range 0.317<va/2pc<0.431. The bulk band
structure, calculated using the plane-wave expansion of Pli-
hal et al.8 is shown in Fig. 2. This band structure is for an
infinitely periodic square lattice of dielectric cylinders with
square cross section. The cylinders have side dimension
h50.74 mm, are periodic with perioda51.87 mm, and have
permittivity ~9,0!. The space between cylinders is vacuum.
Since bulk photon modes cannot propagate within the band
gap, we look for mode solutions within this frequency range
that are also evanescent into the homogeneous media:
K.(v/c)« j ~j5r or t!. We choose the homogeneous media
to be vacuum«j5~1,0!. Under these conditions, modes can-
not propagate in either the crystal lattice or into the homo-
geneous regions. Thus, the mode solution, if any, is con-
strained to propagate along the surface of the finite thickness
truncated photonic crystal.

We consider two values for the outer row thickness of the
rectangular rods, which aref50.3 and 0.5. We also consider
two values for the number of rows of square rods in between
the outer rows of rectangular rods. We consider one row and
six rows where Fig. 1 shows one row of square rods. For the
case with only one row of rods, the surface modes are
strongly coupled and splitting is evident.

The surface mode dispersion is obtained by either of the
two methods discussed at the end of Sec. II. When using Eq.
~14!, we fix the wave vectorK and varyv until a zero in the
determinant is found. Because the determinant is complex in
general, we choose to look atuDu22, whereD is the deter-

FIG. 2. Photonic band structure of an infinitely periodic square
array of dielectric cylinders with square cross section. The polariza-
tion is parallel to the axes of the cylinders and the propagation is
perpendicular to the axes of the cylinders. The cylinders have side
dimensionh50.74 mm, perioda51.87 mm, and permittivity~9,0!.
The space between cylinders is vacuum. Note the complete band
gap between 0.317 and 0.431.

FIG. 3. Plot of ln~uDu22! vs frequency for several wave num-
bers. For frequencies in the band gap shown in Fig. 2, resonance
peaks are clearly seen for normalized wave numbers 0.7 to 1.0. No
resonance is seen for 0.6 because we have crossed the lightline
K5v/c. These data are for cylinders in the outer rows withf50.3
and for six rows of square cylinders in between the outer rows.

FIG. 4. Surface mode dispersion for two values of surface trun-
cation and number of rows of cylinders. The bulk gap, as shown in
Fig. 2, is indicated between the horizontal dotted lines. The outer
rows of cylinders have thicknessf h wheref50.3 and 0.5. The solid
dispersion curves are for six rows of square cylinders between the
truncated outer rows. Forf50.5, the dotted dispersion curves,
which are for one row of square cylinders between the outer layers,
represent splitting from the corresponding solid curve. This is a
result of modes at each interface coupling because of their close
proximity.
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minant, as a function of frequency. The surface mode would
then appear as a peak in thev scan. In Fig. 3, we show the
plot of log10~uDu22! versusv for five values ofK for the case
f50.3. Note that forKa/p50.6, there is no resonance as we
have passed through the lightlineK5v/c. The dispersion
curve for the surface mode is shown in Fig. 4. Also shown in
Fig. 4 is the dispersion for the casef50.5. For this case we
show the result for both 1 and 6 rows of rods between the
outer rows. The case of 1 row of rods in between~dotted
lines! shows splitting in the surface mode as the modes at the
two interfaces couple to each other.

One disadvantage of using Eq.~14! is lack of information
on the characteristics of the surface modes. In addition, if
two mode solutions are close together as can occur when
splitting is present, their two peaks may not be resolved and
appear as only one peak. Using Eq.~15! provides an alter-
nate approach where the wave vectorK is fixed andv is
varied until an eigenvalue of 1 is found. The associated ei-
genvector yields mode characteristics such as polarization
and spatial intensity distribution at the surface of the photo-

nic crystal. Also, unit eigenvalues can be found to find sur-
face modes that are close in frequency and yet their reso-
nance peaks appear as one.

Calculation of guided modes is quite straightforward by
either of the methods discussed above. We simply choose
K.v/c to assure evanescent fields in the homogeneous re-
gions and choose frequencyv within band-gap frequencies.

In conclusion, we have described anR-matrix propaga-
tion technique for the computation of surface and guided
modes supported by truncated photonic crystals that is com-
putationally simpler than the supercell method.
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