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The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral anomalyis the
underlying principle of the ‘‘edge approach’’ of quantum Hall effect. In that approach,sxy should notbe taken
as the conductance derived from the space-local current-current correlation function of the pure one-
dimensional edge problem.@S0163-1829~96!05547-6#

The question of whether the quantum Hall effect is a bulk
or edge phenomena is often raised.1 It is the purpose of this
paper to address this question. Through this paper we use the
unit c5\5kB51.

First, we point out the connection between the Laughlin
gauge argument and the edge chiral anomaly. Let us imagine
sitting on a Hall plateau, wheresxx50 and sxy
5a quantized value, and let us ask what is the response of
such a system to Laughlin’ s flux threading.2 @The geometry
that we consider is the ‘‘ribbon’’ used in Laughlin’s original
paper~see Fig. 1!.# In response to the EMF (Ex) induced by

the changing flux, a current* dy Jy5sxyḞ is induced.3 Ap-
plying the Su-Schrieffer counting argument,4,5 the net charge
transfer is determined to be

dQ5E dt dx Jy5sxyE dt Ḟ5
2p

e
sxy . ~1!

Thus, the manifestation of the quantizedsxy , is a quantized
charge transferdQ52psxy /e.

From the edge point of view, the world is chiral. Indeed,
even in the absence of an applied electric field, there is a
current flowing. Of course, from the two-dimensional~2D!
point of view, this is simply due to the combined effects of
~a! the slope of the spatial confining potential, and~b! the
Hall effect. During Laughlin’s gedanken experiment, a time-
dependent electric field is observed along the edge

Ex5
ḟ

L
, ~2!

whereL is the circumference of the ribbon. Moreover, ac-
companying the appearance ofEx , an influx of charge, i.e.,
an anomaly, occurs. The total amount of charge that flows in
is given by Eq.~1!. Thus a relation betweenDQ andEx can
be established:

DQ5sxyE dx dt Ex . ~3!

Equation~3! is the integral form of the ‘‘chiral anomaly,’’

]mJm
E5sxyEx . ~4!

HereJm
E5( JE

rE) is the 111 edge current. (rE andJE are the

edge charge and current density, respectively. Dimension-
wise,JE is the same as the total currentI in 2D.!

Thus the 2D quantum Hall effect is in one-to-one corre-
spondence with the 1D chiral anomaly. Moreover, the 2D
Hall conductance is identical to the coefficient in front of
Ex in Eq. ~4!. From now on we shall refer to the latter as the
‘‘coefficient of chiral anomaly.’’ The correspondence be-
tween the chiral anomaly in one dimension and the Chern-
Simons effective action~i.e., quantum Hall effect! in two
dimensions has already been emphasized by Callan and
Harvey.6

The chiral anomaly is also the underlying principle of the
‘‘edge approach’’ of the quantum Hall effect.7–9 To see that
we consider the case where the current is uniform along the
edge. In that case]xJE50 and Eq.~4! becomes

] trE5sxyEx . ~5!

Multiplying Eq. ~5! by the ~constant! edge velocity2v, we
obtain10

FIG. 1. The upper edge~situated aty50) of the ribbon is under
consideration. The edge velocity is along2 x̂, the induced EMF is

along x̂, andḞ is along2 ŷ.

PHYSICAL REVIEW B 15 DECEMBER 1996-IVOLUME 54, NUMBER 23

540163-1829/96/54~23!/16903~4!/$10.00 16 903 © 1996 The American Physical Society



] tJE52sxyvEx , ~6!

which implies

JE~ t !2JE~0!52sxyE
0

t

dt8vEx~ t8!. ~7!

Let us now consider the case whereEx is produced by
Laughlin’s flux threading in time interval (0,t). Moreover,
let us assume that initiallyJE(0)50. At the end of the flux
threading, a current

uJEu5sxyV ~8!

is established, whereV5*0
t dt8vEx is the amount of work

the electric field does to every unit of charge during (0,t).
Another way of stating Eq.~8! is that if we raise the edge
electrochemical potential byV, a current given by Eq.~8!
will flow in the new ground state. The last statement is the
building block of the edge approach used in Refs. 7–9. A
formula similar to Eq.~8!, I5(e2/2p)V, also appears in the
one dimensional conduction offree electronswith no impu-
rity scattering. In that case chiral anomaly also provides a
natural intepretation of the often-confused quantized conduc-
tance.

Next, we demonstrate that the chiral anomaly is acon-
straint on the edge dynamics of a quantum Hall droplet.
First, we look at the primary quantum Hall liquid~QHL!
(sxy5e2/2pm), so that there is only one edge. We recall
that the bulk effective gauge action of a QHL is

Seff5E dt d2r Fsxy

2
eabcAa]bAc1Ja

0AaG . ~9!

Throughout this paper Roman letters, e.g.,a,b,c, are used to
label the 211 space time, while Greek indices are reserved
for the 111 space time. In Eq.~9! Ja

05( r̄,2v r̄,0) is the
ground state 211 current,10 and eabc]bAc is theperturbing
part of the external EM field. When the Hall liquid is spa-
tially finite, the above becomes

Seff5E dt d2rM~ t,rW !Fsxy

2
eabcAa]bAc1Ja

0AaG . ~10!

In the aboveM describes the dynamic shape of the Hall
droplet, andM(t,rW)51 or 0 depending on whether at time
t the spatial pointrW is inside or outside the droplet. The
dynamics ofM(t,rW) is determinedby the requirement of
gauge invariance of theSeff in Eq. ~10!.11,12 Trivial manipu-
lation gives

Ja
0]aM1

sxy

2
eabc]aM]bAc50. ~11!

We emphasize that Eq.~11! is a constrainton the edge dy-
namics.

Now consider the simple case wheree0ab]aAb
5e1ab]aAb50, and a striplike Hall droplet~Fig. 1!. Let
u(x,t) be the normal displacement of the upper liquid
boundary from the straight line, Eq.~11! implies

Jm
0 ]mu5

sxy

2
Ex , ~12!

whereJm
0[( r̄,2 r̄v). By identifying the chiral current~not

the total edge current! as

Jm
C[Jm

0u, ~13!

Eq. ~12! becomes12

]mJm
C5

sxy

2
Ex . ~14!

The fact that thechiral current anomaly is only half of that
of the total edge current is well understood.14–17The reason
is that the total edge current is the sum of the chiral current
and an additional piece. Indeed, if we solveM in terms of
eabc]bAc via Eq.~11! and substitute the answer back into Eq.
~10!, we obtain a gauge-invariant effective actionSeff(Aa).
The total currentJa

tot5]Seff /]Aa contains a bulk term and an
edge one, i.e.,Ja

tot5Ja
bulk1Ja

edge. The 111 dimensional edge
current Jm

E(t,x) is obtained from the 211 dimensional
Ja
edge(t,x,y) via Jm

E(t,x)5* dy Ja5m
edge(t,x,y). It can easily be

shown that

]mJm
E5]mJm

C1
sxy

2
emn]mAn . ~15!

Equations~14! and ~15! are of course equivalent to Eq.~4!.
@In the literature ]mJm

E5sxyEx is called the ‘‘covariant
anomaly’’ while ]mJm

C5(sxy/2)Ex is called the ‘‘consistent
anomaly’’# In the following we shall concentrate on the con-
sistent anomaly@Eq. ~14!#. To obtain the covariant anomaly
~i.e., the total edge current anomaly! we simply multiply the
anomaly coefficient by 2.

Following the approach used by Wen,11 we now construct
an edge action, so that the exact equation of motion repro-
duces Eq.~12!. In order to get a local action, it is convenient
to introduce the so-called ‘‘chiral boson’’ fieldf so that

r̄u5
1

2p
]xf. ~16!

In terms off the answer is~remember thatsxy5e2/2pm)

S5E dt dxF m4p
]xf~] t2v]x!f1

e

4p
f~]xAt2] tAx!G .

~17!

Since Eq.~17! is quadratic inf, the saddle-point equation
given by

]x~] t2v]x!f5
e

2m
~]xAt2] tAx!52

e

2m
Ex , ~18!

is exact. Due to Eqs.~13! and~16!, the above is identical to
Eq. ~14!. Although Eq.~17! is derived in the spirit followed
by Wen,11 its gauge coupling differs from that used by Wen
in important ways. The gauge coupling that we use is dic-
tated by the chiral anomaly@Eq. ~14!#. We emphasize that
the gauge action resulting from integrating outf in Eq. ~17!
is not the edge effective action. Instead, the latter is obtained
by solvingM in terms ofeabc]bAc via Eq.~11!, substituting
the answer back into Eq.~10! and extracting the terms that
localize on the edge.12
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The above result can be easily generalized to hierarchical
QHL’s. The effective edge action is

S5
1

4pE dt dx(
i j

~Ki j ] tf i]xf j2Vi j ]xf i]xf j !

1
e

4pE dt dx(
i
t if i~]xAt2] tAx!. ~19!

Heref i is the chiral boson field associated with the edge of
the i th level QHL,Ki j is an integer-valued symmetric ma-
trix, Vi j is a positive definite matrix, andt i is the ‘‘charge
vector.’’11 The equation of motion implied by Eq.~19! is

(
j

~Ki j ] t]xf j2Vi j ]x]xf j !52
1

2
etiEx . ~20!

The chiral charge and current density associated withf i is

rc,i52eti
1

2p
]xf i ,

Jc,i5eti
1

2p(
jk

Ki j
21Vjk]xfk . ~21!

Substituting Eq.~21! into Eq. ~20!, we obtain

S 1t i D ]mJc,im5
e2

4p
~K21t ! iEx . ~22!

Thus the total chiral current anomaly is

]mJm
C5(

i
]mJc,im5

e2

4p
~ tTK21t !Ex . ~23!

Since

sxy5
e2

2p
~ tTK21t !, ~24!

Eq. ~14! holds. The fact that we obtain Eq.~23! is not at all
surprising, since the chiral anomaly is built in as aconstraint
on the edge dynamics.

In a recent paper,13 Kane, Fisher, and Polchinski defined a
‘‘two terminal conductance,’’ from the local edge current-
current correlation function~following that reference we
shall change to the Euclidean metric below!

G5S e

2p D 2uvu(
i j

t i t j^f i~2w,x50!f j~v,x50!&.

~25!

In the above the average on the right hand side is performed
in the absence of external electric field. In Ref. 13 it is
claimed that on a Hall plateau

G5sxy/2. ~26!

Now we first show that if the QHL under consideration is
primary, Eq. ~26! is indeed correct. However, for general
hierarchical QHL’s Eq.~26! is only correct if all edge eigen-
modes propagate in the same direction.

By using Eqs.~17! and ~25! it is simple to show that

G5
e2

2pm
uvu E

2`

` dq

2p

1

q~2 iv1vq!
5

e2

4pm
. ~27!

Thus for primary QHL’s the two terminal conductance de-
fined in Eq.~25! agrees withsxy/2. Is this a coincidence? To
shed light on that question, we consider a hierarchical QHL.
Using Eqs.~19! and ~25! it is simple to show that

G5
e2

2p
uvu E

2`

` dq

2p

1

q(i j t i~2 ivK1qV! i j
21t j

5
e2

2p

uvu
iv

~ tTK21Mt !. ~28!

In the above the matrixM is given by

M[E
2`

` dq

2p
~qI2 ivKV21!21. ~29!

Let S be the linear transformation that diagonalizesKV21.
Thus

M5SF E
2`

` dq

2p
DGS21,

where

Di j5d i j
1

q2 ivl i
. ~30!

Herel i is the i th eigenvalue ofKV
21. Now the integral can

be carried out for each individual diagonal element ofD to
yield

E
2`

` dq

2p

1

q2 ivl i
.56

i

2
. ~31!

In Eq. ~31! the sign is plus ifivl i lies in the upper half of
the complex plane; otherwise it is minus. To understand the
physical meaning ofl i we look back at Eq.~19!. In the
absence of the external EM field the dispersion relation is

vK5qV, ~32!

or

vKV215qI, I5 identity matrix. ~33!

If K andV areN3N matrices, there areN solutions

v5l i
21qi51, . . . ,N. ~34!

Thusl i is the inverse velocity of thei th eigenmode, conse-
quently it should be real. Therefore

E
2`

` dq

2p

1

q2 ivl i
.5

i

2

v

uvu
l i

ul i u
, ~35!

and

F E
2`

` dq

2p
DG

i j

5d i j
i

2

v

uvu
l i

ul i u
. ~36!

Substituting the above result into Eqs.~28!–~30!, we obtain
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G5
e2

4p
~ tTK21SLS21t !,

where

L i j5d i j
l i

ul i u
. ~37!

A great simplification occurs if alll i are positive. In that
caseL5I , and

G5
e2

4p
~ tTK21t !5

1

2
sxy . ~38!

However, in general, whenl i of both sign exists,
GÞ 1

2sxy . For example, as shown In Ref. 13, for the
n52/3 QHL,

K5S 1 0

0 23D , V5S v1 v12
v12 v2

D , t5S 11D , ~39!

one can show thatG5D/3p, where D5(22A3c)/
(A12c2) with c52v12/@A3(v11v2)#. However, in Ref. 13
this result was taken as the indication that another mecha-
nism ~edge impurity scattering! has to be invoked to yield a
quantizedsxy . Our message is that it is the coefficient of
chiral current anomaly@Eq. ~14!# instead ofG @Eq. ~25!# that
should be identified with 1/2sxy . This point has already
been emphasized by Haldane18, and by Nagaosa and
Kohmoto19 and others.20

Thus we find thatthe bulk and edge pictures of quantum
Hall effect are totally consistent. The bulk quantum Hall
effect corresponds to the edge chiral anomaly. The quantiza-

tion of the bulk Hall conductance is manifested as the quan-
tization of the chiral anomaly coefficient. Finally we ask
‘‘under what condition is the edge theory used above the
correct low energy description?’’ Since the edge theory is a
direct consequence of the bulk quantum Hall effect@Eq. ~9!#,
the question reduces to ‘‘to what extent is Eq.~9! the correct
bulk effective action?’’ One way to view the stability of the
bulk quantum Hall effect is through the boson Chern-Simons
theory.21–23 In that theory, the quantum Hall effect is ex-
plained in terms of the superconductivity of composite
bosons. For example, the composite boson for then51 pla-
teau is made up of an electron bound to a fictitious magnetic
flux quantum. When the composite boson condenses, the
n51 quantum Hall effect is exhibited. However, when the
vortices of the composite boson condense, the system be-
comes insulating.24 Wen’s bulk effective gauge theory is the
dual form of the boson Chern-Simons theory upon abandon-
ing the vortices in infrared limit.23 Thus, Wen’s action will
continue be the low energy effective theory, as long as the
vortices of the Chern-Simons boson do not condense. Under
that condition, the effective edge theory discussed above re-
mains valid, and the chiral anomaly coefficient remains
unchanged.25 Of course, the real tough question is whether a
particular condition will cause the vortices of composite bo-
son to condense. This is a localization issue which is beyond
the scope of this paper.
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