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Bulk versus edge in the quantum Hall effect
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The manifestation of the bulk quantum Hall effect on edge is the chiral anomaly. The chiral ansinaly
underlying principle of the “edge approach” of quantum Hall effect. In that approaghshould notoe taken
as the conductance derived from the space-local current-current correlation function of the pure one-
dimensional edge problerfiS0163-18206)05547-9

The question of whether the quantum Hall effect is a bquHereJ/E: gE) is the 1+1 edge current.dg andJg are the
E

or edge phenomena is often raiseltl.is the purpose of this . . . .
paper to address this question. Through this paper we use tﬁgge charge and current density, respectively. Dimension

unit c=% — ka— 1 wise, Jg is the same as the total currdnin 2D.)
- - B_ . . . _ _ _
First, we point out the connection between the Laughlin Thusthe 2D quantum Hall effect is in one-to-one corre

auge araument and the edae chiral anomaly. Let us imagire ondence with the 1D chiral anomaly. Moreover, the 2D
gauge arg 9 Y- 9N9all conductance is identical to the coefficient in front of
sitting on a Hall plateau, whereo,,=0 and o,

— a quantized value, and let us ask what is the response & in Eq. (4). From now on we shall refer to the latter as the

such a system to Laughlin’ s flux threadihgThe geometr oefficient of chiral anomaly.” The correspondence be-
ystem to g“ : " ; _g, €Y tween the chiral anomaly in one dimension and the Chern-
that we consider is the “ribbon” used in Laughlin’s original

. ) Simons effective actiorii.e., quantum Hall effegtin two
paper(see Fig. 1] In response to the E.MFE(") induced by dimensions has already been emphasized by Callan and

the changing flux, a curregtdy J,= o, ,® is induced® Ap- Harvey®

plying the Su-Schrieffer counting argumérttthe net charge The chiral anomaly is also the underlying principle of the
transfer is determined to be “edge approach” of the quantum Hall effe€t® To see that
5 we consider the case where the current is uniform along the
5Q:f dtdxl/:tfxyf dtd= ggxy' (1) edge. In that case,Jg=0 and Eq.(4) becomes
Thus, the manifestation of the quantizeg,, is a quantized dpe=0yyEx. ()

charge transfersQ=2woy,/e.
From the edge point of view, the world is chiral. Indeed, Multiplying Eq. (5) by the (constant edge velocity—v, we
even in the absence of an applied electric field, there is abtain™
current flowing. Of course, from the two-dimensiorfdD)
point of view, this is simply due to the combined effects of
(a) the slope of the spatial confining potential, afiml the y
Hall effect. During Laughlin’'s gedanken experiment, a time-
dependent electric field is observed along the edge

&= @ w

whereL is the circumference of the ribbon. Moreover, ac-

companying the appearanceBf, an influx of charge, i.e., @B
an anomaly, occurs. The total amount of charge that flows in -
is given by Eq.(1). Thus a relation betweehQ andE, can - —
be established: N
AQ=ony dx dtE,. 3) \_//
Equation(3) is the integral form of the “chiral anomaly,” FIG. 1. The upper edgesituated ayy=0) of the ribbon is under
e consideration. The edge velocity is alopg, the induced EMF is
9y = oxyEx. (4 alongk, and® is along—y.
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(6)

IJg= — oy Ey,

which implies

t
JE(t)_JE(O):_nyfodt,UEx(t,)- (7)
Let us now consider the case whekg is produced by
Laughlin’s flux threading in time interval (), Moreover,
let us assume that initiallyg(0)=0. At the end of the flux
threading, a current

|JE|:nyV (8)

is established, wher¥= [{dt’'vE, is the amount of work
the electric field does to every unit of charge duringt)O,
Another way of stating Eq(8) is that if we raise the edge
electrochemical potential by, a current given by Eq(8)
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whereJ)=(p,—pv). By identifying the chiral currenfnot
the total edge currepts

JE=3u, (13
Eq. (12) become¥
ag
aMng%EX. (14)

The fact that thechiral current anomaly is only half of that
of the total edge current is well understodd:1’ The reason

is that the total edge current is the sum of the chiral current
and an additional piece. Indeed, if we solé in terms of
€anc9pAc Via EQ.(11) and substitute the answer back into Eq.
(10), we obtain a gauge-invariant effective actiSgs(A,).
The total currend®'= 9S4/ A, contains a bulk term and an

will flow in the new ground state. The last statement is theedge one, i.eJ''=J2"+ 329% The 1+1 dimensional edge
building block of the edge approach used in Refs. 7-9. Acurrent JE(t,x) is obtained from the 21 dimensional
formula similar to Eq(8), | = (e%/2m)V, also appears in the Jgdge(t,x,y) via Jﬁ(t,x)zf dy Jgigﬁ(t,x,y)_ It can easily be
one dimensional conduction @rfee electronswith no impu-  shown that

rity scattering. In that case chiral anomaly also provides a
natural intepretation of the often-confused quantized conduc-
tance.

Next, we demonstrate that the chiral anomaly isoam-
straint on the edge dynamics of a quantum Hall droplet.Equations(14) and (15) are of course equivalent to E4).
First, we look at the primary quantum Hall liqui@HL) [In the literature aMJ5=aXyEX is called the ‘“covariant
(oxy=€?/2rm), so that there is only one edge. We recall anomaly” while 9,J$= (oy,/2)E, is called the “consistent

E_ ., ¢, T
3, d,=0,3,+ 76MV19MAV. (15

that the bulk effective gauge action of a QHL is

g
Set= f dtdzr{%yeabcAaabAcHgAa . 9)

Throughout this paper Roman letters, eagh,c, are used to

label the 2+-1 space time, while Greek indices are reserve

for the 1+1 space time. In Eq(9) J%=(p,—vp,0) is the
ground state 21 currentt® and e,,.9,A. is the perturbing

part of the external EM field. When the Hall liquid is spa-

tially finite, the above becomes

_ 2 = | Oxy 0
seﬁ—f dtdr M(61)| 5% apcPadbAct I2Aq . (10

In the aboveM describes the dynamic shape of the Hall
droplet, andM(t,r)=1 or O depending on whether at time

t the spatial pointF is inside or outside the droplet. The
dynamics ofM(t,F) is determinedby the requirement of
gauge invariance of th8q in Eq. (10).2112 Trivial manipu-
lation gives

0 Oxy
JaaaM+ TGabCaaM&bACZO' (11)
We emphasize that Eql1l) is a constrainton the edge dy-
namics.
Now consider the simple case whereg,pd.Ap
= €1ap92Ap=0, and a striplike Hall dropletFig. 1). Let

anomaly”] In the following we shall concentrate on the con-
sistent anomalyEq. (14)]. To obtain the covariant anomaly
(i.e., the total edge current anompalye simply multiply the
anomaly coefficient by 2.

Following the approach used by Wé&hwe now construct

AN edge action, so that the exact equation of motion repro-

duces Eq(12). In order to get a local action, it is convenient
to introduce the so-called “chiral boson” fiel@ so that

1
pu= zﬁx(ﬁ. (16)

In terms of ¢ the answer igremember thatr,, = e2/27rm)
m e
S=f dtd E&Xd)(at—vﬂx)qw Ed)(&xAt—atAx) .
(17)

Since Eq.(17) is quadratic in¢, the saddle-point equation
given by

e e
Ix(di—vdy) p= ﬁ(&xAt_&tAx):_ %Exa (18)

is exact. Due to Eq913) and(16), the above is identical to
Eq. (14). Although Eq.(17) is derived in the spirit followed
by Wen! its gauge coupling differs from that used by Wen
in important ways. The gauge coupling that we use is dic-
tated by the chiral anomalyEq. (14)]. We emphasize that

u(x,t) be the normal displacement of the upper liquidthe gauge action resulting from integrating @utn Eq. (17)

boundary from the straight line, E¢L1) implies

Oxy

300,u= > Ex. (12)

is notthe edge effective action. Instead, the latter is obtained
by solving M in terms ofe,dpA. Via Eq.(11), substituting

the answer back into Eq10) and extracting the terms that
localize on the edg¥
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The above result can be easily generalized to hierarchical e
QHL’s. The effective edge action is 27rm |j 27 —Iw+vq) am: (27
1 Thus for primary QHL'’s the two terminal conductance de-
S= _J dtdx (Kijdididud; —Viidudidnd) fined in Eq.(25) agrees withr,,/2. Is this a coincidence? To
shed light on that question, we consider a hierarchical QHL.
e ; S
n EJ dthE t b (A — A (19 Using Eqs.(19) and(25) it is simple to show that
Here ¢; is the chiral boson field associated with the edge of o f E ti(—iwK+qV);'t;
theith level QHL, Kj; is an integer-valued symmetric ma-
trix, Vj; is a posmve definite matrix, ang is the “charge e’ || Tu -1
vector."L The equation of motion implied by Eq19) is ZE —(t K™ "Mt). (28

1 In the above the matriM is given by
2 (Kyddud=Vighdxdp) =~ 5etE. (20

— ” —H o —-1y-1
The chiral charge and current density associated wjtis M= fﬁmzw(ql oKV (29)
1 Let S be the linear transformation that diagonaliz€¥ ~*.
pei= Lo ki, Thus
1 1 M=S f “ g s
Jei=et; 2_2 Kij "Vikdx Pk - (21) 27T '
Substituting Eq(21) into Eq. (20), we obtain where
1 e? s L
(E)a Join=7- (K 'DiEx. (22) D3 = % g T an (30

Here\,; is theith eigenvalue oKV 1. Now the integral can

Thus the total chiral current anomaly is , e i
be carried out for each individual diagonal elemenDofo

e? yield
3,35= 2 9, 3cin=7—TK HDE,. (23)
am = dq 1 i
q i
. — .=t (3D
Since —2m —iw)\; 2
e? In Eq. (31) the sign is plus ifiw\; lies in the upper half of
oxy=5=(tTK™H), (24 the complex plane; otherwise it is minus. To understand the
2

physical meaning of; we look back at Eq(19). In the
Eq. (14) holds. The fact that we obtain ER3) is not at all absence of the external EM field the dispersion relation is
surprising, since the chiral anomaly is built in asanstraint
on the edge dynamics. oK=qV, (32
In a recent paper’ Kane, Fisher, and Polchinski defined a r
“two terminal conductance,” from the local edge current-
current correlation functionfollowing that reference we wKV~1=ql, |=identity matrix. (33

shall change to the Euclidean metric bejow
If K andV areNXN matrices, there arBl solutions

e 2
Z) IwI; titi(i(—w,x=0)¢;(w,x=0)). w=\; 'qi=1,... N. (34)

(25  Thus\, is the inverse velocity of thieth eigenmode, conse-
In the above the average on the right hand side is performe@U€ntly it should be real. Therefore

G:

in the absence of external electric field. In Ref. 13 it is :
. © dq 1 Il o )\i
claimed that on a Hall plateau J -— == (35)
_oc27T q_|(1))\i 2|(1)| | il
G=o0y,/2. (26) and
Now we first show that if the QHL under consideration is )
primary, Eq.(26) is indeed correct. However, for general J'°° ﬂ :5__'_1£ (36)
hierarchical QHL’s Eq(26) is only correct if all edge eigen- — 2T 12 ol IN]

modes propagate in the same direction.
By using Eqs(17) and(25) it is simple to show that Substituting the above result into Eq28)—(30), we obtain
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e? tion of the bulk Hall conductance is manifested as the quan-
G:E(tTK_lsAS_lt). tization of the chiral anomaly coefficient. Finally we ask
“under what condition is the edge theory used above the
where correct low energy description?” Since the edge theory is a
direct consequence of the bulk quantum Hall efféad. (9)],
A the question reduces to “to what extent is E9). the correct
Aij= m (37 bulk effective action?” One way to view the stability of the
bulk quantum Hall effect is through the boson Chern-Simons
A great simplification occurs if al\; are positive. In that theory?'2% In that theory, the quantum Hall effect is ex-
caseA =1, and plained in terms of the superconductivity of composite
) bosons. For example, the composite boson forithel pla-
G= e_(tTK—lt): EU (39) teau is made up of an electron bound to a fictitious magnetic
A7 27 flux quantum. When the composite boson condenses, the
v=1 quantum Hall effect is exhibited. However, when the
vortices of the composite boson condense, the system be-
comes insulating? Wen’s bulk effective gauge theory is the
dual form of the boson Chern-Simons theory upon abandon-
1 0 1 ing the vortices in infrared limif> Thus, Wen'’s action will
U1 Ui12 . .
K:( ) V:( ) t:( ) (39 continue be the low energy effective theory, as long as the
0 -3 Uiz U2 1 vortices of the Chern-Simons boson do not condense. Under
one can show thatG=A/3w, where A=(2—3c)/ that condition, the effective edge theory discussed above re-

(VI=c?) with c=2v1,/[ 3(v,+v,)]. However, in Ref. 13 Mains valid, and the chiral anomaly coefficient remains
this result was taken as the indication that another mech(_ﬂnchange&? Of. course, the real tough _questlon IS Whe_ther a
nism (edge impurity scatteringhas to be invoked to yield a particular cdondmon r\]’Y'”. caulse tPe v_ornges of Cﬁ.mr?c_)sge bo—d
quantizedo,,. Our message is that it is the coefficient of fr?n to con ??ﬁ?' This s a localization issue which is beyon
chiral current anomaljEq. (14)] instead ofG [Eq. (25)] that € Scope ot Ihis paper.
should be identified with 1&2,,. This point has already
been emphasized by Haldéﬁe and by Nagaosa and We thank Dr. S.A. Kivelson for helpful discussions.
Kohmotd® and otherg? Y.C.K. is supported in part by the National Science Council
Thus we find thathe bulk and edge pictures of quantum of Taiwan under Grant No. NSC85-2112-M-002-009. D.H.L.
Hall effect are totally consistentThe bulk quantum Hall is supported in part by the LDRD program under DOE Con-
effect corresponds to the edge chiral anomaly. The quantizaract No. DE-AC03-76SF00098.

However, in general, when\; of both sign exists,
G#%oxy. For example, as shown In Ref. 13, for the
v=2/3 QHL,
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