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Low-temperature ballistic-electron-emission spectroscopy measurements are presented for Au/Si~100!,
Au/Si~111!, and Au/GaAs~100! interfaces. Spectra were acquired at 77 K for the Au/Si systems and at 7 K for
Au/GaAs~100!. The results show that in the near-threshold region, the experimental spectra cannot be ad-
equately described by ballistic models based only on kinematical constraints. In this work, a dynamical
ballistic model is formulated incorporating the quantum transmittance and elastic scattering. The model in-
cludes all kinematically allowed semiconductor states, i.e., both zone-centered energy-band minima and non-
zone-centered minima. Appropriate expressions for the quantum transmittance and reflectance functions are
derived for non-zone-centered minima within a semiclassical model. Additionally, the effect of nonparabolic
bands on the model is analyzed. For Au/Si~111!, fits to experimental spectra show that substantial scattering
must occur to account for both the observed magnitude and shape of the spectrum. For all interfaces, excellent
agreement between model and experiment was obtained over a range from well below threshold up to 0.25 V
above threshold, depending on the interface. The addition of an energy-dependent effective mass did not
change these results. Model fits also were consistently better than previously used power-law approximations.
@S0163-1829~96!03648-X#

I. INTRODUCTION AND MOTIVATION

The need for decreasing device dimensions, increasing
speeds, and increasing levels of integration has focused at-
tention on ‘‘quantum’’ devices as a new paradigm for the
electronics industry. These devices can no longer be de-
scribed by drift and diffusion equations, but rather rely upon
electron-wave interference effects or quantum confinement
for their functionality. Understanding ballistic transport of
electrons and holes through these devices, determining the
electronic structure near the defining interfaces, and quanti-
fying the role of scattering, are all essential steps toward
more effective device designs. Some of these issues can be
addressed successfully throughab initio calculation, but
there remains a need for semiclassical models that mesh
strongly with intuition, and an even greater need for tech-

niques that can measure the relevant properties of interfaces.
The purpose of this paper is to examine the successes and
limitations of a semiclassical model for one of the most
promising recent characterization techniques, ballistic-
electron-emission spectroscopy~BEES!. A report has been
given previously for the case of Au/Si~100! Schottky
interfaces.1 Here that model is expanded and compared to
low-temperature measurements for Au/Si~111!, Au/
GaAs~100!, and Au/Si~100!.

BEES is a technique that uses a scanning tunneling mi-
croscope~STM! to inject hot electrons through a thin metal-
lic base layer, and subsequently into a semiconductor collec-
tor. It has been recognized as a promising tool for
characterizing quantum devices,2–4 allowing detailed analy-
sis of subsurface electronic properties in metal-semicon-
ductor1,5–12 and semiconductor-semiconductor2–4,13 hetero-
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structures via measurements of electron or hole transmission
through the device. BEES provides nanometer-scale spatial
resolution and has an energy resolution of approximately
3.5kBT, wherekB is Boltzmann’s constant andT is the ab-
solute temperature. The energy resolution is determined by
thermal broadening of the Fermi-Dirac distribution. Current
models provide good general agreement with existing experi-
mental data,14–22but the limits of BEES as an analytical tool
cannot be reached without a thorough understanding of the
range of applicability of various models, and the relative
magnitudes of elastic and inelastic processes. These issues
have been addressed by others,16,19 and BEES models exist
that parametrize the effects of inelastic scattering in the base
layer19 and impact ionization in the semiconductor at higher
energies.20,22 However, for the purpose of characterizing
quantum devices, it is the low-energy regime~generally
much less than 0.5 eV above threshold! that is of primary
interest. At the BEES threshold, where the kinetic energy of
the transmitted carrier approaches zero, the ballistic compo-
nent must dominate the transmitted current since carriers that
have undergone inelastic collisions will fall below the
threshold energy and will not be transmitted. Therefore, the
approach taken in the present work is to implement first a
ballistic model, and then to determine the energy range over
which the model accurately describes the experimental spec-
tra. The energy at which the model fails provides the upper
bound for the validity of the underlying assumptions.

To implement this model, wave transmission across a
boundary must be understood. The ideal process is often
separated into two parts, although both are necessary for a
consistent description of the transmission/reflection process.
Phaseeffects determine the allowed trajectories of the inci-
dent and reflected waves, whileamplitudeeffects determine
the probability of each trajectory. In electromagnetic optics,
for example, phase matching gives rise to Snell’s laws of
reflection and refraction, whereas amplitude matching deter-
mines the Fresnel coefficients for the reflected and transmit-
ted amplitudes. These concepts can be generalized askine-
matical and dynamicaleffects, respectively, thus retaining
their utility even for boundaries that are not ideal planar in-
terfaces. For the present case of electron transmission across
a metal/semiconductor interface, the ‘‘quantum transmit-
tance’’ is analogous to that in electromagnetic optics~trans-
mitted flux/incident flux!, and arises from wave-function am-
plitude matching. Quantitative analogies have been
previously derived between electromagnetic-wave propaga-
tion in general dielectrics and electron-wave propagation in
semiconductors,23 where the effective mass approximation is
known to be reliable. These analogies show that the electron-
wave ‘‘indices of refraction’’~and consequently the quantum
transmittance! are functions of both the electron kinetic en-
ergy and its effective mass. At issue is whether BEES mea-
surements are sufficiently sensitive to detect the energy-
dependent quantum transmittance, and whether a
semiclassical ballistic model can provide an accurate de-
scription of the quantum transmittance for a metal/
semiconductor interface.

In practice, the effect of the quantum transmittance might
be rendered unobservable for several reasons:~1! The BEES
current resulting from electron transmission is summed over
all incident angles and all injected energies. Thus phase

space restrictions on these sums largely determine the spec-
tral shape, which can mask the less obvious influence of the
quantum transmittance.~2! The transmittance function may
approach unity within an energy range smaller than the ex-
perimental resolution, or conversely its intrinsic energy de-
pendence may be too weak to be observable.~3! Scattering
events may redistribute the incident electron flux into differ-
ent angles~elastic or inelastic scattering! or into different
energies~inelastic scattering!. Either could impart a substan-
tial energy dependence to the spectrum that might over-
whelm the effect of the quantum transmittance. For instance,
Monte Carlo calculations by Lee and Schowalter17 suggest
that energy variation in the quantum transmittance is quickly
canceled by the energy-dependent cross section for optical-
phonon scattering in the semiconductor. Accurate, high-
resolution spectra are required to overcome the first two is-
sues. The third is difficult to address directly, but a
comparison of experimental spectra to a ballistic model will
determine the energy above which inelastic events affect the
spectral shape.

Semiclassical models that rely on the effective-mass ap-
proximation have proven to be so useful and intuitive in
semiconductor physics that they are often applied to cases
where the approximations of the model are not strictly
valid.24 Nonetheless, model predictions in these instances are
often quantitatively confirmed by experiment.25 For ballistic
transmission through a metal/semiconductor interface, some
of the assumptions are indeed violated, yet it is worthwhile
to examine a semiclassical model for the quantum transmit-
tance because~a! it is tractable and~b! it is easily integrated
into a calculation of the total transmittance through a collec-
tor composed of a semiconductor heterostructure device.
Previous studies have recognized the importance of ‘‘off-
axis’’ band minima,14–16but have not included the effects of
angle and the energy dependence of the transmittance into
these states. In this work we have implemented a semiclas-
sical model that includes the effects of quantum transmit-
tance into all kinematically allowed states of the semicon-
ductor.

The remainder of the paper is organized as follows: Sec-
tion II describes the ballistic model for the quantum trans-
mittance and the chosen form of the electron distribution
incident on the interface. In Sec. III, model results are inter-
preted and compared to experimental spectra. The effects of
elastic scattering, the quantum transmittance, and nonparabo-
licity are determined in this section. Finally, Sec. IV pro-
vides a summary and conclusions.

II. THEORY

A. Introduction

In this section we describe a model that incorporates the
amplitude effects in the near-threshold region, in addition to
phase constraints. The amplitude effects are embodied in the
quantum transmittance and in elastic-scattering events,
which change the incident electron trajectories. The phase
effects determine the electron states that are available for
transmission. We first discuss the limitations and utility of
the model, and then pursue the details.

The model presented below relies upon a single-band
effective-mass theory and the envelope wave-function
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approximation24 to calculate the quantum transmittance
through a metal/semiconductor interface. The interface is as-
sumed to be abrupt, and the metal is taken to be nearly free
electron, as has been the case for most other models of
BEES.6,14 The boundary conditions that rely on matching
envelope wave functions are valid only if the central cell
portions of the total wave functions are identical. This is not
the case for different materials. Furthermore, the interfaces
considered here are typically not as abrupt as epitaxial
semiconductor/semiconductor interfaces, where these ap-
proximations have been quite successful. Interdiffusion, pos-
sible passivation or contamination layers, and image charge
effects all affect the width of the transition region between
bulk metallic states and bulk semiconductor states. Finally,
although there are clear similarities above the Fermi level
EF , the band structure and wave functions of Au deviate
markedly from free-electron behavior. This is most apparent
near the^111& directions, where there are regions with no
propagating states.

Having listed the approximations, it is worthwhile to ex-
amine where the model is valid. First, within the single-band
approximation, the model employs the correct phase space
for the semiconductor, and nearly so for the metal. It is the
number of states available for transmission that plays the
primary role in determining the BEES spectral shape. Sec-
ond, and of most interest here, the calculated quantum trans-
mittance has the correct form in both the low-energy and
high-energy limits. Provided the energy of the incident elec-
tron is sufficiently far from a band extremum in the metal~so
that the incident electron flux density may be considered
constant over a small energy range!, the transmittance near
threshold will be proportional to the normal component of
the group velocity in the collector, which itself varies asE1/2

~i.e., [V2Vb]
1/2, whereV is the magnitude of the tunnel

voltage andVb is the Schottky barrier height! at a band ex-
tremum. At high energies the transmittance must saturate to
a constant value for a parabolic band. For real materials satu-
ration may not be reached before the bands become nonpa-
rabolic, but even so, the energy dependence of the transmit-
tance becomes substantially weaker at higher energies. These
conclusions will not be dramatically affected by details of
the metal/semiconductor transition region, such as image po-
tential lowering, so long as inelastic effects are negligible
and the relative change in kinetic energy is large. We expect,
therefore, that an effective mass model will produce an ac-
curate model for the transmittance through a simple metal/
semiconductor interface.

B. Quantum transmittance

The quantum transmittance can be calculated by assuming
that the Schottky barrier forms a step potential with differing
effective mass on either side. Under the single-band, time-
independent effective-mass approximation, the quantum
transmittance of an abrupt potential barrier can be deter-
mined in closed form. Many textbooks derive this result for
the zone-centered case,24 but omit non-zone-centered
minima. The quantum transmittance into non-zone-centered
band minima is needed to treat materials like silicon. In this
work, the quantum-mechanical transmittance and reflectance
for an interface between two arbitrary material systems is

developed. The resulting expression applies to both zone-
centered and non-zone-centered minima.

Consider an electron in the base material incident upon an
interface with the collector material. The incident electron
wave vector in the base can be expressed as the sum of a
‘‘local’’ wave vector, k i

l , and k B
0, the wave vector which

locates the appropriate band minimum. The wave vectors of
both the reflected and transmitted wave functions can be
written similarly, although the band offset in the collector,
k C
0 , will generally be different than that in the base. To sat-

isfy conservation of energy, only those wave vectors lying
on ellipsoidal constant energy surfaces,

E~kl !5E01
\2

2
~kl !M21~kl !T, ~1!

can be considered. HereM21 is the inverse effective-mass
tensor for the material, superscriptT denotes vector trans-
pose, andE0 is the energy of the relevant band minimum.

Conservation of momentum parallel to the interface plane
~‘‘phase matching’’! determines the set of wave vectors for
which the electron can possibly be transmitted. As shown in
Fig. 1, the projection of a constant energy surface~kx8, ky8,
kz8! onto the interface plane~kx , ky , 0! determines all of the
parallel wave vectors that are energetically allowed. The
overlap of projections from the base and collector constant
energy surfaces then gives the set of wave vectors that obey
both conservation of energy and conservation of parallel mo-
mentum. To find the required projections and overlap, we
evaluate Eq.~1! ~for both base and collector! in the ‘‘inter-
face coordinate system’’ defined by the interface normal,ẑ,
and a convenient choice of orthogonalx̂ and ŷ in the inter-

FIG. 1. An ellipsoidal constant-energy surface in momentum
space. The ellipsoid has been rotated from the principal coordinate
system~kx8, ky8, kz8! into an interface coordinate system~kx , ky ,
kz! and projected onto the interface plane. The projection represents
the allowable momentum states into which an electron can be trans-
mitted.
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face plane. The inverse effective-mass tensor in the interface
coordinate system is expressed in the principal axis system
via a unitary transformation as

M215QMD
21QT, ~2!

whereM D
21 is the principal axis~diagonal! representation of

the tensor, andQ is the rotation matrix that transforms from
principal axis coordinates to the interface coordinate system.
For the usual case, the set of projected wave vectors in the
base encompasses all of those in the collector, so that the
overlap is simply determined by the projections of the col-
lector constant energy surfaces.

Given the states for which electron transmission is al-
lowed, the quantum transmittance may be calculated by ap-
plying the appropriate boundary conditions. However, modi-
fications for the case of non-zone-centered band minima are
necessary. For nondegenerate conduction-band minima we
define the envelope wave functions on the base (B) and col-
lector (C) sides of the interface as26

cB5cB
l cB

05~eiki
l
•r1reikr

l
•r !~eikB

0
•r !, ~3!

cC5cC
l cC

05~ teikt
l
•r !~eikC

0
•r !. ~4!

The first boundary condition, continuity of the wave-function
amplitude at the interface, yields the phase matching condi-
tions already applied and the relationt511r . For a zone-
centered minimum, the second boundary condition com-
monly used is the continuity of (1/mz* ) ẑ–“c. For a non-
zone-centered minimum it can be shown fromk•p
perturbation theory that the second boundary condition must
be calculated using the wave vector relative to the band
minimum,kl , since the group velocity is determined byk l .27

The second boundary condition may then be written for an
arbitrary interface atz50 as

ẑ•~MB
21
“cB

l !uz505 ẑ•~MC
21
“cC

l !uz50 , ~5!

whereẑ represents the unit vector normal to the interface. It
is easily shown that this condition implies continuity of the
average current. Defining a5ẑ•~M B

21k i
l ! and g

5ẑ•~M C
21kt

l !, the complex reflection and transmission am-
plitude coefficientsr and t are given by

r5
a2g

a1g
, ~6!

t5
2a

a1g
. ~7!

The transmittance and reflectance are the fractions of trans-
mitted and reflected current,

T5
Jt
Ji

5
g

a
utu2, ~8!

R52
Jr
Ji

5ur u2. ~9!

We emphasize once more that the model is valid for the
case of a single band associated with each minimum. In a
multiple-band treatment the allowed phase space will include

states at the same parallel component of crystal momentum,
but corresponding to different Bloch states. The quantum
transmittance into these states will depend on the interband
coupling. For the case of Si, one might expect the interband
coupling to become quite large when the constant energy
surfaces approach the Brillouin-zone boundary at theX point
~V2Vb;0.1 V!. Fortunately, the structure factor of the Si
crystal potential is zero for the~200! Fourier component, so
that the ellipsoids are continuous across the zone boundary.

C. Electron distribution

Scattering in the base and at the interface may also affect
the shape of the spectrum. For the near-threshold region,
most inelastic-scattering events will reduce the electron en-
ergy to a value below the Schottky barrier. Consequently,
only the effect of elastic scattering on the distribution will be
included here. Elastic scattering may be modeled by consid-
ering a fractions of the incident electrons to be scattered
isotropically. The distribution incident on the interface is
then

DC~E,ki!5~12s!DT~E2eV,ki!1sDs~E,ki!, ~10!

wherek i
25k x

21k y
2 is the component of the incident wave

vector parallel to the interface plane,DT(E,ki) is the planar
tunneling distribution,V is the magnitude of the tip-base
potential difference,2e is the electron charge, andDs(E,ki)
is an isotropic distribution with an equal number of electrons
at all angles of incidenceu i , where tanu i5ki/kz . The iso-
tropic distributionDs(E,ki) is determined by the require-
ment that the number of electrons is conserved in the scat-
tering. Thus

FIG. 2. The electron distribution incident upon the base-
semiconductor interface corresponding to various values ofs. The
distribution was varied from a planar tunneling distribution~s50!
to an isotropic distribution~s51! to account for elastic scattering in
the base and at the interface.
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Ds~E,ki!5
1

uk i u2A12ki
2/uk i u2

S E
0

ukiu
kiDT~E2eV,ki!dki D ,

~11!

where k i is the incident wave vector. Figure 2 shows the
distribution for various values ofs ranging from planar tun-
neling ~s50! to isotropic~s51!. Note that the parallel com-

ponent of momentum is still conserved at the interface. In the
model, scattering occursbeforewave-function matching.

D. Model

A BEES model can now be formulated that includes elas-
tic scattering and the quantum transmittance for zone-
centered as well as non-zone-centered minima. For a single-
band minimum, the ratio of collector currentI C to tunnel
currentI T is given by

S I CI TD i5R
*Ef1eVb

` f ~E2eV!**DC~E,kx ,ky!T~E,kx ,ky!dkydkxdE

*eV
` @ f ~E2eV!2 f ~E!#**DT~E2eV,kx ,ky!dkydkxdE

, ~12!

whereE is measured from the bottom of the conduction band
in the base.DT is the planar tunneling distribution andDC
the electron distribution incident on the collector. The quan-
tum transmittance is denoted byT, f (E) is the Fermi func-
tion, Vb is the Schottky barrier height, andR is an energy-
independent scale factor accounting for attenuation in the
base. The subscripti labels the particular band minimum
under consideration. The limits of integration inkx , ky are
determined by the projections of the constant energy ellip-
soids onto the interface plane as shown in Fig. 1.

The model defined by Eqs.~6!–~12! will be referred to as
the T(E) model for brevity, even though thekx , ky depen-
dence of the quantum transmittance has been included in the
calculations. In Sec. III C theT(E) model will be compared
with a simplified model obtained by setting the transmittance
to unity in Eq.~12!, for all energies and angles. This will be
called theT51 model. TheT(E) model has been used for all
calculations, except those in Sec. III C that are labeled oth-
erwise.

III. RESULTS

A. Introduction

As discussed in Sec. I, the overall shape of the BEES
spectrum for a simple Schottky interface is largely deter-
mined by the number of states available for transmission into
the semiconductor. The additional influence of the quantum
transmittance is quite subtle, thus in order to resolve it, one
must acquire high-resolution spectra with very high signal-
to-noise ratio. To meet these requirements, a BEES appara-
tus was constructed for operation down to temperatures as
low as 6–7 K.28 The inherent BEES energy resolution is
expected to be 2.1 meV at 7 K and 23 meV at 77 K~the two
temperatures relevant to this work!, and the noise level in
some of the measurements presented here was as low as a
few fA. Also, because of the low drift rate inherent in the
STM, the tip remained at the same position to within a few Å
during acquisition of a spectrum. This is an important aspect
of the measurements, since small shifts in the threshold volt-
age from one spatial position to another would otherwise
degrade the resolution. Au/Si~100! and Au/Si~111! diodes
were phosphorous-doped 131015 cm23 and 131016 cm23,
respectively, and were prepared for evaporation by cleaning

in trichloroethylene, acetone, and dehydrated ethanol fol-
lowed by etching in a 10:1 ethanol:HF solution for 90 sec.
GaAs samples consisted of a 1-mm-thick layer ofn-type ~Si-
doped, 131015 cm23! grown by MBE on a degenerate
n-GaAs substrate. Wafers were capped with arsenic before
removal from the growth chamber. Before diode preparation,
the arsenic cap was removed by electron-beam heating to
400 °C in vacuum. The sample was cooled and removed
from the vacuum, then passivated in NH4~OH! for 30 sec.29

A 7-nm-thick gold base layer was deposited at room tem-
perature by electron-beam evaporation for the Si devices and
by thermal evaporation for the GaAs devices. For both cases,
the background pressure was'531027 torr. All Si experi-
mental data were taken atT577 K in order to avoid spectral
distortions caused by the large bulk resistivity at lower
temperatures.1 The 77 K spectra were smoothed using a ten-
point Gaussian with a FWHM of 7.5 meV to reduce digital
noise. All GaAs experimental data were taken at 7 K. In this
case the spectra were not smoothed, since the energy resolu-
tion at this temperature is smaller than the voltage step used
~2.5 mV! for data acquisition. Spectra were acquired at a
number of locations on each of several diodes for each inter-
face system.

B. Electron distribution

Without the inclusion of some form of scattering, ballistic
models cannot accurately predict the observed magnitude of
the Au/Si~111! BEES spectrum. In the present work, the ef-
fect of elastic scattering in the base and at the interface is
modeled by the distribution incident upon the base-
semiconductor interface, as given by Eq.~10! and shown in
Fig. 2. In what follows we first discuss the effect of elastic
scattering on the predicted spectra in light of the available
states in the semiconductor. Subsequently we compare
model to experiment.

1. Simulation

For a fixed energy near the transmission threshold, the
allowed set of interface wave vectors are drawn in Fig. 3.
Parts~a!–~c! of the figure show the interface Brillouin zone
and projected bulk states for Si~111!, Si~100!, and
GaAs~100!, respectively. The allowed states in Si~111! and
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GaAs~100! are seen to be completely different. For Si~111!,
there are no states available for transmission at the center of
the zone, while for GaAs~100! states exist only near the zone
center at this energy. Elastic scattering can be expected to
affect the transmitted current in opposite ways for these two
cases. Si~100! provides an intermediate case, with kinemati-
cally allowed states available both at the zone center and in
off-axis band minima.

Figure 4~a! shows the effect of elastic scattering on the
simulated Au/Si~111! BEES spectrum calculated using the
T(E) model. The amount of scattering increases as the pa-
rameters varies from 0 to 1@see Eq.~10!#, andR is the scale
factor applied to the spectrum. Notice that the simulated cur-
rent increases with increasing scattering. This is consistent
with the geometry of the allowed states in the semiconduc-
tor, as pictured in Fig. 3~a! and previously recognized by
others.15 Figure 4 compares the shapes of spectra simulated
with different levels of elastic scattering by adjusting the
scale factorR to obtain a best fit among them. The magni-
fied region shows that near the BEES threshold thes50

spectral shape is noticeably different from that for isotropic
scattering~s51!. However, even a small amount of scatter-
ing quickly drives the shape toward that of isotropic scatter-
ing.

Scattering-induced changes in the simulated spectra are
not as large for Au/Si~100! as those predicted for
Au/Si~111!. Significantly, Fig. 5~a! shows that elastic scat-
tering reduces the magnitude of the current. This seems to
contradict the observation that there are many more states in
the off-axis ellipsoids~reached by scattering! than in the
small zone-centered minima. Note that scattering spreads the
electrons over all angles, however. Therefore the fraction of
electrons incident at angles that can phase match into Si~100!
is reduced@cf. Fig. 3~b!# and the current decreases. Changes
of the spectral shape with increased elastic scattering are less
pronounced for Au/Si~100!, as seen in Fig. 5~b!.

FIG. 3. Projection of the constant energy surfaces onto the in-
terface plane.~a! For Si~111!, an electron must have a large trans-
verse momentum to phase match, implying a large angle of inci-
dence. ~b! For Si~100!, electrons with both large and small
transverse momenta are transmitted:~c! For GaAs, only electrons
near normal incidence can be transmitted.

FIG. 4. Simulation of BEES current for a Au/Si~111! diode for
various amounts of elastic scattering. The Schottky barrier height is
850 mV. ~a! As the scattering increases, more electrons can phase
match and the magnitude increases.~b! Only a small amount of
scattering is needed to account for the shape of the spectrum, but
considerably more is needed to account for the magnitude.
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For Au/GaAs~100!, Fig. 6~a! shows that changes in the
magnitude of the simulated BEES current are more dramatic
than either of the previous two cases. In this case the current
decreases with increasings because electrons are scattered
away from the zone center. This behavior is opposite that
observed for Au/Si~111! simulations, as anticipated from the
phase-space plots of Fig. 3. Essentially no change in the
shape of the simulated spectrum is observed for
Au/GaAs~100! at any level of scattering, as seen in Fig. 6~b!.
Since the region of allowed wave vectors is so small, the
distribution is always nearly uniform across it. Thus only the
magnitude of the current can change significantly.

2. Experiment

Experimentally, the effect of varying the incident distri-
bution can be seen in the quality of the model fits as deter-

mined by the mean-squared error,s 2, and to a lesser extent
the value of the scale factor,R. A value ofR.1 indicates
that the experimental spectrum has a greater magnitude than
the simulation. Table I summarizes the results of fitting the
experimental spectra to simulations employing various val-
ues ofs.

For Au/Si~111!, Table I shows that as more elastic scat-
tering is introduced, the goodness of the fits to the simula-
tions improves~s 2 decreases!. This indicates that a substan-
tial amount of scattering is required to obtain the correct
spectral shape. From the behavior ofs 2 it appears that
s>0.5. Note that the value ofR remains greater than 1 for
all s. This would seem to be unphysical since inelastic scat-
tering should always reduce the current. Recent measure-
ments of a 100-nm inelastic mean free path in Au~Ref. 30!
may provide an explanation, however. For the 7-nm-thick
films employed in this work, one would expect to get mul-
tiple reflections from the metal/vacuum interface, thus each

FIG. 5. Simulation of BEES current for a Au/Si~100! diode for
various amounts of elastic scattering. The Schottky barrier height is
800 mV.~a! As s increases, electrons are shifted from directly over
the zone-centered band minima to larger values ofki where the ratio
of transmitting states to nontransmitting states is smaller. Conse-
quently the magnitude decreases and the shape~b! changes slightly.

FIG. 6. Simulation of BEES current for a Au/GaAs~100! diode
for various amounts of elastic scattering. The Schottky barrier
height is 1000 mV.~a! As scattering increases, the magnitude de-
creases, but~b! the shape of the spectrum is completely independent
of the scattering~all curves lie on top of each other!.
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electron may have several opportunities to be transmitted.
Another possible explanation is related to the assumption
that the Au base is free-electron-like. The band structure of
Au has ‘‘necks’’ of nonpropagating states in the^111& direc-
tions, which are also the preferred growth directions in the
absence of any epitaxial relationship~due to close packing!.
This would imply that the initial distribution is not forward
peaked as assumed for the ordinary planar tunneling case.
Instead, the incident distribution may have no electrons at
normal incidence~in the ^111& direction!, thus more of the
weight of the distribution would be at large angles, where
Si~111! has allowed wave-vector states.31 As a result, the
collector current would be somewhat higher than for tunnel-
ing into a free-electron metal. This scenario seems unlikely
to account for the full discrepancy inR however. Multiple

reflections appear to be the most likely explanation, although
interband coupling would also contribute to largerR values.

For Au/Si~100!, Table I shows that a nearly isotropic dis-
tribution minimizes the error and provides the correct shape.
For this case as for Au/Si~111!, the values ofs 2 appear to
stabilize fors>0.5. The magnitude ofR is again quite large
for larges ~where the spectral shape is best reproduced! and
we once more speculate that multiple reflections from the
metal/vacuum interface may be the reason.

For Au/GaAs~100!,R becomes extremely small for simu-
lations with a planar tunneling distribution, and begins to
obtain more realistic values fors.0.8. The error in the fit
remains constant ass is increased, indicating again that the
Au/GaAs~100! simulation shape is unaffected by the amount
of scattering. Because the shape does not change withs, it is

FIG. 7. T(E) andT51 models fit to an experimental Au/Si~111!
spectrum~2-nA tunnel current, temperature 77 K!. Vb labels the
Schottky barrier height andVtu is the upper voltage of the fitting
range. The inset shows the threshold region, where ballistic models
are valid. In this region theT(E) model fits the data better than the
T51 model.

FIG. 8. T(E) andT51 models fit to an experimental Au/Si~100!
spectrum~2-nA tunnel current, temperature 77 K!. Vb labels the
Schottky barrier height andVtu is the upper voltage of the fitting
range. The inset shows the threshold region, where ballistic models
are valid. TheT(E) model produces the correct spectral shape near
threshold.

TABLE I. Results of fitting simulatioins with various values ofs to Au/Si~111!, Au/Si~100!, and Au/GaAs~100! spectra. The mean-
squared error,s 2 ~1025 pA2!, indicates the goodness of the fit with respect to the shape, andR an energy-independent scale factor, indicates
the magnitude of the simulation with respect to the experimental spectra. The upper fit voltages used to fit the data were 949 mV, 986 mV,
and 1262 mV for Si~111!, Si~100!, and GaAs~100!, respectively. The lower fit voltages were fixed 100 mV below threshold.

Fraction of electrons scattered,s

0.0 0.2 0.4 0.6 0.8 1.0

Si~111!
R 7.871 4.836 3.481 2.717 2.227 1.887
s 2 3.723 1.927 1.521 1.383 1.327 1.302

Si~100!
R 0.533 0.586 0.651 0.733 0.835 0.972
s 2 8.776 7.170 5.855 4.203 3.479 3.518

GaAs~100!
R
s 2

0.028
0.659

0.036
0.659

0.047
0.658

0.070
0.659

0.135
0.658

1.806
0.652
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difficult to determine much about the level of elastic scatter-
ing for this system. In this case it should also be pointed out
that the passivation layer may reduce the value ofR.

C. Quantum transmittance

In order to reveal the effect of an energy-dependent quan-
tum transmittance, two models@T51 and T(E); see Sec.
II D # were fit to the experimental data. Previously, a model
including quantum transmittance and a planar tunneling dis-
tribution for the zone-centered band minima of Si~100! was
shown to provide a better description of measured spectra
than the original BEES model,1 which also assumed unity
transmittance. The following analysis uses simulations cal-
culated with all relevant band minima and anisotropic
~s51.0! distribution for bothT51 and T(E) models. An
isotropic distribution produces the correct shape as shown in
Table I. The nonlinear-least-square fits require two free pa-
rameters, the barrier heightVb and the scale factorR. Fig-
ures 7–12 show the results of fitting the models to the ex-
perimental data for each interface system.

Shown in Figs. 7–9 are typical experimental spectra for
Au/Si~111!, Au/Si~100!, and Au/GaAs~100!, respectively.
For each interface, the data have been fit to both theT(E)
and theT51 model up to an upper fit voltageVtu . These
plots show that for large voltage ranges, both models appear
to provide a good description of the data. However, these
models behave differently in the threshold region where a
ballistic model is most valid. Shown in the insets of Figs.
7–9 are 50-mV regions just above threshold. For all three
interface systems theT(E) model provides a noticeably bet-
ter fit than theT51 model in the near threshold region.

To illustrate that theT(E) model provides a correct de-
scription of the spectral shape and to evaluate its range of
validity, a plot of the error of the fit versus fit range was
calculated. This is determined by evaluating the mean-
squared error between the data and the simulation for many
different fitting ranges. The lower voltage is fixed well below
the threshold, and the upper fit voltageVtu is varied. The
error vs fit range and barrier height vs. fit range plots for
Au/Si~111!, Au/Si~100!, and Au/GaAs~100! are shown in
Figs. 10–12. These plots show that, over the threshold re-
gion, the T(E) model accurately describes the data in a
stable fashion. The plots also show that theT51 model,
which neglects the energy dependence of the transmittance,
does not accurately describe the data, and fits more poorly as
the fit range is increased. The range of validity for each
interface system can be determined from these plots. For the
best case of Au/GaAs~100! @Fig. 12~a!# the T(E) model is
accurate up to approximately 250 mV above threshold. This
covers almost the entire energy range up to the next band
minima at theL points. The worst case occurs for Au/Si~111!
@Fig. 10~a!# where the range of validity still extends 100 mV
above threshold.

FIG. 9. T(E) and T51 models fit to an experimental Au/
GaAs~100! spectrum~5-nA tunnel current, temperature 7 K!. Vb

labels the Schottky barrier height andVtu is the upper voltage of the
fitting range. The inset shows the threshold region, where ballistic
models are valid. For this case theT(E) model again gives the
correct threshold shape.

FIG. 10. ~a! The mean-squared error between the experimental
spectrum and the simulations plotted as a function of the upper fit
voltage,Vtu . TheT(E) model provides an accurate description of
the data over a range of'100 mV above threshold, whereas the
T51 model becomes inaccurate'30 mV above threshold. Shown
for comparison are theP52 andP55/2 thermally broadened power
laws.P55/2 models the data better thanP52, indicating the pres-
ence of aAE energy-dependent transmission. The superior fit of the
T(E) model shows that the simpleAE model for the transmission is
not sufficient.~b! The barrier height as a function of upper fit volt-
age. The barrier height for theT(E) model varies by less than 4 mV
and theT51 model varies by more than 12 mV over the threshold
region.
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Figures 10–12 also show the error vs fit range for ther-
mally broadenedP52 square law andP55/2 power law.
Both power laws accurately describe the data just above
threshold, but the 5/2 power law fits better over a larger
range than the square law. This indicates aAE dependence in
the transmission function for smallE as predicted by the
model. Still, the more complete theT(E) model—which
goes beyond the simpleAE approximation to the transmis-
sion function—always produces the best fit. The stability of
theT(E) model fits clearly demonstrates that the energy de-
pendence of the electron transmission is well described by
this semiclassical model over a substantial range of energy.

Finally, the effect of an energy-dependent mass was in-
corporated into the model. The energy-dependent mass was
assumed to follow the relationm* (E)5m0* (11aE), where
m0* is the value of the effective mass at the conduction-band
minimum anda is the mass nonparabolicity factor.32 For Si,
the valuea50.5 eV21 typically used is an average density of
states value and does not directly describe the energy depen-
dence for ballistic carriers. To account for this and to provide
a bound on the magnitude of the effect on the simulation, all
permutations of the longitudinal and transverse nonparabo-
licity factors,al andat , with values 0 and 0.5 were inves-
tigated. The results are presented in Fig. 13 where the error
vs fit range for each combination of parameters is plotted.
All of the simulations were calculated using theT(E) model,
an isotropic electron distribution~s51.0!, and were fit to the

BEES spectra taken on Au/Si~100! at 77 K. It is clear from
Fig. 13 that the effect of an energy-dependent mass within
the threshold region is very small. All of the simulations
provide a good description of the data over approximately
the same range. From this we conclude that the eventual

FIG. 13. The effect of an energy-dependent effective mass was
investigated by fitting the data with simulations@T(E) model# cal-
culated using different combinations of longitudinal and transverse
nonparabolicity factors,al andat . All of the simulations provide a
similar description of the data over approximately the same range,
indicating that the effect of an energy-dependent mass within the
threshold region is very small.

FIG. 11. ~a! The mean-squared error between the experimental
spectrum and the simulations is plotted as a function of the upper fit
voltage,Vtu . TheT(E) model provides an accurate description of
the data over a range of'170 mV above threshold whereas the
T51 model becomes inaccurate'60 mV above threshold. Shown
for comparison are theP52 andP55/2 thermally broadened power
laws. ~b! The barrier height as a function of upper fit voltage. The
barrier height for theT(E) model varies by less than 7 mV and the
T51 model varies by more than 17 mV over the threshold region.

FIG. 12. ~a! The mean-squared error between the experimental
spectrum and the simulations is plotted as a function of the upper fit
voltage,Vtu . TheT(E) model provides an accurate description of
the data over a range of'250 mV above threshold, whereas the
T51 model becomes inaccurate'100 mV above threshold. Shown
for comparison are theP52 andP55/2 thermally broadened power
laws. ~b! The barrier height as a function of upper fit voltage. The
barrier height for theT(E) model varies by less than 2 mV and the
T51 model varies by more than 10 mV over the threshold region.
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failure of the model at higher energies is not due exclusively
to the nonparabolicity of the conduction band.

IV. CONCLUSION

From low-temperature BEES measurements on three dif-
ferent material systems, it was determined that a ballistic
model which includes only the kinematical constraints of
energy and momentum conservation does not adequately de-
scribe the experimental spectra. We have presented a semi-
classical ballistic model that incorporates two of the most
important dynamical effects in the transmission process.
These are elastic scattering in the base or at the interface, and
the quantum transmittance arising from the impedance mis-
match for electron waves crossing the interface. The required
form of the quantum transmittance was determined for elec-
tron transmission through nondegenerate conduction-band
states between arbitrary materials. Model fits to the experi-
mental spectra show that the inclusion of elastic scattering
alone is also not sufficient to model accurately the BEES
current in the near-threshold region~seeT51 model fits in
Figs. 7–12!. In contrast to this, the fullT(E) ballistic

model—which includes the quantum transmittance—
accurately models the shape of the experimental spectra over
a substantial energy range for all three material interfaces. In
addition, T(E) model fits were consistently better than
simple power-law approximations to the spectral shape.
These conclusions were found to remain valid after including
the effect of nonparabolic energy bands. We note that the
range of validity is largest for Au/GaAs~100!, which has the
simplest electronic structure and is important for heterostruc-
ture devices.
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