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Quasiparticle excitations of incompressible quantum Hall states at a total filling faet@rin a double-

layer system have bimeron pseudospin textures. We studied the charge and pseudospin distributions and the
energies of these quasiparticles as a function of layer separation, tunneling amplitude between the layers, and
in-plane magnetic field strength by using a supercell microscopic unrestricted Hartree-Fock approach. We find
that for typical double-layer system parameters, estimates of quasiparticle properties based wholly or partly on
field-theoretic models require substantial quantitative revision. We comment on the nature of the crystal states
expected at a finite but small quasiparticle density, and on limitations of the unrestricted Hartree-Fock ap-
proach.[S0163-1826)01248-9

I. INTRODUCTION In this equation,X is a lowest Landau-level orbital label,
|0) is the electron vacuum, and the 0perat6r§m create

Advances in semiconductor epitaxial growth techniquesan electron with the orbital quantum numb¥érin the left

have led to the realization of double-quantum-w&QW) (right) well. Since the product runs over all the possible val-

systems with extremely high-mobility electron gases inoq oy this state corresponds to filling factor=1. By

nearby quantum wells. In some of these systems, the spacin . . X "
between the two electron layer, is comparable to the typi- Bonstruction, this state has the same electronic charge in each

cal electron spacing within a layed € 100 A), and interest- Iayer, so that the ele_ctro_static energy of the system is mini-
ing effects can occur because of electronic correlation beMizeéd when electric fields from external charges are
tween electrons in different layers. This is especially true inPalanced. This state has long-range order in the phase dif-
the presence of a strong magnetic fiBldpplied perpendicu- ference between electrons in the two layessSince, in the
lar to the electron layers. An interesting example is the ocabsence of tunneling between the layet the energy is
currence, established by recent experiméntadnd independent ofp, the system has a continuous broken sym-
theoretical® work, of spontaneous interlayer phase coher-metry and will have a linearly dispersing Goldstone boson
ence in some incompressible quantum Hall effe@HE) collective mode.
ground states. In the presence of tunneling, the energy is minimized
In this work, we study charged excitations of the incom-when ¢=0; in this case the many-particle wave function in
pressible quantum Hall state at the total filling factor1.  Eq. (1) is composed of a full Landau level of single-particle
(Herev=N/N, is the ratio of the number of electrons to the orbjtals which are symmetric combinations of the left and
orbital degeneracy of a Landau levisl,=AB/®o, where  right layer orbitals. This wave function is evidently the exact
A is the area of the system anll, is the magnetic flux  ground state in the case of noninteracting electrons, and it is
quantal At »=1, it has been establishttom several dif- posgibid to show that ford— 0 it remains exact when inter-
ferent theoretical points of view that, for sufficiently small actions are included. For finité, quantum fluctuations be-
separation between the layers, a broken symmetry can ocCypme important and the Hartree-Fock wave function is no
in which coherence exits between electrons in opposite laynger exact. However, the broken symmetry ground state is
ers in the absence of interlayer tunneling. This broken SYMaypected® to survive ford smaller than a critical value
metry is favored by interlayer electron-electron interactions q

. . [l
The Hartree-Fock approximation for the broken symmetry = tpq quantum Hall effect is a low-temperature anomaly in

ground-state wave function has the fdrm the transport properties of double-layer systems in which the
1 Hall resistance is accurately quantized and the dissipative

|qf>:]_[ —(C;,+e‘*"c;gr)|0). (1) resistance iscexp(—A/2kgT), whereA is the charged exci-
X \/E ' ’ tation gap, i.e., it is the energy necessary to make excitations
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with unbound charges. The quantum Hall effect octursaveraged number of reversed spifisle follow the practice
when the chemical potential &t=0 has a discontinuity at a of the literature on quantum Hall ferromagnets and retain the
density which depends on magnetic field, most often at &kyrmion label for these excitations as long as it is useful to
fixed value ofv. The energy to add a particle to the system,regard them as charged spin texturé=or typical Zeeman
w*, differs from the energy to remove a particle from the coupling strengths, the energy gApis only slightly smaller
system,u”. If the excitations have chargg as they do in  than the Hartree-Fock quasiparticle gap. However, the spin
the case of interest\=u"—u~ is equal to the chemical carried by the Skyrmions is much larger than for spin-
potential discontinuity associated with the incompressiblecharged excitation¥ =2’ It is this difference in spin content
state. The broken symmetry states discussed above are alghich has made it possible to identify Skyrmitfr?°excita-
incompressible states which exhibit the quantum Hall effeCttionS experimenta”y_ For a finite Skyrmion density;( ]_),
At present, the property of these states which is most open the ground state is a square lattice Skyrme crystal.
experimental study i4, which can be measured by studying  Ford+0, the SU2) symmetry of the 2DEG is reduced to
the temperature dependence of the dissipative resistance @{1) symmetry because of the difference between interac-
low temperatures, and which is expected to vanish fotions among electrons in the same layer and in different lay-
d>d.. Indirect experimental evidence for the putative bro-ers. The main effect is the appearance of a capacitive charg-
ken symmetry ground state in DQW systems has been ohlng energy which locally favors equal density in the two
tained by studying the collapse of the QHEwat 1 at large  |ayers. In the pseudospin language, this term favors configu-
layer separation? The physics of the charge gap, at rations in which isospins are confined to the plane. The
v=1 in double-layer systems, which is intimately connectedsystem maintains invariance under rotations about zhe
with the broken symmetry ground stdt@tt=0, is the prin-  pseudospin axis, and behaves like an easy-pk¥eerro-
ciple subject of this paper. One consequence of the spontanagnet rather than a Heisenberg ferromagnet. The change in
neous interlayer phase coherence in the DQW system ahe symmetry is responsible for a change in the dispersion of
v=1 is the unusual sensitivity af to the component of the the Goldstone collective modes at long wavelenjfnsm
magnetic field B)) parallel to the layers® Experimental quadratic to lineaf? The change in the ground state from
studies have shown that the activation energy drops rapidlijeisenberg ferromagnet to easy-plax¥ ferromagnet sug-
with increasing B, until B| reaches a critical strength gests that vortexlike spin textures might be important. Easy-
(Bjc) where a phase transition to a state whose activatioplane ferromagnets have vortexlike spin-textures, called
gap is weakly dependent d8y (Ref. 10 appears to occur. merong’® in which the order parameter tilts out of the easy
We will address the dependence/ofon the hopping energy plane in the vortex core. For quantum Hall ferromagnets,
t andB. merons are pseudospin textures with charge/2® Al-
DQW system properties are conveniently described bythough the energy of an individual meron diverges logarith-
mapping the layer degree of freedom to an artificial pseu-mically with the size of the system, two merons with like
dospin degree of freedom. In tide=0 case, a spinless DQW charge and opposite vorticities carry total charge and
system is equivalent to a two-dimensional electron gasave finite energy. We will call these chargee excitations
(2DEG) system with spirg particles and no Zeeman cou- bimerons Meron pairs with opposite vorticities and opposite
pling. The 2DEG has S@) symmetry, and atv=1 the charges may lead to a Kosterliz-Thouless phase tranftfon
ground state is a strong ferromagHewith total spin quan- in this system. The bimeron descriptfdi?*? of the el-
tum numberS=N/2 . The mapping associates states in theementary charged excitations is appropriate only if the
left and right wells with the eigenstates of the Pauli spin  meron separation is large compared to the meron core size.
matrix, so that the wave function in E¢l) is the S=N/2 For d—0, as we discuss below, the bimeron evolves into a
state of a 2DEG av=1, with the spins maximally aligned Skyrmion. In this limit, the meron pair description fails. Ex-
along the[ cos(p),sin(e),0] direction. isting estimations of the bimeron excitation are based on
Two-dimensional ferromagnets in systems with (3U microscopic calculations of the meron core energy and core
symmetry (Heisenberg ferromagnetshave topologically size, but treat the interaction between mePdhg**quali-
nontrivial Skyrmiori? excitations. The experimental signifi- tatively.
cance of these excitations in quantum Hall ferromagnets is The main purpose of this paper is to investigate the
magnified by the unique propeft}? that topologically non- charged pseudospin-texture excitations of the DQW system.
trivial spin-texture excitations carry an electrical chatgé. We describe their energy and size as a function of layer
In fact, these excitations can be and often are the loweskeparation and the tunneling amplitude between the quantum
energy charged excitations ef=1 quantum Hall ferromag- wells. We find that although the bimeron picture often does
nets, and therefore limit the activation enedyyfor dissipa-  apply qualitatively, it is not quantitatively reliable because of
tive transport processes. For Heisenberg quantum Hathe relatively small separation between merons. We also
ferromagnets, the lowest-energy charged excitations for zerstudy the effect that a parallel magnetic field has on charged
Zeeman coupling are large Skyrmions, afdis half the  pseudospin textures. We compare our results with previous
Hartree-Fock quasiparticle gapFor nonzero Zeeman cou- descriptions of bimerofig!?4? which assume that the
pling, the lowest-energy charged excitations are still usefullyneron core is small compared to the optimal meron separa-
regarded as topologically charged spin textures, although thiton. We also discuss the ground state of the DQW system
form and size of the charged-spin-texture excitations is dewhen the filling factor is slightly different from=1, i.e.,
termined by a complicated competition between the Hartregvhen a finite density of bimerons exists in the system.
energy which favors extended charges and the Zeeman en- The paper is organized as follows. In Sec. Il, we review
ergy which favors small spin textures with a relatively smallthe long-wavelength effective Hamiltonfat which de-
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scribes low-energy charged excitations of the1 DQW  wavelengths. The{{m?)? term accounts for the anisotropy
system, and discuss the picture of charged excitations whicbf the spin stiffness. Pseudospin order in Xhg plane physi-
follows from this Hamiltonian. In Sec. IIl, we review predic- cally corresponds to interlayer phase coherence so that
tions for charged-spin-texture excitations which follow from p,-pg will become larger with increasind. The sum of the
regarding bimerons as merons coupled only by the gradierfirst and sixth terms in Eq.3) gives anXY-like anisotropic
term in the effective Hamiltoniah*?*#In Sec. IV, we  nonlinealo model(ANL oM). However, this gradient term is
summarize the unrestricted Hartree-Fock method used fafot the most important source of anisotropy at long wave-
the present calculations. We present and discuss our numetengths. The fourth term produces the leading anisotropy,
cal results, including results for the case of a finite density otind is basically the capacitive energy of the double-layer
charged spin textures, in Sec. V, and conclude in Sec. VI. systen?’ The fifth term appears due to the long-range nature
of the Coulomb interaction; its presence demonstrates that a
Il. FIELD-THEORETICAL APPROACH naive gradient expansion of the anisotropic terms is not
) . valid. (mg is the Fourier transform of the unit vector field
In a quantum Hall ferromagnet with Landau-level filling , y £quation(3) can be rigorously derived from the Hartree-
factor v, spin textures and pseudospin textures which vary=qq approximation in the limit of slowly varying spin

slowly on a microscopic length are accompanied by a charggyre< and explicit expressions are obtained fer(which

i1.6,13
densit is due in this approximation entirely to interlayer interac-
» tions), p, (due to intralayer interactiopsand 8. Quantum
q(r)=—z—=€,,M(r)-[J,m(r)xa,m(r)]. 2) fluctuations will alter the values of these parameters from
8m those implied by the Hartree-Fock theory.
This equation can be establisf&thy assuming the quanti- If we retain only the first and last terms in E¢g), we

zation of the Hall conductivity and using the relationship have the ANleM
between the Berry phase and the solid angle enclosed by the
electronic spin orientation along a closed path. In E, _
q(r) is the charge density relative to the uniform density — y —PE dr(Vm”)(Vm"HMI dr(Vmd)2. (4)
ferromagnetic ground state at filling facterandm(r) is the 2 2
unit-vector field which specifies the local direction of the
pseudospin magnetic moment. The right-hand side ofB9. The metastable spin-texture excitations of this model are
is v times the Pontryagian index density, or the topologicaligenical to the analytically known metastable spin textures
charge density associated with the vector fied?2° of the NLoM.282912Because of the gradient terms iy

It follows from the relation between electrical and topo- any finite-en'ergy solution should approach a con,stant,
logical charge densities that the Hamiltonian describing IOW'm(r)HmO, whenr|— . (Herem, is any constant unit vec-

?r:lerg_y eXfCitati(_)”thf lt,he,tD?V\l/ syllstemml mqsttha}[/e tg‘? tor.) Consequently the 28-y plane may be mapped to a unit
ofiowing form in the fimit of Slowly varying spin textures. sphere with all points ajﬂ—»oo mapped to the south pole,

PE and spin textures may be regarded as mappinigsm the
H= ) dr(Vm”)2+%f dr dr'q(r)V(r—r')q(r’") unit sphere to the unit sphere. Each finite-energy texture of
the ANLoM is then characterized by an integesinding
Asps ) number which is the number of times the first spherical sur-
+ mf df(mx(f)—1)+,3f dr(m?) facewindsthe second one.
In the 2DEG problem, in the presence of an infinitesimal

e’d® [ dq , 5, PA—PE - Zeeman coupling, the Skyrmion spin must point in the
a MJ 2,29M=qMg ™ 5 f dr(Vm?)~=. direction for|r|—o. In the case of the DQW problem, how-
ever, even an infinitesimal capacitive term requires that
@ Jiein theX-y plane. A useful starting point for thinking about

The first two terms of the Hamiltonian are &) invariant  bimerons is to start from the ANEM case. The resulting
contributions. The leading gradient term is the only term thapicture differs from that for single-layer 2DEG real spin
appears in the nonlinear model (NLaM) for Heisenberg Skyrmions only by this global rotation in pseudospin space.
ferromagnets, angg is the spin stiffness in th&-y plane. Each metastable state of the double-layer field theory classi-
The second term describes the (8Uinvariant Hartree en- fied by a topological number consists of pairs of merons
ergy corresponding to the charge density generated by Bernyith the same charge and different vorticities. We call these
phases in quantum Hall ferromagne4r) is the Coulomb statesnth-order bimerons. In particular, thre=1 solution is
interaction screened by the dielectric constardf the host a simple bimeron, and the=—1 solution a simple anti-
semiconductor. The third term describes the loss in tunnelingimeron. The winding number is equal to the topological
energy when electrons are promoted from symmetric to ancharge’? and, due to the relation between the topological and
tisymmetric states; herg,s= 2t is the single-particle split- real charge in our system, the bimerons are nontrivial quasi-
ting between symmetric and antisymmetric states. This termparticles excitations of the DQWv=1 incompressible

in the Hamiltonian of double-layer systems plays the samground state with charge.

role as the Zeeman coupling in single-layer spisystems. Following previous work? it is convenient to param-
Here /= (fcleB)Y? is the magnetic length. The last three etrize the unit vector fieldn(r) in terms of the complex
terms are the leading interaction anisotropy terms at londgunctionw,
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2w which have been developed by previous workers using a
T W (5)  field theory approach. These pictures and estimates will be
compared with Hartree-Fock results in Sec. V. Previous
In terms ofw, the charge density has the expression works on charged pseudospin textures in DQW'’s treat them
) ) as if composed of two charge/2 merons with opposite
(2)= 1 [0W]° |+ w] ©) vorticities®1?*2%|n this section, we briefly review the re-
m  (1+|w|?)? sults obtained with this approximation.

m,+imy=

(Herez=x+iy.) A general bimeron, which satisfies the re-

quirement that its pseudospin texture lie in thg plane for A. No tunneling between layers

|r|—o, is specified by a complex function of the fof#f® Due to the gradient terms in the effective Hamiltonian of
Eq. (3), the energy of ansolatedmeron with charge*-e/2,
4 can be written in the form
wW(z)=-—-€', ()
R EX=EX + mpeInR/Rpyc; )

where ¢ gives the azimuthal orientation of the projection of .

m in the x-y plane, at|z|]—«. The charge density of a hereE,,. are the meron-core energies, &g is the meron-
bimeron is circularly symmetric arounld, +zg|/2, and its ~ core radius. The size of the meron doe§ not depend on the
size is proportional tdz, —zg|. From m? and q(z), it is  sign of the charge. The quantitiBs,c andE,. do not depend
possible to obtain the charge density projected onto the lefon the vorticity, but on the distance between wells. The loga-
[q.(r)] and right [gr(r)] wells. g, (r) and gg(r) have rithmic term appears because the meron has a topological
maxima atz, andzg, respectively. In aaivepicture,z, and  charge* 1/2. The meron charge density has circular symme-
zr are the centers of the two merons which form thetry around the meron center.

bimeron. It should be noted thet )(r) are not symmetric ~ In order to cancel the logarithmic divergence and obtain
around z,(gy. In the ANLoM, the energy of a neutral finite-energy c_harged e>_<C|tat|ons_,_ it is necessary tq qomblne
bimeron or antibimeron ifgm:(4ﬁ/3)(2pE+pA)_ In the two merons Wlth opposite vorticities. In this case, it is nec-
d=0 case, the cost in energy of creating a bimeron-essary to.take into account the Hartree r.epuIS|on between
antibimeron pair is one-half the energy cost of creating anerons with the same charg€. The repulsion appears be-
single-particle electron-hole pdi.When a finite Zeeman cause of the equivalence between topological and real
term is present, a microscopic description of the problenfharge. Including the Hartree repulsion, the energy of two
shows that the energy difference is reduced, but the spiff€rons separated by a distariRes

textures still have a lower energy than single-particle 5
electron-hole pairé'f.1 In this work, we confirm that this is EZ=2E+ € + 27 peln(RIR ). ©)
also the case for finite values of the layer separation 4eR

Now we describe qualitatively the effect that the other
terms of the low-energy Hamiltonian E¢3) have on the
solution of the ANLrM. The second term in Ed23) is the

SU(2) invariant part of the Hartree energy which favors in- """ _ . : . . :
finity large bimerons. In the case dfsps=0, the terms in *T_h|s approach for the meron pair energy 1S valid provided
Eqg. (3) which favors finite-size bimerons are the fourth and® IS ilarger thanRy,. Using HE estmaﬂoni foPe R,

fifth ones. This term is a dipolar contribution which appears"’“ld En: Yang and MacDonafd obtainedEpy,, R, and
due to the long-range character of the Coulomb interaction - TQEY found thaRn decreased continuously with and
Tunneling plays the same role as the Zeeman energy in tH9at R* increases withd. At a layer separationd~0.57,
2DEG, favoring a finite-size quasipartict.These terms R =Rmc, and they concludéd that their estimates would
also change the functional form of the bimeron. In order toP€ reliable in the range 0:5<d<d. In this range, the
obtain the actual form and energy of the charged pseudospfharge gap in the syster,+E,,, is almost one-half the
textures, it would be necessary to minimize the HamiltoniartHF single-particle gap, in approximate agreement with exact
(3). However, the addition of the extra terms to the simplestliagonalization studies.

HamiltonianH, tends to favor small size bimerons, which

are often not correctly described by the Hamiltonig), B. Tunneling amplitude different from zero

which is only valid in the limit of slowly varying spin tex-

The equilibrium distance between meroRs;,, and meron-
pair energy are obtained by minimizirii:ﬁm with respect to

The effect of the tunneling on the charged pseudospin
"Wxture energy has been also estimafeld.Whent+0, the
U(1) symmetry in the problem is destroyed and the pseu-

%ospin must point in theX direction for |r|—o. As
Agps=2t increases, the bimeron configuration gradually
transforms into a pseudospin configuration with a domain
wall connecting the meron corésThe string tension of the
domain wall is

size, we use a microscopic Hartree-F@ElE) approximation
which has previously been successfully used for describin
spin textures in the 2DEG system a1 1421

lll. SPIN-TEXTURE QUASIPARTICLES IN COHERENT
DOUBLE-LAYER SYSTEMS

In this section, we will review some of the physical pic-
tures and quantitative estimates for charged-spin-texture ex- T :SPE (10)
citations in coherent double-layer quantum Hall systems 0
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where 21 relative to the rotating Zeeman field. These domain walls
are the solitons which appears as solution of E@). At
larger Q, the distance between the solitons becomes of the
same order as the soliton width, and the soliton lattice phase

_ ) . ) . asymptotically approaches amcommensurat@phase where:
is the width of the domain wall. Assuming that the dlstance(PN const. From Eq(13), the incommensurate phase has

between meronsg, is much larger thag, the energy of the |5, er energy than the commensurate phase Qg
positive charged meron pair in this limit can be written as _ Acnd27pe

477/2PE 1/2

A SAS

11

2 In this paper, we attempt to address the question of how
Er'anZE(mJF —+ToR. (12 the charge gap of the DQW system at 1 changes with
4eR Bj. When B=0, the direction of the string joining the
The prime inE;. is included to emphasize th&, will merons is arbitrary. The first effect of havirg#0 is to

(15

271/2

2E; + - (16)

C. Effect of a parallel magnetic field

IV. METHOD OF CALCULATION

depend onAgss. The meron-pair energy is minimized at define a.preferred direction in.the system: in order_ to Iower

Ri=\e74eT,, and takes the valueE,+ &To/e. Note (e gradient energy, the domain walls vil want o line up in

that, apart from the variation of the meron-core energy with1€ ¥ direction: e second effect is a reduction in the

. . . string tension. In the commensurate phase, the effective

Agas, the meron-pair energy varies Agas, in contrast to string tension &1t

the case of single-particle excitations where the gap changes g

linearly with Agag. This picture applies foE<R{<R*. In Q\2

Ref. 11, it is estimated that the crossover from the meron- T=T, 1—<§) :

pair picture to the finite-length domain-wall picture of the

charged quasiparticle  occurs  for Agas/(€%/€/) The meron-pair energy is minimized at a distance between

~8x 10 pe/(e’/e/)]3. This estimate, combined with the merons, Rj=\/e’/4€T, and the energy of the positively

HF estimate ofpg, suggests that the domain-wall picture charged meron pair, far in the commensurate phase, is

will apply except for samples prepared to makg,s as

small as possible. Note also that for large values of e’To\ Y2 Q

Asps, R} decreases and f&®),~/, the meron-pair descrip- € Q*

tion cannot apply. Observe that there is a large reduction in the charge gap
whenQ increases. Re&fstudied the behavior of the charge
gap for all ranges oB; more thoroughly. He found that,

A finite component of the magnetic fieldB() in they  because of the vanishing string tension at the transition to the
direction, induces a position-dependent phase in the tunnesoliton lattice state, there should be a symmetric square-root
ing amplitudet—te'?*, whereQ=d//? and /= Jhc/eB;  singularity in the gap foQ nearQ*.
is the magnetic length corresponding By. In the pseu- The attractive physical pictures developed above assume
dospin language tunneling maps to a fictitious magnetic fieldhat the meron-core size is small compared to the string
h(r) =t(co€x,sinQx,0), which has a Zeeman coupling with length, and this is small compared to the meron-pair separa-
the pseudospin unit vector fiefd(r). Two terms are impor- tion in the absence of tunneling. Correspondingly the internal
tant in the Hamiltonian in order to describe the ground stateétructure of the meron is assumed to play a negligible role in
at v=1: a tunneling term which favors a pseudospin texturethe energetics. Our objective below in comparing with mi-
aligned locally with the rotating Zeeman fiet(r), and a croscopic Hartree-Fock results is to help determine when
gradient term representing the energy cost associated withese assumptions do apply, and to see what aspects of these
the spatial variation ofn(r). Neglecting the pseudospin Physical pictures survive when the meron cores become large
component in thez direction, the effective Hamiltonian at and polarizable.
v=1 can be written

1 2 Asps . . . .
H=f dr EpE|Vq0| —mcos(qo(r)—Qx) , (13 We now turn our attention to microscopic calculations,

' which free us from assumptions about the meron core and
where ¢ = arctantn,/m,). For smallQ and/or smallpg, the domain-wall sizes and enable us to include all relevant con-
phase Obeyg,(r):QX' and the order parameter rotatEsn- tributions_ to the quasipart_icle energy. As e_xplained in SEC
mensuratelywith h(r). At larger By, h(r) rotates too rap- Il the size and form of bimeron pseudospin-texture quasi-
idly, and a phase transition to a soliton lattice occurs. TheParticles is determined by competition between gradient,
critical value ofQ where the phase transition from the com- Hartree, and tunneling energies. Since these three terms are

mensurate phase to the soliton phase occdrsis well described by the HF approximation, we expect that this
mean-field approach should give an accurate description of

2\%2( Agps| 2 charged excitations in DQW systems. We also know that in

Q*/= ;) 2 (14 the case of the 2DEG the HF approximation gives extremely

accurate results for spin-texture quasiparti¢fes.

At Q*, the commensurate phase is destroyed by the creation For the single-layer 2DEG with spin, the Hartree-Fock
of walls separating domains where the pseudospin is corapproximation for a microscopic Skyrmion-like charged-
stant. In each domain wall, the pseudospin phase slips bgpin-texture state centered on the origin has single-particle
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orbitals in which the angular momentum of the up-spin dif- o= 0/%2
fers from the angular momentum of the down-spin by a Va(q)= —,

single unit. This mixing produces an azimuthal spin-texture a9/

component which winds by 2 around a circle centeregﬁon

the origin, and results in self-consistent-field equations I 1 2\ a—(a'2/212)
which require only X 2 matrice$’ to be diagonalized. In the V(@) fo d(a’/Ne(aq’ e '
DQW case, the lack of circular symmetry in a bimeron state

leads to Hartree-Fock self-consistent-field equations which e 9%/%2
do not decouple, and the resulting numerical calculation V(q)= —e 99, (22
would be more difficult. We avoided this complication by 9

considering a crystal of identical bimerons, and taking the
limit of large lattice constants. Although the bimerons inter-
act by means of the long-range Coulomb interaction, it is
usually possible to extract properties of isolated bimerons
from these crystal calculations. At the same time, we are ablendJ, a Bessel function of the first kind.
to obtain results for the crystal states which presumably oc- In order to obtain the HF solutions at a givenwe solve
cur for a low but finite density of bimerons. Egs. (200 and (21) self-consistently using the one-electron
Since we are essentially dealing with a strong field phe Green’s-function equation-of-motion approach.
nomenon, and we are interested in states for which the tun- Hamiltonian(21) has a number of different solutions cor-
neling gap is much smaller than the cyclotron gap, we willresponding to different states of the DQW system. Each of
only consider states in the lowest Landau level. In the Lanthese solutions is characterized by a set of order parameters
dau gauge, the single-particle states are given by (pi,j(G)), where the wave vector& are the reciprocal-
lattice vectors of the periodic structure considered. To en-
o o force a particular solution, we start in the first iteration of
Py ,j(r)= ——XVTem (X2 (7). (17)  Egs.(20) and (21) with a set of parameterép; ;(G)) with
\/Ly/ﬁTll2 the desired translational and pseudospin texture symmetries.
Given a symmetry, we have to find the minimum energy

Here X is the electron guiding center, angj(z) with  go1ytion of the HF Hamiltonian. The HF total energy has the
j=R,L is the envelope wave function of the Iowest-energyexpression

state centered in the right or left well. It is convenient to
define the operators

Vg(q)= fo d(q'/)3q4(qq’ /2@ 12g-ad

e?
Enr=(Hup — %N(ﬁe—/quj Vi, j(@)pij(a). (23
l . v iy
o - —(i12)gu(X+X") + )
P (A) Nd,x% © Oxx'—a,/2Cx jCx s The energy per electron is simpB=E/N.
(18 To study isolated bimerons, we solve E¢20) and (21)

] ) self-consistently for filling factors close te=1. In the very
so_that the Fourier transform of the density operator can bg;,te limit, »— 1, we extract information corresponding to
written as isolated bimerons from our results. We look for periodic

structures with one extra electron per unit cell with respect to
_ —(02/%4) % v=1, i.e., a single bimeron per unit cell. In this limit of
N(@.2)=Ny2, ey (@)x;(py (@) (19 almost independent bimerons, the results obtained for quasi-
particles on triangular and square lattices are nearly identical.
The HF mean-field Hamiltonian of the DQW system is there-In the square lattice case, the lattice parameter for a given
fore filling factor v is y27/|1—v|, and the quasiparticle interac-
tion effects can be approximated by the point-particle Made-
_ oy Bsas B lung energies of the lattices, gnd.these are usually much
Hue=—Ng——[pL r(0)=pr(0)] smaller than the relevant energies in the problem.
We express our results for the quasiparticle energies in

i’

e terms of the energys(,,) increase per quasiparticle, when
- N"’Z”qu,j Vij(@ei (@), 20 the quasiparticledl,,=|N—N| are created at fixed number
of electrons by varyindN
where
+ v _ .
VL =[Va(@) = Vo(@ oL (— @)+ Ve(@) pra( — ), =1, [E~eold] @49

the minus to the antibimeron case<(1). ¢y(d) is the en-
ergy per electron at the=1 incompressible state,

Vrr=[Va(d) = V() Kprr(—a) +Ve(@){pL (=), the plus sign corresponds to the bimeron case 1), and
(2

Vii=—Va(@)p;,i(—q), i#].
In Eq. (21),

eo(d)=—t—2[Vp(a=0)+V4(a=0)]. (25
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In the limit of vanishing bimeron density(-1), the quan-
tity sgp is the so-called neutral quasiparticle enetgy: re-
lated to the chemical potentiajg™ at densities just larger
and just smaller than the critical densityiat 1, through the
relation

Mt=i8§p+so(d). (26)

As a consequence of the particle-hole symmetry which ap-
plies in the thermodynamic limit, the chemical potential sat-
isfies the relation

u+u =2[eo(d=0)+t]. (27)
It is therefore possible to extract the charge gap of the system
from the knowledge ot alone: (a)
A=,u+—,u’:283p+2[so(d)—ao(d=0)]. (29

It is useful to consider the quasiparticle energy as the sum
of Hartree, exchange, and tunneling energy contributions.
These contributions tecfp are given by terms of correspond-
ing origin on the right-hand side of E¢R4). When the size
of the bimerons is much smaller than the distance between
bimerons, the Hartree energy is reduced, in our calculations,
by the Madelung energy per quasipartitién the triangular
lattice, eyap=—0.78211—v|*%?/ /. In the dilute limit,
this is the dominant interaction contribution ;tﬁp, and we
subtract this contribution from our numerical results. The
tunneling term is proportional to the one-electron tunneling
gapAsas. The constant of proportionality i&S), the mean
number of electrons in antisymmetric states. This quantity
provides a measure of the size of the quasiparticles; for
single-particle excitationg,S)=1. T

Once the HF equations have been solved self-consistently = —————————s~ssssss————

B i S N N N s T e i

(b)

the charge and spin densities can be evaluated from the fol- e e e S S O NN N N N S S ———
lowing expressions. The charge density 45 i the area of I::::::::\{R‘ﬁ:‘:‘::::::::::
————N NN ) ) VLN N NSNS S —————

the system =S A LUV S S ———
——————e=NNN VSN NSNS —————

N¢ 2 2 et~ = NN S S S SN SN S e

_ ~G%/%4,~iG. e
(=22 [{pLL(G)+(prr(G))]e e G, TToTIIoIIIIiolIinooz

G ———re o - S UANANNANN T /e e
—_——wr s s PANANNNY e

(29) ——w sy WNNNN S r————

i . A ——vrwwm sy f NN

Components of the pseudospin density are given by e P N ettt
e X XSS S S S

e A XTSI

N p 3 Gz/ 2/4 _iG et P e e e e g
SAN =52 [(pLL(G) ~(pra(G))]e & Teio, e s m————
S (c)
; Ny -G2/2/4,~iG-r T
Si(r)+iSy(r)= T% (pLR(G))e =" e . (30 FIG. 1. (a) Excess of total charge density with respect to the

filling factor v=1, n(r)— 1/(27/?). (b) z component of the pseu-

dospin density5,(r). (c) Two-dimensional vector representation of
V. NUMERICAL RESULTS the x-y components of the pseudospin density for a quasiparticle in

] ] the casesy=1.02d=0, andt=0. The figure corresponds to a

For a given translational symmetry, we solve E(D)  square unit cell. Ina and (b), the numerical values are given in

and (21) self-consistently for a set of order parameters,units of 1/2r/2. In (c), the length of the arrows is proportional to

(pi j(G)). We include reciprocal-lattice vectors with the local magnitude o8, andS,, and their direction indicates the

|G| <Gpmax,» @and increaseG,,, until our numerical results local orientation.

converge. Since the number of reciprocal-lattice vectors
needed to obtain accurate results increases rapidly with the

size of the unit cell, our approach fails if the bimeron lattice In Fig. 1, we plot, for the case whete=0 andt=0, (a)
is too dilute. We are generally able to obtain accurate resultthe total charge density(r), (b) the z component of the
only for [v—1|>0.01. pseudospin densitg,(r) , and(c) the two-dimensional vec-

A. No tunneling between layers
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tor representation of the-y components of the pseudospin
density. The figure corresponds to the unit cell used in the
calculations. These results have been obtained using a square
lattice, with a single quasiparticle per unit cell, and a filling
factorv=1.02, i.e., the distance between the quasipatrticles is
~18/. Becausad=0, the system has SB) symmetry and

the quasiparticles are Skyrmions. The total charge density
has nearly circular symmetry around the Skyrmion center. In
thed=0 andt=0 case, the only nonzero terms in E8). are

the gradient and Hartree terms, and a single Skyrmion would
have unlimited size. In our calculation, the Skyrmions have
finite size solely as a result of repulsive interactions with
their neighbors. This conclusion will be more evident when
we show the dependence of the quasipatrticle size with filling
factor.

In Fig. 1, we also plot the Skyrmion spin density. Note - \
that the spin texture is well described by E{), with
z,=(—3.2,0) zr=(3.2,0), andp =0 (the origin is the center
of the unit cel). It is important to note that the results shown
in Fig. 1 are nearly identical to those for a bilmodel Skyr-
mion, and the main difference in comparison with familiar
plots for the single-layer case is just a global rotation of the
spin field. Also note that the charge density contributions
from left and right quantum wells are not circularly symmet-
ric aroundz, (zg) or around the origin. The electron density
projected in the lef{right) well has a maximum a2, (zg)
and a minimum atg(z ), also in agreement with the Skyr-
mion shape given by Eq$5)—(7).

When the distance between wells increases, the charge
density shape gradually changesgaacreases it assumes an = J
approximately ellipsoidal form while at large values of

(b)

—

d (d>0.6/) separate maxima centeredzatand zg appear.

In Fig. 2, we show the same quantities as in Fig. 1 but for the
cased=0.87. Note that in this case the form of the solution
is still reasonably approximated by Eq$)—(7). Now the

——
e e e e e e e A A S A S A A A T T T T T T
B i R T T
B i e
B e e R e N e

SN T N O O S S S ——————
—————eaaNN NN\ NN —————
B i Y N N NSNS ————
\
\

distance between the merons is smalkgr (—1.8,0.0) and
Zz=(1.8,0.0). From the comparison between Figs. 1 and 2, it
is clear that the core size of the constituent merons decreases
whend increases, in agreement with Ref. 25. We find that
both the distance between merohs,—zg|, and the core
size of the merons decreases monotonicallyd dscreases.
We also find that for all values af<d., the electron den-
sity projected in theL (R) well is not even approximately
circularly symmetric around, (), and it has a minimum in
In Fig. 3, we plot the quasiparticle bimeron eneegy; as
a function ofd, for three different filling factors. Clearly an
extrapolation to the dilute limit can be carried out reliably
except possibly for very smatl. For comparison, we also
plot the single-particle quasiparticle energy. The energy o
the bimeron is, for all values af, smaller that the single-
particle energy, in agreement with Ref. ZBoth quasiparti-

——————aN O\ N N\ NS ———————
—— e N\ NN S
——— N ——

e '
—— 7 | (A i
———e )] VP aalal e s
——rr 7)) S S
S )) Y ettt g
st et atal A R o bttt acacasnssiad

N~ s [\ N

VAN
Vb
11
e
NN N
VA
Pttt
1tttz
s
Rttt e e e d
et e e e et e e e

B e S S P S G G 35 S 3 3 S .

———— .

(c)

FIG. 2. (a) Excess of total charge density with respect to filling
factor v=1,n(r)—1/(27/?). (b) z component of the pseudospin
fiensity S,(r). (¢) Two-dimensional vector representation of the
Xx-y components of the pseudospin density for a bimeron in the
casew=1.02d=0.8, andt=0. The figure corresponds to a square

| . i b lized b ¢ fluctuati unit cell. In (a) and(b), the numerical values are given in units of
cie energies will be renormalized Dy quantum fluctualions, 5. 2 |, (c), the length of the arrows is proportional to the local

neg!ected ir_‘ the Hartree-Fock approximat)oﬁor s!ngle- magnitude ofS, and S,, and their direction indicates the local
particle excitations, these corrections can be estimated bByientation.

diagrammatic expansiori&® and are not expected to be

large. For pseudospin-texture quasiparticles, these corredence of the effective quasiparticle energy is largest at
tions could be more important, as we comment further bed=0 where the quasiparticle size is always limited by mu-
low, but are not likely to alter the energetic ordering obtainedtual interactions. Atd=0, the quasiparticle energy should
in our Hartree-Fock calculations. The filling factor depen-approach the ideal Skyrmion energy for quantum Hall ferro-
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FIG. 3. Variation, as a function ofi, of the quasiparticle FIG. 5. Variation, as a function d, of the Hartree contribution
bimeron energy, for three different filling factors. The single- to the quasiparticle bimeron energy, for three different filling fac-
particle HF quasiparticle energy is also shown. tors. The Hartree contribution to the single-particle HF quasiparticle

energy is also shown.

magnets,/7/32e?/ e/ .} Whend increases, the dipolar term o _ , ,
in Eq. (3) limits the meron core size, and the filling factor quasiparticle energy in the single-particle HF case are also

dependence of the effective quasiparticle energy eventualljlotted. At small values ofl (d<0.25), the Hartree quasi-
becomes negligible. Fai>0.57, we can describe the iso- Particle energy increases with This is because at small
lated bimeron limit rather accurately. d, in Eq. (3), the dipolar contribution to the Hartree energy

In Fig. 4, we show the dependence(& ond for differ- grows faster than the capacitive contribution. ds0, be-
ent values ofv. Because of the variational character of the €@use of the presence of neighbors, the Hartree contribution
method of calculation, the bimeron size converges mord® the quasiparticle energy is not zero, as expected in the case
slowly with v than the energy. Nevertheless, it is clear fromOf, an isolated Skyrmion. Hovyeve_r, the numencal_result ob-
Fig. 4 that the bimeron decreases in size wheincreases. tained for the exchange contribution to the Skyrmion energy

H H 2
At small d(d<0.1/), the parametetS) and other more de- S VEry close to the ideal valugm/32e%/ e/ .

tailed indices of the internal structure of the quasiparticle, do In the Hartree-Fock approximation, the criti_cal Ir?\yer sepa-
not change withd. ration is reached whedi reachesl .~ 1.1/ At this point, the

In Figs. 5 and 6, we plot, as a function df the Hartree easy-plane ferromagnet ground statevatl becomes un-

and exchange contributions to the quasiparticle bimeron erst@Plé to the formation of charge-density waves. This is
ergy. For comparison, the values of these contributions to the

0.4

1

o
T

Exchange Energy (e?/et)
T

~0.24
g Y=1,02
--=- py=1.015
e y=1.02 -¥-n=101
o |--m- v=1015 ~04 ] Single particle
-v-v=1.01
T T T T T
0 T T T T T 0.0 0.2 0.4 0.6 0.8 1.0
0.0 0.2 0.4 0.6 0.8 1.0 d /Z

d/e
FIG. 6. Variation, as a function af, of the exchange contribu-
FIG. 4. Variation, as a function af, of the quasiparticle param- tion to the quasiparticle bimeron energy, for three different filling
eter(S), for three different filling factors. In the case of the single- factors. The exchange contribution to the single-particle HF quasi-
particle HF quasiparticlg,S)=1. particle energy is also shown.
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reflected in our results in the fact that, fdrlarger thand,

the size of the quasiparticles diverges and the energy goes to 0.424
zero. A related instability occurs in charged vortex effective
models of double-layer systers.However, in all like- 0.4

d=0.5¢\v=1.02

lihood, the charge-density-wave state we obtain at latge

N
D
is an artifact of the Hartree-Fock approximation. Instead, the { 038
transition likely goes directly to a fluid state with weakly ~
correlated compressible= 3 fluids® in each layer and no D 0367
spontaneous coherence. Thereforeta0, the maximum 3034_
value of d for which our calculations are reliable ig o
=1.1/, and due to the convergence of the results with re- |5 5, |
spect tov the minimum value isi~0.4/.
Before finishing this subsection, we compare our results 0.3
with those obtained using a field-theoretical approach by
Yang and MacDonal& These authors found that the dis- 0.28 | | |
tance between meron cores increases whattreases. Here 0.0 0.005 0.01 0.015 0.02
we find the contrary; the bimeron decreases in size when t/(ez/eE)

increases. For the quasiparticle energy, Yang and Mac-

Donald found a energy just more than half of the result ob- o ) o
tained here, and in better agreement with exact diagonaliza- FIG- 7. Variation, as a function of, of the quasiparticle
tion studie€ The differences between our results and thosdimeron energy, fod=0.5" and»=1.02.

of Ref. 25 are due to the neglect in that work of short-range

repulsive interactions between the meron cores. In our calcwguantitatively because the dependence of the meron core en-
lations, there is no regime in which the bimeron can beergy ont contributes importantly to the tunneling amplitude
treated as merons interacting only due to the gradient energgependence, and because the bimeron is not very large com-
We attribute differences between the values we obtain for thpared to either the meron core size or microscopic lengths.
quasiparticle energy and estimates from exact diagonalizaFhe change in curvature we find between the very ldrge
tion calculation8 to quantum fluctuations that increases inregime whereA«t and the stronger dependence at smaller
importance as the layer separation increases. The quantwalues of t is qualitatively consistent with the field-
fluctuations renormalize the pseudospin stiffness and proltheoretical predictions. The linear dependence of the charge
ably will also modify the energy and size of the bimerons.gap ont at smallt, which is probably most appropriately
This effect will be more important for a larger layer separa-regarded as a core energy contribution, reflects the broken
tion d. If spontaneous coherence is lost with increasing layesymmetry of the ground state. As mentioned above, the field
separation via a continuous phase transition in which theheory estimates might be somewhat more successful in de-
pseudospin stiffness vanishes, there will be a regime close tscribing experiment than in describing our calculations since
the phase boundary where the bimeron size increases and tthe spin stiffness which helps limit the meron separation in
core size becomes relatively negligible. We can concludehe bimeron is overestimated by the Hartree-Fock approxi-
from the present calculation that this regime will be quitemation, especially close to the critical layer separation.
narrow.

B. Tunneling amplitude different from zero

Figures 7 and 8 show the dependence of the quasiparticle
energy and S) on the tunneling gap gas= 2t. The bimeron
guasiparticle energy increases witlbecause of the tunnel-
ing energy, and because the Hartree contribution to the qua-
siparticle energy increases when the size of the bimeron
(~(S)) decreases. Results are shown dier 0.5/ case; at
this layer separation the effect of neighbors on the quasipar-
ticle size is very smal(see Figs. 3 and)4 The field theory
estimates reviewed in Sec. lll suggest that the bimeron
should begin to shrink, and that the quasiparticle energy
should begin to increase fdrgas>A<,s. Ford=0.57, the
pseudospin stiffness in they plane ispg=0.012%/¢/ and
the crossover tunneling amplitude estimate given in Sec. 1 | 1 l
1B is AZ,s~0.0142% ¢/ Our numerical calculations give 0.0 0.005 001 0015 002
no indication of either an important crossover tunneling pa- t/(ez/ee)
rameter or of a wide regime in which the quasiparticle en-
ergy is proportional ta** before finally crossing over to a FIG. 8. Variation, as a function df of the quasiparticle param-
single-particle regime with a contribution proportionaltto  eter(S), for d=0.5" andv=1.02. In the case of the single-particle
The field theory estimates fail to describe our calculationsHF quasiparticle{S)=1.
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In Fig. 8, we observe that far0.02(?/ /) the quasipar-

-053
ticle is close to a single-particle excitation wigB)=1. The d=0.5¢ //
tunneling parameter plays a role in this calculations similar -0.531{ t=0.006¢/ ¢t /
to the role played by the Zeeman coupling in single-layer
calculations. In both cases, the size of coupling required to o —0-532
recover single-particle excitations is surprisingly small. W
gep prisingly ™\ -0.533
™~
C. Effect of a parallel magnetic field O 534
>
The inclusion of a parallel magnetic fiej in the prob- o
: . . -0.535
lem is responsible for the appearance of a lengthin our 8
calculations. In the commensurate phaBe,destroys the W _g536 ,
translational invariance of the=1 ferromagnetic ground / T 'C°mme”5”r°t‘i
. . . . e . /2 B ncommensurate
s(geltz,/ }r;troducmg in the system a periodicityr/Z), with -0.537 /,/ — Sofiton Lattice
We study the dependence of the quasiparticle energies on -0.538 T T T | T
parallel magnetic field by studying periodic structures with 01 02 03 04 05 06 07
one extra electron per unit cell. We choose to work, as in Qe

previous sections, with a square lattice. The spatial variation
of the hopping amplitude can be incorporated into our calcu- FiG. 9. Variation, as a function @@/, of the energy per elec-
lations without difficulty provided the lattice constant is an tron of the commensurate, incommensurate, and soliton lattice states
integer multiple of 2r/Q. The results presented here wereat y=1. The results correspond to the casés 0.5/ and
performed by choosing the density of charged excitations, so=0.006%/¢/.
that this condition is satisfiedfFor a square lattice, the lattice
constant isy2m/[1—v|/ and forBy applied in they direc-  yrateq in Fig. 10 forQ/=0.25, and in Fig. 11 for
tion we chooser so that this is an integer multiple of 5, _ 5 These illustrations demonstrate that the charged
27/Q.) The range oBy which can be studied in this way iS gycitation changes from having the character of solutions
determined by the range of filling factors for which the form ¢o,nq in the presence of hopping to having the character of
and size of the quasiparticle in the unit cell is not affected by,utions found without any hopping. We conclude from the
the neighbors. _ smooth evolution of these solutions in our calculation, that
With this approach we are able to describe only the comy,e phase transition in a parallel field occurs only in a very
mensurate state and its charged excitations and the solitqqy o\ range around=1. Already for»~1.01 there is no
lattice state with fixed period2/Q and its charged excita- jnqication of a phase transition from the Hartree-Fock calcu-
tions. The incommensurate state is the strong parallel fielehions, motivating further theoretical work to elucidate the

limit of this soliton lattice state. The incommensurate state iShysics which controls the dependence of the phase bound-
never the true ground state, but closely approxinfattse ary on|v—1| andQ.

ground state on the lardg@ side of the transition, except for In Fig. 12, we present the resulting estimate of the depen-

the region very close 1@, where the solitons are widely gence of the charge gap on parallel field. These estimates
spaced. In a parallel field, we find two separate self-

consistent solutions to the Hartree-Fock calculations when
no charged excitations are preséior »=1) corresponding At A A i 2 e
to the commensurate and soliton lattice states. ittt

N ) S A AL

The energies of these two states are plotted a function of AAAAALALALALAAALAAA LA AL AL AL A A S

Q in Fig. 9 for d=0.5 andt=0.006%/¢/. The parallel ﬁ“ﬁjjjfﬁjﬁﬁjf{”““
field strength beyond which the soliton state has lower en- REREE { ( { f f 5 :; »; f { ( { { ity
ergy corresponds tQ/'=0.37, which should be compared NANNNNN D I { BARARARRR
with the field theory estimat®* /'=0.36. In Fig. 9, we also AR AR R AR,
plot the energy per electron of the incommensurate state, T ST s S
| 1 AT ANNNNNYN

b= HVa=0)+Ve(a=0)) (@3 i NN 17777577

. /////ff‘i \\\\\\‘Hfff////

The energy per electron for the commensurate state is ‘ ‘ ( ( { { { N § ; Q Q ; { { i { { ( ( ( { (
B ) AR AR AR AR R AR AR R

6= IVHIZ0 T Vga=Q)L (32 AR AR AN

. . A N N N S N S 0t N N S SN

From Fig. 9, we see that the energies of the commensurate e e o e e e e e e e e o e e P e e

and incommensurate states cross@i_,;~'=0.404. Note

that the soliton lattice has always lower energy than the in- £ 10. Two-dimensional vector representation ofxthgcom-

commensurate state. ~ ponents of the pseudospin density for a DQW system in the cases
When charged excitations are present we are able to find=0.5/, t=0.00&2/ ¢/, andQ/=0.25. The length of the arrows

only one solution to the self-consistent Hartree-Fock equais proportional to the local magnitude & andS,, and their di-
tion at any value ofQ. Spin textures for this state are illus- rection indicates the local orientation.
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- - Hartree-Fock calculation. However, the large meron-core

SRS size and the large fraction of the charge gap provided by core
jjjjj::jj:::::::::;;jjjjj; energies means that the magnitude of the corresponding
VIS A A Ot d PSS AL anomaly in the charge gap will be quite small, and that the
IV I/ v v vrrrrr s/l i P H itati ;
NNy ry Yy doma!n-wall string picture of the charge excitation will apply
VWVl /v svvrrrrre s/ /70 LD only in a very narrow range of parallel fields around
NNV VWV Vv rrrrr s 77V VAN —0O* A £ hi . h | f _
NNNV G/ f d e e s 7 1 LA NN Q=Q*. Away from this region, the only source of uncer
Iy o e e Y tainty in our calculations comes from the neglect of quantum
e fluctuations in the Hartree-Fock approximations.
NN NN A _ForQ smaller tharQ*, the quasiparticle energy decreases
; ; ; : : Q t::::‘::‘:::it Q : { : ; ; ; 1 with Q, because, in the commensurate phase, the pseudospin
{ { { Q : i:\\\\\\\\\\\\ \ Q { { { { { rotates in thex-y plane with a period proportional 1@ 1,
NRNNRNNRNRNNNNNNN i i i i _
e . ——— NN N A and the gradient energy cost'of preatlng a quaS|part|cIe de
NN NN NN NN creases when the rotation period increases. In the incommen-
SNINIIIIIIII I IO, surate phase, the pseudospin texture does not follow the par-
T e e allel magnetic field, and the quasiparticle energy increases

with Q until it reaches the value of the quasiparticle energy
FIG. 11. Two-dimensional vector representation ofthecom- @t Bj=0 andt=0. The quasiparticle energy changes from
ponents of the pseudospin density for a DQW system in the caseqp(d,t) at By to the valueeqy(d,t=0) at infinite Bj. Our
d=0.5/, t=0.006% ¢/, andQ/ =0.50. The length of the arrows calculations do not obtain a reduction in the quasiparticle
is proportional to the local magnitude &, andS,, and their di- ~ energy as large as is found experiment&flye think that
rection indicates the local orientation. the source of the disagreement is the neglect of quantum
fluctuations in the Hartree-Fock approximation. These cor-

have been improved by applying the Madelung energy cortections will have a larger effect in reducing the charge gap
rection for interactions between different charged excitationdn the incommensurate state, since tunneling is then not ef-
as explained in previous sections. In the range of filling facfective in their suppression.

tors for which these calculations have been done, we checked

that we recovered previous estimates for the charge gap in VI. BIMERON AND MERON CRYSTALS

the limits of zero parallel field and zero tunneling parameter. ) ) . .

These illustrations demonstrate what we explained in previ- In this section, we comment on the rich possibilities for

ous sections. The cusp in this curve originates from the levéh® ground state of a DQW system at filling factor near

crossing of the two ground-state energies. Our calculationg=1, where the density of charged excitations is finite. We
do notprovide useful information on the dependence of thediscuss some results we have _obtalned in the f||||ﬂg_ faptors
charge gap very close to the phase transition, since in ounge|r—1|<0.1, where we believe the charged excitations

soliton lattice state the distance between the soliton is fixe@e likely to crystallize, and the Hartree-Fock approximation

at Q/2r. In particular, the~|Q—Q* |2 predicted by Read S likely to be largely reliable. _ _

could not be captured by our approach, although we believe Our results are obtained using the method described in

that it does occur and could be captured by a more elaborafe€C. 1V, but some useful information can be obtained by
considering possibilities using the field-theoretical language

of Sec. Il. In presence dfl, excess electrons with respect to

0.35 L d=0.5¢ v=1, the pseudospin unit vectar(r) can have the form of
0.3 . t=0.006¢"/ ¢t a N.-order bimeron, specified by Eq&) and (6):
S 0.25 wiz)= [ ZhtLeie, (33)
3 i=1Ng Z7Zi R
E)/ 027 This solution containdN, pairs of merons with topological
> charge; and opposite vorticities. In the pure ANIM, the
90'15_ energies of theNg-order bimeron does not depend on the
8 location of the center of the merozs, andz g, but de-
w017 pendsonly on the total topological charghl,. However,
~ Gormea| | nce lhe lopoagia) charge denaty, 24 depends on e
—— Soliton Lattice ) .
are taken into account, the energy of possiblgorder
0.0 l I I I I bimeron states will depend on the locations of all meron
o1 02 03 04 05 06 07 centers. At zero temperature and at a filling factor close
Qe enough tov=1, we expect long-range Coulomb interactions

to cause the meron centers to crystallize. The precise form of
FIG. 12. Variation, as a function 0®/, of the quasiparticle the pseudospin within each unit cell will depend on the fill-
energy with respect to the commensurate and soliton lattice phase#lg factor, the tunneling amplitude, and the distance between
The results correspond to the casks0.5” andt=0.006%/¢/ . layers.
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FIG. 13. (a) Excess of total charge density with respect to the  FIG. 14. (a) Excess of total charge density with respect to filling
filling factor v=1,n(r)—1/(2m/?). (b) z component of the pseu- factor v=1,n(r)—1/(27/?). (b) z component of the pseudospin
dospin densitys,(r). (c) Two-dimensional vector representation of density S,(r). (c) Two-dimensional vector representation of the
thex-y components of the pseudospin density for a DQW system irk-y components of the pseudospin density for a DQW system in the
the casesy=1.04d=0.8/, andt=0.01e? /. The figure corre- casesy=1.08d=0.8, and t=0. The figure corresponds to a
sponds to a square lattice with two extra electrons per unit cell withsquare lattice with two extra electrons per unit cell with respect to
respect tor=1. In (a) and (b), the numerical values are given in v=1. In (a8 and (b), the numerical values are given in units of
units of 1/27/2. In (c), the length of the arrows is proportional to 1/27/2. In (c), the length of the arrows is proportional to the local
the local magnitude 0§, andS;,, and their direction indicates the magnitude ofS, and S, and their direction indicates the local
local orientation. orientation.

Recently, we have found that the ground state of a 2DEGwvith two Skyrmions per unit cell. When the Zeeman cou-
system at filling factor near=1 is a Skyrme crystal' Fora  pling decreases 0) and the filing factor increases
Zeeman coupling different from zero~(0.01%%/¢/), we  (~1.05), part of the charge density centered around the
found that the ground state is a square lattice Skyrme cryst&kyrmions moves toward the interstitial regidrapparently
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forming quasiparticles with topological charge And at a VIl. SUMMARY
given, the ground state is a square lattice with four charged . .
e/2 merons per unit cell. When the temperature increases, it We used a supe.rlat.tlce approach to determine the nature
has been propos&that the ground state is a liquid of these of the charged excitations and the charge gap for double-
chargede/2 quasiparticles. layer quantum Hall systems at=1 as a function of layer

In the DQW systems, dt+0 and a filling factor close to separation, tunneling gmplitude between the layers, and tilt
»=1, we find that the ground state is a square-latticeangles of the magnetic field away from the normal to the
bimeron crystal, with two bimerons per unit cell. Each layers. This study was motivated by field-theoretical descrip-
bimeron is aligned along thie direction because of the tun- tions of the pseudospin texture charged excitations which
neling energy. In one bimeron, the meron on the left has it§ccur at this filling factor because of spontaneous phase co-
core charge density in the left layer, and the meron on th&erence in the incompressible ground state. If a pseudospin
right has its core charge in the right layer. For the otherepresentation is used for the layer degree of freedom, the
meron, this distribution is reversed. In Fig. 13, we plot thespontaneous phase coherence can be recognized as being
following numerical results for the cased=0.8, equivalent to easy-plane ferromagnetic order. In the field
t=0.01e%/e/, and v=1.04: (a) the total charge density theory description, the charged excitations consist of merons
n(r), (b) the z component of the pseudospin densgyr) in the pseudo_spin _field which carry chargee/2, and are
and, (c) the two-dimensional vector representation of theheld together in pairs to form bimerons by forces which de-
x-y components of the pseudospin density. pend on the pseudospin stiffness and the tunneling amplitude

As the tunneling amplitude decreases and the filling factoPetween the two layers. Our microscopic Hartree-Fock cal-
increases, the bimeron charge starts to split more cleanly inteulations confirm many qualitative aspects of the field theory
two separate merons with chargé?, until the ground state description of the elementary charged excitations in these
of the system eventually looks like a true meron crystal. TheSystems. However, we find that the meron core sizes and the
unit cell of this ground state is a square with four chargedcore contribution to the quasiparticle energies, which are
e/2 merons. In Fig. 14, we illustrate such a state for the case®0st reliably estimated by microscopic calculations like
d=0.8/,t=0, and»=1.08 by plotting(a) the total charge those reported here, are large enough to invalidate quantita-
densityn(r), (b) the z component of the pseudospin density tive aspects and some qualitative aspects of thg field theory
S,(r) and, (c) the two-dimensional vector representation of description. We have also explored the rich variety of crys-
the x-y components of the pseudospin density. The pseut@lline states, including meron lattices and bimeron lattices,
dospin texture showed in Fig. 14 are well described by avhich we believe are the ground states of double-quantum-

function w well systems for finite but small densities of charged excita-
tions.
A | (34
w(z)= — ,
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