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Subsurface impurities observed in scanning tunneling microscopy~STM! are investigated theoretically. As
a scattering potential of the impurities, the screened Coulomb potential is used. Wave functions are solved
exactly by numerical calculations. Qualitative behavior of STM images is discussed in terms of analytical
expressions derived perturbatively, and the origin of the Friedel oscillation observed in STM images of
subsurface impurities is clarified. It is found that to produce the Friedel oscillation, the spatial range of the
impurity potential must be shorter than the Fermi wavelength. In the short-range case, calculated STM images
show oscillating behavior also as a function of the depth of impurities. When the depth is small, the corrugation
amplitude increases with the increase of the depth and reaches the maximum at the depth of about the Fermi
wavelength. Ring structures observed in STM of transition-metal-dichalcogenide surfaces are also explained by
the subsurface impurities.@S0163-1829~96!07648-5#

I. INTRODUCTION

Recently, bulk defects in semiconductor surfaces have
been studied extensively by scanning tunneling microscopy
~STM!. Donor states have been detected in scanning tunnel-
ing spectroscopy~STS! of the GaAs surface.1 Images of sub-
surface impurities have been observed clearly in STM, even
when they are buried by several layers underneath the sur-
faces.2–5 Charge states of bulk defects have been discussed
by studying the interaction between defects.6–8 Moreover,
the Friedel oscillation around the images of the subsurface
impurities has been observed by low-temperature STM.9

These observations of subsurface defects by STM are not
trivial, because STM images reflect electronic structures of
surfaces in the vacuum region where the influence of the
outermost layers is dominant. Subsurface structures are usu-
ally not observed in STM.

A mechanism explaining the observations of subsurface
structures in STM has been proposed recently,10 where it has
been concluded that subsurface structures are visible if they
have a nanometer-scale lateral dimension, but atomic-scale
structures are not visible. The key point of this result is that
nanoscale waves propagate in materials without decay, but
atomic-scale waves decay rapidly in the atomic scale.

From this point of view, the observations of subsurface
impurities may not be curious. Indeed, the subsurface impu-
rities themselves are atomic-scale structures, but if there is
any cause producing nanometer-scale waves, they are vis-
ible. In the case of the donor impurity in the GaAs~110!
surface, a naive interpretation of the STM images may be
that the donor level is observed, because the orbitals of bulk
donor levels in semiconductors extend over several nano-
meters. However, this naive interpretation is questionable,
because the donor levels near surfaces are different from
those in the bulk.

Properties of the donor levels near surfaces have been
studied by several authors.11–14In an extreme case of a donor
lying just on a surface and an infinite work function, thes
state is not allowed.11 The possible state with the lowest

energy is thepz state wherez is perpendicular to the surface.
The wave function of thepz state is zero at the surface
z50, the donor states are not visible in this case. Since real
impurities do not lie just on surfaces and work functions are
finite, this extreme case is oversimplified. But, it is question-
able to interpret the STM images simply in terms of the
conventional donor states in the bulk.

Moreover, it is not possible to explain the Friedel oscilla-
tion by the bulk donor states, because the 1s state does not
show the oscillating behavior. Since subsurface impurities
are observed at bias voltages corresponding to the energy
regions outside the band gap, it would be better to interpret
the STM images in terms of the scattering of electrons in
bulk bands by the subsurface impurities.

In this paper, we study theoretically STM images of sub-
surface impurities, in order to clarify the mechanism of ob-
serving the Friedel oscillation by STM. Scattering properties
by subsurface impurities are investigated using the screened
Coulomb potential. It is found that to observe the Friedel
oscillation, the range of the scattering potential is much
shorter than Fermi wavelengths. In this short-range case, the
corrugation amplitude of the subsurface impurities increases
with the increase of the depth and reaches the maximum at
the depth of about the Fermi wavelength, in contrast to the
intuitive picture.

In Sec. II, we discuss scattering properties by the screened
Coulomb potential. To understand qualitative properties, we
present some analytical expressions derived perturbatively
and clarify how it occurs that the Friedel oscillation is ob-
served in the STM images. To verify the results obtained by
the perturbative treatment, we perform numerical calcula-
tions and solve exactly the scattering problem by the
screened Coulomb potential near surfaces in Sec. III. In Sec.
IV, we compare theoretical results with experimental obser-
vations and speculate the depth and screening length of sub-
surface impurities. Nanometer-scale structures observed on
other surfaces are discussed in terms of the subsurface im-
purities. In this paper, we use the atomic units
(\5m5e51), if units are not shown explicitly.
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II. SCATTERING PROPERTIES BY THE SCREENED
COULOMB POTENTIAL

In discussing the shallow impurity levels in semiconduc-
tors, we usually use the effective potential

Veff~r !52
1

er
, ~2.1!

wheree is the dielectric constant. A solution of the Schro¨-
dinger equation with this potential is the 1s orbital such as
the hydrogen atom. Since the radius of the impurity orbital is
typically 100 times larger than the Bohr radius, there is an
interpretation that the bright spots observed in STM images
are the impurity orbital. However, this naive interpretation is
not right, because the Friedel oscillation observed around the
bright spots cannot be explained by the nodeless 1s orbital.
In addition, the impurity level is a localized orbital, which
carries no current and, therefore, should not be observed in
STM without taking account of the band bending. The im-
ages of the subsurface impurities are observed when the bias
voltage corresponds to the energy regions outside the band
gap. Therefore, it would be more reasonable to interpret the
bright spots observed in STM as the images of conduction or
valence electrons scattered by the impurity potential. In this
paper, we investigate the scattering behavior of electrons in
bulk bands.

The effective potential for the band electrons is different
from that shown in Eq.~2.1!, because the screening effect by
the electron in the impurity level is not taken into account in
Veff . In this paper, we adopt the screened Coulomb potential
given by

V~r !5 f 0
e2mr

r
, ~2.2!

as the effective potential. In the above,f 0 and m are the
strength of the scattering potential and the inverse of the
screening length, respectively. In this section, we solve per-
turbatively wave functions of electrons scattered by this ef-
fective potential located near surfaces.

The two-dimensional Fourier transformation of the
screened Coulomb potential is given by

V~z,q!5
f 0
2p

e2mquzu

mq
, ~2.3!

whereq5(qx ,qy) andmq5Am21q2. When wave functions
are expanded in terms of lateral momentumq as

C~r !5E A~q,z!eiq•r id2q, ~2.4!

the functionA(q,z) satisfies an equation of

2
1

2

d2

dz2
A~q,z!1E V~z,q2q8!A~q8,z!d2q8

5SE2
q2

2 DA~q,z!. ~2.5!

This equation can be solved as

A~q,z!5A0~q,z!1E G~q,z2z8!

3F E V~z8,q2q8!A~q8,z8!d2q8Gdz8, ~2.6!

by using the Green’s functionG(q,z) defined as

SE2
q2

2
1
1

2

d2

dz2DG~q,z!5d~z!. ~2.7!

A0(q,z) is the unperturbed solution without the scattering
potential.

The solution of the Green’s function is given by

G~q,z!5
eikz

quzu

ikz
q , ~2.8!

where

kz
q5H Ak22q2 ~q,k!

iAq22k2 ~q.k!,
~2.9!

andk2/25E.
As the unperturbed wave function, we choose a plane

wave with lateral momentumq0 as

A0~q,z!5eikz
0zd~q2q0!, ~2.10!

wherekz
05Ak22q0

2. When we remain up to the first-order
term in the scattering potential~the Born approximation!, we
obtain

A~q,z!5eikz
0zd~q2q0!1

f 0
p i

eikz
qz

kz
q

1

mq
21~kz

q2kz
0!2

~z.0!.

~2.11!

In the above, we neglect the terms exponentially decaying as
e2mqz, because we are interested in the behavior of wave
functions at the region outside the potential range of 1/m.

We hitherto have not taken account of the presence of
surfaces. If surfaces are present, we must take account of the
waves scattered at the surfaces, and Eq.~2.11! is changed
into

A~q,z!5~eikz
0z1R08e

2 ikz
0z!d~q2q0!

1
f 0
p i

eikz
qz1Rq8e

2 ikz
qz

kz
q F 1

mq
21~kz

q2kz
0!2

1R08
1

mq
21~kz

q1kz
0!2G ~0,z,d!, ~2.12!

whereR08 andRq8 are the reflection coefficients with phase
factors determined as follows. We assume that the subsur-
face impurity is buried at a depthd from the surface. When
we change the origin of thez axis from the center of the
scattering potential to the surface by replacingz by z1d and

multiply a phase factore2 ikz
0d, Eq. ~2.12! is modified as
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A~q,z!5~eikz
0z1R0e

2 ikz
0z!d~q2q0!

1
f 0
p i

eikz
qz1Rqe

2 ikz
qz

kz
q ei ~kz

q
2kz

0
!dF 1

mq
21~kz

q2kz
0!2

1R08
1

mq
21~kz

q1kz
0!2G ~2d,z,0!, ~2.13!

whereR05R08e
22ikz

0d andRq5Rq8e
22ikz

qd are the reflection
coefficients given by

R052
l01 ikz

0

l02 ikz
0 , ~2.14!

and

Rq52
lq1 ikz

q

lq2 ikz
q . ~2.15!

In the above,l0 and lq are the decay constants in the
vacuum region given, respectively, asl05A2W1q0

2 and
lq5A2W1q2, whereW is the work function.

The wave functions in the vacuum region are obtained by

replacingeikz
0z1R0e

2 ikz
0z andeikz

qz1Rqe
2 ikz

qz, respectively,
by T0e

2l0z and Tqe
2lqz, where T052ikz

0/( ikz
02l0) and

Tq52ikz
q/( ikz

q2lq). Finally, we obtain an expression for
the wave function as

C~r ;q0 ,d!5T0e
iq0•r ie2l0z

1
f 0
p i E F~q;q0 ,d!e2lqzeiq•r id2q ~z.0!,

~2.16!

where

F~q;q0 ,d![S Tq
kz
q D F ei ~kz

q
2kz

0
!d

mq
21~kz

q2kz
0!2

1R0

ei ~kz
q
1kz

0
!d

mq
21~kz

q1kz
0!2

G .
~2.17!

The first term ofF(q;q0 ,d) originates from the forward scat-
tering of the incident wave by the impurity, whereas the
second term comes from the backward scattering of the re-
flective wave produced from the incident wave at the surface.
Note that whenq.k, kz

q is pure imaginary and the compo-
nent decays with the depthd of the impurity. The component
with q,k is a propagating wave and does not decay with the
depth. Therefore, we expect that at large depths, we cannot
observe structures smaller than 1/kF .

By performing a hemispherical integral over the equien-
ergy surface, we obtain the local density of states~LDOS!
per spin as

r~r ,E!5
k

~2p!3
E
kz.0

uCu2dV, ~2.18!

whereV is the solid angle. If we assume that the orbital of
the tip apex is thes wave, the tunneling current can be ap-

proximated by the LDOS withE5EF at a low bias
voltage.15 Though the LDOS is not accurate enough to re-
produce quantitatively corrugation amplitudes of many STM
images, it is sufficient to discuss qualitatively the contrast of
STM images. For a finite bias voltageV, STM images are
obtained by integrating the LDOS over the energy region
from EF to EF1eV.

Before presenting numerical results, we consider some
limiting cases. We assumekF!A2W. This condition is sat-
isfied in the case of semiconductors at a low bias voltage.
Therefore, we obtainT0.22ikz

0/A2W, Tq.22ikz
q/A2W,

R0.21, and l0.lq.A2W. Then, the wave function is
approximated as

C~r ;q0 ,d!.2
2i

A2W
e2A2WzH kz0eiq0•r i

1
f 0
p i E F ei ~kz

q
2kz

0
!d

mq
21~kz

q2kz
0!2

2
ei ~kz

q
1kz

0
!d

mq
21~kz

q1kz
0!2

G
3eiq•r id2qJ . ~2.19!

Since the wave function is decoupled as a function ofr i and
z, the corrugation amplitude does not depend on the tip-
surface distance. This is a common feature of STM images
with nanoscale lateral dimensions.10

In the present paper, STM images are discussed in terms
of the LDOS. This implies that the orbital of the tip apex is
assumed to be thes wave.15 When the tip orbital is thed
wave, atomic-scale corrugation amplitudes are much en-
hanced, which is an important effect in explaining the corru-
gation amplitudes of metals.16 However, in the case of waves
with nanoscale lateral dimensions, the enhancement factor
by thed wave is almost unity because ofkF!A2W. There-
fore, the results obtained in this paper are generally true ir-
respective of the types of the tip orbitals. This is also a fea-
ture characteristic of the nanoscale waves.10

A. Case ofµ@kF

First, we consider the casem@kF . In this case, the
integrand in Eq. ~2.19! is approximated as

2(2i /m2)eikz
qdsin(kz

0d)eiq•r i and the integrals withq0 andq
are decoupled. This means physically that the scattering po-
tential is so localized that the scattered wave propagates like
the s wave.

The LDOS at the Fermi energy is calculated as

r~r ,EF!5
1

~2p!3W

4pkF
3

3
e22A2Wz

3F12
24f 0kF

m2 P~kFr i ,kFd!Q~kFr i ,kFd!G ,
~2.20!

where

P~x,y!5E
0

p/2

J0~xsinu!sin~ycosu!cosusinudu, ~2.21!
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and

Q~x,y!5E
0

p/2

J0~xsinu!cos~ycosu!cosusinudu, ~2.22!

and J0(x) is the Bessel function. In the above, the part
q.kF of the integral in Eq.~2.19! and the second-order term
in the scattering strengthf 0 are neglected. Using the identity,

E
0

p/2

J0~xsinu!cos~ycosu!sinudu5
sinu

u
, ~2.23!

whereu[Ax21y2, we obtain

P~x,y!52
y

u2 S cosu2
sinu

u D . ~2.24!

Q(x,y) is not expressed in terms of elementary functions,
but it may be approximated by

Q8~x,y![E
0

p/2

J0~xsinu!cos~ycosu!cos2usinudu

5
]P~x,y!

]y

5
y2

u3
sinu2

u223y2

u4 S cosu2
sinu

u D . ~2.25!

More simply, Q(x,y) is approximated by sin(u)/u when
x;y@1. In this case, the corrugationDz(r i ,d)
[z(r i ,d)2z(`,d) is given by

Dz~r i ,d!5
1

2A2W
lnF11

24f 0kF
m2

3
kFd

~kFAr i
21d2!3

sin~2kFAr i
21d2!

2 G .
~2.26!

This means that STM images show the Friedel oscillation
with the period of 1/(2kF) only at larger i@d. It should be
noted that when the impurities are buried deep in the subsur-
face, the period of the oscillation observed in STM images is
much larger than 1/(2kF).

When r i!d, STM images show the Friedel oscillation
with the depthd at fixed r i . Especially, sinceQ(0,y) is
easily calculated, the corrugation atr i50 is given by

Dz~0,d!5
1

2A2W
lnF11

24f 0kF
m2

1

~kFd!2 S sin~kFd!

1
cos~kFd!21

kFd
D S cos~kFd!2

sin~kFd!

kFd
D G .
~2.27!

This means that STM images of an impurity show both the
positive and negative corrugations, and the polarity of the
impurity charge is not determined simply from the sign of
the corrugation.

When the depthd is much smaller than 1/kF , the corru-
gation is approximated as

Dz~0,d!;
1

2A2W
lnF12

2 f 0kF
m2 ~kFd!G . ~2.28!

This means that impurities charged positively and negatively
show positive and negative corrugations at small depths, re-
spectively. It should be noted that the corrugation amplitude
increases with the increase of the depthd and reaches the
maximum value at about the depth with 2kFd;p/2. In other
words, there is a depth where images of subsurface impuri-
ties are most clearly observed. This result is in striking con-
trast to the intuitive picture that the corrugation of subsurface
impurities decreases monotonously with the increase of the
depth. This is due to the fact that the nanoscale lateral waves
are propagating ones. Standing waves are formed near the
surface, and the surface plane is a node of the waves. There-
fore, the corrugation decreases as the impurity approaches
the surface plane. In contrast with the nanoscale corruga-
tions, atomic corrugations decay exponentially as the depth
of impurities increases.

B. Case ofµ!kF

Next, we consider the casem!kF . In this case, the part
contributing most to the integral in Eq.~2.19! is the first term
of the integrand around the region ofuq2q0u<m. The sec-
ond term can be neglected. This corresponds to the fact that
the forward scattering is very strong in the Coulomb scatter-
ing. The second term produced by the reflection at the sur-
face forms the standing wave by the interference with the
first term in the casem@kF . In the casem!kF , the second
term is neglected, and the scattering behavior resembles the
bulk one without the surface. Therefore, we estimate the
LDOS in terms of the bulk scattering theory.

In the standard scattering theory, the wave function is
written as

C~r !5eik•r1 f ~u!
eikr

r
, ~2.29!

where f (u) is the scattering amplitude. In the case of the
screened Coulomb potential, it is given in the Born approxi-
mation as

f ~u!522 f 0
1

m21q2
, ~2.30!

whereq52ksin(u/2).
By integrating the absolute square of the wave function

with respect to the angle of the incident waves, the LDOS is
calculated as
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r~r ,E!5
k

~2p!2
E
0

1H 12
4 f 0
r

cos@kr~12cosu!#

m21q2

1
4 f 0

2

r 2
1

~m21q2!2 J d~cosu!

5
k

~2p!2
F12

2 f 0
k2r

HS m2r

2k D
1

2 f 0
2

m2k2r 2
1OXS m

k D 2CG , ~2.31!

where

H~x![E
0

`cos~xt!

11t
dt

5E
0

` te2xt

11t2
dt

52@sin~x!si~x!1cos~x!ci~x!#. ~2.32!

In the above, si(x) and ci(x) are the integrated sine and
cosine functions defined as

si~x!52E
x

`sint

t
dt,

ci~x!52E
x

`cost

t
dt. ~2.33!

They behave as

si~x!;2
cosx

x
2
sinx

x2
,

ci~x!;
sinx

x
2
cosx

x2
, ~2.34!

in the limit of x→` and

si~x!;2
p

2
,

ci~x!; lnx, ~2.35!

in the limit of x→0. Therefore,H(x) behaves as

H~x!;
1

x2
~x→`!, ~2.36!

and

H~x!; lnS 1xD ~x→0!. ~2.37!

In discussing STM images,r in Eq. ~2.31! is read as
r5Ar i

21d2. SinceH(x) is a monotonously deceasing func-
tion with increasingx, STM images do not show the Friedel
oscillation in the case ofm!k. The corrugation at a large
distance is given as

Dz~r ,d!5
1

2A2W
lnF12

8 f 0

m4~Ar i
21d2!3

1
2 f 0

2

m2k2~r i
21d2!G .

~2.38!

The first-order term in the scattering strengthf 0 decreases
more rapidly than the second-order term at a large distance,
and the former is neglected in the standard theory of the bulk
scattering. In STM images as shown in the next section, we
are interested in the region ofkFr<(kF /m)

2(kF / f 0), and the
second-order term is neglected. Therefore, the corrugation
decreases monotonously as;1/r 3 as a function of bothr i
and d. This is quite a contrast to the case ofm@k. This
means that in the condition where the Friedel oscillation is
observed as Ref. 9, the scattering potential is well localized
and the scattered waves are spherically symmetric.

In the above, we estimate the LDOS in the vacuum region
by that in the bulk. The difference between the two LDOS is
the coefficientsT0 and Tq in the wave functions of the
vacuum region as shown in Eq.~2.16!. Since these coeffi-
cients are approximately proportional tokz , the weight of
kz is added in evaluating the LDOS in the vacuum region.
This results in a reduction of the corrugation amplitude, but
qualitative features are not much changed. Therefore, it is
valid to discuss STM images by the LDOS in the bulk.

III. NUMERICAL CALCULATIONS

In this section, we present numerical results of the scat-
tering by subsurface impurities. Figure 1 shows the sche-
matic of the model potential used in this paper. Since our
main interest in the present paper is the nanoscale structures
observed in STM images, we neglect atomic-scale structures
and assume constant valuesVL and 0 for the potentials in the
surface and vacuum regions, respectively. The abrupt change
in the potential at the surface-vacuum interface is a good
approximation enough to discuss nanometer-scale waves.
The screened Coulomb potential given by Eq.~2.2! is added
to the constant potentials. The present model is valid only
when the depth of the impurity is larger than the screening
length.

We simulate the STM image of the subsurface impurities
in the GaAs~110! surface where the Friedel oscillation is
observed.9 The Fermi wave numberkF is determined as
0.033 a.u., because the period of the oscillation observed in
STM images is about 50 Å, which corresponds to
2p/(2kF). The work functionW (52EF) is chosen as
0.15 a.u., which corresponds to about 4 eV. Therefore,VL is

FIG. 1. Schematic of the model potential used in the numerical
calculations.
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determined as20.150 5445 a.u.
We assume that the screened Coulomb potential is attrac-

tive with a 11 ionic charge. This is the potential for elec-
trons with an effective massm* . To obtain the same wave
functions, the potential strength for electrons with a mass
m must be multiplied bym* /m. Therefore,f 0 is determined
as2m* /m520.066 for the GaAs case. Sinceu f 0 /kFu52,
this is a rather strong scattering. When the range of the po-
tential is extended, the screening effect by the medium is
important. This effect is taken into account by dividing the
scattering potential by the dielectric constante. In this case,
f 0 is calculated as20.005, sincee of GaAs is 13.13.
We perform calculations for both the strong-scattering case
with f 0520.066 and the weak-scattering case with
f 0520.005.
For the screening length 1/m, we choose three values of

30, 10, and 5 Å. The first value is the screening length cal-
culated for InP~Ref. 7! using the scattering theory of bulk
impurities.17 It is reasonable to use the values for InP, be-
cause the electronic properties of InP such as the band gap,
effective mass, and dielectric constant are similar to those of
GaAs. The second value is the surface screening length de-
termined from the interaction between vacancies on the
InP~110! surface.7 The third one is the value of the example
shown in the scattering theory of bulk impurities.17 The first
one and the latter two values correspond to the cases of
m,kF and m.kF , respectively. Therefore, it is expected
from the discussion in Sec. II that the Friedel oscillation
appears in the latter cases.

Wave functions are solved by the recursion-transfer-
matrix ~RTM! method.18 In this method, wave functions are
expanded in terms of two-dimensional reciprocal lattice vec-
tors parallel to the surface and are solved by discretizing the
one-dimensional differential equation alongz axis perpen-
dicular to the surface. Therefore, wave functions of the
single-impurity system are obtained by this method using a
supercell with a triangular lattice. The lattice constant of the
supercell is chosen as 600 a.u., which is 20 times as large as
1/kF . The cutoff energy of the reciprocal vectors is 0.005
a.u., which is about 10 times as large askF

2/2. The interval of
meshes discretizing the differential equation along thez axis
is 1.25 a.u. which is about 1/24 of 1/kF . The differential
equation is solved in a region between a plane by 100 a.u.
behind the center of the scattering potential and a plane by
20 a.u. above the surface-vacuum interface. The LDOS for
obtaining STM images is calculated at a plane by 10 a.u.
above the surface-vacuum interface. The results obtained in
this section do not change by varying the tip-sample dis-
tance, because corrugations of nanoscale lateral waves do not
generally depend on the tip-sample distance,10 as mentioned
in Sec. II.

STM images are expressed by a dimensionless function
defined as

r̃~ r̃ i ,d̃!5 lnFr~r i ,d!

r~`,d! G , ~3.1!

wherer̃ i[kFr i /p and d̃[kFd, because the corrugation can
be obtained as

Dz5
r̃~ r̃ i ,d̃!

2A2W
. ~3.2!

Figure 2 showsr̃ as a function ofr̃ i . The scattering
strengthf 0 is 20.066, and the screening length 1/m is ~a!
5, ~b! 10, and~c! 30 Å. In each figure, three solid curves are

FIG. 2. r̃ as a function ofr̃ i5kFr i /p. The screening length
1/m is ~a! 5, ~b! 10, and~c! 30 Å. The scattering strengthf 0 is
20.066 a.u. Solid lines are exact curves calculated by the RTM
method. Dotted lines are perturbative ones calculated using Eq.
~2.16!. In each figure, three curves are shown for representing the
cases that the depthd̃ (5kFd) of the impurity is 1, 2, and 3.
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shown for representing the cases ofd̃51, 2, and 3. Curves
calculated by the perturbation using Eq.~2.16! are also
shown by dotted lines.

As discussed in the previous section, the Friedel oscilla-
tion is seen only whenm.kF as in Figs. 2~a! and 2~b!. When
m,kF as in Fig. 2~c!, the curves decrease almost monoto-
nously. The dotted lines obtained perturbatively are qualita-
tively similar to the solid lines calculated exactly, but they
differ quantitatively. Especially in the case of Fig. 2~b!, the
exact curves show the Friedel oscillation, but the perturba-
tive ones do not. This reflects that the present case is a strong
scattering, sinceu f 0 /kFu52. It has been verified that when
the scattering strength is as weak asf 0520.005, the pertur-
bative curves coincide with the exact ones.

The curves also oscillate as a function of the depth of
impurities. As the solid curved̃53 of Fig. 2~a!, there are
cases showing negative corrugations at the center of the im-
purity, in spite of the attractive scattering potential. This
means that we cannot determine the sign of the impurity
charge simply from the sign of the corrugation.

Typical STM images calculated by the RTM method are
shown in Fig. 3. The parameter set of 1/m andd̃ is chosen as
~a! 5 Å and 2,~b! 5 Å and 3, and~c! 30 Å and 2. The scan
width in each figure is 232 in the unit ofp/kF . The shapes
of the images deviate slightly from spherically symmetric,
reflecting that the present supercell is not large enough. But,
since the deviations are negligible, the present calculations
are sufficient. Figure 3~a! shows the Friedel oscillation, but
Fig. 3~c! does not, reflecting the difference of the potential
ranges. The ring structure shown in Fig. 3~b! is similar to
those observed in STM of semiconducting transition-metal-
dichalcogenide surfaces.19–24 They have been interpreted as
images of ring-shaped materials buried in the subsurface.19

In this paper, we interpret them as the Friedel oscillation by
subsurface impurities, as discussed in the next section.

Figure 4 showsr̃ at r̃ i50 as a function of the depthd̃ of
the impurity. The scattering strengthf 0 is 20.066 and the
screening length 1/m is ~a! 5 Å and~b! 30 Å. In each figure,
closed circles and solid lines show exact values calculated by
the RTM method and perturbative ones obtained using Eq.
~2.16!, respectively. The analytical curves expressed by Eq.
~2.27! are shown in Fig. 4~a! by the dotted lines.

In the cases ofm.kF as in Fig. 4~a!, the curves show the
Friedel oscillation. As expected, the exact and perturbative
curves differ, because of the strong scattering. It has been
verified that they coincide in the weak-scattering case of
f 0520.005. Though they differ quantitatively in the strong-
scattering case, qualitative behavior of the corrugation am-
plitude may generally be summarized as follows. When the
depth is smaller than 1/kF , the corrugation amplitude in-
creases with the increase of the depth, and reaches the maxi-
mum value at the depth ofkFd;1. At larger depths, the
corrugation decreases as 1/d2 with the oscillation of 2kF .
The analytical curves deviate quantitatively from the pertur-
bative ones at small depths, because the integral part of
q.kF is neglected in deriving Eq.~2.27!. But, since the
oscillating behavior of the exact curves is well reproduced,
they are useful for qualitative discussions.

In the case ofm,kF as in Fig. 4~b!, the curves do not
show the Friedel oscillation, but decrease roughly as a func-

tion of the depthd. The oscillating behavior seen slightly in
the figure is due to the fact thatm is not much smaller than
kF . In this case also, the perturbative curves deviate consid-
erably from the exact ones owing to the strong scattering.

So far we have presented calculated results for the attrac-
tive scattering potential. Figure 5 shows curves for repulsive
cases calculated exactly by the RTM method.f 0 is
10.066. 1/m is ~a! 5 Å and ~b! 30 Å. For comparison, the
curves calculated for the attractive potential with
f 0520.066 are shown by dotted lines. Values displayed for
the attractive cases are multiplied by21. The repulsive
curves deviate from the attractive ones because the present
case withu f 0u50.066 is the strong scattering. When the scat-
tering strength is as weak asu f 0u50.005, we found that the
attractive and repulsive curves coincide with a reverse sign.
Though profiles of the attractive and repulsive curves are
quantitatively different in the strong-scattering cases, it may
be concluded generally that the corrugation of a charged im-
purity is qualitatively reverse to that of an impurity with the
opposite sign of charge.

In the case ofm,kF as shown in Fig. 5~b!, the attractive
and repulsive scattering potentials produce the positive and

FIG. 3. STM images of the subsurface impurity calculated by
the RTM method. The depthd̃ of the impurity is~a!,~c! 2 and~b!
3. The screening length 1/m is ~a!,~b! 5 and~c! 30 Å. The scatter-
ing strengthf 0 is 20.066 a.u. The scan width in each figure is
232 in the unit ofp/kF .
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negative corrugations, respectively. This by chance agrees
with the intuitive picture that we observe positive and nega-
tive corrugations in STM images of donor and acceptor im-
purities, respectively, because electrons accumulate around
the attractive potential and are pushed out by the repulsive
potential. The same conclusion holds in the case ofm.kF ,
when the depthd is smaller than 1/kF .

IV. DISCUSSIONS AND CONCLUSIONS

First, we compare the calculated results with the Friedel
oscillations observed experimentally in the STM images of
the Si donor in the GaAs~110! surface.9 We have studied
behaviors of electrons scattered by subsurface impurities us-
ing the screened Coulomb potential. The Friedel oscillation
is obtained only when the range of the scattering potential is
shorter than the Fermi wavelength. Therefore, the screening
length of the Si donor in the GaAs~110! surface should be
smaller than 1/kF516 Å.

The profile of the experimental corrugation seen in Fig.
2~b! of Ref. 9 is similar to that of the curve calculated for
d̃51 shown in Fig. 2~b!, where 1/m is 10 Å. The corruga-

tion amplitude at the peak calculated using Eq.~3.2! is
0.93 Å, which agrees well with the experimental one of
about 1 Å. This good agreement between the experimental
and calculated values suggests that the screening length and
the depth of the observed impurity are about 10 and 16 Å,
respectively.

The estimated screening length is consistent with the
value of 10.561.5 Å determined experimentally for the va-
cancies on the InP surface.7 Since the screening length is not
very large, the screening effect by the medium would not be
important. This is consistent with the fact that the experi-
mental corrugation amplitude agrees well with the theoretical
one calculated for the strong-scattering case with
f 0520.066 where the dielectric constant is not taken into
account.

At the depth of 16 Å, the corrugation amplitude is at the
maximum as shown in Fig. 4~a!. Since we expect that sub-
surface impurities are most clearly observed around this
depth, it is probable that the impurities observed in the ex-
periment are buried at this depth. The speculation that the
subsurface impurity showing the largest corrugation is buried
at the depth of about 16 Å is consistent with the experimental

FIG. 4. r̃ at r i50 as a function ofd̃5kFd. The scattering
strengthf 0 is 20.066, and the screening length 1/m is ~a! 5 and~b!
30 Å. Closed circles show exact values calculated by the RTM
method. Solid lines are perturbative curves calculated using Eq.
~2.16!. Dotted lines are approximate ones calculated using the ana-
lytical expression shown in Eq.~2.27!.

FIG. 5. r̃ as a function ofr̃ i5kFr i /p for the repulsive scatter-
ing potential. Solid curves are calculated by the RTM method with
the scattering strength off 0510.066. The screening length 1/m is
~a! 5 and~b! 30 Å. The depthd̃ of the impurity is 1, 2, and 3. For
comparison, the curves calculated for the attractive cases with
f 0520.066 are shown by dotted lines. Values displayed for the
attractive curves are multiplied by21.
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fact that five kinds of corrugations are observed,4 because the
spacing between layers of the GaAs~110! surface is 2.0 Å,
and therefore we expect to observe eight kinds of corruga-
tions at best.

It should be noted that it is possible to observe subsurface
impurities at depths greater than 16 Å. They can be distin-
guished from impurities buried at depths smaller than the
depth showing the maximum corrugation by measuring the
bias dependence of the corrugation amplitude. By increasing
the bias voltage, the Fermi wave number increases, and the
effective depthd̃5kFd also increases. Therefore, if the cor-
rugation amplitude decreases with the increase of the bias
voltage, the depth of impurities would be larger than 1/kF .

We can estimate the depth of the subsurface impurity also
from the bias dependence of the period of the Friedel oscil-
lation. STM images of subsurface impurities show the Frie-
del oscillation of 2kFr , where r is a function of both the
lateral distancer i and the depthd asr5Ar i

21d2. By chang-
ing the bias voltageV, the period of the oscillation also
changes, because the Fermi wavelengthkF is proportional to
AuVu. Here,V is measured from the top of the valence band
or the bottom of the conduction band, which may be deter-
mined by STS. Therefore, we estimate the depth by tracing
the point r i with the change of the bias voltage where
2kFr is constant. The depth of impurities is given by

d5AV1r i1
2 2V2r i2

2

V22V1
, ~4.1!

wherer i1 andr i2 are the equivalent positions corresponding
to two different bias voltagesV1 andV2.

In the case of the Friedel oscillation observed in Fig. 3 of
Ref. 9, we plotted 1/r i

2 versus bias voltages, wherer i is
defined as half the distance between the two minima, and
found an almost linear dependence of the plotted values.
This means that the depth of the impurity is much smaller
than r i;20 Å. Therefore, the depth of the impurity may be
smaller than the value of 16 Å estimated above, but it is
beyond the ability of the present simple model for the impu-
rity potential to determine more precisely the depth of the
impurity. First-principles calculations are necessary.

The calculated STM image shown in Fig 3~b! resembles
the ring structures observed in STM of semiconducting
transition-metal-dichalcogenides surfaces. The ring struc-
tures are observed on natural MoS2 surfaces

19 and on ion-
bombarded WSe2 surfaces,20 but not observed on synthe-
sized MoS2 surfaces.19 Similar structures are observed on
WSe2 surfaces modified by mechanical indentations or by
applying pulse voltages with STM tips.21,22The radii of these
ring structures are about 15 Å.19

The ring structures have been interpreted as images of
ring-shaped molecules buried in the subsurface19 or as topo-
graphical protrusions modified by STM tips.22 In this paper,
however, we interpret them as the Friedel oscillation by
single subsurface impurities, because the ring structures are
not observed in atomic force microscopy.19 This fact ex-
cludes the possibility of the topographical protrusions. More-
over, the radii of the ring structures can be explained as
follows, if we assume that the impurity is buried in the sec-
ond van der Waals gap between the chalcogen-metal-
chalcogen sandwiches.

The ring structure shown in Fig. 3~b! is obtained when the
impurity is buried at the depth ofkFd52, whered is about
12 Å in the case of the second van der Waals gap of the
transition-metal dichalcogenides. Since the peak of the ring
structure is seen atkFr i /p;0.8 in the figure, the radius is
calculated as about 15 Å, which agrees well with the ob-
served value. Similarly, the hillocks observed on modified
WSe2 surfaces

20–22 are interpreted as images of subsurface
impurities buried in the first van der Waals gap at the depth
of kFd51. Furthermore, the nanometer-scale dark spots ob-
served on ion-bombarded MoS2 surfaces25 and alkali-
adsorbed MoS2 surfaces

26 may be interpreted as images of
subsurface impurities with the negative corrugations.

Subsurface impurities are well observed on semiconduc-
tor surfaces but are not observed on metal surfaces. The rea-
son for this fact is that in semiconductors, the Fermi wave
number is small and the screening length is not too small.
Since the effective depthd̃ is determined bykFd, the corru-
gation amplitude decreases rapidly with the increase ofd in
the case of metals with largekF . In addition, the scattering
strength itself is weak in the metal case, because of the short
screening length.

The oscillation of the corrugation amplitude depending on
the depth of the impurities is due to the standing waves
formed near the surface, which is essentially the same as the
energy dependence of the images of subsurface Ar bubbles
observed in STM of the aluminum surfaces.27 However, the
origin of the oscillations in the profile of STM images is
slightly different. In the case of the subsurface single impu-
rities, the Friedel oscillation is formed by the interference of
the incident wave and the waves scattered spherically. On the
other hand, it would be better to interpret the oscillation ob-
served in the subsurface bubbles as the diffraction of waves
by structures with finite lateral sizes, though it may be also a
kind of the Friedel oscillation in a wide sense.

In conclusion, we have studied theoretically STM images
of subsurface impurities using the screened Coulomb poten-
tial. When the screening length is shorter than the Fermi
wavelength, we obtained the Friedel oscillation observed in
STM, which is produced by the interference of the incident
waves and the waves scattered spherically. STM images also
oscillate as a function of the depth of the subsurface impuri-
ties, because standing waves are formed near the surface. We
obtained various kinds of images of the subsurface impuri-
ties such as the ring structures and the images with negative
corrugations which are observed in STM of semiconducting
transition-metal-dichalcogenide surfaces. When the depth is
small, the corrugation amplitude increases with the increase
of the depth and reaches the maximum atd;1/kF . We
speculate that the impurities observed most clearly in STM
are buried at this depth.

The oscillating behavior of STM images presented in this
paper is due to the fact that waves with nanoscale lateral
dimensions are propagating. Atomic-scale lateral waves de-
cay on the atomic scale.10 By use of the oscillating behaviors
of the nanoscale lateral waves, we can obtain information of
subsurface structures by STM.
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