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Département de Physique, Universite´ de Sherbrooke, Sherbrooke, Que´bec, Canada J1K 2R1

A. H. MacDonald
Department of Physics, Indiana University, Bloomington, Indiana 47405

~Received 26 June 1996!

Quasiparticle excitations of incompressible quantum Hall states at a total filling factorn51 in a double-
layer system have bimeron pseudospin textures. We studied the charge and pseudospin distributions and the
energies of these quasiparticles as a function of layer separation, tunneling amplitude between the layers, and
in-plane magnetic field strength by using a supercell microscopic unrestricted Hartree-Fock approach. We find
that for typical double-layer system parameters, estimates of quasiparticle properties based wholly or partly on
field-theoretic models require substantial quantitative revision. We comment on the nature of the crystal states
expected at a finite but small quasiparticle density, and on limitations of the unrestricted Hartree-Fock ap-
proach.@S0163-1829~96!01248-9#

I. INTRODUCTION

Advances in semiconductor epitaxial growth techniques
have led to the realization of double-quantum-well~DQW!
systems with extremely high-mobility electron gases in
nearby quantum wells. In some of these systems, the spacing
between the two electron layers,d, is comparable to the typi-
cal electron spacing within a layer (d;100 Å!, and interest-
ing effects can occur because of electronic correlation be-
tween electrons in different layers. This is especially true in
the presence of a strong magnetic fieldB applied perpendicu-
lar to the electron layers. An interesting example is the oc-
currence, established by recent experimental1 and
theoretical2,3 work, of spontaneous interlayer phase coher-
ence in some incompressible quantum Hall effect~QHE!
ground states.

In this work, we study charged excitations of the incom-
pressible quantum Hall state at the total filling factorn51.
~Heren[N/Nf is the ratio of the number of electrons to the
orbital degeneracy of a Landau levelNf5AB/F0, where
A is the area of the system andF0 is the magnetic flux
quanta.! At n51, it has been established3 from several dif-
ferent theoretical points of view that, for sufficiently small
separation between the layers, a broken symmetry can occur
in which coherence exits between electrons in opposite lay-
ers in the absence of interlayer tunneling. This broken sym-
metry is favored by interlayer electron-electron interactions.
The Hartree-Fock approximation for the broken symmetry
ground-state wave function has the form3

uC&5)
X

1

A2
~CX,l

1 1eiwCX,r
1 !u0&. ~1!

In this equation,X is a lowest Landau-level orbital label,
u0& is the electron vacuum, and the operatorsCX,l (r )

1 create
an electron with the orbital quantum numberX in the left
~right! well. Since the product runs over all the possible val-
ues ofX this state corresponds to filling factorn51. By
construction, this state has the same electronic charge in each
layer, so that the electrostatic energy of the system is mini-
mized when electric fields from external charges are
balanced.4 This state has long-range order in the phase dif-
ference between electrons in the two layers,w. Since, in the
absence of tunneling between the layers (t), the energy is
independent ofw, the system has a continuous broken sym-
metry and will have a linearly dispersing Goldstone boson
collective mode.

In the presence of tunneling, the energy is minimized
whenw50; in this case the many-particle wave function in
Eq. ~1! is composed of a full Landau level of single-particle
orbitals which are symmetric combinations of the left and
right layer orbitals. This wave function is evidently the exact
ground state in the case of noninteracting electrons, and it is
possible3 to show that ford→0 it remains exact when inter-
actions are included. For finited, quantum fluctuations be-
come important and the Hartree-Fock wave function is no
longer exact. However, the broken symmetry ground state is
expected5,6 to survive for d smaller than a critical value
dc .

The quantum Hall effect is a low-temperature anomaly in
the transport properties of double-layer systems in which the
Hall resistance is accurately quantized and the dissipative
resistance is}exp(2D/2kBT), whereD is the charged exci-
tation gap, i.e., it is the energy necessary to make excitations
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with unbound charges. The quantum Hall effect occurs7

when the chemical potential atT50 has a discontinuity at a
density which depends on magnetic field, most often at a
fixed value ofn. The energy to add a particle to the system,
m1, differs from the energy to remove a particle from the
system,m2. If the excitations have chargee, as they do in
the case of interest,D5m12m2 is equal to the chemical
potential discontinuity associated with the incompressible
state. The broken symmetry states discussed above are also
incompressible states which exhibit the quantum Hall effect.
At present, the property of these states which is most open to
experimental study isD, which can be measured by studying
the temperature dependence of the dissipative resistance at
low temperatures, and which is expected to vanish for
d.dc . Indirect experimental evidence for the putative bro-
ken symmetry ground state in DQW systems has been ob-
tained by studying the collapse of the QHE atn51 at large
layer separations.8,9 The physics of the charge gap,D, at
n51 in double-layer systems, which is intimately connected
with the broken symmetry ground state3 at t50, is the prin-
ciple subject of this paper. One consequence of the sponta-
neous interlayer phase coherence in the DQW system at
n51 is the unusual sensitivity ofD to the component of the
magnetic field (Bi) parallel to the layers.10 Experimental
studies have shown that the activation energy drops rapidly
with increasingBi , until Bi reaches a critical strength
(Bic) where a phase transition to a state whose activation
gap is weakly dependent onBi ~Ref. 10! appears to occur.
We will address the dependence ofD on the hopping energy
t andBi .

DQW system properties are conveniently described by
mapping6 the layer degree of freedom to an artificial pseu-
dospin degree of freedom. In thed50 case, a spinless DQW
system is equivalent to a two-dimensional electron gas
~2DEG! system with spin-12 particles and no Zeeman cou-
pling. The 2DEG has SU~2! symmetry, and atn51 the
ground state is a strong ferromagnet11 with total spin quan-
tum numberS5N/2 . The mapping associates states in the
left and right wells with the eigenstates of thesz Pauli spin
matrix, so that the wave function in Eq.~1! is theS5N/2
state of a 2DEG atn51, with the spins maximally aligned
along the@cos(w),sin(w),0# direction.

Two-dimensional ferromagnets in systems with SU~2!
symmetry ~Heisenberg ferromagnets! have topologically
nontrivial Skyrmion12 excitations. The experimental signifi-
cance of these excitations in quantum Hall ferromagnets is
magnified by the unique property6,13 that topologically non-
trivial spin-texture excitations carry an electrical charge.6,13

In fact, these excitations can be and often are the lowest-
energy charged excitations ofn51 quantum Hall ferromag-
nets, and therefore limit the activation energyD for dissipa-
tive transport processes. For Heisenberg quantum Hall
ferromagnets, the lowest-energy charged excitations for zero
Zeeman coupling are large Skyrmions, andD is half the
Hartree-Fock quasiparticle gap.13 For nonzero Zeeman cou-
pling, the lowest-energy charged excitations are still usefully
regarded as topologically charged spin textures, although the
form and size of the charged-spin-texture excitations is de-
termined by a complicated competition between the Hartree
energy which favors extended charges and the Zeeman en-
ergy which favors small spin textures with a relatively small

averaged number of reversed spins.~We follow the practice
of the literature on quantum Hall ferromagnets and retain the
Skyrmion label for these excitations as long as it is useful to
regard them as charged spin textures.! For typical Zeeman
coupling strengths, the energy gapD is only slightly smaller
than the Hartree-Fock quasiparticle gap. However, the spin
carried by the Skyrmions is much larger than for spin-1

2

charged excitations.14–17 It is this difference in spin content
which has made it possible to identify Skyrmion18–20excita-
tions experimentally. For a finite Skyrmion density (nÞ1),
the ground state is a square lattice Skyrme crystal.21

For dÞ0, the SU~2! symmetry of the 2DEG is reduced to
U~1! symmetry because of the difference between interac-
tions among electrons in the same layer and in different lay-
ers. The main effect is the appearance of a capacitive charg-
ing energy which locally favors equal density in the two
layers. In the pseudospin language, this term favors configu-
rations in which isospins are confined to thex̂-ŷ plane. The
system maintains invariance under rotations about theẑ
pseudospin axis, and behaves like an easy-planeXY ferro-
magnet rather than a Heisenberg ferromagnet. The change in
the symmetry is responsible for a change in the dispersion of
the Goldstone collective modes at long wavelengths3 from
quadratic to linear.22 The change in the ground state from
Heisenberg ferromagnet to easy-planeXY ferromagnet sug-
gests that vortexlike spin textures might be important. Easy-
plane ferromagnets have vortexlike spin-textures, called
merons,6 in which the order parameter tilts out of the easy
plane in the vortex core. For quantum Hall ferromagnets,
merons are pseudospin textures with charge6e/2.6 Al-
though the energy of an individual meron diverges logarith-
mically with the size of the system, two merons with like
charge and opposite vorticities carry total charge6e and
have finite energy. We will call these charge6e excitations
bimerons. Meron pairs with opposite vorticities and opposite
charges may lead to a Kosterliz-Thouless phase transition6,23

in this system. The bimeron description6,11,24,25 of the el-
ementary charged excitations is appropriate only if the
meron separation is large compared to the meron core size.
For d→0, as we discuss below, the bimeron evolves into a
Skyrmion. In this limit, the meron pair description fails. Ex-
isting estimations of the bimeron excitation are based on
microscopic calculations of the meron core energy and core
size, but treat the interaction between merons6,11,24,25quali-
tatively.

The main purpose of this paper is to investigate the
charged pseudospin-texture excitations of the DQW system.
We describe their energy and size as a function of layer
separation and the tunneling amplitude between the quantum
wells. We find that although the bimeron picture often does
apply qualitatively, it is not quantitatively reliable because of
the relatively small separation between merons. We also
study the effect that a parallel magnetic field has on charged
pseudospin textures. We compare our results with previous
descriptions of bimerons6,11,24,25 which assume that the
meron core is small compared to the optimal meron separa-
tion. We also discuss the ground state of the DQW system
when the filling factor is slightly different fromn51, i.e.,
when a finite density of bimerons exists in the system.

The paper is organized as follows. In Sec. II, we review
the long-wavelength effective Hamiltonian6,11 which de-

54 16 889CHARGED PSEUDOSPIN TEXTURES IN DOUBLE-LAYER . . .



scribes low-energy charged excitations of then51 DQW
system, and discuss the picture of charged excitations which
follows from this Hamiltonian. In Sec. III, we review predic-
tions for charged-spin-texture excitations which follow from
regarding bimerons as merons coupled only by the gradient
term in the effective Hamiltonian.6,11,24,25 In Sec. IV, we
summarize the unrestricted Hartree-Fock method used for
the present calculations. We present and discuss our numeri-
cal results, including results for the case of a finite density of
charged spin textures, in Sec. V, and conclude in Sec. VI.

II. FIELD-THEORETICAL APPROACH

In a quantum Hall ferromagnet with Landau-level filling
factor n, spin textures and pseudospin textures which vary
slowly on a microscopic length are accompanied by a charge
density6,13

q~r !52
n

8p
enmm~r !•@]nm~r !3]mm~r !#. ~2!

This equation can be established13 by assuming the quanti-
zation of the Hall conductivity and using the relationship
between the Berry phase and the solid angle enclosed by the
electronic spin orientation along a closed path. In Eq.~2!,
q(r ) is the charge density relative to the uniform density
ferromagnetic ground state at filling factorn, andm(r ) is the
unit-vector field which specifies the local direction of the
pseudospin magnetic moment. The right-hand side of Eq.~2!
is n times the Pontryagian index density, or the topological
charge density associated with the vector fieldm.12,26

It follows from the relation between electrical and topo-
logical charge densities that the Hamiltonian describing low-
energy excitations of the DQW system atn51 must have the
following form in the limit of slowly varying spin textures:6

H5
rE
2 E dr ~¹mm!21 1

2 E dr dr 8q~r !V~r2r 8!q~r 8!

1
DSAS

4pl 2E dr „mx~r !21…1bE dr ~mz!2

2
e2d2

16peE dq

4p2qm2q
z mq

z1
rA2rE

2 E dr ~¹mz!2.

~3!

The first two terms of the Hamiltonian are SU~2! invariant
contributions. The leading gradient term is the only term that
appears in the nonlinears model ~NLsM! for Heisenberg
ferromagnets, andrE is the spin stiffness in thex-y plane.
The second term describes the SU~2! invariant Hartree en-
ergy corresponding to the charge density generated by Berry
phases in quantum Hall ferromagnets.V(r ) is the Coulomb
interaction screened by the dielectric constante of the host
semiconductor. The third term describes the loss in tunneling
energy when electrons are promoted from symmetric to an-
tisymmetric states; hereDSAS52t is the single-particle split-
ting between symmetric and antisymmetric states. This term
in the Hamiltonian of double-layer systems plays the same
role as the Zeeman coupling in single-layer spin-1

2 systems.
Here l 5(\c/eB)1/2 is the magnetic length. The last three
terms are the leading interaction anisotropy terms at long

wavelengths. The (¹mz)2 term accounts for the anisotropy
of the spin stiffness. Pseudospin order in thex̂-ŷ plane physi-
cally corresponds to interlayer phase coherence so that
rA-rE will become larger with increasingd. The sum of the
first and sixth terms in Eq.~3! gives anXY-like anisotropic
nonlineals model~ANLsM!. However, this gradient term is
not the most important source of anisotropy at long wave-
lengths. The fourth term produces the leading anisotropy,
and is basically the capacitive energy of the double-layer
system.27 The fifth term appears due to the long-range nature
of the Coulomb interaction; its presence demonstrates that a
naive gradient expansion of the anisotropic terms is not
valid. (mq is the Fourier transform of the unit vector field
m.! Equation~3! can be rigorously derived from the Hartree-
Fock approximation in the limit of slowly varying spin
textures,6 and explicit expressions are obtained forrE ~which
is due in this approximation entirely to interlayer interac-
tions!, rA ~due to intralayer interactions!, andb. Quantum
fluctuations will alter the values of these parameters from
those implied by the Hartree-Fock theory.

If we retain only the first and last terms in Eq.~3!, we
have the ANLsM

H05
rE
2 E dr ~¹mm!~¹mm!1

rA2rE
2 E dr ~¹mz!2. ~4!

The metastable spin-texture excitations of this model are
identical to the analytically known metastable spin textures
of the NLsM.28,29,12Because of the gradient terms inH0,
any finite-energy solution should approach a constant,
m(r )→m0, whenur u→`. ~Herem0 is any constant unit vec-
tor.! Consequently the 2Dx̂-ŷ plane may be mapped to a unit
sphere with all points aturWu→` mapped to the south pole,
and spin textures may be regarded as mappings30 from the
unit sphere to the unit sphere. Each finite-energy texture of
the ANLsM is then characterized by an integerwinding
number, which is the number of times the first spherical sur-
facewinds the second one.

In the 2DEG problem, in the presence of an infinitesimal
Zeeman coupling, the Skyrmion spin must point in theẑ
direction forurWu→`. In the case of the DQW problem, how-
ever, even an infinitesimal capacitive term requires thatm̂0
lie in the x̂-ŷ plane. A useful starting point for thinking about
bimerons is to start from the ANLsM case. The resulting
picture differs from that for single-layer 2DEG real spin
Skyrmions only by this global rotation in pseudospin space.
Each metastable state of the double-layer field theory classi-
fied by a topological numbern consists ofn pairs of merons
with the same charge and different vorticities. We call these
statesnth-order bimerons. In particular, then51 solution is
a simple bimeron, and then521 solution a simple anti-
bimeron. The winding number is equal to the topological
charge,12 and, due to the relation between the topological and
real charge in our system, the bimerons are nontrivial quasi-
particles excitations of the DQWn51 incompressible
ground state with chargee.

Following previous work,12 it is convenient to param-
etrize the unit vector fieldm(r ) in terms of the complex
functionw,
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mx1 imy5
2w

11uwu2
. ~5!

In terms ofw, the charge density has the expression

q~z!5
1

p

u]zwu22u]z*wu2

~11uwu2!2
. ~6!

~Herez5x1 iy .! A general bimeron, which satisfies the re-
quirement that its pseudospin texture lie in thex-y plane for
urWu→`, is specified by a complex function of the form28,29

w~z!5
z2zL
z2zR

eiw, ~7!

wherew gives the azimuthal orientation of the projection of
m in the x-y plane, at uzu→`. The charge density of a
bimeron is circularly symmetric arounduzL1zRu/2, and its
size is proportional touzL2zRu. From mz and q(z), it is
possible to obtain the charge density projected onto the left
@qL(r )# and right @qR(r )# wells. qL(r ) and qR(r ) have
maxima atzL andzR , respectively. In anaivepicture,zL and
zR are the centers of the two merons which form the
bimeron. It should be noted thatqL(R)(r ) are not symmetric
around zL(R) . In the ANLsM, the energy of a neutral
bimeron or antibimeron isEbm

0 5(4p/3)(2rE1rA). In the
d50 case, the cost in energy of creating a bimeron-
antibimeron pair is one-half the energy cost of creating a
single-particle electron-hole pair.13 When a finite Zeeman
term is present, a microscopic description of the problem
shows that the energy difference is reduced, but the spin
textures still have a lower energy than single-particle
electron-hole pairs.14 In this work, we confirm that this is
also the case for finite values of the layer separationd.

Now we describe qualitatively the effect that the other
terms of the low-energy Hamiltonian Eq.~3! have on the
solution of the ANLsM. The second term in Eq.~3! is the
SU~2! invariant part of the Hartree energy which favors in-
finity large bimerons. In the case ofDSAS50, the terms in
Eq. ~3! which favors finite-size bimerons are the fourth and
fifth ones. This term is a dipolar contribution which appears
due to the long-range character of the Coulomb interaction.
Tunneling plays the same role as the Zeeman energy in the
2DEG, favoring a finite-size quasiparticle.14 These terms
also change the functional form of the bimeron. In order to
obtain the actual form and energy of the charged pseudospin
textures, it would be necessary to minimize the Hamiltonian
~3!. However, the addition of the extra terms to the simplest
HamiltonianH0 tends to favor small size bimerons, which
are often not correctly described by the Hamiltonian~3!,
which is only valid in the limit of slowly varying spin tex-
tures. In order to describe charged pseudospin textures of any
size, we use a microscopic Hartree-Fock~HF! approximation
which has previously been successfully used for describing
spin textures in the 2DEG system atn51.14,21

III. SPIN-TEXTURE QUASIPARTICLES IN COHERENT
DOUBLE-LAYER SYSTEMS

In this section, we will review some of the physical pic-
tures and quantitative estimates for charged-spin-texture ex-
citations in coherent double-layer quantum Hall systems

which have been developed by previous workers using a
field theory approach. These pictures and estimates will be
compared with Hartree-Fock results in Sec. V. Previous
works on charged pseudospin textures in DQW’s treat them
as if composed of two chargee/2 merons with opposite
vorticities.6,11,24,25In this section, we briefly review the re-
sults obtained with this approximation.

A. No tunneling between layers

Due to the gradient terms in the effective Hamiltonian of
Eq. ~3!, the energy of anisolatedmeron with charge6e/2,
can be written in the form

Em
65Emc

6 1prElnR/Rmc; ~8!

hereEmc
6 are the meron-core energies, andRmc is the meron-

core radius. The size of the meron does not depend on the
sign of the charge. The quantitiesRmc andEmc

6 do not depend
on the vorticity, but on the distance between wells. The loga-
rithmic term appears because the meron has a topological
charge61/2. The meron charge density has circular symme-
try around the meron center.

In order to cancel the logarithmic divergence and obtain
finite-energy charged excitations, it is necessary to combine
two merons with opposite vorticities. In this case, it is nec-
essary to take into account the Hartree repulsion between
merons with the same chargee/2. The repulsion appears be-
cause of the equivalence between topological and real
charge. Including the Hartree repulsion, the energy of two
merons separated by a distanceR is

Emp
6 52Emc

6 1
e2

4eR
12prEln~R/Rmc!. ~9!

The equilibrium distance between merons,R* , and meron-
pair energy are obtained by minimizingEmp

6 with respect to
R.

This approach for the meron pair energy is valid provided
R* is larger thanRmc. Using HF estimations forrE ,Rmc,
and Emc

6 , Yang and MacDonald25 obtainedEmp
6 ,Rmc, and

R* . They found thatRmc decreased continuously withd, and
that R* increases withd. At a layer separationd;0.5l ,
R*5Rmc , and they concluded25 that their estimates would
be reliable in the range 0.5l ,d,dc . In this range, the
charge gap in the system,Emp

1 1Emp
2 , is almost one-half the

HF single-particle gap, in approximate agreement with exact
diagonalization studies.6

B. Tunneling amplitude different from zero

The effect of the tunneling on the charged pseudospin
texture energy has been also estimated.24,11When tÞ0, the
U~1! symmetry in the problem is destroyed and the pseu-
dospin must point in thex̂ direction for urWu→`. As
DSAS52t increases, the bimeron configuration gradually
transforms into a pseudospin configuration with a domain
wall connecting the meron cores.31 The string tension of the
domain wall is

T05
8rE
j

, ~10!
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where

j5F4pl 2rE
DSAS

G1/2 ~11!

is the width of the domain wall. Assuming that the distance
between merons,R, is much larger thanj, the energy of the
positive charged meron pair in this limit can be written as

Emp8 52Emc8 1
e2

4eR
1T0R. ~12!

The prime inEmc8 is included to emphasize thatEmc will
depend onDSAS. The meron-pair energy is minimized at
R085Ae2/4eT0, and takes the value 2Emc8 1Ae2T0 /e. Note
that, apart from the variation of the meron-core energy with
DSAS, the meron-pair energy varies asDSAS

1/4 , in contrast to
the case of single-particle excitations where the gap changes
linearly with DSAS. This picture applies forj,R08,R* . In
Ref. 11, it is estimated that the crossover from the meron-
pair picture to the finite-length domain-wall picture of the
charged quasiparticle occurs for DSAS/(e

2/el )
;83103@rE /(e

2/el )#3. This estimate, combined with the
HF estimate ofrE , suggests that the domain-wall picture
will apply except for samples prepared to makeDSAS as
small as possible. Note also that for large values of
DSAS, R08 decreases and forR08;l , the meron-pair descrip-
tion cannot apply.

C. Effect of a parallel magnetic field

A finite component of the magnetic field (Bi) in the ŷ
direction, induces a position-dependent phase in the tunnel-
ing amplitudet→teiQx, whereQ5d/l 2 and l i5A\c/eBi
is the magnetic length corresponding toBi . In the pseu-
dospin language tunneling maps to a fictitious magnetic field
h(r )5t(cosQx,sinQx,0), which has a Zeeman coupling with
the pseudospin unit vector fieldm(r ). Two terms are impor-
tant in the Hamiltonian in order to describe the ground state
at n51: a tunneling term which favors a pseudospin texture
aligned locally with the rotating Zeeman fieldh(r ), and a
gradient term representing the energy cost associated with
the spatial variation ofm(r ). Neglecting the pseudospin
component in thez direction, the effective Hamiltonian at
n51 can be written

H5E dr F12 rEu¹wu22
DSAS

4pl 2cos„w~r !2Qx…G , ~13!

wherew5arctan(my /mx). For smallQ and/or smallrE , the
phase obeysw(r )5Qx, and the order parameter rotatescom-
mensuratelywith h(r ). At larger Bi , h(r ) rotates too rap-
idly, and a phase transition to a soliton lattice occurs. The
critical value ofQ where the phase transition from the com-
mensurate phase to the soliton phase occurs is23,32

Q* l 5S 2p D 3/2S DSAS

2rE
D 1/2. ~14!

At Q* , the commensurate phase is destroyed by the creation
of walls separating domains where the pseudospin is con-
stant. In each domain wall, the pseudospin phase slips by

2p relative to the rotating Zeeman field. These domain walls
are the solitons which appears as solution of Eq.~13!. At
largerQ, the distance between the solitons becomes of the
same order as the soliton width, and the soliton lattice phase
asymptotically approaches anincommensuratephase where:
w; const. From Eq.~13!, the incommensurate phase has
lower energy than the commensurate phase atQC→I

5ADSAS/2prE.
In this paper, we attempt to address the question of how

the charge gap of the DQW system atn51 changes with
Bi . When Bi50, the direction of the string joining the
merons is arbitrary. The first effect of havingBiÞ0 is to
define a preferred direction in the system: in order to lower
the gradient energy, the domain walls will want to line up in
the y direction.24,11 The second effect is a reduction in the
string tension. In the commensurate phase, the effective
string tension is24,11

T5T0F12S Q

Q* D
2G . ~15!

The meron-pair energy is minimized at a distance between
merons,R095Ae2/4eT, and the energy of the positively
charged meron pair, far in the commensurate phase, is

2Emc
1 1S e2T0e D 1/2F12S Q

Q* D
2G1/2. ~16!

Observe that there is a large reduction in the charge gap
whenQ increases. Read24 studied the behavior of the charge
gap for all ranges ofBi more thoroughly. He found that,
because of the vanishing string tension at the transition to the
soliton lattice state, there should be a symmetric square-root
singularity in the gap forQ nearQ* .

The attractive physical pictures developed above assume
that the meron-core size is small compared to the string
length, and this is small compared to the meron-pair separa-
tion in the absence of tunneling. Correspondingly the internal
structure of the meron is assumed to play a negligible role in
the energetics. Our objective below in comparing with mi-
croscopic Hartree-Fock results is to help determine when
these assumptions do apply, and to see what aspects of these
physical pictures survive when the meron cores become large
and polarizable.

IV. METHOD OF CALCULATION

We now turn our attention to microscopic calculations,
which free us from assumptions about the meron core and
domain-wall sizes and enable us to include all relevant con-
tributions to the quasiparticle energy. As explained in Sec.
III, the size and form of bimeron pseudospin-texture quasi-
particles is determined by competition between gradient,
Hartree, and tunneling energies. Since these three terms are
well described by the HF approximation, we expect that this
mean-field approach should give an accurate description of
charged excitations in DQW systems. We also know that in
the case of the 2DEG the HF approximation gives extremely
accurate results for spin-texture quasiparticles.14.

For the single-layer 2DEG with spin, the Hartree-Fock
approximation for a microscopic Skyrmion-like charged-
spin-texture state centered on the origin has single-particle
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orbitals in which the angular momentum of the up-spin dif-
fers from the angular momentum of the down-spin by a
single unit. This mixing produces an azimuthal spin-texture
component which winds by 2p around a circle centered on
the origin, and results in self-consistent-field equations14

which require only 232 matrices14 to be diagonalized. In the
DQW case, the lack of circular symmetry in a bimeron state
leads to Hartree-Fock self-consistent-field equations which
do not decouple, and the resulting numerical calculation
would be more difficult. We avoided this complication by
considering a crystal of identical bimerons, and taking the
limit of large lattice constants. Although the bimerons inter-
act by means of the long-range Coulomb interaction, it is
usually possible to extract properties of isolated bimerons
from these crystal calculations. At the same time, we are able
to obtain results for the crystal states which presumably oc-
cur for a low but finite density of bimerons.

Since we are essentially dealing with a strong field phe-
nomenon, and we are interested in states for which the tun-
neling gap is much smaller than the cyclotron gap, we will
only consider states in the lowest Landau level. In the Lan-
dau gauge, the single-particle states are given by

cX, j~r !5
1

ALyl p1/2
eiXy/l

2
e2~x2X!2/2l 2x j~z!. ~17!

Here X is the electron guiding center, andx j (z) with
j5R,L is the envelope wave function of the lowest-energy
state centered in the right or left well. It is convenient to
define the operators

r j , j 8~q!5
1

Nf
(
X,X8

e2~ i /2!qx~X1X8!dX,X82qyl
2CX, j

1 CX8, j 8,

~18!

so that the Fourier transform of the density operator can be
written as

n~q,z!5Nf(
j , j 8

e2~q2l 2/4!x j* ~z!x j 8~z!r j , j 8~q!. ~19!

The HF mean-field Hamiltonian of the DQW system is there-
fore

HHF52Nf

DSAS

2
@rL,R~0!2rR,L~0!#

1Nf

e2

el (
q,i , j

Vi , j~q!r i , j~q!, ~20!

where

VL,L5@Va~q!2Vb~q!#^rL,L~2q!&1Vc~q!^rR,R~2q!&,

VR,R5@Va~q!2Vb~q!#^rR,R~2q!&1Vc~q!^rL,L~2q!&,
~21!

Vi , j52Vd~q!^r j ,i~2q!&, iÞ j .

In Eq. ~21!,

Va~q!5
e2q2l 2/2

ql
,

Vb~q!5E
0

`

d~q8l !J0~qq8l
2!e2~q82l 2/2!,

Vc~q!5
e2q2l 2/2

ql
e2qd, ~22!

Vd~q!5E
0

`

d~q8l !J0~qq8l
2!e2~q82l 2/2!e2qd,

andJ0 a Bessel function of the first kind.
In order to obtain the HF solutions at a givenn, we solve

Eqs. ~20! and ~21! self-consistently using the one-electron
Green’s-function equation-of-motion approach.5

Hamiltonian~21! has a number of different solutions cor-
responding to different states of the DQW system. Each of
these solutions is characterized by a set of order parameters
^r i , j (G)&, where the wave vectorsG are the reciprocal-
lattice vectors of the periodic structure considered. To en-
force a particular solution, we start in the first iteration of
Eqs. ~20! and ~21! with a set of parameterŝr i , j (G)& with
the desired translational and pseudospin texture symmetries.

Given a symmetry, we have to find the minimum energy
solution of the HF Hamiltonian. The HF total energy has the
expression

EHF5^HHF&2 1
2Nf

e2

el (
q,i , j

Vi , j~q!r i , j~q!. ~23!

The energy per electron is simplyE5EHF/N.
To study isolated bimerons, we solve Eqs.~20! and ~21!

self-consistently for filling factors close ton51. In the very
dilute limit, n→1, we extract information corresponding to
isolated bimerons from our results. We look for periodic
structures with one extra electron per unit cell with respect to
n51, i.e., a single bimeron per unit cell. In this limit of
almost independent bimerons, the results obtained for quasi-
particles on triangular and square lattices are nearly identical.
In the square lattice case, the lattice parameter for a given
filling factor n is A2p/u12nu, and the quasiparticle interac-
tion effects can be approximated by the point-particle Made-
lung energies of the lattices, and these are usually much
smaller than the relevant energies in the problem.

We express our results for the quasiparticle energies in
terms of the energy («qp) increase per quasiparticle, when
the quasiparticlesNqp5uN2Nfu are created at fixed number
of electrons by varyingNf :

«qp
6 5

n

u12nu @E2«0~d!#; ~24!

the plus sign corresponds to the bimeron case (n.1), and
the minus to the antibimeron case (n,1). «0(d) is the en-
ergy per electron at then51 incompressible state,

«0~d!52t2 1
4 @Vb~q50!1Vd~q50!#. ~25!
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In the limit of vanishing bimeron density (n→1), the quan-
tity «qp

6 is the so-called neutral quasiparticle energy,33,34 re-
lated to the chemical potentialsm6 at densities just larger
and just smaller than the critical density atn51, through the
relation

m656«qp
6 1«0~d!. ~26!

As a consequence of the particle-hole symmetry which ap-
plies in the thermodynamic limit, the chemical potential sat-
isfies the relation

m11m252@«0~d50!1t#. ~27!

It is therefore possible to extract the charge gap of the system
from the knowledge of«qp

1 alone:

D5m12m252«qp
1 12@«0~d!2«0~d50!#. ~28!

It is useful to consider the quasiparticle energy as the sum
of Hartree, exchange, and tunneling energy contributions.
These contributions to«qp

6 are given by terms of correspond-
ing origin on the right-hand side of Eq.~24!. When the size
of the bimerons is much smaller than the distance between
bimerons, the Hartree energy is reduced, in our calculations,
by the Madelung energy per quasiparticle.35 In the triangular
lattice, «MAD.20.7821u12nu1/2e2/el . In the dilute limit,
this is the dominant interaction contribution to«qp

6 , and we
subtract this contribution from our numerical results. The
tunneling term is proportional to the one-electron tunneling
gapDSAS. The constant of proportionality iŝS&, the mean
number of electrons in antisymmetric states. This quantity
provides a measure of the size of the quasiparticles; for
single-particle excitations,̂S&51.

Once the HF equations have been solved self-consistently
the charge and spin densities can be evaluated from the fol-
lowing expressions. The charge density is (A is the area of
the system!

n~r !5
Nf

A (
G

@^rL,L~G!&1^rR,R~G!&#e2G2l 2/4e2 iG•r.

~29!

Components of the pseudospin density are given by

Sz~r !5
Nf

2A(
G

@^rL,L~G!&2^rR,R~G!&#e2G2l 2/4e2 iG•r,

Sx~r !1 iSy~r !5
Nf

A (
G

^rL,R~G!&e2G2l 2/4e2 iG•r. ~30!

V. NUMERICAL RESULTS

For a given translational symmetry, we solve Eqs.~20!
and ~21! self-consistently for a set of order parameters,
^r i , j (G)&. We include reciprocal-lattice vectors with
uGu,Gmax, and increaseGmax until our numerical results
converge. Since the number of reciprocal-lattice vectors
needed to obtain accurate results increases rapidly with the
size of the unit cell, our approach fails if the bimeron lattice
is too dilute. We are generally able to obtain accurate results
only for un21u.0.01.

A. No tunneling between layers

In Fig. 1, we plot, for the case whered50 andt50, ~a!
the total charge densityn(r ), ~b! the z component of the
pseudospin densitySz(r ) , and~c! the two-dimensional vec-

FIG. 1. ~a! Excess of total charge density with respect to the
filling factor n51, n(r )21/(2pl 2). ~b! z component of the pseu-
dospin densitySz(r ). ~c! Two-dimensional vector representation of
thex-y components of the pseudospin density for a quasiparticle in
the casesn51.02,d50, and t50. The figure corresponds to a
square unit cell. In~a! and ~b!, the numerical values are given in
units of 1/2pl 2. In ~c!, the length of the arrows is proportional to
the local magnitude ofSx andSy , and their direction indicates the
local orientation.

16 894 54L. BREY, H. A. FERTIG, R. CÔTÉ, AND A. H. MACDONALD



tor representation of thex-y components of the pseudospin
density. The figure corresponds to the unit cell used in the
calculations. These results have been obtained using a square
lattice, with a single quasiparticle per unit cell, and a filling
factorn51.02, i.e., the distance between the quasiparticles is
;18l . Becaused50, the system has SU~2! symmetry and
the quasiparticles are Skyrmions. The total charge density
has nearly circular symmetry around the Skyrmion center. In
thed50 andt50 case, the only nonzero terms in Eq.~3! are
the gradient and Hartree terms, and a single Skyrmion would
have unlimited size. In our calculation, the Skyrmions have
finite size solely as a result of repulsive interactions with
their neighbors. This conclusion will be more evident when
we show the dependence of the quasiparticle size with filling
factor.

In Fig. 1, we also plot the Skyrmion spin density. Note
that the spin texture is well described by Eq.~7!, with
zL5(23.2,0),zR5(3.2,0), andw50 ~the origin is the center
of the unit cell!. It is important to note that the results shown
in Fig. 1 are nearly identical to those for a NLs model Skyr-
mion, and the main difference in comparison with familiar
plots for the single-layer case is just a global rotation of the
spin field. Also note that the charge density contributions
from left and right quantum wells are not circularly symmet-
ric aroundzL(zR) or around the origin. The electron density
projected in the left~right! well has a maximum atzL (zR)
and a minimum atzR(zL), also in agreement with the Skyr-
mion shape given by Eqs.~5!–~7!.

When the distance between wells increases, the charge
density shape gradually changes; asd increases it assumes an
approximately ellipsoidal form while at large values of
d (d.0.6l ) separate maxima centered atzL andzR appear.
In Fig. 2, we show the same quantities as in Fig. 1 but for the
cased50.8l . Note that in this case the form of the solution
is still reasonably approximated by Eqs.~5!–~7!. Now the
distance between the merons is smaller,zL5(21.8,0.0) and
zR5(1.8,0.0). From the comparison between Figs. 1 and 2, it
is clear that the core size of the constituent merons decreases
whend increases, in agreement with Ref. 25. We find that
both the distance between merons,uzL2zRu, and the core
size of the merons decreases monotonically asd increases.
We also find that for all values ofd,dc , the electron den-
sity projected in theL(R) well is not even approximately
circularly symmetric aroundZL(R) , and it has a minimum in
ZR(L) .

In Fig. 3, we plot the quasiparticle bimeron energy«qp as
a function ofd, for three different filling factors. Clearly an
extrapolation to the dilute limit can be carried out reliably
except possibly for very smalld. For comparison, we also
plot the single-particle quasiparticle energy. The energy of
the bimeron is, for all values ofd, smaller that the single-
particle energy, in agreement with Ref. 25.~Both quasiparti-
cle energies will be renormalized by quantum fluctuations
neglected in the Hartree-Fock approximation.! For single-
particle excitations, these corrections can be estimated by
diagrammatic expansions,36,6 and are not expected to be
large. For pseudospin-texture quasiparticles, these correc-
tions could be more important, as we comment further be-
low, but are not likely to alter the energetic ordering obtained
in our Hartree-Fock calculations. The filling factor depen-

dence of the effective quasiparticle energy is largest at
d50 where the quasiparticle size is always limited by mu-
tual interactions. Atd50, the quasiparticle energy should
approach the ideal Skyrmion energy for quantum Hall ferro-

FIG. 2. ~a! Excess of total charge density with respect to filling
factor n51,n(r )21/(2pl 2). ~b! z component of the pseudospin
density Sz(r ). ~c! Two-dimensional vector representation of the
x-y components of the pseudospin density for a bimeron in the
casesn51.02,d50.8, andt50. The figure corresponds to a square
unit cell. In ~a! and ~b!, the numerical values are given in units of
1/2pl 2. In ~c!, the length of the arrows is proportional to the local
magnitude ofSx and Sy , and their direction indicates the local
orientation.
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magnets,Ap/32e2/el .13 Whend increases, the dipolar term
in Eq. ~3! limits the meron core size, and the filling factor
dependence of the effective quasiparticle energy eventually
becomes negligible. Ford.0.5l , we can describe the iso-
lated bimeron limit rather accurately.

In Fig. 4, we show the dependence of^S& on d for differ-
ent values ofn. Because of the variational character of the
method of calculation, the bimeron size converges more
slowly with n than the energy. Nevertheless, it is clear from
Fig. 4 that the bimeron decreases in size whend increases.
At small d(d,0.1l ), the parameter̂S& and other more de-
tailed indices of the internal structure of the quasiparticle, do
not change withd.

In Figs. 5 and 6, we plot, as a function ofd, the Hartree
and exchange contributions to the quasiparticle bimeron en-
ergy. For comparison, the values of these contributions to the

quasiparticle energy in the single-particle HF case are also
plotted. At small values ofd (d,0.25l ), the Hartree quasi-
particle energy increases withd. This is because at small
d, in Eq. ~3!, the dipolar contribution to the Hartree energy
grows faster than the capacitive contribution. Atd50, be-
cause of the presence of neighbors, the Hartree contribution
to the quasiparticle energy is not zero, as expected in the case
of an isolated Skyrmion. However, the numerical result ob-
tained for the exchange contribution to the Skyrmion energy
is very close to the ideal valueAp/32e2/el .

In the Hartree-Fock approximation, the critical layer sepa-
ration is reached whend reachesdc;1.1l . At this point, the
easy-plane ferromagnet ground state atn51 becomes un-
stable to the formation of charge-density waves. This is

FIG. 3. Variation, as a function ofd, of the quasiparticle
bimeron energy, for three different filling factors. The single-
particle HF quasiparticle energy is also shown.

FIG. 4. Variation, as a function ofd, of the quasiparticle param-
eter^S&, for three different filling factors. In the case of the single-
particle HF quasiparticle,̂S&51.

FIG. 5. Variation, as a function ofd, of the Hartree contribution
to the quasiparticle bimeron energy, for three different filling fac-
tors. The Hartree contribution to the single-particle HF quasiparticle
energy is also shown.

FIG. 6. Variation, as a function ofd, of the exchange contribu-
tion to the quasiparticle bimeron energy, for three different filling
factors. The exchange contribution to the single-particle HF quasi-
particle energy is also shown.
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reflected in our results in the fact that, ford larger thandc
the size of the quasiparticles diverges and the energy goes to
zero. A related instability occurs in charged vortex effective
models of double-layer systems.37 However, in all like-
lihood, the charge-density-wave state we obtain at larged
is an artifact of the Hartree-Fock approximation. Instead, the
transition likely goes directly to a fluid state with weakly
correlated compressiblen5 1

2 fluids
38 in each layer and no

spontaneous coherence. Therefore, att50, the maximum
value of d for which our calculations are reliable isd
51.1l , and due to the convergence of the results with re-
spect ton the minimum value isd;0.4l .

Before finishing this subsection, we compare our results
with those obtained using a field-theoretical approach by
Yang and MacDonald.25 These authors found that the dis-
tance between meron cores increases whend increases. Here
we find the contrary; the bimeron decreases in size whend
increases. For the quasiparticle energy, Yang and Mac-
Donald found a energy just more than half of the result ob-
tained here, and in better agreement with exact diagonaliza-
tion studies.6 The differences between our results and those
of Ref. 25 are due to the neglect in that work of short-range
repulsive interactions between the meron cores. In our calcu-
lations, there is no regime in which the bimeron can be
treated as merons interacting only due to the gradient energy.
We attribute differences between the values we obtain for the
quasiparticle energy and estimates from exact diagonaliza-
tion calculations6 to quantum fluctuations that increases in
importance as the layer separation increases. The quantum
fluctuations renormalize the pseudospin stiffness and prob-
ably will also modify the energy and size of the bimerons.
This effect will be more important for a larger layer separa-
tion d. If spontaneous coherence is lost with increasing layer
separation via a continuous phase transition in which the
pseudospin stiffness vanishes, there will be a regime close to
the phase boundary where the bimeron size increases and the
core size becomes relatively negligible. We can conclude
from the present calculation that this regime will be quite
narrow.

B. Tunneling amplitude different from zero

Figures 7 and 8 show the dependence of the quasiparticle
energy and̂S& on the tunneling gapDSAS52t. The bimeron
quasiparticle energy increases witht because of the tunnel-
ing energy, and because the Hartree contribution to the qua-
siparticle energy increases when the size of the bimeron
(;^S&) decreases. Results are shown ford50.5l case; at
this layer separation the effect of neighbors on the quasipar-
ticle size is very small~see Figs. 3 and 4!. The field theory
estimates reviewed in Sec. III suggest that the bimeron
should begin to shrink, and that the quasiparticle energy
should begin to increase forDSAS.DSAS

cr . For d50.5l , the
pseudospin stiffness in thex-y plane isrE.0.012e2/el and
the crossover tunneling amplitude estimate given in Sec.
III B is DSAS

cr ;0.014e2/el . Our numerical calculations give
no indication of either an important crossover tunneling pa-
rameter or of a wide regime in which the quasiparticle en-
ergy is proportional tot1/4 before finally crossing over to a
single-particle regime with a contribution proportional tot.
The field theory estimates fail to describe our calculations

quantitatively because the dependence of the meron core en-
ergy ont contributes importantly to the tunneling amplitude
dependence, and because the bimeron is not very large com-
pared to either the meron core size or microscopic lengths.
The change in curvature we find between the very larget
regime whereD}t and the stronger dependence at smaller
values of t is qualitatively consistent with the field-
theoretical predictions. The linear dependence of the charge
gap on t at small t, which is probably most appropriately
regarded as a core energy contribution, reflects the broken
symmetry of the ground state. As mentioned above, the field
theory estimates might be somewhat more successful in de-
scribing experiment than in describing our calculations since
the spin stiffness which helps limit the meron separation in
the bimeron is overestimated by the Hartree-Fock approxi-
mation, especially close to the critical layer separation.

FIG. 7. Variation, as a function oft, of the quasiparticle
bimeron energy, ford50.5l andn51.02.

FIG. 8. Variation, as a function oft, of the quasiparticle param-
eter^S&, for d50.5l andn51.02. In the case of the single-particle
HF quasiparticle,̂S&51.
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In Fig. 8, we observe that fort;0.02(e2/l ) the quasipar-
ticle is close to a single-particle excitation with^S&51. The
tunneling parameter plays a role in this calculations similar
to the role played by the Zeeman coupling in single-layer
calculations. In both cases, the size of coupling required to
recover single-particle excitations is surprisingly small.14

C. Effect of a parallel magnetic field

The inclusion of a parallel magnetic fieldBi in the prob-
lem is responsible for the appearance of a lengthl i in our
calculations. In the commensurate phase,Bi destroys the
translational invariance of then51 ferromagnetic ground
state, introducing in the system a periodicity 2p/Q, with
Q5d/l 2.

We study the dependence of the quasiparticle energies on
parallel magnetic field by studying periodic structures with
one extra electron per unit cell. We choose to work, as in
previous sections, with a square lattice. The spatial variation
of the hopping amplitude can be incorporated into our calcu-
lations without difficulty provided the lattice constant is an
integer multiple of 2p/Q. The results presented here were
performed by choosing the density of charged excitations, so
that this condition is satisfied.~For a square lattice, the lattice
constant isA2p/u12nul and forBi applied in theŷ direc-
tion we choosen so that this is an integer multiple of
2p/Q.! The range ofBi which can be studied in this way is
determined by the range of filling factors for which the form
and size of the quasiparticle in the unit cell is not affected by
the neighbors.

With this approach we are able to describe only the com-
mensurate state and its charged excitations and the soliton
lattice state with fixed period 2p/Q and its charged excita-
tions. The incommensurate state is the strong parallel field
limit of this soliton lattice state. The incommensurate state is
never the true ground state, but closely approximates32 the
ground state on the largeQ side of the transition, except for
the region very close toQc where the solitons are widely
spaced. In a parallel field, we find two separate self-
consistent solutions to the Hartree-Fock calculations when
no charged excitations are present~for n51) corresponding
to the commensurate and soliton lattice states.

The energies of these two states are plotted a function of
Q in Fig. 9 for d50.5l and t50.006e2/el . The parallel
field strength beyond which the soliton state has lower en-
ergy corresponds toQl 50.37, which should be compared
with the field theory estimateQ* l 50.36. In Fig. 9, we also
plot the energy per electron of the incommensurate state,

«0
I 52 1

4 @Vb~q50!1Vd~q50!#. ~31!

The energy per electron for the commensurate state is

«0
C52t2 1

4 @Vb~q50!1Vd~q5Q!#. ~32!

From Fig. 9, we see that the energies of the commensurate
and incommensurate states cross atQC2I l 50.404. Note
that the soliton lattice has always lower energy than the in-
commensurate state.

When charged excitations are present we are able to find
only one solution to the self-consistent Hartree-Fock equa-
tion at any value ofQ. Spin textures for this state are illus-

trated in Fig. 10 for Ql 50.25, and in Fig. 11 for
Ql 50.5. These illustrations demonstrate that the charged
excitation changes from having the character of solutions
found in the presence of hopping to having the character of
solutions found without any hopping. We conclude from the
smooth evolution of these solutions in our calculation, that
the phase transition in a parallel field occurs only in a very
narrow range aroundn51. Already forn;1.01 there is no
indication of a phase transition from the Hartree-Fock calcu-
lations, motivating further theoretical work to elucidate the
physics which controls the dependence of the phase bound-
ary on un21u andQ.

In Fig. 12, we present the resulting estimate of the depen-
dence of the charge gap on parallel field. These estimates

FIG. 9. Variation, as a function ofQl , of the energy per elec-
tron of the commensurate, incommensurate, and soliton lattice states
at n51. The results correspond to the casesd50.5l and
t50.006e2/el .

FIG. 10. Two-dimensional vector representation of thex-y com-
ponents of the pseudospin density for a DQW system in the cases
d50.5l , t50.006e2/el , andQl 50.25. The length of the arrows
is proportional to the local magnitude ofSx andSy , and their di-
rection indicates the local orientation.
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have been improved by applying the Madelung energy cor-
rection for interactions between different charged excitations
as explained in previous sections. In the range of filling fac-
tors for which these calculations have been done, we checked
that we recovered previous estimates for the charge gap in
the limits of zero parallel field and zero tunneling parameter.
These illustrations demonstrate what we explained in previ-
ous sections. The cusp in this curve originates from the level
crossing of the two ground-state energies. Our calculations
do notprovide useful information on the dependence of the
charge gap very close to the phase transition, since in our
soliton lattice state the distance between the soliton is fixed
at Q/2p. In particular, the;uQ2Q* u1/2 predicted by Read
could not be captured by our approach, although we believe
that it does occur and could be captured by a more elaborate

Hartree-Fock calculation. However, the large meron-core
size and the large fraction of the charge gap provided by core
energies means that the magnitude of the corresponding
anomaly in the charge gap will be quite small, and that the
domain-wall string picture of the charge excitation will apply
only in a very narrow range of parallel fields around
Q5Q* . Away from this region, the only source of uncer-
tainty in our calculations comes from the neglect of quantum
fluctuations in the Hartree-Fock approximations.

ForQ smaller thanQ* , the quasiparticle energy decreases
with Q, because, in the commensurate phase, the pseudospin
rotates in thex-y plane with a period proportional toQ21,
and the gradient energy cost of creating a quasiparticle de-
creases when the rotation period increases. In the incommen-
surate phase, the pseudospin texture does not follow the par-
allel magnetic field, and the quasiparticle energy increases
with Q until it reaches the value of the quasiparticle energy
at Bi50 and t50. The quasiparticle energy changes from
«qp(d,t) at Bi to the value«qp(d,t50) at infiniteBi . Our
calculations do not obtain a reduction in the quasiparticle
energy as large as is found experimentally.10 We think that
the source of the disagreement is the neglect of quantum
fluctuations in the Hartree-Fock approximation. These cor-
rections will have a larger effect in reducing the charge gap
in the incommensurate state, since tunneling is then not ef-
fective in their suppression.

VI. BIMERON AND MERON CRYSTALS

In this section, we comment on the rich possibilities for
the ground state of a DQW system at filling factor near
n51, where the density of charged excitations is finite. We
discuss some results we have obtained in the filling factors
rangeun21u,0.1, where we believe the charged excitations
are likely to crystallize, and the Hartree-Fock approximation
is likely to be largely reliable.

Our results are obtained using the method described in
Sec. IV, but some useful information can be obtained by
considering possibilities using the field-theoretical language
of Sec. II. In presence ofNe excess electrons with respect to
n51, the pseudospin unit vectorm(r ) can have the form of
a Ne-order bimeron, specified by Eqs.~5! and ~6!:

w~z!5 )
i51,Ne

z2zi ,L
z2zi ,R

eiw. ~33!

This solution containsNe pairs of merons with topological
charge1

2 and opposite vorticities. In the pure ANLsM, the
energies of theNe-order bimeron does not depend on the
location of the center of the meronszi ,L and zi ,R , but de-
pendsonly on the total topological chargeNe . However,
since the topological charge density, Eq.~6!, depends on the
location of the meron centers, when other terms in Eq.~3!
are taken into account, the energy of possibleNe-order
bimeron states will depend on the locations of all meron
centers. At zero temperature and at a filling factor close
enough ton51, we expect long-range Coulomb interactions
to cause the meron centers to crystallize. The precise form of
the pseudospin within each unit cell will depend on the fill-
ing factor, the tunneling amplitude, and the distance between
layers.

FIG. 11. Two-dimensional vector representation of thex-y com-
ponents of the pseudospin density for a DQW system in the cases
d50.5l , t50.006e2/el , andQl 50.50. The length of the arrows
is proportional to the local magnitude ofSx andSy , and their di-
rection indicates the local orientation.

FIG. 12. Variation, as a function ofQl , of the quasiparticle
energy with respect to the commensurate and soliton lattice phases.
The results correspond to the casesd50.5l and t50.006e2/el .
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Recently, we have found that the ground state of a 2DEG
system at filling factor nearn51 is a Skyrme crystal.21 For a
Zeeman coupling different from zero (;0.015e2/el ), we
found that the ground state is a square lattice Skyrme crystal

with two Skyrmions per unit cell. When the Zeeman cou-
pling decreases (;0) and the filling factor increases
(;1.05), part of the charge density centered around the
Skyrmions moves toward the interstitial region,39 apparently

FIG. 13. ~a! Excess of total charge density with respect to the
filling factor n51,n(r )21/(2pl 2). ~b! z component of the pseu-
dospin densitySz(r ). ~c! Two-dimensional vector representation of
thex-y components of the pseudospin density for a DQW system in
the casesn51.04,d50.8l , and t50.01e2/el . The figure corre-
sponds to a square lattice with two extra electrons per unit cell with
respect ton51. In ~a! and ~b!, the numerical values are given in
units of 1/2pl 2. In ~c!, the length of the arrows is proportional to
the local magnitude ofSx andSy , and their direction indicates the
local orientation.

FIG. 14. ~a! Excess of total charge density with respect to filling
factor n51,n(r )21/(2pl 2). ~b! z component of the pseudospin
density Sz(r ). ~c! Two-dimensional vector representation of the
x-y components of the pseudospin density for a DQW system in the
casesn51.08,d50.8l , and t50. The figure corresponds to a
square lattice with two extra electrons per unit cell with respect to
n51. In ~a! and ~b!, the numerical values are given in units of
1/2pl 2. In ~c!, the length of the arrows is proportional to the local
magnitude ofSx and Sy , and their direction indicates the local
orientation.
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forming quasiparticles with topological charge12. And at a
givenn, the ground state is a square lattice with four charged
e/2 merons per unit cell. When the temperature increases, it
has been proposed40 that the ground state is a liquid of these
chargede/2 quasiparticles.

In the DQW systems, attÞ0 and a filling factor close to
n51, we find that the ground state is a square-lattice
bimeron crystal, with two bimerons per unit cell. Each
bimeron is aligned along thex̂ direction because of the tun-
neling energy. In one bimeron, the meron on the left has its
core charge density in the left layer, and the meron on the
right has its core charge in the right layer. For the other
meron, this distribution is reversed. In Fig. 13, we plot the
following numerical results for the cased50.8l ,
t50.01e2/el , and n51.04: ~a! the total charge density
n(r ), ~b! the z component of the pseudospin densitySz(r )
and, ~c! the two-dimensional vector representation of the
x-y components of the pseudospin density.

As the tunneling amplitude decreases and the filling factor
increases, the bimeron charge starts to split more cleanly into
two separate merons with chargee/2, until the ground state
of the system eventually looks like a true meron crystal. The
unit cell of this ground state is a square with four charged
e/2 merons. In Fig. 14, we illustrate such a state for the cases
d50.8l ,t50, andn51.08 by plotting~a! the total charge
densityn(r ), ~b! the z component of the pseudospin density
Sz(r ) and, ~c! the two-dimensional vector representation of
the x-y components of the pseudospin density. The pseu-
dospin texture showed in Fig. 14 are well described by a
functionw,

w~z!5l(
n,m

F 1

z2Rn,m
2

1

z2Rn,m2R1,1/2
G , ~34!

wherel is the meron size andRn,m are the lattice points:
Rn,m5nR01 imR0, whereR0 is the lattice parameter. The
minus sign in Eq.~34! corresponds to the rotation of one
bimeron with respect to the other, as found in the Skyrme
crystal. The poles of expression~34! correspond to the posi-
tion of the merons with core charge in the left well. The
zeros of Eq. ~34! are located atRn,m1(R0/2) and at
Rn,m1 i (R0/2), and they correspond to the position of the
merons whose core charge is in the right well.

VII. SUMMARY

We used a superlattice approach to determine the nature
of the charged excitations and the charge gap for double-
layer quantum Hall systems atn51 as a function of layer
separation, tunneling amplitude between the layers, and tilt
angles of the magnetic field away from the normal to the
layers. This study was motivated by field-theoretical descrip-
tions of the pseudospin texture charged excitations which
occur at this filling factor because of spontaneous phase co-
herence in the incompressible ground state. If a pseudospin
representation is used for the layer degree of freedom, the
spontaneous phase coherence can be recognized as being
equivalent to easy-plane ferromagnetic order. In the field
theory description, the charged excitations consist of merons
in the pseudospin field which carry charge6e/2, and are
held together in pairs to form bimerons by forces which de-
pend on the pseudospin stiffness and the tunneling amplitude
between the two layers. Our microscopic Hartree-Fock cal-
culations confirm many qualitative aspects of the field theory
description of the elementary charged excitations in these
systems. However, we find that the meron core sizes and the
core contribution to the quasiparticle energies, which are
most reliably estimated by microscopic calculations like
those reported here, are large enough to invalidate quantita-
tive aspects and some qualitative aspects of the field theory
description. We have also explored the rich variety of crys-
talline states, including meron lattices and bimeron lattices,
which we believe are the ground states of double-quantum-
well systems for finite but small densities of charged excita-
tions.
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