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Scattering theory of subsurface impurities observed in scanning tunneling microscopy
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Subsurface impurities observed in scanning tunneling micros¢®pi) are investigated theoretically. As
a scattering potential of the impurities, the screened Coulomb potential is used. Wave functions are solved
exactly by numerical calculations. Qualitative behavior of STM images is discussed in terms of analytical
expressions derived perturbatively, and the origin of the Friedel oscillation observed in STM images of
subsurface impurities is clarified. It is found that to produce the Friedel oscillation, the spatial range of the
impurity potential must be shorter than the Fermi wavelength. In the short-range case, calculated STM images
show oscillating behavior also as a function of the depth of impurities. When the depth is small, the corrugation
amplitude increases with the increase of the depth and reaches the maximum at the depth of about the Fermi
wavelength. Ring structures observed in STM of transition-metal-dichalcogenide surfaces are also explained by
the subsurface impuritie§S0163-18206)07648-3

I. INTRODUCTION energy is thep, state where is perpendicular to the surface.

Recently, bulk defects in semiconductor surfaces havThe wave function of thep, state is zero at the surface
Y, %=O, the donor states are not visible in this case. Since real

(STM). Donor states have been detected in scanning tunnef,ie this extreme case is oversimplified. But, it is question-
ing spectroscopySTS of the GaAs surfacé]mag_es of Sub-  gpie to interpret the STM images simply in terms of the
surface impurities have been observed clearly in STM, eveRgnventional donor states in the bulk.
when they are buried by several layers underneath the sur- nporeover, it is not possible to explain the Friedel oscilla-
faces.?”® Charge states of bulk defects have been discusseghn by the bulk donor states, because tfsestate does not
by studying the interaction between defettd Moreover,  show the oscillating behavior. Since subsurface impurities
the Friedel oscillation around the images of the subsurfacare observed at bias voltages corresponding to the energy
impurities has been observed by low-temperature STM.regions outside the band gap, it would be better to interpret
These observations of subsurface defects by STM are nahe STM images in terms of the scattering of electrons in
trivial, because STM images reflect electronic structures obulk bands by the subsurface impurities.
surfaces in the vacuum region where the influence of the In this paper, we study theoretically STM images of sub-
outermost layers is dominant. Subsurface structures are usstrface impurities, in order to clarify the mechanism of ob-
ally not observed in STM. serving the Friedel oscillation by STM. Scattering properties
A mechanism explaining the observations of subsurfacéy subsurface impurities are investigated using the screened
structures in STM has been proposed recefitlyhere it has  Coulomb potential. It is found that to observe the Friedel
been concluded that subsurface structures are visible if thegscillation, the range of the scattering potential is much
have a nanometer-scale lateral dimension, but atomic-scakhorter than Fermi wavelengths. In this short-range case, the
structures are not visible. The key point of this result is thattorrugation amplitude of the subsurface impurities increases
nanoscale waves propagate in materials without decay, butith the increase of the depth and reaches the maximum at
atomic-scale waves decay rapidly in the atomic scale. the depth of about the Fermi wavelength, in contrast to the
From this point of view, the observations of subsurfaceintuitive picture.
impurities may not be curious. Indeed, the subsurface impu- In Sec. Il, we discuss scattering properties by the screened
rities themselves are atomic-scale structures, but if there i€oulomb potential. To understand qualitative properties, we
any cause producing nanometer-scale waves, they are vipresent some analytical expressions derived perturbatively
ible. In the case of the donor impurity in the GdA%0 and clarify how it occurs that the Friedel oscillation is ob-
surface, a naive interpretation of the STM images may beerved in the STM images. To verify the results obtained by
that the donor level is observed, because the orbitals of bulthe perturbative treatment, we perform numerical calcula-
donor levels in semiconductors extend over several nandions and solve exactly the scattering problem by the
meters. However, this naive interpretation is questionablescreened Coulomb potential near surfaces in Sec. lll. In Sec.
because the donor levels near surfaces are different frov, we compare theoretical results with experimental obser-
those in the bulk. vations and speculate the depth and screening length of sub-
Properties of the donor levels near surfaces have beesurface impurities. Nanometer-scale structures observed on
studied by several authots:'4In an extreme case of a donor other surfaces are discussed in terms of the subsurface im-
lying just on a surface and an infinite work function, the purities. In this paper, we use the atomic units
state is not allowed* The possible state with the lowest (%=m=e=1), if units are not shown explicitly.
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Il. SCATTERING PROPERTIES BY THE SCREENED
COULOMB POTENTIAL A(q,z)=A°(q,z)+f G(g,z—2")

In discussing the shallow impurity levels in semiconduc-

tors, we usually use the effective potential X f V(z',q—q")A(q’,z")d?q’ |dZ, (2.6)
Ves(r)=— * (2. by using the Green's functioG(q,2) defined as
er’ '
; g®> 1 d?
where e is the dielectric constant. A solution of the Schro (E— 7+ > d_zz) G(g,2)=48(2). 2.7

dinger equation with this potential is thes brbital such as

the hydrogen atom. Since the radius of the impurity orbital isAo
typically 100 times larger than the Bohr radius, there is a
interpretation that the bright spots observed in STM image
are the impurity orbital. However, this naive interpretation is
not right, because the Friedel oscillation observed around the iK1z

bright spots cannot be explained by the nodeles®rbital. G(q,2)= e 2.9
In addition, the impurity level is a localized orbital, which ' ik’ '
carries no current and, therefore, should not be observed in

STM without taking account of the band bending. The im-Where

ages of the subsurface impurities are observed when the bias

voltage corresponds to the energy regions outside the band

gap. Therefore, it would be more reasonable to interpret the k3=
bright spots observed in STM as the images of conduction or

valence electrons scattered by the impurity potential. In this,,qk2/2=E.

paper, we investigate the scattering behavior of electrons in' a5 the unperturbed wave function, we choose a plane

bulk bands. _ o wave with lateral momenturg, as
The effective potential for the band electrons is different

from that shown in Eq(2.1), because the screening effect by o iKY
the electron in the impurity level is not taken into account in A™(Q,2)=€"2°5(q— o), (2.10

;]/ﬁ;fe.nlr:a;hls paper, we adopt the screened Coulomb poten'ﬂavlvhere k0= JkZ—Z. When we remain up to the first-order

term in the scattering potentighe Born approximation we
— pr obtain
(2.2

(0,2) is the unperturbed solution without the scattering
otential.
The solution of the Green'’s function is given by

{ k?—q?  (q<k)
(2.9

iVoZ—k2 (q>k),

V(r)=f, :
' 0 fo eikgz l

— ok
as the effective potential. In the abovi, and u are the ~A(4:2)=€%*8(q—0do)+ — kI 2+ (KI—K9)2 (z>0).
strength of the scattering potential and the inverse of the d (2.12
screening length, respectively. In this section, we solve per-

turbatively wave functions of electrons scattered by this efin the above, we neglect the terms exponentially decaying as

fective potential located near surfaces. e Ma?, because we are interested in the behavior of wave
The two-dimensional Fourier transformation of the functions at the region outside the potential range qf.1/
screened Coulomb potential is given by We hitherto have not taken account of the presence of
surfaces. If surfaces are present, we must take account of the
vz, fo e Hald 23 waves scattered at the surfaces, and @dl1) is changed
2,q)=5— , . i
27 ug into
whereq=(qx,q'y) andpq= \/,u.2+ g®. When wave functions A(qlz):(eikgz_*_Rée—ikSZ) 89— o)
are expanded in terms of lateral momentgras
f, elkiz Rqe—ikgz 1
i + —
‘I'(r):f A(g,z)e'%"ld?q, (2.4) i kz pat(ki—kp)?
the functionA(q,z) satisfies an equation of +Ry————| (0<z<d), (2.12
® pat (ki+ky)?
1d? ) : : . - ,
_ __ZZA(q’Z)+f V(z,9—q')A(q’,z)d?q’ whereR; and R, are the reflection coefficients with phase
2d factors determined as follows. We assume that the subsur-

9 face impurity is buried at a depth from the surface. When
=(E— ?) A(q,2). (2.5 we change the origin of the axis from the center of the
scattering potential to the surface by replacigy z+d and

This equation can be solved as multiply a phase factoe ¢, Eq. (2.12 is modified as
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A — (674 R @~ k%7) 5(q— proximated by the LDOS withE=E¢ at a low bias
(@2)=(e 08 7%)5(q~do) voltage®® Though the LDOS is not accurate enough to re-

fo elk3Z4 R o-ikiz o w0 1 produce quantitatively corrugation amplitudes of many STM
— k—qqe-'(kz‘kﬁd K02 images, it is sufficient to discuss qualitatively the contrast of
il z mgt(kz—kz) STM images. For a finite bias voltagé STM images are
1 obtained by integrating the LDOS over the energy region
+ Réw} (—d<z<0), (2.13 from Eg to Eg+eV.
pgt (kztke) Before presenting numerical results, we consider some

limiting cases. We assume<+2W. This condition is sat-

_ ! a—2ik% — b/ a—2ikdd i PR . :
whereR,=Rpe” """ andR,=R;e “":" are the reflection sfied in the case of semiconductors at a low bias voltage.

coefficients given by Therefore, we obtaifly=—2ik2/\2W, Tq=—2ik3/ 2w,
N Ro=—1, and Ap=\y=y2W. Then, the wave function is
0
Ro=— Tk‘z) (2.14 approximated as
and W(r;go.d)=— \/z_iTve_ mz[ kOeido'T|
— Ngtik3 215 fo ol (kI K0)d el (K+k)d
4 ng—ikY ' + f 55— —2 -
4 e w2+ (K—kD? w2+ (kI+KD)

In the above,\, and Ay are the decay constants in the
vacuum region given, respectlvely, ag=2W +q02 and Xeiq'fdzq}. (2.19
Ag= V2W+ %, whereW is the work function.

"The wave functions in the vacuum reglon are obtained bisince the wave function is decoupled as a functionjaind
replacinge’*e?+ Roe~ Ko and e/e2+ R.€” k72 respectively, z, the corrugation amplitude does not depend on the tip-
by Tee *0* and T,e "¢, where To= 2|k§/(|kg N\o) and surface distance. This is a common feature of STM images
Tq=2ik§/(ik‘z‘—)\q). Finally, we obtain an expression for With nanoscale lateral dimensiotfs.

the wave function as In the present paper, STM images are discussed in terms
of the LDOS. This implies that the orbital of the tip apex is
(10, d) = Toei% Mg~ oz assumed to be the wavel® When the tip orbital is thel

wave, atomic-scale corrugation amplitudes are much en-
0 _ Nz T2 hanced, which is an important effect in explaining the corru-
+ HI F(a@;00,d)e ae'™'ld°q  (z>0), gation amplitudes of metat§.However, in the case of waves
with nanoscale lateral dimensions, the enhancement factor
(218 py thed wave is almost unity because ki <2W. There-
fore, the results obtained in this paper are generally true ir-
respective of the types of the tip orbitals. This is also a fea-
ture characteristic of the nanoscale watfes.

where

el (K- 1d)d el (K+Kd)d

T
F(q;q0.d)=| —a +R .
(4. ) (kg) Mé"’(kg_kg)z 0M§+(kg+ k?)? A. Case ofu>kg

(217 First, we consider the casg>kg. In this case, the

The first term ofF (;qp.,d) originates from the forward scat- integrand  in - Eq. (2.19 is approximated as
tering of the incident wave by the impurity, whereas the— (2|//VLZ)e'kzdsm(kOd)éq "I'and the integrals witly, andq
second term comes from the backward scattering of the reare decoupled. This means physically that the scattering po-
flective wave produced from the incident wave at the surfacetential is so localized that the scattered wave propagates like
Note that wheng>k, k is pure imaginary and the compo- the s wave.

nent decays with the depthof the impurity. The component The LDOS at the Fermi energy is calculated as

with g<k is a propagating wave and does not decay with the

depth. Therefore, we expect that at large depths, we cannot £ 1 47-rk§ 2 e
observe structures smaller tharkgd/ pr.Bp)= (2m)°wW 3
By performing a hemispherical integral over the equien-

ergy surface, we obtain the local density of staleBOS) <|1- 248 ok P(Ker | ked)Q(Ker | ked)
per spin as o R FHRER

K (2.20

_ 2
p(r,E) (277)3sz>0|\1}| dqQ, (2.18 where

where() is the solid angle. If we assume that the orbital of p(y y)— J'W/ZJO(XSina)sin(ycogg)cosgsingd 0, (2.21)
the tip apex is thes wave, the tunneling current can be ap- 0
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and When the depthd is much smaller than kf, the corru-
gation is approximated as

/.
Q(x,y)=J’0 2.Jo(xsina)cos(ycoszﬁ)cosﬁsin@d19, (2.22

and Jo(x) is the Bessel function. In the above, the part Az(0,d)~
g> kg of the integral in Eq(2.19 and the second-order term 2\2W
in the scattering strength, are neglected. Using the identity,

In

2f ok
1— %(de)} (2.29

w2 sinu This means that impurities charged positively and negatively
fo Jo(xsing)codycosh)sinfgd = — —, (223 show positive and negative corrugations at small depths, re-
spectively. It should be noted that the corrugation amplitude
whereu=\X?+y?, we obtain increases with the increase of the deptland reaches the
maximum value at about the depth witkg2l~ /2. In other
y sinu words, there is a depth where images of subsurface impuri-
P(xy)=- ?( cosu= T) (.24 {ies are most clearly observed. This result is in striking con-
trast to the intuitive picture that the corrugation of subsurface
Q(x,y) is not expressed in terms of elementary functionsimpurities decreases monotonously with the increase of the

but it may be approximated by depth. This is due to the fact that the nanoscale lateral waves
o are propagating ones. Standing waves are formed near the
Q’(X,y)EJ Jo(xsing) cog ycosh) coZsingd 0 surface, and the surface plane is a node of the waves. There-
0 fore, the corrugation decreases as the impurity approaches
the surface plane. In contrast with the nanoscale corruga-
IP(X,y) . . . .
= tions, atomic corrugations decay exponentially as the depth
ay of impurities increases.
y? u2—3y? sinu
= —Sinu— 7 cosl— —J|. (2.29
u u u B. Case ofu<kg
More simply, Q(x,y) is approximated by siof/u when Next, we consider the cage<kg. In this case, the part
x~y>1. In this case, the corrugationAz(r,d)  contributing most to the integral in E€2.19) is the first term
=z(r,d) —z(,d) is given by of the integrand around the region af— qo|< . The sec-
ond term can be neglected. This corresponds to the fact that
24f ok the forward scattering is very strong in the Coulomb scatter-

1
Az(r),d)= 5 In

V2w

1+ w? ing. The second term produced by the reflection at the sur-
face forms the standing wave by the interference with the
ked sin(ZkF\/rf‘ +d?) first term in the cas@>kg . In the caseu<kg, the second
(ke T2+ )3 2 . term is neglected, and the scattering behavior resembles the
VT bulk one without the surface. Therefore, we estimate the
(2.26  LDOS in terms of the bulk scattering theory.

) ) ) o In the standard scattering theory, the wave function is
This means that STM images show the Friedel oscillationyitten as

with the period of 1/(Rg) only at larger>d. It should be

noted that when the impurities are buried deep in the subsur-

face, the period of the oscillation observed in STM images is ikr

much larger than 1/(2-). P(r)=ek"+f(6) —, (2.29
When r <d, STM images show the Friedel oscillation r

with the depthd at fixed r|. Especially, sinceQ(0y) is

easily calculated, the corrugationrgt=0 is given by

where f(6) is the scattering amplitude. In the case of the
screened Coulomb potential, it is given in the Born approxi-

1 24f0k|: 1 ( . mation as
Az(0d)= Inj 1+ ——| sin(kgd
D=5 [ T eap S
cogkpd)—1 e sin(de)) 1
ked cogked) ked )|’ f(0)=—2fom, (2.30

(2.27

This means that STM images of an impurity show both thewhereq=2ksin(6/2).

positive and negative corrugations, and the polarity of the By integrating the absolute square of the wave function
impurity charge is not determined simply from the sign of with respect to the angle of the incident waves, the LDOS is
the corrugation. calculated as
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k 1 4fy cogkr(1—cod)]
p(rrE)z (27T)2f0 [ - T

ui+o?
4t3
+r—2m d(COSﬁ)
_ k 1 2f0H /.L2r
T@m?T K 2k
213 )2
where
_ [=cogxt)
H(x)= o 1+t dt
_foote‘”cI
- 01+t7t
= —[sin(x)si(X) + cog x)cCi(x)]. (2.32

In the above, sX) and cik) are the integrated sine and

cosine functions defined as

Si(X)=— J’wﬁdt,

X

i ~cog
C|(x)=—J —dt. (2.33
X t
They behave as
. COX  SinX
=S
] Sink  coxx »3
C|(x)~7—7, (2.39
in the limit of x— and
. w
Si(X)~ — 50
ci(x)~Inx, (2.35
in the limit of x—0. ThereforeH(x) behaves as
1
H(x)~ 2 (X— ), (2.36
and
1
H(x)~In ;) (x—0). (2.37

In discussing STM images, in Eq. (2.3)) is read as
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FIG. 1. Schematic of the model potential used in the numerical
calculations.

8fg .\ 2f3
pA(rf+d?)3 p2k3(rf+d?) |’
(2.38

The first-order term in the scattering strendthdecreases
more rapidly than the second-order term at a large distance,
and the former is neglected in the standard theory of the bulk
scattering. In STM images as shown in the next section, we
are interested in the region bfr < (kg /u)2(ke /o), and the
second-order term is neglected. Therefore, the corrugation
decreases monotonously asl/r® as a function of bothr,

and d. This is quite a contrast to the case @&Kk. This
means that in the condition where the Friedel oscillation is
observed as Ref. 9, the scattering potential is well localized
and the scattered waves are spherically symmetric.

In the above, we estimate the LDOS in the vacuum region
by that in the bulk. The difference between the two LDOS is
the coefficientsT, and T, in the wave functions of the
vacuum region as shown in EQ.16). Since these coeffi-
cients are approximately proportional kg, the weight of
k, is added in evaluating the LDOS in the vacuum region.
This results in a reduction of the corrugation amplitude, but
gualitative features are not much changed. Therefore, it is
valid to discuss STM images by the LDOS in the bulk.

1
Az(r,d)=——=—In| 1

2\2W

IIl. NUMERICAL CALCULATIONS

In this section, we present numerical results of the scat-
tering by subsurface impurities. Figure 1 shows the sche-
matic of the model potential used in this paper. Since our
main interest in the present paper is the nanoscale structures
observed in STM images, we neglect atomic-scale structures
and assume constant vallgsand O for the potentials in the
surface and vacuum regions, respectively. The abrupt change
in the potential at the surface-vacuum interface is a good
approximation enough to discuss nanometer-scale waves.
The screened Coulomb potential given by E2}2) is added
to the constant potentials. The present model is valid only
when the depth of the impurity is larger than the screening
length.

We simulate the STM image of the subsurface impurities
in the GaA$110 surface where the Friedel oscillation is
observed. The Fermi wave numbekg is determined as

r= \/rZH +d?. SinceH(x) is a monotonously deceasing func- 0.033 a.u., because the period of the oscillation observed in
tion with increasingx, STM images do not show the Friedel STM images is about 50 A, which corresponds to
oscillation in the case oft<<k. The corrugation at a large 2#/(2kg). The work functionW (=—Eg) is chosen as

distance is given as

0.15 a.u., which corresponds to about 4 eV. Therefdres
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determined as-0.150 5445 a.u.

We assume that the screened Coulomb potential is attrac-
tive with a +1 ionic charge. This is the potential for elec- L @ |
trons with an effective mas®*. To obtain the same wave
functions, the potential strength for electrons with a mass
m must be multiplied bym*/m. Therefore f, is determined
as —m*/m= —0.066 for the GaAs case. Sin¢g,/kg|=2
this is a rather strong scattering. When the range of the po-
tential is extended, the screening effect by the medium is
important. This effect is taken into account by dividing the
scattering potential by the dielectric constantn this case,
fo is calculated as—0.005, sincee of GaAs is 13.13.

We perform calculations for both the strong-scattering case
with f,=-—0.066 and the weak-scattering case with
fo=—0.005.

For the screening length 4/ we choose three values of
30, 10, and 5 A. The first value is the screening length cal-
culated for InP(Ref. 7) using the scattering theory of bulk
impurities?’ It is reasonable to use the values for InP, be-
cause the electronic properties of InP such as the band gap,
effective mass, and dielectric constant are similar to those of
GaAs. The second value is the surface screening length de-
termined from the interaction between vacancies on the
INP(110) surface’ The third one is the value of the example
shown in the scattering theory of bulk impuriti€sThe first
one and the latter two values correspond to the cases of
n<kpg and u>kg, respectively. Therefore, it is expected
from the discussion in Sec. Il that the Friedel oscillation
appears in the latter cases.

Wave functions are solved by the recursion-transfer-
matrix (RTM) method"® In this method, wave functions are
expanded in terms of two-dimensional reciprocal lattice vec-
tors parallel to the surface and are solved by discretizing the
one-dimensional differential equation alomgaxis perpen-
dicular to the surface. Therefore, wave functions of the
single-impurity system are obtained by this method using a
supercell with a triangular lattice. The lattice constant of the
supercell is chosen as 600 a.u., which is 20 times as large as
1/ke . The cutoff energy of the reciprocal vectors is 0.005
a.u., which is about 10 times as largek&#2. The interval of
meshes discretizing the differential equation alongzlaeis
is 1.25 a.u. which is about 1/24 ofkld. The differential
equation is solved in a region between a plane by 100 a.u.
behind the center of the scattering potential and a plane by
20 a.u. above the surface-vacuum interface. The LDOS for
obtaining STM images is calculated at a plane by 10 a.u.
above the surface-vacuum interface. The results obtained in — _ .
this section do not change by varying the tip-sample dis- F'CG- 2. p @s a function offj=ker /. The screening length
tance, because corrugations of nanoscale lateral waves do ¢t is (@ 5, (b) 10, and(c) 30 A. The scattering strengtf, is

generally depend on the tip-sample dlsta?'ﬂ:es mentioned —0.066 a.u. Solid lines are exact curves calculated by the RTM
method. Dotted lines are perturbative ones calculated using Eq.

el o

in Sec. Il.
STM images are expressed by a dimensionless funct|0§’12 .16. In each figure, three curves are shown for representing the
defined as cases that the depm( ked) of the impurity is 1, 2, and 3.
(T d)
,d) Az=——. (3.2
(7). d)=In p((oﬂ T (3.1) 2\2W

Figure 2 showsp as a function 0F|| The scattering
wherer”_kFrH/w andd= ked, because the corrugation can strengthf, is —0.066, and the screening lengthilis (a)
be obtained as 5, (b) 10, and(c) 30 A. In each figure, three solid curves are
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shown for representing the casesdsf 1, 2, and 3. Curves

calculated by the perturbation using E(.16) are also

shown by dotted lines. (a)
As discussed in the previous section, the Friedel oscilla-

tion is seen only whep > kg as in Figs. 2a) and 2b). When

n<kg as in Fig. Zc), the curves decrease almost monoto-

nously. The dotted lines obtained perturbatively are qualita-

tively similar to the solid lines calculated exactly, but they

differ quantitatively. Especially in the case of Fighp, the

exact curves show the Friedel oscillation, but the perturba-

tive ones do not. This reflects that the present case is a strong

scattering, sincéfy/ke|=2. It has been verified that when

the scattering strength is as weakfgs —0.005, the pertur- (b)

bative curves coincide with the exact ones.
The curves also oscillate as a function of the depth of

impurities. As the solid curvel=3 of Fig. 2a), there are
cases showing negative corrugations at the center of the im-
purity, in spite of the attractive scattering potential. This
means that we cannot determine the sign of the impurity
charge simply from the sign of the corrugation.
Typical STM images calculated by the RTM method are
shown in Fig. 3. The parameter set of.1andd is chosen as
(@ 5Aand 2,(b)5 A and 3, andc) 30 A and 2. The scan
width in each figure is X 2 in the unit of/ke . The shapes (c)
of the images deviate slightly from spherically symmetric,
reflecting that the present supercell is not large enough. But,
since the deviations are negligible, the present calculations
are sufficient. Figure @ shows the Friedel oscillation, but
Fig. 3(c) does not, reflecting the difference of the potential
ranges. The ring structure shown in FigbBis similar to
those observed in STM of semiconducting transition-metal-
dichalcogenide surfacé®-?* They have been interpreted as
images of ring-shaped materials buried in the subsut_lﬁace. FIG. 3. STM images of the subsurface impurity calculated by
In this paper, we interpret t_hem as the Friedel OSC|II<'_;1t|on P¥he RTM method. The dept of the impurity is(a),(c) 2 and(b)
subsurface impurities, as discussed in the next section. 3 The screening length &/is (a),(b) 5 and(c) 30 A. The scatter-
Figure 4 show$ atT =0 as a function of the depithof  ing strengthf, is —0.066 a.u. The scan width in each figure is
the impurity. The scattering strengfly is —0.066 and the 2x2 in the unit of 7/kg .
screening length 1/ is (a) 5 A and(b) 30 A. In each figure,
closed circles and solid lines show exact values calculated bjon of the depthd. The oscillating behavior seen slightly in
the RTM method and perturbative ones obtained using Ecdhe figure is due to the fact that is not much smaller than
(2.16), respectively. The analytical curves expressed by Edgkg . In this case also, the perturbative curves deviate consid-
(2.27 are shown in Fig. @) by the dotted lines. erably from the exact ones owing to the strong scattering.
In the cases oft >k as in Fig. 4a), the curves show the So far we have presented calculated results for the attrac-
Friedel oscillation. As expected, the exact and perturbativdive scattering potential. Figure 5 shows curves for repulsive
curves differ, because of the strong scattering. It has beetases calculated exactly by the RTM methof}, is
verified that they coincide in the weak-scattering case of+0.066. 1/ is (a) 5 A and(b) 30 A. For comparison, the
fo=—0.005. Though they differ quantitatively in the strong- curves calculated for the attractive potential with
scattering case, qualitative behavior of the corrugation amfy,= —0.066 are shown by dotted lines. Values displayed for
plitude may generally be summarized as follows. When theahe attractive cases are multiplied byl. The repulsive
depth is smaller than k£, the corrugation amplitude in- curves deviate from the attractive ones because the present
creases with the increase of the depth, and reaches the magase with|f,| =0.066 is the strong scattering. When the scat-
mum value at the depth dfrd~1. At larger depths, the tering strength is as weak &f|=0.005, we found that the
corrugation decreases asdf/with the oscillation of X . attractive and repulsive curves coincide with a reverse sign.
The analytical curves deviate quantitatively from the pertur-Though profiles of the attractive and repulsive curves are
bative ones at small depths, because the integral part efuantitatively different in the strong-scattering cases, it may
g>kg is neglected in deriving Eq(2.27). But, since the be concluded generally that the corrugation of a charged im-
oscillating behavior of the exact curves is well reproducedpurity is qualitatively reverse to that of an impurity with the
they are useful for qualitative discussions. opposite sign of charge.
In the case ofu<kg as in Fig. 4b), the curves do not In the case ofu<kg as shown in Fig. &), the attractive
show the Friedel oscillation, but decrease roughly as a funcand repulsive scattering potentials produce the positive and
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FIG. 5. as a function of | =kgr| /= for the repulsive scatter-
FIG. 4. 7 at rj=0 as a function ofd= ked. The scattering ing potential. Solid curves are calculated by the RTM method with
strengthf, is —0.066, and the screening lengthulis (a) 5 and(b)  the scattering strength ¢ = +0.066. The screening length/Lfis
30 A. Closed circles show exact values calculated by the RTM@ 5 and(b) 30 A. The depttd of the impurity is 1, 2, and 3. For
method. Solid lines are perturbative curves calculated using Ecgomparison, the curves calculated for the attractive cases with
(2.16). Dotted lines are approximate ones calculated using the ando=—0.066 are shown by dotted lines. Values displayed for the
lytical expression shown in E@2.27). attractive curves are multiplied by 1.

negative corrugations, respectively. This by chance agreggn amplitude at the peak calculated using E8.2) is
with the intuitive picture that we observe positive and nega g3 A, which agrees well with the experimental one of
tive corrugations in STM images of donor and acceptor im-gpoyt 1 A. This good agreement between the experimental
purities, respectively, because electrons accumulate arounghq calculated values suggests that the screening length and
the attractive potential and are pushed out by the repulsivg,o depth of the observed impurity are about 10 and 16 A,
potential. The same conclusion holds in the casg bfkg, respectively.
when the deptiul is smaller than 1K . The estimated screening length is consistent with the
value of 10.5-1.5 A determined experimentally for the va-
IV. DISCUSSIONS AND CONCLUSIONS cancies on the InP surfa&Since the screeni'ng length is not
_ _ ~very large, the screening effect by the medium would not be

First, we compare the calculated results with the Friedeimportant. This is consistent with the fact that the experi-
oscillations observed experimentally in the STM images ofmental corrugation amplitude agrees well with the theoretical
the Si donor in the GaA&10 surface’ We have studied one calculated for the strong-scattering case with
behaviors of electrons scattered by subsurface impurities us;=—0.066 where the dielectric constant is not taken into
ing the screened Coulomb potential. The Friedel oscillatioraccount.
is obtained only when the range of the scattering potential is At the depth of 16 A, the corrugation amplitude is at the
shorter than the Fermi wavelength. Therefore, the screeninghaximum as shown in Fig.(8). Since we expect that sub-
length of the Si donor in the Ga#kl0 surface should be surface impurities are most clearly observed around this
smaller than 1H-=16 A . . ~_ depth, it is probable that the impurities observed in the ex-

The profile of the experimental corrugation seen in Fig.periment are buried at this depth. The speculation that the
2(b) of Ref. 9 is similar to that of the curve calculated for subsurface impurity showing the largest corrugation is buried
d=1 shown in Fig. 2b), where 1/ is 10 A. The corruga- at the depth of about 16 A is consistent with the experimental
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fact that five kinds of corrugations are obserVdmcause the The ring structure shown in Fig(l3 is obtained when the
spacing between layers of the GaAs0) surface is 2.0 A, impurity is buried at the depth df-d=2, whered is about
and therefore we expect to observe eight kinds of corrugal2 A in the case of the second van der Waals gap of the
tions at best. transition-metal dichalcogenides. Since the peak of the ring

It should be noted that it is possible to observe subsurfacétructure is seen &gr /7~0.8 in the figure, the radius is
impurities at depths greater than 16 A. They can be distincalculated as about 15 A, which agrees well with the ob-
guished from impurities buried at depths smaller than theserved value. Similarly, the hillocks observed on modified
depth showing the maximum corrugation by measuring thVSe, surface8’~**are interpreted as images of subsurface
bias dependence of the corrugation amplitude. By increasintinpurities buried in the first van der Waals gap at the depth
the bias voltage, the Fermi wave number increases, and tHf ked=1. Furthermore, the nanometer-scale dark spots ob-
effective depthd=ked also increases. Therefore, if the cor- S€rved on |on—bombaré:led MQ$surface§5 and alkali-
rugation amplitude decreases with the increase of the big&dsorbed Mog su_rface%_ may be interpreted as images of
voltage, the depth of impurities would be larger thakgL/ subsurface |mp_ur|t|e§ _Wlth the negative corrugatlons_.

We can estimate the depth of the subsurface impurity also Subsurface impurities are well observed on semiconduc-
from the bias dependence of the period of the Friedel oscillor Surfaces but are not observed on metal surfaces. The rea-
lation. STM images of subsurface impurities show the Frie-SOn for this fact is that in semiconductors, the Fermi wave
del oscillation of Xgr, wherer is a function of both the number is small and the screening length is not too small.
lateral distance; and the deptld asr = \ﬂ2+_d2 By chang- Sin_ce the ef_fective deptti is dete_rmine_d b)qu, the corru-
ing the bias voltagev, the period of the oscillation also 9ation amplitude decreases rapidly with the increase of
changes, because the Fermi wavelergtlis proportional to  the case_of metals Wlth large: . In addition, the scattering
JIV]. Here,V is measured from the top of the valence bandgStrength itself is weak in the metal case, because of the short
or the bottom of the conduction band, which may be deterSCreening length. _ _ _
mined by STS. Therefore, we estimate the depth by tracin%n The oscillation of the corrugation amplitude depending on

the pointr; with the change of the bias voltage where "€ depth of the impurities is due to the standing waves
2ker is constant. The depth of impurities is given by formed near the surface, which is essentially the same as the

energy dependence of the images of subsurface Ar bubbles
\/m ob_s_erved in STM_ of _the a_Iuminum sgrfa@ésHowe_ver, the_
d=\/—————, 4.1 origin of the oscillations in the profile of STM images is
Vo= Vi slightly different. In the case of the subsurface single impu-

to two different bias voltage¥; and V.. the incident wave and the waves scattered spherically. On the

In the case of the Friedel oscillation observed in Fig. 3 ofother hand, it would be better to interpret the oscillation ob-
Ref. 9, we plotted 12 versus bias voltages, where is served in the subsurface bubbles as the diffraction of waves

defined as half the dystance between the two minima. angY structures with finite lateral sizes, though it may be also a

found an almost linear dependence of the plotted valueind of the Friedel oscillation in a wide sense. _
This means that the depth of the impurity is much smaller " conclusion, we have studied theoretically STM images
thanr;~20 A. Therefore, the depth of the impurity may be of subsurface impurities using the screened Coulomb poten-

smaller than the value of 16 A estimated above, but it idi@l- When the screening length is shorter than the Fermi
wavelength, we obtained the Friedel oscillation observed in

beyond the ability of the present simple model for the impu- S ) =
fity potential to determine more precisely the depth of theS M, Which is produced by the interference of the incident
impurity. First-principles calculations are necessary. waves and the waves scattered spherically. STM images also

The calculated STM image shown in FighB resembles oscillate as a function of the depth of the subsurface impuri-

the ring structures observed in STM of semiconductingties’ because standing waves are formed near the surface. We

transition-metal-dichalcogenides surfaces. The ring struc2Ptaineéd various kinds of images of the subsurface impuri-

tures are observed on natural MoSurface&’ and on ion- ties such as the ring structures and the images with negative
bombarded WSe surface€® but not observed on synthe- corrugations which are observed in STM of semiconducting
sized MoS, surfaces?® Sim,ilar structures are observed on transition-metal-dichalcogenide surfaces. When the depth is

o Al - I, the corrugation amplitude increases with the increase
WSe, surfaces modified by mechanical indentations or by>ma .
applying pulse voltages with STM tig$:?2 The radii of these of the depth and reaches the maximumdat1/kg. We
fing structures are about 15 speculate that the impurities observed most clearly in STM

: : : buried at this depth.
The ring structures have been interpreted as images e hauli : . s
ring-shaped molecules buried in the subsurfce as topo- The oscillating behavior of STM images presented in this

graphical protrusions modified by STM tip3In this paper, paper 1S due to the fact_that waves with nanoscale lateral
however, we interpret them as the Friedel oscillation by imensions are propagating. Atomic-scale lateral waves de-

d

single subsurface impurities, because the ring structures aF?y on the atomic scalé By use of the oscﬂlapng behawprs
not observed in atomic force microscofyThis fact ex- of the nanoscale lateral waves, we can obtain information of
cludes the possibility of the topographical protrusions. More—SUbsurf‘F"Ce structures by STM.

over, the radii of the ring structures can be explained as
follows, if we assume that the impurity is buried in the sec-
ond van der Waals gap between the chalcogen-metal- This work is partially supported by a Grant-in-Aid from
chalcogen sandwiches. the Ministry of Education, Science and Culture, Japan.
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