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The quasihole states of several paired states, the Pfaffian, Haldane-Rezayi, and 331 states, which under
certain conditions may describe electrons at filling facters or 3, are studied analytically and numerically in
the spherical geometry, for the Hamiltonians for which the ground state are known exactly. We also find all the
ground state$without quasiparticlesfor these systems in the toroidal geometry. In each case, a complete set
of linearly independent functions that are energy eigenstates of zero energy is found explicitly. For fixed
positions of the quasiholes, the number of linearly independent stat&sligd the Pfaffian, and 2'~ 2 for the
Haldane-Rezayi state; these degeneracies are needed if these systems are to possess non-Abelian statistics, and
they agree with predictions based on conformal field theory. The dimensions of the spaces of states for each
number of quasiholes agree with numerical results for moderate system sizes. The effects of tunneling and of
the Zeeman term are discussed for the 331 and Haldane-Rezayi states, as well as the relation to Laughlin states
of electron pairs. A model introduced by Ho, which was supposed to connect the 331 and Pfaffian states, is
found to have the same degeneracies of zero-energy states as the 331 state, except at its Pfaffian point where
it is much more highly degenerate than either the 331 or the Pfaffian. We introduce a modification of the model
which has the degeneracies of the 331 state everywhere including the Pfaffian point; at the latter point,
tunneling reduces the degeneracies to those of the Pfaffian state. An experimental difference is pointed out
between the Laughlin states of electron pairs and the other paired states, in the current-voltage response when
electrons tunnel into the edge. An appendix contains results for the permanent state, in which the zero modes
can be occupied by composite bosons, rather than by composite fermions as in the other cases; the system is
found to have an incipient instability toward a spin-polarized s{&6163-182¢06)04947-§

[. INTRODUCTION ticles, either bosons or fermions, constructed by attaching an
odd or even numben, respectively, of vortices to the elec-
Over the past few years there has been renewed interestirons, for filling factor 1¢.1212 These objects behave like
fractional quantum Hall effedFQHE) (Ref. 1) states involv-  particles in zero magnetic field, and the wave functions of
ing pairing at even-denominator filling factcts The earli- the paired states can be interpreted as Bardeen-Cooper-
est ided was to generalize the Laughlin staty first pairing ~ Schrieffer (BCS)-paired wave functions, in their position
the electrons into charge-2 bosons, then forming a LaughligPace form. In particular, this makes it easy to understand
state of the bosons, for which the filling factay must be of ~Why the HR state is a spin singlet. It was also suggested that
the form »,=1/m, m>0 even. Since the filling factor of ther_e should be Io_w—energy excitations in which composite
the electrons is related to that of the bosons/by4 v, ,2 one partlcle_s are unpairetbut still consist of electrons attac_heo_l
obtainsv either of the form 1d or 2/g, where in the second fo vortices, as opposed 1o breaking the electron pairs in

caseq must be odd. For the cases- 1/g with q even, this Halperin’s picture. It was further suggested that quasiparticle

. L excitations analogous to those of the Laughlin statjich
produces a fractional quantum Hall state at a filling factor; g 9 A

. . . . in incompressible states correspond to vortices in the order
not accessible in the usual hierarchy thett¥his idea was P P

e =t _ parametef? would carry multiples of a half-flux quantum,
taken up by Haldane and Rezdyising spin-singlet pairs, 0 3 thys charges in multiples of fy/2rather than 1 as in

produce a candidate to explain the observeds/2 plateatl e Laughlin states at filling factord/this also results from
(using the usual notion that filling factors larger than 2 i”'viewing the excitations as quasiparticles in the Laughlin
volve fllllng the lowest Landau level with electrons of both states of Charge_z bos@ng:ina"y’ it was proposer’dthat
spin, and then constructing &= state in the first excited these quasiparticles obey non-Abelian statistics. In brief,
Landau level. The Haldane-RezayHR) wave function has non-Abelian statistics requires that there be degenerate states
a simple structure, and other paired states with analogouer well-separated quasiparticles, and, when the quasiparti-
structures, for either spin-singlet or spin-polarized pairscles are exchanged adiabatically, the effect is not merely a
were written down in Refs. 4 and 5. In particular, the PfaffianBerry phase representing ordinary fractional statistics, but a
state of Moore and Reads the simplest paired state for matrix acting within the space of degenerate quasiparticle
spinless or spin-polarized particles. The latter authors alsstates. In the present paper, we do not aim to exhibit this
argued that paired states exhibit pairing of composite paraction directly, but we do aim to show that the quasihole
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states of the Pfaffian and HR states possess the necesséng Halperin-type paired states, and thus to lay the ground-
degeneracies, and to give a physical explanation of their oriwork for a demonstration of non-Abelian statistics. We do
gin. this by constructing zero-energy eigenstates of those Hamil-
In subsequent work by Greiter, Wen, and WilcZethe  tonians for which the simple form of the ground-state wave
physics of the formation of Halperin-type paired states, thafunction is correct. These systems serve as model examples,
is, Laughlin states of electron pairs, was elaborated, usin§ach of which we may hope is typical of a universality class
the Moore-Read Pfaffian state as an example, and several g the sense of Ref.)5though the study of the effect of
the points made in Ref. 5 were repeated. Greiter, Wen, angerturbations lies beyond the scope of this papi¥le should
Wilczek also introduced a three-body Hamiltonian for which Mention that quasielectrons are expected to obey non-
the Pfaffian state at=1 is the exact zero-energy eigenstate.Abellan statistics I'_ke_’ those for _the quasmqles, but 1tis al-
As regards the statistics of the quasiparticles, however, the{f/2Ys much more d|ff|_cu|t to obtam_ energy elgenfunptlons, of
argued, quite reasonably, that Halperin's picture would lea hich the wave functions take a nice form., for quasielectrons
to simple Abelian statistics of the quasiparticles. While Wethan for quasiholes, and the energies will not b.e Zero, nor
agree with much of the physical discussion by these authord€9enerate, though presumably the degeneracies would be

(including the argument that the Halperin paired states Wi”reCO\_/ered in the thermodynamic limit for w_ell-separated
have 4j-fold-degenerate ground states on the torus in théquaS|eIectron$.Some of the results for the Pfaffian appeared

thermodynamic limit, we disagree with their use of the in an unpublished earlier wofk (see also Ref. 22 but the

three-body Hamiltonian and Pfaffian-based simple wavémathOd employgd here in general is relate_d to that used for
functions to illustrate their points. Other work on this the edge states in Ref. 8. The results are in full accord with

model”®and even the observation by Greiter, Wen, and W”_earlier expectations. It will emerge that the degeneracies of
czek themselvésthat there is a sixfold deger;eracy, of zero- quasihole states qf the paired states can be viewed as coming
energy states of the three-body interaction on the torus, a'féom breaking pairs of composite particles and placing the

more consistent with the predictions of Ref. 5 of non_unpaired(compositeparticles in certain single-particle states

Abelian statistics and related properties that are connectetéi]at contribute zero to the total energy; these are “zero

with conformal field theoryCFT) in two space-time dimen- mo_?ﬁs'” hout th i the terminol .
sions. For example, there are gapless Majorana fermion ex- roughout this paper we will use the terminology “par-

citations at an edge of the Pfaffian stafein addition to the ticles” to refer to the underlying charged particles in the

usual charge-fluctuation boson excitations, while theIowest Landau level, which could be either fermigasch as

Halperin-type state of electron pairs would be expected t@leptron$ or posqns, and not to the composite par.t|cles. For
; i given Hamiltonian, we will also refer to energy eigenstates

gwat have energy eigenvalue equal to zero simply as zero-
rgy states.

n this paper we mostly work on the sphere; we will
briefly review this formalism, and results for the quasiholes
of the Laughlin staté® One uses a uniform radial magnetic

It was also suggesté&that non-Abelian behavior might be :‘ield WitLh a dtotall OfNI:ﬁLEUX thrEUQh Fhle shurfaceg_ ar|1d in tlhe
present only at points of special symmetry, and not be ge-OWeSt an Nat;ze\_ll_id LL)LeaC pfartlcg as orbita hangu ar
neric. Clearly, the three-body Hamiltonian might be such gnomentum ;/2. The wave Iunctions on a sphere are

point. Although it was argued in Ref. 5 that non-Abelian Usually written(in a certain gaugd) in terms of “spinor”

statistics is a topological property that cannot be altered b or “homogene_ousjf cooirgbr;atemi andv; fc_)irq}e/gqh partlple
1,...N, with u;=¢e'%"“cos8/2, v,=e '%'%sing/2 in

small perturbations because the ground states involved até

assumed to have an energy gap for all excitations, this hd§'ms of the spherical polar coordinatésand ¢;, on the
not been tested. It is clearly an important problem, but it liesSPhere. Since these imply thatandv; are not independent
beyond the scope of the present paper. cqmplex nu_mbers, it is often more convenient, anq WI|.| sim-
A further development in paired FQHE states was thePlify the writing, to use a nonredundgnt parametrization of
realization that some membe(ts be referred to here collec- the Sphere by a single complex variable. This is done by
tively as the 331 stajef another class of states, of which an Stéréographic  projection, which gives the definition
example was introduced by Halpefin,also exhibit zi=_2Rui/ui ,.whereR is the radius of the sphere. Single-
pairing®#15These states have come under scrutiny becaug@@'ticle basis states in the LLL then take the form

. _ I
of their relevance for FQHE states in double-layer systems a& /(1+zi|*/4R?)**N#2, where thelL, angular momentum

p=116171418They can also be viewed as generalized hier-uantum number is,=N,4/2—m. In this form, the rotation-
archy stated? and so are not expected to possess nonally invariant inner product of single-particle states on the
Abelian statistics; however, they are still distinct from the SPhere is given by multiplying one function by the conjugate
Halperin idea of a Laughlin state of charge-2 bosons. Wéf the other, and integrating over teplane with no other
will discuss these states, and especially recent work b§°Ho, Z dependent factors inside the integral. Only single-particle
further in Sec. VI. basis states witm=N correspond to LLL functions on the
As we mentioned above, the main purpose of this paper i§Phere, and can be normalized with respect to this inner
to check the expectation, based on the CFT ideas of Ref. roduct(the normalizing factors will not be needed here
that the quasihole states of the Pfaffian and HR states possd&¥ote that wherN , andR— o with N¢,/R2 fixed, in which
degeneracies above and beyond those that would be obtainé@se the sphere becomes effectively flat, the basis functions
for ordinary Laughlin quasiholes, or their generalization to(for m fixed) tend toz{“e"zi‘z"‘, the basis functions in the

the present paper lend further support to the belief that th
quasiparticle states that are constructed as energy eigensta?
of the three-body Hamiltonian of Ref. @nd its generaliza-
tions to be constructed belgvdo possess non-Abelian sta-
tistics.
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plane in the symmetric gaugé Many-particle states can sphere in the lowest Landau level withflux, or n+1 or-

thus be written as bitals. This can be viewed as tlg=0 case of Laughlin’s
states, which applies since the dimension of the desired
qufﬂ (1+]|7|2/4R?)~(1+Ny2) (1.1) space 'of states is ind'ependentopf'The dimension of the
i space is therefore a binomial coefficient
and ¥ must be a polynomial of degree no higher thgpin N=+n
eachz;. Therefore, in the following we need specify only (1.5
~ . n
¥ in order to describe a state.
The Laughlin ground state and quasihole states are exaitsg the expansion of
zero-energy states for short-range pseudopotential
Hamiltonians® of the general form
" I II (zi—wy (1.6
¢ i k
H=2 > VyPi(Ng—M), 12 _ o
i<j M=0 in sums of products of symmetric polynomials in thés

shows that, when the/’'s are viewed as the coordinates of
bosons'® the space of available states for these bosons,
which behave as if in their LLL wittN as the number of
flux, exactly coincides with the space of zero-energy quasi-
hole states. The dimension of this space is then given by the
formula for n bosons inN+1 orbitals, which is the same
Hinomial coefficient(1.5. The equivalence of these view-
points is the basic duality between bosonic particles and vor-

later generalize the projection operator notation to three%'cesfw'th'rt‘. thef LL::; |t.|s an_la_lr?gous t? the p?rtlclg-hole
body operator®;;, , and the subspace onto which it projects , o> 3”23 lon orthernluinsf. € coun cgntazo fethper-
will be specified by the values of further quantum numbersforme y using theq= (_ermlon) case instead of the
of the chosen group of particles, such as total sBiror g=0 (boson case. It then gives the number of statesNor

specific values of the component of the spin of each par- ll‘:ermlgnts ;!"t'\.‘ﬁ. 1;1N+n orbltalst; or ;orr;){wc;les 03?%"”9
ticle, etc. Every projection operator is always normalized in ermi stalistics In the same number of orbitals, and these are

the conventional way, witlP2= P. the same numbdil.5). We will often refer to the dimension

The Laughlin states are zero-energy states for the pseud8.lc the spaces of zero-energy states we find in this paper

potential Hamiltonian in whiclV/y#0 for M<g, and zero Slmvt)llg r?§v$h:u;unr?a??zreotfhzeeég-netgﬁ{gyof ttﬁf?émainder of this
otherwise(in fact, the nonzerd/y, are usually taken to be

" ; 2 paper. In Secs. Il lll, and IV we study the quasihole states of
positive). The Laughlin-Jastrow wave function is the Pfaffian, HR, and 331 states on the sphere, for the Hamil-
- tonians for which these ground states are exact. We find

Y = H (zi—2z). (1.3 explicit wave functions for all the quasihole states, and count

=] them to exhibit in particular the degeneracy that occurs even

Clearly g must be even when the particles are bosons, anwhen the positions of the quasiholes are fixed. For the Pfaff-
odd when they are fermions. The number of flux is thenian and HR states, this is related to non-Abelian statistics,
N,=q(N—1), and the filling factor,y=N/N,, tends to while for the 331 states it results simply from a layer quan-

1/q as the number of particld$— . We will always use the tum number of the quasiholes. The analytical results are con-
integerq>0 as the parameter specifying the filling factor firmed numerically. In Sec. V, we consider the ground states
v=1/q. In this state, any two particles have relative angularof the same Hamiltonians on the torus, that is with periodic
momentumM =q,%° so it is annihilated byH. This property Poundary conditions, and obtain the wave functions of the

is preserved if the state is multiplied by the quasihole factor@€ro-energy states in all cases. In Sec. VI, we make a modest

U(w)=1I,(z;—w), which change the flux by one quantum. ateémpt to discuss the effects of perturbations on the states

These factors can be expanded in powers of @athobtain ~ considered, especially the Zeeman tefar systems like HR

the elementary symmetric polynomials in thés, that include particles of both spiand tunnelingfor double-
layer systems like 331We make a full analysis of the zero-

energy states of a model proposed by 3ayhich we show
em= _ ; I T PR (1.4 to be compressible and thus pathological at the point where
tremem the spin-polarized Pfaffian is among the zero-energy states.
which are linearly independent operators, and the states olWe also rectify this problem by adding further terms to the
tained by multiplying in several of these factors span the fullHamiltonian. These results are again checked numerically. In
space of zero-energy states for each number of fluwaddition, we mention an experimental test that can distin-
N,=q(N—1)+n, wheren is the number of quasiholé3?  guish the Halperin and other paired states, by using electron
This results from the standard fact about symmetric polynotunneling into the edge, for example via a point contact.
mials that they can all be obtained as sums of products of th&ppendix A contains definitions used in Sec. V, and Appen-
elementary symmetric polynomials. The space of states oldix B analyzes a further paired state, the permanent state, in
tained in this way is equivalent to that fof bosons on the which there are spin-singlet pairs of sgincomposite

in which P;; (L) is a projection operator onto the subspace in
which the total orbital angular momentum of the partidles
andj is L; in the summationM can be viewed as the rela-
tive angular momentum. For the LLL states, the close ap
proach of two or more particles occurs only when their total
angular momentum is large. The paramet¥his are the
pseudopotentials. Note that, for spinless particles, only eve
M occur for bosons, and only odd for fermions. We will
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bosons’ this state is found to be at a transition point to a

ferromagnetically ordered state. 2 Ig(‘}ﬁ)' R
Il. QUASIHOLES OF THE PFAFFIAN STATE Ho - = :
ON THE SPHERE 08 - =
In this section we will obtain all the energy eigenstates at i 7
zero energy for the three-body Hamiltonian for which the 06— ]
Pfaffian ground state is exact, for arbitrary numbers of added 4 - B
flux, that is, for any number of quasiholes. The following T -
sections generalize the results to the Haldane-Rezayiand 331, - =
states, andpartially) to the torus. S e
The Pfaffian statéfor even particle numbeX, is defined oo Lo vl b b b
by the wave function 0 2 4 6 8 10 12
{i}Pf(Zlv--yZN):Pf( 1 )H (z-2)°, (2.2 FIG. 1. Two-particle correlation flunctiog(r) for the Pfaffian
Zi—Zj)i<j state, withN,=2(N—1)—1 (i.e., v=3), for N=10 (dashed ling
o ) 12 (dot-dashed ling and 14(solid line) vs the great circle distance
where the Pfaffian is defined by on the sphere. The curves fdk=12 and 14 are almost indistin-
guishable.

N/2

1
PfM,; = sgo || Mo
] 2N72(N/2)!(,EESN g k[[l o(2k=1)a(2k) M=0,2,...9—3 (q odd, orM=1,3,...09—3 (q even
) ) ) [or the corresponding total angular momentd,,
for an NXN antisymmetric matrix whose elements are ~2,...Ny—q+3, (g odd, etc]. The space of states

Mij; Sy is the group of permutations dfl objects. The  jnhinjjated by such projections is in one-to-one correspon-
filling factor is 1. The Pfaffian state is totally antisymmet- . \vith the full space of states of the 1 case, and the

ric for g even, so could describe electrons, while doodd it desi -

. ) : T esired three-body projection operaffonto angular momen-
describes charged bosons in a high magnetic field. For g ; .
g=1, it is the zero-energy state of the lowest flux of thetum 3Ny/2-3(q—1)] is the unique one that corresponds

Hamiltoniar® under this mapping to that already mentionedder1. For
eachq, the Hamiltonian can then be taken to be the sum of
the three-body and all of these two-body projection opera-

H=V X &(z-7)8z—z), (2.2 tors. A very similar approach works for the other Hamilto-
I=j<k nians studied in this paper, so that results for highean be
where the sum is over distinct triples of particles. deduced easily from those for the miningal These Hamil-

For numerical purposes on the sphere, it is more convelonians can also be written in terms &ffunctions and their
nient to work with a projection operator form of the three- derivatives, so as to arrive at a form suitable for use in ge-
body Hamiltonian, instead of thé functions in Eq.(2.2). ometries other than the sphere. An attempt at a Hamiltonian
The closest approach of three particles on the sphere corr@ppropriate for the Pfaffian af=2 in the second paper in
sponds to the state of maximum possible total angular moRef. 6 is invalid as it annihilates all states.
mentum for the three. If the particles are bosons, the largest In Fig. 1 we show the two-particle correlation function
possible total angular momentum ;32 (recall that each  9(r) for the Pfaffian state on the sphere witk2 for three
particle has angular momentuhy/2). Then, for theg=1 sizes,N=10, 12, and 14. We plotted the function versus the
case, the Hamiltonian may be taken as proportional to th@reat circle separation (in units of magnetic lengthon the

projection operator onto th@inique multiplet of maximum  sphere, so that the largest possible valuer gé half the
angular momentum for each triple of bosons: circumference, and we normalized the curves in such a way

that in an infinite system they would approach 1 at infinity.
We see that, although fdl=10 an exponential decay at
H :i<j2<k VPij(3N,/2). (2.3 Jlarge distances is not apparent, fér=12 and 14 the curve

appears to be rapidly approaching 1 at large separation, and
The same trick works for the three-body interaction of fer-these two curves are almost indistinguishable in the region
mions giving theq=2 case; in this case, the maximum total where both are defined. The correlation length in the Pfaff-
angular momentum of three particles i,2—3. Some nu- ian, which would be defined as the length over which
merical results for such Hamiltonians were already given ing(r) —1 decays by a factor df, is apparently quite large.
Ref. 7. For largenq, these Hamiltonians can be generalized The Pfaffian state is the only zero-energy eigenstate of
in such a way that the zero-energy states are obtained froid at N,=q(N—1)—1. Zero-energy quasihole excitations
those forg=1 by multiplying by l'I(zi—zJ-)q*l (it is as-  can be obtained only by increasihy, , as for the quasiholes
sumed that forg odd, we are discussing bosons, and dor of the Laughlin state as discussed in Sec. |, but in this case
even, fermionk The presence of the latter factor implies thatthe basic objects contain a half flux quantum each and must
they are all zero-energy eigenstates of the projection operde created in pairs. A wave function for two quasiholes was
tors for any two particles onto relative angular momentumproposed in Ref. 5; it is
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~ H’lzlfl[(za(zk—l)_Wl)(ZU(Zk)_Wz)+(W1<—>W2)]
R4 Zy, 2N W, W) = sgnr zi—z)%
Pf + 2qho|e£ 1 N 1 2) 2N (N/Z)IO'EESN g (Z(r(l)_za(Z)) . (ZU(Nfl)_Za-(N)) II;[J ( i j)
(2.9
|
It is clearly th_e pai_ring structure_ bu_iIt into the ground state Dy(21,Z9;Wq, ... W) =D (21,25 W1, W3, Wy, W,),
which allows insertion of Laughlin-like factors (2.9
f(z,2j;W1,Wp) = (Zj—W1)(Zj = Wp) +(Z — W) (Zj —W,), D3(21,25;Wy, .. W) =D 1(Z1,Z5;W1,Wy4,Wp,W3).
(2.5 (2.9
which act only on one member of each pair, and, since thdhe following identity is useful: For any set of complex
f's increase the maximum angular momentum for eadpy =~ numbersa;, i=1,...N, N even,>2,
1,N, increases by 1. As the quasiholes are, at least approxi-
mately, located atv, andw,, they effectively contain a half- Pf(a;—a;)=0, (2.10

flux quantum each, unlike the usual Laughlin quasihole thaEince the square of the Pfaffian is a determinant in which any
corresponds to a full flux quantum. The same structure reg, e rows or columns obey a linear relation. Set

uires that quasiholes are made in pairs, since the wave fungs _ ; :
Silon must ge totally symmetric o? antisymmetric. When B=;+ &+ g, then using Eq(2.10 it can be shown that
quasiholes coincide, that is, when =w,, a Laughlin quasi-
hole is recovered. Oi=Dd,— §<I>
It is clear that by inserting more factofs with different

w’s, into the sum over permutations, a whole host of zero- 1

energy eigenfunctions can be obtained. However, this in- =5(21—22)2[(W1—W4)(W2—W3)

volves dividing the quasihole coordinates, . .. w,, into

pairs in an arbitrary way; the resulting functions are invariant + (W1 —Wg)(Wo—W,)]. (2.11)

only under exchanges of the two quasihole coordinates in

each of these pairs, or under permutatations of the pairs. Origence®,— ®3=x(P;—P,), where

must then ask whether all these states, of which there are

(2n)!1/(2"n!) =(2n—1)(2n—3)---=(2n—1)!1, are lin- X= (W1 = W) (W3—Wg)/ (W —Wy)(Wa—W3) (2.12
early independent, and also whether all zero-energy eigeqé the cross ratio. Thus as functionszfandz,, @4, ®,, and

functions can be. obtained in this way. . . P, are linearly related. To show there are no further rela-
For four quasiholes, the three distinct functions obtalneqions consider the imitv:—Wo. Wasw.. We find
’ 1 2, W3 4

from dividing thew’s into pairs in three distinct ways obey
just one linear relation, as we will now sho{-hese meth-
ods and results for four quasiholes appeared previously in
Ref. 21) For more than four quasiholes, the following
method becomes increasingly impractical, and we will in-
stead use a more direct method, inspired by the results faghich are clearly linearly independent.

D1~ (29— W) 42— W3)?+ (21— W3)3(Z,— Wy)?,

(2.13

Do~ D3~2(21—Wq)(23—W3)(Z,—Wq)(Z,—W3),

edge states of the Pfaffian in Ref. 8. For N=2 particles, it now follows immediately that there
It is convenient to write the functions in the more generalare only two linearly independent states of the type shown.
form For an arbitrary evenN, we still have to prove that
_ PR® (2,2 ;W1,W,,W3,W,)/(Z—2;)} gives only two lin-
Wo(Z1, .o ZN W, - Wop) early independent states for fixeds. For anyp=1, 2, and
~ 3, we use Eq(2.11) and expand the Pfaffian in powers of
=PR®(z,2;W1, - . Won)/(Zi—2)) ;W @, . All terms containing more than one factor ®f, cancel

(2.9 using identity (2.10, since they contain factorsz(-z).
Thereforethe N-particle wave functions satisfy the same lin-
Here®, must be symmetric and of degreein z; andz, in  ear relation as thep, for all N. A similar argument shows
order to represent 2 quasiholes, that is so that that use of linear combinations of tide, inside the Pfaffian
Ngy=q(N—1)—1+n. We could use products of thés in  |eads only to linear combinations of the same states. We note
Eq. (2.9, but it is convenient to use the followinghese that the linearly-independent states can be taken to be the
choices are clearly related by taking linear combinations unique state wher® , in Eq. (2.6) is replaced byb, and that

Forn=2, define where only one factor ofb, in the expansion of the wave
function is replaced byb} , the other®, being replaced by
D1(21,25;W1, - .. Wg) = (23— W1) (21— W2)(Z,—W3) ®. The effect of ®] is to cancel the pairing factor

(Zoy(2k-1)~ Zo(2k) " for the pair on which it acts. Thus there
is a “broken pair” in the wave function, as in Ref. 8. This
X(Zy—W1q)(Zo— W), (2.7 observation provides the method to generalize these results

X (23— Wyg) (23— W3) (21— Wy)
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to any number of quasiholes. As the vary, these states quasiholes or added flux quanta. We will first write down the

span a space of zero-energy four-quasihole states, whose diinctions, then explain why they both span the full vector

mension we will find below when we have results for generalspace of zero-energy eigenstates for eacdndN, and are

n. linearly independent. The functional form was inspired by
We now turn to the method for arbitrary numbers of those in Ref. 8. The functions are defined as

1 F (N=F)/2
- . _ my
\Pml ..... mF(le LR 1ZN 1W11 v 7W2n)_2(N—F)/2(N_F)/Z!UEESN nglL[l Zg—(k) /];[1
D(z, /1)1 Zg iWq, .. ,\Wop)
(F+2/-1)45(F+2/) W1 2n 1—[ (Zi_zj)q (2.14
(Zo(F+2/-1)" Zo(F+2/)) i<j
|
In this equation®(z;,z,;w+, . .. W, is defined so as to holes. Thus one cannot say that there is a zero mode locally
be symmetric in thev’s, and is a generalization of the func- bound to each quasihole. Instead the zero-mode wave func-
tion ® used in then=2 case: tions are shared among the quasiholes.

We should point out that Greiter, Wen, and WilcZekso

n

1 stated that in the presence of quasiholes there are wave func-
D(zy,25;Wy, ... 'WZH)ZW > 1l (Z3=Wo2r-1)) tions with broken pairs. However, the functions they pub-
P TS =l lished for states with one broken pair, both with and without
X (Zy=Wap).- (2.15 guasiholegsee Eqs(9) and(10) in the first paper in Ref. 6,

and Eqs(6.2), (6.8), and(6.9) in the second] vanish identi-
Clearly the integersn, must obey Gcm,<n—1 for each cally when antisymmetrized. Probably for this reason, the
k=1,...F,since the flux iN,=q(N—1)—1+n, and can  counting of the number of unpaired fermions that can be
be taken to be ordered and distinct, accomodated “naturally,” i.e., in zero-energy eigenstates, in
0s=m;<m,<---<mg=n-—1, because of the antisymmetri- the presence of quasiholes, is stated incorrectly ta beo-
zation by the sum over permutations; thus B<n. Clearly  ken pairs, when the correct answemigermions. Note also
we must also hav&=<N: for N=n this restriction can be that the states for unpaired fermions without quasiholes that
ignored, and the analytic formulas below apply in this limit. they give are not zero-energy eigenstatasd thus not obvi-
A similar caveat applies to the other paired states below, bueusly eigenstates at all
will not be explicitly mentioned after this section. Functions  The linear independence of the stat@sl4) is easily es-
(2.14 represent pairing, but witk fermions left unpaired. tablished for fixed w’s. After removing the factor
One could think of the unpaired fermions as resulting fromll(z;—z;)9, we arbitrarily divide the particles into pairs, and
breaking pairs foN even, but the states also make sense fotet the members of each pair approach each other, one after
N odd (note thatN-F is always eveh These functions are the other, say;—z,, thenz;—z,, and so on. For each limit
closely analogous to the excited quasiparticle states of we examine the leading behavior; clearly the leading behav-
BCS-paired system, where the unpaired particles usually oder for each limit may be a single pole, in view of the paired
cupy plane waves. A whole spectrum of such excitations igorm of the function, or it may be nonsingular. If it is a pole,
expected also in the paired FQHE stafder any number of we take the function that multiplies the polits residug,
quasiholegincluding zer9g, but these generally have nonzero which is a function of the remaining coordinates to which the
energy. Here we are interested only in the subset of statgyrocedure has not yet been applied, as well as of the coordi-
that have zero energy for the three-body Hamiltonian, whichhatesz, =z,, z;=2,, . . ., towhich it has, and we repeat the
occur only when quasiholes are present. These states contgirocess. If the first limit is nonsingular, we call the function
fermions occupying a certain set of single-fermion wavewe started with the zeroth nonsingular residue; if the first
functions 1,z, z%, ...,z" "%, which can be viewed as the limit is singular, but the second is not, we call the first resi-
LLL wave functions for a flux ofn—1, or as an angular due the first nonsingular residue, and so on. Thusntkie
momentum multiplet of angular momentum-{1)/2. How-  residue, obtained after thmth limit, may be singular or non-
ever, the actual spatial distribution of the unpaired fermionssingular in the next limit; if it is nonsingular we can identify
in these states is hard to calculate, since it must take intthe original states as having=(N—F)/2 unbroken pairs.
account the whole many-particle wave function. Since thelhen the N—F)/2th nonsingular residue will, by definition,
effective magnetic field seen by the fermions is essentiallype a nonsingular function of the paired coordinates z,,
zero except in the quasiholes where the density is lower, we;=24, ..., Zy_g-1=Zn_g, the unpaired coordinates
expect that the orbitals have weight concentrated on they_g);1, ... Zy, and ofwy, ... wy,. Since two functions,
qguasiholes. The occupation of these orbitals contributesne of which is singular and the other nonsingular in a given
nothing to the energy for our Hamiltonian, so these are “zerdimit, are linearly independent of each other, it follows that
modes.” The number of zero modes s the number of states with different numbeis of unpaired particles are lin-
added(rea) flux quanta, and not 12, the number of quasi- early independent. For states with the safmeve consider
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the (N—F)/2+ 1th residue, as a function of the remaining for 2n bosons, each of which can occupy one of

F coordinateszy_gy+1, - - -, Zy. Itis just a Slater determi- (N—F)/2+ 1 orbitals[the orbitals having the single-particle

nant in these variables, and these determinants for distingtave functions 1w, ... w(N"F'2 they form an angular

sets ofm, are obviously linearly independent. This con- momentum multiplet of angular momentumd ¢ F)/4)]. The

cludes the proof. number of such symmetric polynomials in thés for the
From wave functiong2.14), it is straighforward to enu- Pfaffian case is thus

merate the number of states that satisfy the conditions, for

given positions of thev’s. First we note that for zero quasi- (N=F)/2+2n

holes, a statéthe original Pfaffian ground statexists for ( on

N even, but not folN odd. For Zv=2 quasiholes, there is a

unique possibility, both foN even(with F=0) andN odd ¢ j5 qur claim that, for each of these linearly independent

(with F=1 fermion, in them;=0 Statf)- For 2n=4, there  gymmetric polynomials, we have a linearly independent
are two states both fdd even and odd; foN even these are many-particle statéfor each set ofn,’s), and so the upper

the same as the two independent states found before. In geflgng just obtained is in fact the answer. To establish the

(2.19

eral, for givenn>0 andF, there are clearly truth of this claim, we again make use of the residues of the
n successive limitg;—z,, Z3— 2,4, . . . , asdefined above. The
( ) (2.16 nonsingular residues have a simple form; they are propor-
F tional to

independent states. Summing over the allowed valuds, of N=F)2 2n F

which are those with the same parity & we obtain, ( my

whetherN is even or odd, 2%, by a well-known formula |1:[1 rﬂl (Z2i=wr) 2, ngkll Zo(N=F+k)° (2.20

for binomial coefficients. This number, which is valid for

N=n, is exactly the number of conformal blocks fon 2pin  The last factor, involving the unpaired particles, is a Slater

fields in the Majorana conformal field theohsee also Ref.  determinant; the first factor is simply a product of Laughlin-

22. like quasiholes acting on the coordinate of each pair. We
Just as for the quasiholes of the Laughlin stigiee Sec. have thus reduced the analysis to the case of the Laughlin

), there is &(finite) positional degeneracy associated with thestates, where all the quasihole states are linearly independent

positions of the quasiholes. The functions for fixet$ are  (see Sec.)| and this establishes our claim.

analogous to coherent states formed out of the linearly inde- The total number of linearly independent quasihole states,

pendent quasihole states. In the present case, this degenerdigihg only N andn, is then

can be calculated, for a givéh and set oim,’s, by expand-

oeSg

ing all the®’s in powers of thew’s: ( n)((N—F)/2+ 2n 221
. (2[‘1)' nen 1 n—1-n F,(*l)F=(7l)N F 2n ) )
D(21,Z3;Wq, ... Wop)= W 72725+ E(Zl z,

(Notice that this expression incorporates both restrictions
+2222_1)e1(—w)+ cer F<n, F<N.) This number is clearly larger than the number
that would be expected if the quasiholes behaved like the
quasiholes of the Laughlin states. In the present case the
expectation, based on assuming Abelian fractional statistics
) . as for the Laughlin states, would ki@ view of the half flux
Here e;,(—w) is shorthand for the elementary symmetric iy each quasihoethat the number would be given by the
polynomials in thew’s, with eachw; replaced by—w;: formula for 2n bosons which may each occupy any of
N/2+1 orbitals (for N ever). We can compare our result

em(W)= > W W W (2.19  with this number, which is
i1<ip<---<ip

+e2n(—w)}. (217

which arise since eaclv appears at most once in any term
resulting from the expansion @b. It is known that linear
combinations of products of the elementary symmetric poly-
nomialse,,, m=0,...,2n yield all the symmetric polyno- For n fixed andN tending to infinity, the ratio tends to
mials in 2n variables. Thus when the functions in E8.14 2"~ Again, this represents the degeneracy necessary for
are expanded in powers of thes, we obtain all the sym- non-Abelian statistics.

metric polynomials inwy, . .. Wy, in which the degree in We now give arguments that the states found above are a
any onew is not greater thanN—F)/2. The total number of complete set of zero-energy states. The general construction
linearly independent statggs functions of thez's), for a  of zero-energy states for the three-body Hamiltonian for
fixed F and a fixed set ofm’s, cannot be greater than the q=1, or its generalizations fay>1, was given in the first
number of linearly independent symmetric functions of thepart of Appendix A of Ref. 8. It shows that without loss of
w’s obtained in this expansion. Notice that, if thés are  generality, zero-energy states are linear combinations of the
regarded as coordinates of some kind of particles, the synfoerms (from which we have removed the ubiquitous factor
metric polynomials in thev’s can be interpreted as the statesIl(z;—z;)9)

N/2+2n

on (2.22
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TABLE I. Numbers of multiplets of states of total angular momentuiat zero energy for the three-body
Hamiltonian for theq=2 Pfaffian state on the sphere, fdy=2(N—1)—1+n, i.e., 2n quasiholes.

N n L=0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 1 1 1

4 2 1 2 1

4 3 1 2 1 2 1

4 4 2 2 1 3 1 2 1

4 5 1 3 1 3 2 3 1 1 1

6 1 1 1

6 2 2 2 1 2 1

6 3 3 1 4 2 3 2 2 1

6 4 3 1 5 3 7 3 6 3 4 2 2 1

6 5 5 3 9 6 9 7 9 5 7 4 4 2 2 1

8 1 1 1 1

8 2 2 3 1 3 1 2 1

8 3 3 1 5 4 7 4 6 3 4 2 2 1

8 4 5 2 10 7 14 10 14 9 12 7 8 4 5 2 2 1

8 5 6 5 16 14 23 20 26 21 25 19 20 14 15 9 9 5 5 2 2 1
10 1 1 1 1

10 2 2 4 1 4 2 3 1 2 1

10 3 6 4 10 7 11 8 10 6 7 4 4 2 2 1

@ for that pair. Thus we obtain exactly all the terms that
2 sgnr , (2.23 occur on expanding Eq2.14). This shows that the count of
TeSy (Zo(1) = Zo2) "+ (Zo(n-1)~ Zo(n)) states given is correct, and that they can be viewed as arising
from the states with quasiholes at fixed positions.

The numbers for the total number of zero-energy states,
which are not resolved into angular momentum multiplets,
are convenient for comparison with numbers of zero-energy
eigenstates obtained numericdllysing the same three-body
"Hamiltonian (2.3)], when these are summed over Alland
L,. We can also work out the decomposition of functions
{2.14; into angular momentum multiplets, using wave func-
tions(2.14) and applying the Clebsch-Gordan decomposition
to the angular momenta of the bosons that represent the
Ay iy o ofptiy quasiholes in thed factors, and the unpaired fermion_s_.

2)°2,°+2,°2,, (224 These numbers, and the angular momentum decomposition,

are in perfect agreement for moderate sizes. The cases that

in which 0<n;=<n,=<n. These clearly span a vector space ofhave been checked numerically are shown in Table I. In the
dimension3(n+1)(n+2). As in Ref. 8, if anyf(z;,z,)
vanishes at;=z,, then it must contain a factorz{—z,)?,
and this pair is broken and will contribute to the unpaired-
fermion part of functiong2.14). The subspace of symmetric
polynomials for which this occurs is spanned kg € z,)?
times those in Eq(2.24), here with 0<n;<n,=<n-2; this
subspace has dimensién(n—1). The quotient of these two
spaces, which represents the symmetric polynomials in two
variables which do not vanish at=z,, therefore has dimen-
sion 2n+ 1. But we have already found a set of such func-
tions while expandingb, Eq. (2.17), and there are exactly
2n+1 terms in this series, which form a linearly indepen-
dent set for the required symmetric polynomials. Therefore
we may now argue that, in the general fo(th23, we may
choose thd | to be in either of the two sets, that is, those that
vanish atz; =z, and those appearing in E.17). The un-
paired fermion part takes the given form, after use of the F|G. 2. Spectrum of the three-body Hamiltonian for the Pfaffian
antisymmetrization among thE particles involved. Iffy  state of fermions withv=3, for N=12 andN,=21; that is, no
does not vanish at;=z,, then it is part of the expansion of quasiholes. The inset enlarges the low-lying levels.

N/2
2 sy lk=1f(Zo@n -1) 1 Zo(2r(k))

where f,, are symmetric polynomials in two variables. For
N odd we can write a similar form withk=1, ...,
(N—1)/2, and include for the unpaired particle an arbitrary
polynomial factorfy(z,(ny). In order to represent states with
2n quasiholes, the number of flux added to the Pfaffia
ground state must be, and so thef, (and f, for N odd
must be of degree at most in each coordinatg; ; these
symmetric polynomials must then be linear combinations o
the linearly independent forms

S v v b b

D
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0 10 20 30 40 L 50 FIG. 5. As in Fig. 4, but for the energyE of the lowest-energy
excited state vs N.

FIG. 3. As in Fig. 2, but wititN=10 andN,=19; that is, four

quasiholes. for the case where alt’s are nearly equal, yield all the edge
states of the disk, and this gives proof that the latter are

table, we show only the results fk even; similar results, in  linearly independent. To obtain results for the cylinder, with
complete agreement with the analytic formulas, are alsewo edges, we place half the quasiholes at each pole of the
found for N odd. sphere and take a similar limit. In the limit, the particles

As an aside, it is interesting that in this case we estabeccupy a narrow band around the equator of the sphere, and
lished the linear independence of the functions in generakhe infinite flux through the system makes it equivalent to the
whereas in Ref. 8 we were forced to resort to a case-by-cass/linder, if we consider states where the particles are close to
analysis. In fact, the results given here now suffice to comthe equator, which again means this must not deviate far
plete the proof of linear independence of the edge states dfom the poles. Note that the fact that the particles are spread
the Pfaffian state on a disk. We first note that if we placevery thinly along this band in the limit we have taken does
many (or all) quasiholes at the same place by setting all thenot affect the construction or counting of edge states, which
w’'s equal, then there are no particles in that region of thds independent of the aspect ratio of the occupied region of
sphere, and the fluid has an edge there. If we take the limit afhe cylinder. Also, the operation that shifts charge from one
these states d$,— o with N fixed, then the sphere becomes edge to the othéiis obtained by removing a quasihole from
an infinite plane, and the particles are concentrated in a disne pole and placing it at the other.
at the origin if the quasiholes are at the position on the In Fig. 2 we show numerical spectra for thhe=2 three-
sphere that is mapped to the point at infinity by the stereobody Hamiltonian, described after E€R.3) (in which the
graphic projection. Thus the problems of finding the zero-projection is ontoL=3N,/2—3), with V= 3, for N=12
energy quasihole and edge states are essentially the sanggectrons andN,=2N—3 flux, that is, no quasiholes, and
The general edge states, that include charge-fluctuation exci= 1. In Fig. 3 we show the same but with=10 and 2 flux
tations at the edge, are obtained by letting some ofiif®e  added, so there arenz4 quasiholes. The zero-energy
deviate from infinity, and expanding inwk gives states states, of which the degeneracies were given in Table I, can
that contain symmetric polynomials in the paired-particle cobe seen aE=0, as can the set of angular momentum values
ordinates, rather than in all the coordinates as in Ref. 8. Thigbtained in this case. The figure also shows that all higher-
is merely another basis for the edge states; the number efhergy states are separated by a significant gap that we ex-
states at each angular momentum level is easily seen to fgect will survive in the thermodynamic limit, as needed for
the same, for sufficiently largh. In the limit, the complete the arguments for non-Abelian statistics. To investigate fur-
and linearly independent zero-energy bulk quasihole statesher the claim that this system is incompressible, we include
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FIG. 4. Low-lying excited states of the three-body Hamiltonian  FIG. 6. Ground-state energy of the three-body Hamiltonian for
for the Pfaffian ground state at=3 [N,=2(N—1)—1] for  the Pfaffian state aN,=2(N—1)—2 (that is, v=5 with two
N=12 and 14, plotted againg&=L/R. quasielectrons addgdlotted against N.
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some finite-size scaling results. In Fig. 4, we show the low-energy determines the slope in the total-energy density ver-
lying excited energy levels above the ground state forsus density in the thermodynamic limit, on the higher-density
N=12 and 14, versuk=L/R. It can be seen that the spectra side of v= 3. Since the energy density is zero on the lower-
lie almost on top of one another. In Fig. 5, we show the sizejensity side, this would represent a discontinuity in the
dependence of the lowest excited state, vershis for sev-  chemical potential at= % for this Hamiltonian, showing that
eral values ofN, including those in Fig. 4. Although itis not the system is incompressible. From the results shown, we
quite clear by inspection that this energy gap is convergingannot be sure that the points approach a nonzero limiting
to a constant abl—, because of the behavior of the points value asN— o, but they are nonetheless consistent with this
for the sizesN=10, 12, and 14, we note that in Fig. 4 the hypothesis.

lowest-energy points fdl=12 seem to lie on two sides of a

minimum, while forN=14 one lies near a minimum. Hence

we expect that, if results for still |arger sizes were available, lIl. QUASIHOLES OF THE HALDANE-REZAY| STATE

convergence to a finite gap would be apparent. In Fig. 6, we ON THE SPHERE
show the ground-state energy for systems with . .
Ny=2(N-1)—2, that is, twoquasielectronswhere there The Haldane-RezayiHR) staté can be written in terms
are no zero-energy states for the three-body Hamiltonian. 16f the coordinates oN/2 up-spin particles at/, ..., and
these energies converge to a finite gapNas «, then this  N/2 down-spin particles azt{, ...,as
Vor(Zl, .. 22, 2= > sgre — ! ———ll (z—2z)" (3.0
oeSyp (21— Z51) " (Znp= Zg(ni) i<

Hereg=2 is even for electrons, and odd for bosons, and the filling factoigisThe first factor is of course just a determinant.
The product over;'s with no spin labels attached is over all particles. The fact that this describes a singlet is discussed
carefully in Ref. 3. In Ref. 5 it was pointed out that this state can be regarded as a BCS-type condensate of spin-singlet pairs
of spin+ composite fermions that consist of a particle @apdortices, from which the spin-singlet property can be more easily
understood. Some further discussion related to the edge states is contained in Ref. 8. The HR state is the unique zero-energ)
state alN,=q(N—1)—2 flux of a “hollow-core” pseudopotential Hamiltonian that gives any two particles a nonzero energy
when their relative angular momentum is eitlger 1 or <q— 3,2 again with the assumption that the particles are bosons for
g odd, fermions forg even, and thatj=2.

In exact analogy with the Pfaffian state, the wave function for two quasiholes is

HEE1[(Z|1_W1)(Z%T(|<)_W2) + (Wi Wp) ]

E’HR(Z]. Zrl\uz'Wl W)= 2
y ) , y — 1 2 _ 5l 2
oeSyp (21— Z51)) "'(ZTle Z,(Ni2)

L[,- (zi—2)" (3.2

Due to the spin-independence of the newly inserted factors acting on each pair inside the sum over permutations, the state is
still a spin singlet, and this suggests that the quasiholes carry no spin. The two-quasihole state is again a zero-energy eigenstate
of the hollow-core Hamiltonian. To see this fact, expand the inserted factors for each pair in terms of pm&m’sﬁ% . Due
to the symmetry betweez} and zg(k) in each factor, it is easy to see thgt- Z}T(k) must occur to an even power. Thus in the
complete wave function, the absence zﬁf zfr(l))q*1 for anyk andl, and hence the zero-energy property of the ground state,
is preserved in the quasihole states.

It is possible to write down directly the forms of all the zero-energy states of the hollow-core Hamiltonian, in analogy with
those for the Pfaffian and those in Ref. 8. In terms of the coordinatés, afp particles andN; down particles, the wave
functions are linear combinations of

F F N;—F 1 ! .
1 1 ! 1751 D(Zo(k 1)1 Zp(F 1) )WLy -+ - - Wap)
R T n l m, 1 pLE | q
> sgrosgmp [ (2] )™ (5™ 11 T (z-z)%. @33
(NT_FT)IUESNT k=1 a(k) =1 () r=1 (ZL'(FT+F)_Z;1)(F1+F))2 <] ! !
pPeSNy

HereN,—F,=N,—F, is the number of unbroken pairs, and fermions in the sums over andp, which behave identically
we may assume the’s andm,’s are strictly increasing, as to ordinary spins fermions. Hence the possible spin states
for those in the Pfaffian quasihole states, withare determined by adding the spins of particles in different
Osn;<n;<---<ng <n-2, O=m<m,<---<mg  orbitals(labeled byn, or m), with the only constraint that
<n-—2; consequently, &F <n—1 for eachc=71 or |. As  an orbital occupied with both an up and a down fermion
written, these states do not have definite spin, but eigenstat@sust form a singlet. The total spi8 of the zero-energy
of $ and S, can be constructed. Since the paired particlesstates therefore obey®<(n—1)/2. Notice that the number
form singlets, the spin is determined by the spinapaired of flux in these states il ,=q(N—1)—2+n. Arguments



16 874 N. READ AND E. REZAYI 54

TABLE II. Numbers of multiplets of states of total angular momenturand total spirS at zero energy
for the hollow-core Hamiltonian for thg=2 HR state on the sphere, fot,=2(N—-1)—2+n, i.e,, 2n

quasiholes.
n S =0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
4 1 0 1 1
4 2 0 1 2 1
4 3 0 2 2 1 1
4 3 1 1
4 4 0 2 3 1 4 1 2 1
4 4 1 1 1 1 1
4 5 0 2 4 1 4 2 3 1 2 1
4 5 1 1 2 2 1 2 1 1
4 5 2 1
6 1 0 1 1
6 2 0 2 2 1 2 1
6 3 0 3 1 5 2 3 2 2 1
6 3 1 1 1 1 1
6 4 0 4 1 6 4 8 4 7 3 4 2 2 1
6 4 1 2 1 3 2 3 1 2 1 1
6 5 0 7 4 12 8 12 9 11 6 8 10 4 2 2 1
6 5 1 3 1 6 4 7 5 7 5 2 3 1 1
6 5 2 1

that the states given are both complete and linearly indepergain the ratio of this number to that for positional degen-
dent, so that our count of states is correct, can be constructestacy only is 2"~ 3 asN—o. In this case, the factor??
straightforwardly as a combination of those in Appendix Amight give the impression that there is a factor 2 for each
of Ref. 8 and in Sec. Il above; we omit the details. quasihole, perhaps because each carriessBat the result
We may now count the number of linearly independentis in fact 2"~ 3, which indicates the connection with non-
states as for the Pfaffian. We see that fier0 and 1, we  Abelian statistics. There are onfy—-1 zero modes available,
must haveF,=F =0, and such states exist only for similarly to the Pfaffian, which can be occupied with either
N=N;+N, even; they are the ground and two-quasiholespin, with a final condition on the parity of the number of
states written down above. For=2, we find two possibili-  unpaired fermions.
ties for bothN even or odd, like the Pfaffian case. For the  The two-particle correlation functions for the HR ground
general case, we can write the number of states for fixed state withq=2 have been published previouslor six par-

F., F,, andw’s in two ways. One is ticles; they suggest that the correlation length is quite large
in this system also. In Table Il we show results obtained
n—-1\/n-1 numerically for zero-energy quasihole states of the hollow-
( ( ) (3.4 core Hamiltonian forg=2, which agree exactly with the
F, F q=<, Wh gree y
general formula, as do the orbital and spin angular momenta.
If we sum overF; with F=F;+F, fixed, we obtain a sec- |n Fig. 7, we show the spectrum of the HR statevat 3,
ond form,
T
2(n—1) 7
e :

which is the number of states féf fermions in 26—1)
orbitals. The sum oveF satisfying —1)F=(—1)N then
yields a total of 2(""1)~1=22""3 zerp-energy quasihole
states of all spins for fixetll (either even or odd, except for
smalln as already showrmandw’s.

We now find the dimension of the space of quasihole
states at all spins for fixed, including the positional degen-
eracy due to thev's as for the Pfaffian. Then the total num-
ber of linearly independent quasihole states, fixing ddly
andn, is

FIG. 7. Spectrum of the hollow-core model for the HR state of
(3.6)  fermions withv=3, for N=8 andN,=12; that is, no quasiholes.

Z(n—l)) ( (N=F)/2+2n
. The inset enlarges the low-lying levels.

2n

F.(-DF=(-N ( F
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8 T R e R Vomn(ZLs - ,ZLT,zﬁ, coZN)
E[of: it -] ,
T IR =11 @-2)"l] @-2H"I] @-z)" @1
- 0 s .10 15 - == _-- — i<j k<l rs
B -= -] The generamm'n state(for some values oN; andN)) is
- - - the unique lowest total-angular-momentum ground state of a
4 ] spin-dependent pseudopotential Hamiltonian, that general-
- ] izes Eq.(1.2 to the two-component cas,
5 r 7 m—1
- - H=2> | X VyPj(Ny—M,11)
L - i<j | M=0
ol .
L !
0 10 20 L 30 +ME:0 ViPi(Ng=M.L1)
FIG. 8. As in Fig. 7, but withN=6 andN,=12; that is, eight n-1
quasiholes. +> MEO VuPij(Ng—M,T1) (4.2
1] =

h inol ¢ for8 ticl In th in which the projection operatorB;;(L,oc0") project onto
WREN no quasinoles are present, 10F o particles. In e e gpin states ando for particlesi andj, respectively, as
spectra, we have chosén=1. There does appear to be a \ye|| as onto total orbital angular momentum Thus this

gap above the ground state, and the form of the low-lying4amiltonian gives positive energy to any state in which two
excitation spectrum is similar to that of the Pfaffian. In Fig. 1 or | particles have relative angular momentum less than
8, we show the spectrum when 8 quasiholes are present, fon or m’, respectively, or in which af and a| particle have
N=6 andN,=12. However, we note that because the par+elative angular momentum less than

ticles carry spin in this system, it is harder to reach suffi- For the case when the exponents in these states are of the
ciently large sizes to ensure that the results are converging #'m m=m’=q+1,n=q-1, andq=1 (which requireN;

the thermodynamic limit, and larger sizes may be needed it N|=N/2, giving a filling factor »=1/q, and the partial

order to prove that the energy gaps are approaching constarifing factors for1 and| are both 1/8; for brevity, we will
prov dyaap PP nd continue to refer to this class of states with genegrals the

in this fimit 331 statg, then use of the Cauchy determinant identity
1
I -] ] (22 2=oef ]
IV. QUASIHOLES OF THE 331 STATE ON THE SPHERE 1< k<l rs i ]

4.3

It is of interest to perform a similar calculation for the allows the ground states to be written in a paired fdim.,
quasiholes of the 331 state, even though the excitations &S & SPin-independent Laughlin-Jastrow factor times a pair-
this state are known to have Abelian statistics. The relatiot'd funcf'u%r(b:,SS|m|Iar to the Pr':?‘f“]?‘“ and ';R St%t%%' In
to paired states has been discussed in Refs. 14,15,20 and tg_r_m? .OI t >-type .F;ﬁmng’ht 1S _urt1ct|o_n0 Eisf” ?stype

The 331 state is just one of a family of two-componentSpm_ rIE)zeo pairing, with each pair in t/, =0 state of a spin

e triplet.r>
states, the so-callednm'n states, first introduced by  “\ye will write the quasihole states immediately in terms of

Ha.lpel"il"l,2 and studied further in Refs. 10,16-18 and 14. US'broken pairdanhough a Simp|e form using Laugh"n quasi_

ing notationT, | for the two components, these states can benhole operators acting on eitheror | spins will be described
written: later),

N —Fi @(z!

i ! .
1 1 ! )m| H a(Fy+r) ’Zp(FL-%-r) TWq, ... 1W2n)
p(l)

F
- T n
(NT—FT)!(,;NT sgsgm] ] (2™ (2

II (z-2)%, 49

T _ 5l
Zo(Fi+0) " Zp(F +1) i<i
peSy,

which is particularly similar to the HR case, except that herewhich is the number of states fér fermions in 21 orbitals.
ng andm;<n-—1, and so &<F,=<n. The flux in these states The sum overF satisfying (—1)"=(—1)N then yields a

isN,=q(N—1)—1+n, as for the Pfaffian. total of 22"~ zero-energy quasihole states of all spins for
For the count of states at fixed's we obtain, again sum- fixed N andw’s. This is valid for alln exceptn=0, in which
ming overF, with F=F;+F fixed, case there is no zero-energy state Noodd.
The result 2"~ may also be understood by viewing it as
2n ing f the choice of layer index on the Laughlin
’ (4.5  coming from y g
F quasihole operator. Thus quasihole states of zero energy can




16 876 N. READ AND E. REZAYI 54

clearly be obtained by multiplying factof$(z" —w?), that f(z1,2,, ... zi+Lq, ..
act on either particles of spism=1 only, or on spin{ only, (21,2, Z )
into the 331 ground state. Further, the numidérsand N
need not be equal. However, the flux seen by bo#nd |

) Zei¢l'

particles must be equal. This leads to the conditon (2122, ---Zi+Li, "'):ei¢2efin¢(2zi/Ll+r)_
2(N;—N;)=n,—n;, wheren, are the numbers of quasi- f(z1,2,,...7,...)
holes of the two types, in which the factors act on the par- (5.2

ticles of spino. For fixedN=N; +N,, there are 2"~ * ways _ _

to choose the spins of the quasiholes consistent with theddere ¢1 and ¢, represent general twisted boundary condi-
conditions, fom= 1. We will refer to this construction of the tions, the same for all particles, and are the same for all states
zero-energy states as bosonic, because, as explained in RE¥the Hilbert space. They can be set to zero without any real

8, the relation of the two approaches is related to bosonizd9ss of generality. _
tion of Fermi systems. From a general symmetry analy$fsany state in the sys-

Returning to the paired, or fermionic, description, the to-fem can be decomposed into center of mass and relative mo-

tal number of states resulting from the positional degenerac}/on. as
is, in this case,
f(Zl, B aZN):ch(Z)freI(Zl’ P ,ZN), (53)

(4.6 where f . is invariant under shifts of alf; by the same
amount, and~, is a function ofZ=%,z only. Given the
boundary conditions ofi, specified by¢, and ¢, there is

This is larger than for the Pfaffian or HR states. It shouldStill Some freedom of choice in the corresponding phases in

also be possible to obtain this formula from the bosonic dethe conditions orF ¢, a”dffr‘elv which is related to Haldane’s
scription, although we have not done so. The positional dek-vector quantum numbéf,and which will be useful in the

generacy for the quasiholes of each spin is, in that approacfellowing. In any case, there are alwaygps solutions for
Fem, for filling factor v=p/q (p, q coprime, which are

mapped into each other by magnetic translations of the cen-
ter of mass, and consequently are degenerate in energy for
' (4.7) any translationally invariant Hamiltonian.
For the Laughlin state on the torus, the property of van-
hing as thegth power as any;—z; fixes the relative wave
unction to be(definitions and results for the theta and ellip-
tic functions used in this section are given in Appendix A

>

(2n)((N—F)/2+2n
F.(-DF=(-DN '

F 2n

N,+n,

n

(o8

and the summations are constrained by the fact that for th
zero-energy stateN, depends om,, .
For the 331 state, it is again not too difficult to extend the
arguments for the Pfaffian or HR cases, to show the com-
pleteness and linear independence of the zero-energy states _ _ _
found, in the pairing or fermionic form. This is also quite ffe'_iﬂj 91((zi—z))/L4| 1)I=1 ;. (5.4)
clear in the bosonic form of the states.
The basis states for the center-of-mass wave functions found
in Ref. 23 can be rewrittefisee Appendix A apart from

V. GROUND STATES ON THE TORUS some constant factors, Zs
In this section we consider the zero-energy eigenstates of
the special Hamiltonians discussed above on a system with Z19+(N,—q)/29+ ¢41/27q
periodic boundary conditiong torusg, without quasiholes. Fem(Z)= —(N—q)/2— dyl2 (9Z/L4|qr).
Although we believe that the states we will give span the ¢ 2 (5.5
complete spaces of such states, we will not prove this, but
will refer to numerical results for confirmation. Here /=0,1,...,q—1 labels the center-of-mass degen-

First we briefly review known results forAthis geometry, eracy, andp, and ¢, have been retained for generality. Us-
to fix notation. In the Landau gauge= —Byx, we will take  jng the properties given in Appendix A, this can be verified
the magnetic length to be 1, and the system to be a parallelgo obey the conditions resulting from E@.2) that are given
gram with sided.; andL, and periods.; andL,e'*=L;7in  in Ref. 23. Alternatively one can verify directly that H§.3)
the complex planey is the angle between the sides, and satisfies Eq(5.2). Note thatF,, hasq zeros in the unit cell
(with Im7>0) parametrizes the aspect ratio. As usual, thergor Z of sidesL; andL,7, and linear combinations of these
are N flux through the surface. Many-particle wave func- functions span the Hilbert space of a charged particle on a
tions in the LLL can be written torus in a magnetic field with flux quanta through the torus,
in the LLL. The flux seen by the particles in these states is

For the paired states on the torus, the relative motion part
f,e must be modified fronf;, in particular to change the
wheref is a holomorphic function; as a consequence of thesymmetry under permutations, which can be done at the
boundary conditions of it is required to satisfy, for ali, same fluxN,=qN, by using

W(zy,...20)=F(zq, ... ,zN)e*Eiin’Z, (5.2
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fre1= fetipticf La- (5.6) full set of wave functions has, to our knowledge, not been
_ ] ) obtained previously.
Here feyipic(z1, - .. ,Zy) is @ meromorphic function, and,  Following the reasoning for the Pfaffian, we might expect

sincef g must be holomorphic, any poles fiiyic must be faliptic tO be a determinant of, 9, /92's in z/ —z! with a,

of sufficiently low order that they are rendered nonsingulat, = 3 and 4. or possibly an antisymmetrizedj combination

by the zeros off ;, which are located on the hyperplanes uf oiher functions that each obey the same boundary condi-
zj=z;. Further,fpic must obeyz;-independent boundary ons. (This assumption may be too restrictive, since the
conditions boundary conditions in fact need only apply to the complete
function. We will see that it works for HR, but not for 331.
These products of Jacobi elliptic functions are not, however,
ot (2 7 2, (5.7 linearly independent. In general, elliptic functions are com-
elliptick S1s = =+ afie + e ENT A pletely determined by the singular part of their behavior near
and similarly forz,—z + L 7. Thusf g is analogous to an  the poles, and by the periodicitiésee, e.g., Ref. 29In the
elliptic function, but inN complex variables. In general, the Present case, we require that underz+1, andz—z+r7
phases that are the proportionality factors in Eq7) need  the elliptic functionfwith arguments| 7) ] be either periodic
not be equal to 1, because any phase left by transldtijpg ©r antiperiodic, giving four possibilities which we will label
can be absorbedcanceledl by modifying the behavior of ++. +—, —+, and——, in an obvious notation, and we
Fems by a shifting, or ¢, (by 7 in the present cagén Eq.  @lso require that there be a double poleat0, with residue
(5.5 before settingp, and ¢, to zero. This is the freedom of Z€r0.
choice that is related to the vector, mentioned above. For ~ For the++ case, there is a classic solution to these re-
the paired statesqpsc is expected to be a periodic gener- quirements: the Weierstrass functigr(z| 7). The required
alization of the pairing functions, such as the Pfaffian, disfunctions with the other boundary conditions, which we will
cussed earlier on the sphere. denotep,, ¢3, andg, (in the same sequence as beforan
We now review the ground states of the three-bodybe obtained straightforwardiysee Appendix A Defining
Hamiltonian Eq.(2.2) and its generalizations on the torus. #1=#, four candidates for the relative part of the HR state
These ground states, without quasiholes, were found by Grén the torus are obtained:
iter, Wen and WilczeK.For the relative motion part we take
felliptic,a: deba((ziT - Zjl)/l—l| 7), (5.9

(5.8) and so, on includind, ; andF ., we obtain 4] states. It is
easy to see that they are zero-energy states of the hollow-
core Hamiltonian. Thé& values for the cases=2, 3, and 4
are as for the Pfaffian, while=1 gives states &=0. Since

fetiptic(Z1, -+ ZitLy, .. Zn)

Fapten= PN{ ga((zi_zj)/LﬂT)

’ 1((Zi_2j)/|—1|7')

wherea=2, 3, or 4.[The three ratios},/%,(z|7) are es-
sentially the three Jacobi elliptic functions 2hf), cn(e|7), the 4q states have distinct quantum numbers, they are lin-

and dng| 7), up to translations of and some factorsThese early independent
then reverse sign under exactly two of the three transforma- To obtain the fifth set ofy states, we note that, for the

tions Ziﬁzi'f‘l_l, Ziﬂzi"f‘LlT, andZiHZi"‘Ll(l'f' 7'), and . . . .
are invariant under the third, for any The change in sign ++ case only, the Welerstra}ss functlpn is not the unique
solution to the problem posed: we obtain another solution by

can be absorbed by the effect of a modificationFof, as adding a constantFor the other cases, this would violate the

explained above, such that the full wave function alwaysD i
" . oundary conditiong.Indeed, we could have used a constant
obeys the same boundary conditions. This structure has the

consequence that Haldanelsvector quantum numbéf, In place ofp 4, but the determinant would then vanish except

which lies in a Brillouin zone, and which is zefonodulo n t?ne tﬁisge(zg;izn;rim;zs.trllfe\rqvee;(niirg ﬁ:cgcvgic‘;\g
reciprocal-lattice vectojsin all g of the periodic Laughlin 91 ' P P |

states, is nonzero in these periodic Pfaffian states. The di%—?1 ﬁ tgil;irgstﬁ;gdaer; rr]:)%t/]serotrh?gluorgﬁs?%a'mzh dlgteerr]:#inant
tinct nonzero values faa=2, 3, or 4, are determined by the y

behavior under the three translations already mentioned. Fépat are equal. The term of first order_, hc_)wever, is linearly
the most symmetrical choice of 7=¢e'™3, which gives the Independent of ﬂ;]e zeroth-order tegmhich 1S feipric, 1) andf h
system sixfold rotational symmetry in real space and in th S Ill"nonzero. Fu(rjt I?r',t |t| IS Iahzif'g ngr93|{ i;ge&;tafte of the
hexagonal Brillouin zone ok’s, these nonzero vectors lie tignoi\;v—core model, 1t clearly =0 EXplicitly, this func-
halfway along the shortest nonzero reciprocal-lattice vectors;
only three of these vectors are distinct modulo addition of N/2—1

reciprocal-lattice vectors. Thus they lie at the midpoints of fe”iptm:m > sgrosgmp rl:[l

the edges of the zone, for this choice of zone. Thus, @ll 3 €S\

zero-energy states found fer=1/g have distinct quantum PE SN2

numbers, and so are linearly independéntleed, orthogo- % 7! —z /L. |7 5.1

nal) states. Numerical calculations are in agreement with 91(Zoan = Zaen)laln). (510
these quantum numbet’. We point out that this has an interpretation in terms of un-

Next we turn to the HR state on the torus. For the HRpaired fermions. Unpaired fermions must occupy single-
state atr=3 (q=2), numerical calculations have revealed particle states that are holomorphic, and obey the boundary
that there are 185q ground states of the hollow-core conditions onfgyic. For any exceptt +, there are no such
model?”? and so we expect to findopfor generalq. The  states, and for+ + the only state is, again, the constant
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function. By breaking one pair ifyipic.1 and putting the two N/2-1

fermions (with opposite spihin this constant state, we ob- felliptic,lz(N/Z—_l)! 2 Sgro sgrp rl;[l

tain feypics- We observe that all § states found are spin ngzg

singlets. The first and fifth sets qf states are linearly inde-

pendent because they have different numbers of poles. The 1(Zh 140~ Zpasr)/Lal 7

k values found agree with the numerical results. ‘91((23(1“)_Z,l)<1+r))/|—1|7)' (512

The existence of five sets of states for the HR state on ) . . .
the torus is surprising, especially as the analysis in Ref. §/here 91(z|7)=d,(z|7)/dz. Notice that, like the fifth
found just 4y sectors of edge states, and one expetied, function for the HR state, there are two unpaired fermions of

general CFT grounds, that the number of sectorsof pri- opposite spins, occupying the constant single-particle state

mary fields of the chiral algebra of the CFT, which comes tothat is allowed by the boundary conditions. F¢#2, this is

the same thingwould be the same as the number of confor-all that remains, and this function was already noted above.

mal blocks in the CFT on the torus. All we can say about thisFor.N>.2 th|s function contalns?l/ﬁl, Wh'Ch Is not strictly
eriodic (since no such functions exist for + boundary

here is that the CFT described in Ref. 8 for the HR state doegonditiom but obevs
lead to 4 vacuum sectors on the torus, yet what is actually ' y
requwed fqr constructing a QHE state is a correlator contain- S(z+177r) 92"
ing many insertions of fields in the chiral algebra, corre- 527 =3 -
sponding to the particles in the ground state. For the HR W(z+7]7) 1(2]7)
case, these correlators are the ground states found above, &gl is invariant underz—z+1. When any ziT (zjl) in

one set ofg sectors has turned out to contain two conformalfellipticl is translated byL,;r (—L;7), the result is
blocks. However one chooses to interpret this in CFT termg . . (z}, ... zk;) plus a term that vanishes because the
P . elliptic,1\ <1 » N/

(itis probably related to other oddities of the CFT for the HR constant—2i must be antisymmetrized with the constant
staté), the existence ofd sectors in the underlying theory is 1 that represents the missing row and column in the deter-

27, (5.13

not in doubt. minant. Thusfgpic,1 IS invariant, and we found the fourth
Finally, we turn to the 331 state. Since the pole inset of g zero-energy states. We note that0 for these
feiptic 1S €xpected to be first order, we try states, and the quantum numbers of @lstates are distinct,

so these states are linearly independent.
In this section we implicitly assumed that the number of
particlesN is even. One may ask if there are also ground
: (5.1)  states on the torus fd¥ odd. Such states will have an odd
number of unpaired fermions. As we have seen, this is pos-
sible only in the+ + (or k=0) sector. For the Pfaffian, there

Fora=2, 3, and 4, these lead to nonvanishing, zero-energ{f N0 such sector, so there are no ground statesfodd,
states for the pseudopotential Hamiltonian. We expect, howeXCept forN="1. For 331 thek=0 states already include two

ever, that there arefistates altogether, based on the generaPnpa'red ferm|ons .fON even. Fom odd, there m'ust be Jus_t
structure of this Abelian quantum Hall staeee, e.g., Ref. one unpaired fermion, of either up- or down-spin, otherwise

8), and we expect the remainirfg,,i. to be + +. Clearly the state vanishes. B.Ut’. on generalizing EQl2), one finds
) . L that it no longer satisfies the boundary condition, except,
the natural choice dét/dJ; is nonvanishing only for

- - : . . again, forN=1. Finally, for HR, there is no problem con-
N=2. From the theory of elliptic functions in one variable, structing a zero-energy state with one unpaired fermion in

the constant is the only elliptic functiqp with at most ON€ tha k=0 sector. This gives a spihdoublet of ground-states
simple pole and these boundary conditions, so we have exg g1 odd N, and we have verified numerically that states
hausted the possibilities of this structure. However, asyjth these quantum numbers are the only zero-energy states
pointed out abovefepic need not be an antisymmetrized for N odd. If these ground state wave functions are again
product of elliptic functions in % —z)/L, that each satisfy interpreted as CFT correlators, then they imply that in this
the boundary condition; onlfejipc itself must have this | 4 sector, there are nonzero correlators containing an odd
property, so we should broaden our search. number of insertions of the Fermi field.

The correct solution can be obtained, no doubt, in various Greiter, Wen, and Wilczékalso found formulas for two
ways. One way is to use the expectation thgyic is @  quasiholes of the Pfaffian state on the torus. There should be
conformal block for a Dirac Fermi field on the torus, with no great difficulty in extending the results of the present
++ boundary condition in the case of intereie other  paper to include any number of quasiholes on the torus for

functionsfejipgc,a» @=2, 3, and 4, can be viewed in exactly any of the paired states we have considered.
this way). This conformal block is known to exist, and could

also be obtained by bosonization. We are indebted to Greg
Moore, who obtained the following formuldor N=4) for

this function, at our request, by a limiting procedure of first
considering the conformal block for the fermi field with the In this section we address the question of what happens to
general boundary condition, that is twisted /1 and the degeneracies of the quasihole states and of the ground
e'%2, and taking the limitsy; andy,—0. The resultiupto  states on the torus when the Hamiltonian is varied from the
factors independent of thg’s) exactly soluble(for the zero-energy state$orms we have

a((Z —2})IL4| )
f eliiptic,a= d€ T_ 1
61((Zi Z])/LllT)

VI. EFFECT OF ZEEMAN TERM, TUNNELING,
AND OTHER PERTURBATIONS
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considered up to now. First we consider the effect of thestates,® but the symmetry(or related degeneracies pre-
Zeeman term—hZ;o,; on the HR state; herb>0 is the  sumably broken by the Hamiltonian, both for the bulk qua-
magnetic fieldgugB, ando,; is thez component of the spin  siparticle states and for the edge spectrum. For this reason,
operator for theth particle, which can be represented by thewe propose that such effects do not really represent a change
usual Pauli matrices. The hollow-core Hamiltonian is spinof universality class in the non-Abelian systems either.
rotation invariant, and its eigenstates are also eigenstates for We now discuss the effect of tunneling between the layers
the total spin. Hence the Zeeman term simply has the effeain the 331 states; mathematically this is the same as a
of splitting the multiplets of spin states. For the quasiholezeeman-like term-t3;0,; (see earlier discussions in Refs.
states, this means that the degeneracy is partially resolveds and 20. This term can be diagonalized by using a basis of
independent of the locations of the quasiholes. The lowesty, eigenstates for each particle, which we will lakeindo
energy states are then those with the largest number of (for “even,” “odd”), given by e=(1+)/\2, o

unpaired fermions, and the lowest number pf Since =(1 - 1)/\2, which have eigenvalues1 and— 1, respec-
Fo=<n—1, andF andN have the same parity, these Statestively, underoy ;. In the literature, these states have often

ggmgln?r:n_ai dane?t';é; O_V:r_‘eln NFaidln(—)rl FarE :f_tzhe been denoted “symmetric” and “antisymmetric,” respec-
parity, T oL T ', tively. Unlike the HR case, the pseudopotential Hamiltonian

F¥=0 whenN andn -1 are of opposite parity. For flxgd far which 331 is exact is not spin rotation invariant, and the
w’s these states clearly have a residual degeneracy 1 in the

first case, 26—1) in the second[The total spin of these SN eigenstates are not eigenstgte@ef%iiaxvii. Thus
lowest-energy states, which is alternat@y=(n—1)/2 or the tunneling is a symmetry-breaklng perturbation, YVhICh
S,=(n—2)/2, agrees with the results in Ref] 3n the first break; the co_nservatlon &, . The effect of Fhe tgnnelmg
case in particular, the lifting of the degeneracy implies thaf€'™M iS to modify the states, not merely to split their energies.
adiabatic exchange of the quasiholes can produce only Honetheless, when>0 is small, we may try to use degen-
phase factor, and so the statistics is Abelian. erate perturbation theory to understand its effect, which

We also note here that for the edge stitéise gapless Mmeans diagonalizing the tunneling term in the subspace of
spectrum of spin-carrying fermion excitations at the edgehe states that have zero energy wher0D; this would give
implies that the spin susceptibility of the edge is nonzerothe exact results at first order tnWe are not able to carry
and for finiteh there will be some fermions present in the this out analytically in general, because we do not have the
ground state, so there is a magnetization at the edge, or omeatrix elements of the perturbation among these states. We
could say the edge is reconstructed in this way; a confiningnay expect, however, that the degeneracies would be at least
potential is necessary to stabilize this effect. If one thinks ofpartially lifted, in a similar way as for the HR state with
the 1 fermions and their antiparticles, the fermions, as Zeeman, by the following argument. In spin space, the pairs
particles and holes of a chiral Fermi-Dirac sea, then the rein the 331 state take the forfp|;+ |;1;=e€;€;—0;0;, using
constructed state just corresponds to shifting the Fermi eran obvious notation for the spinors for thiéh andjth par-
ergy of the sea. There is thus still a gapless branch of fermticles in a term in which these form a pair. Halpérimas
ion excitations for both spif-and - at the edge. Further, argued that the effect of positive tunnelings to cause a
the degeneracy ofdon the torus is not split by the Zeeman change in the 331 ground state, which within a trial-wave-
term, because all the states are singlets. function description causes the amountoaf in the pairs to

It is clear that similar effects may be expected for anydecrease. H8 proposed that this occurs at first ordertinf
Abelian or non-Abelian statistics state, when there is a symwe also write the unpaired fermions in our zero-energy states
metry present, particularly a continuous symmetry: Ain thee-o basis, and neglect the effecttobn the paired part
symmetry-breaking perturbation may break the degeneracie®f the state, its effect would be to split the energies of the
and leave some kind of Abelian statistics behavior. This does ando unpaired fermions, exactly as for thieand | fermi-
not, however, necessarily mean that non-Abelian statistics igns of the HR state, and again with the effect of removing
unstable againsiny perturbation, nor does it mean that the most of the degeneracy. For the ground states on the torus,
Abelian statistics obtained is that of some simpler Abelianwe first note that states witk#0 are even under layer ex-
state, such as a Laughlin state of charge-2 bosonic pairs. Wahange, which has the effect of multiplying Byo, ; , while
also note that, for either the Pfaffian or HR state, when ther¢he states ak=0 are odd(incidentally, this agrees with nu-
are only two quasiholes, there are no degeneracies for fixemerical finding®). The broken pair in those states contains
guasihole positions on the sphefgo there is nothing to one e and oneo fermion. Application of the same naive
split), yet the expectation is that the Berry phase obtained oargument as for the quasihole states then suggests that the
adiabatically exchanging the two is not that in the Laughlindq degeneracy is split to@by t>0. However, an accurate
state of charge-2 bosonic pafrst least if the quasiholes are calculation should include the modification of the rest of the
given by the wave functions studied in this paper. In fact,state, and the splitting might disappear in the thermodynamic
while the breaking of degeneracies does strictly mean thdimit.
non-Abelian statistics does not occur in adiabatic transport of If we consider arbitrary small changes in the Hamiltonian
guasiparticles, other associated properties, such as the spdéimm the special forms considered in previous sections, then
trum of edge states, are, as we have seen, not affécted physical arguments like those for the Zeeman and tunneling
general, a splitting of the velocities might occur due to aterms suggest that, as the degeneracy arises from breaking
symmetry-breaking perturbatignQuite similar phenomena pairs and putting the fermions into the zero-mode functions,
are known in the hierarchy states, which have Abelian statisthere is no obvious reason why it should not be broken in
tics, where, for example, SB) symmetry appears in certain general. For the bound states in the gap in the vortex cores in
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conventional BCS superfluids, such excited many-particle
states have positive energies. However, such arguments may HHo(d):; [VoPij(Ng,S=0)+V1Pij(Ng—1,Ld)],
just be too naive, because of the modification of the ground- . 6.1)
state wave function. '
In an interesting paper, Hbgave a more general interpo- Which gives positive energy to any two particles wiif
lation between the 331 and Pfaffian ground states by varyingelative angular momentum zero and spin zero(iigrrela-
the spin states of the pairs. Within a paired trial wave-tive angular momentum one and triplet spin state orthogonal
function description, the effect of tunneling is presumably tot0 & chosen state specified by For a choice ofd that cor-
reduce the amount afo in the spin part of the wave function responds to 331, this reduces to the pseudopotential Hamil-
of a pair® If this is done without changing the spatial factor tonian (4.2 used above; pairs may have zero energy and
(Zi_zj)il, then when the pairs are purelye, and the relative angular momentum 1 only if they are in the
ground state is precisely the Pfaffian state. Ho claimed thatil;+ |iT; spin state. For @ vector that corresponds to the
this somehow contradicts the “t0p0|ogica|” arguments that€ée pairs in the Pfaffian, it allows two particles to have rela-
assert that one cannot go continuously between these distinéye angular momentum 1 at zero energy if they both have
ground states. However, this is really a misstatement; ongpin €, but not if they areeo+oe or oo. However, at this
canalwaysinterpolate between any two state vectors in thed vector, which we call the Pfaffian poinall states of the
same Hilbert space. The real question is whetheptioper-  electrons in which all spins are e are zero-energy eigenstates
ties of the states, like those considered in this paper, can bef this Hamiltonian This follows because there are clearly
continuously connected. If one wishes to exhibit a breakno singlets in such states, and so no relative angular momen-
down of the “topological” arguments, then it is necessary totum zero pairs either. This should be no surprise, since no
show that the interpolation occurs without any phase transiconvenient two-body Hamiltoniarflike Ho’s) giving the
tion, that is without any energy gap for local excitations go-Pfaffian as ground-state and a sensible spectrum is known.
ing to zero(which would be a second order transitiay any ~ Since there are very many spin-aligned states at
level crossing of ground statéwhich would be a first order N4z=2N-3, Ho’s Hamiltonian has a very large ground-state
transition. Ho proposed a family of Hamiltonians for each degeneracy. There might, of course, also be degenerate zero-
of which his corresponding wave function is a zero-energyenergy states in which the spins are notealWe will fully
ground state, but did not show that the energy gap is mainanalyze this degeneracy below.
tained throughout the interpolation. We will now examine  For dsk()?z—if(y)/\/?, the degeneracies of Ho's ground
this. We will show that at the point where Ho's ground statestate, and of quasihole states on the sphere and ground states
is the Pfaffian, there is an enormous degeneracy of othesn the torus, coincide with what was found earlier for the
zero-energy states for his Hamiltonian, implying that the encase of the 331 state. To construct these zero-energy states
ergy gap collapses to zero at this point, and the system is ndor generald, we use a more precise notation for the wave
incompressible. We will show that, up to that point, the de-functions that includes the spin states. We label the particles
generacies of the zero-energy eigenstates of his model are=1, ... N, and usel; and |, for spinors which are eigen-
the same as those of the pseudopotential Hamiltonian for thstates ofo, ; ; the wave function is now in a tensor-product
331 state, considered earlier. We will then consider modifispace of spatial wave functions and spinors, and must be
cations of his model that remove the pathology. antisymmetric under simultaneous exchange of coordinates
Following Ho, we now fixq=2, so the particles are fer- and spinors of two particles. For example, the ground state
mions, and the filling factor i#= 1 (as usual, other cases are on the sphere is
similar). To understand Ho’s description, first recall that for
spin+ fermions in the LLL, Fermi statistics implies that if ~
the particles have even relative angular momentom,0, Vo= 23 sgrll —7 1l
. . . . TgEe Sy = o(2k—1) a(2k) 1<)
2,...,then they must be in an antisymmetric spin state,
which can only be a singlet, while if they are in an odd (which is actually a Pfaffian wherey; ;(d) is the spin state
relative angular momentum state=1,3, . .. ,then they can  of two particles andj that corresponds td, and the product
only be in a symmetric spin state, which must be a tripletof these factors is actually a tensor product, so tats a
We emphasize that these statements remain true in the pragultispinor function of the coordinates. This clearly has zero
ence of any number of other particles. If the two particlesenergy. We will call it the Ho state, as it appears in Ref. 20
have total spin 1, then there is a three-dimensional complegn a different notation In the presence of quasihole factors
vector space of spin states, and the spin state can be dé- in the pairing factors, one may construct zero-energy
scribed exactly by a nonzero complex three-component veastates with unpaired fermions, as for the 331 state, but with
tor d, of which the magnitude and phase are irrelevant to thehe pairs taking the same form as in E6.2). The unpaired
state. We will not need the detailed definition &f which  fermions can be in either spin state. Even though the ground
can be found in H& or in references on superfluitHe (see,  state(6.2) does not have a definite totd), except in the 331
e.g., Ref. 30 We note only that, for the spin state special case, the counting of zero-energy quasihole states
Tilj*liTj=eie;—0;0; (as in the pairs in the 331 statel  proceeds just as for the 331 state, and the results are identical
xX,, while for eje; (as in the pairs in the Pfaffiand  to those in Sec. IV. Similar results are found for the edge
o (X,— i§<y)/\/§ (herex, denotes a unit vector in spin space in states, which are in one-to-one correspondence with those in
thez direction, etc). Notice that the transformation from one Ref. 8, and for ground states on the torus, which are like
state to the other is not simply a rotation. Ho's Hamiltonianthose in Sec. V. We expect that these zero-energy states are
is a pseudopotential Hamiltonian the complete set, except in the Pfaffian limit. This is consis-
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tent with the continuity of the spectrum as a functiorddh ~ positive energy to any two particles which either have oppo-
a finite-size systemwhich requires that the energy levels site spin and relative angular momentum zero, or if one or
found in the 331 state must change continuously with théoth of them iso and they have relative angular momentum
Hamiltonian. We expect that the larger degeneracy appea#s It is known in general how to find the zero-energy states of
only at the Pfaffian point, because there the pairs have theuch pseudopotential Hamiltonians; this was already dis-
special property of being composed of one spif) 6nly,  cussed at the beginning of Sec. IV. To be zero-energy eigen-
unlike the general stateg(d). This implies that the energy states, wave functions must contain tmen'n wave func-

of some excited states decreases as this point is approach&@n, Eg.(4.1), as a factor, in which for the particular class
so the gap goes to zero. Therefore Ho's Hamiltonian igbut for generalq) considered here, we hawa=q—1,

pathological at the Pfaffian point. m’'=q+1,n=q,
In spite of this pathology at the Pfaffian point, it is still of — . e o o
interest, given that the degeneracies of the quasiholes antia-1q+1q(Z1: - - - ZAYREAERER 1ZNO)

torus ground states are the same in Ho's mddgtept for

the Pfaffian point as in the 331 state, to ask whether the e _eig— o _o e o

statistics properties are the same. In the 331 state, the struc- :L[j (- z)" llL[l (=7 )qﬂlr_sl (z—2z9)% (6.3

ture of these properties is described in terms of (&) Jor

SO(2)] quantum number, which in the case of 331Ss For functions on the sphere, the number of fluxes seen by
Also, excitations with opposite values of this quantum num-€ and byo particles must be the same, but this is not the case
ber are degenerate, because of the symmetry operation B function(6.3) as it stands, unled, is zero. IfN,>0, it
interchanging the |ayersi which generat@zaroup_ These is necessary to multlply the function by additional faCtorS,
two symmetries combine to make up the symmetry grou@nd the space of these factors may be parametrized by view-
O(2), which is the semidirect product &, and SO(2). ing them as quasihole factots,(w?) =1I;(z7 —w?), where
Ho’s Hamiltonian breaks the conservation®f, but notthe =~ o=e or o, acting on particles of either spin. On multiplying
Z, symmetry, if we consider only the family innefactorsofUe, n, factors ofU,, one finds, for the flux
d=X,cos—iX,sin, O<@=<m/4 as proposed by Ho; these seen bye ando, respectively,

correspond to the spin  state  c@s(n/4)ee;
+sin(9—m/4)0;0; for the pairs, suggested by Halpetirand
0=0 is the 331 case an= 7/4 the Pfaffian. Consequently,
one might think the 1) quantum number is lost. Hil)weveyr, =(q+D(No=1)+aNe+no, (6.5

the degeneracies of the quasiholes and torus ground statgigice the flux must be the same for both; the second line,
are consistent with the presence of this quantum numbehich is the flux seen by the particles, applies only if
which would be a “hidden” Y1) symmetry. One might ex- N/ >0.

pect this to be, in some sense, the symmetry of rotation in \we wish to analyze the situatidd,=q(N—1)—1, that

spin space about the axis df however, sincel is complex  corresponds to the Pfaffian ground state or the same plus
we must be careful. Under rotations of spin spatés ro-  quasiholes. If we write

tated by the action of drea) orthogonal 3x3 matrix in
O(3). In general, there is no rotation that leawk@variant AN4=Ny4—[gq(N—-1)—1], (6.6)
(up to multiplication by a phageexcept wher is of certain
special forms of which thd vectors for 331 and the Pfaffian
happen to be examples. Remarkably, even thoug@h &m-

Ng=(q—1)(Ne—1)+qgNy+ne (6.9

which was denotedn in Sec. Il, then we find the
g-independent equations

metry is broken by Ho's Hamiltonian, it seems to be reap- Ne=Ng—2+AN,, (6.7)
pearing in the low-energy properties. Indeed, in terms of a
conformal field theory(CFT) description of the edge states No+No=ANy, (6.9

on the cylinder, which gives detailed information about the
structure of the statésthe low-energy edge states, obtainedWhere again the second equation does not apply,i0.
as zero-energy eigenstates of Ho's model have the sanfdow we see that ifAN,<O, we must haveN,=0 since
structure as in Ref. 8 for alil. If we assume that a CFT No=0. So in this region, all zero-energy states contain only
description must involve a (1) theory for charge, together € particles. In particular, this includes the Pfaffian state and
with some unitaryc=1 theory, combined by th&, orbifold  all states degenerate with it aN,=0; for q=1, this space
construction of Ref. 8, then the theory described in that refof states includes all states in which all the bosons have spin
erence seems to be the only possibility. However, we shoul@, and the same is true for the fermionsjat 2, as remarked
be cautious about concluding on the basis of these observabove, since antisymmetry requires all states to include the
tions that the universality class of Ho’'s model is the same a#actor Hi<,—(2ie—2f) as a factor. The nondegenerate ground
that of the 331 state, except at the Pfaffian point. Below westate of the model occurs & ,=(q—1)(N—1) [i.e., at
will see an example in which the full properties of this classAN,=—(N—1)+1], and forq=2 is the LLL filled with
do not emerge, and the degeneracy can be broken by a par-particles. ForAN,>0, the maximum number ob par-
turbation even in the thermodynamic limit. This exampleticles possible in the zero-energy statesNig<AN,. The
emerges from further analysis of the Pfaffian point of Ho’snumbers of zero-energy states, and their angular-momentum
model, to which we now turn. decomposition, for eacN, N, for this model can now be

At the Pfaffian point of Ho's model, in thg=2 case, itis obtained, as in other casésee especially the case of the
a two-body projection-operator Hamiltonian which gives Laughlin state, and the 331 state in bosonic language
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FIG. 9. Spectrum of the Ho model, for four values é&fvhich
parametrize thel vector, all forN=6 andN,,=9; that, isv=3 and
no quasiholes. FIG. 11. Spectrum of the Ho model plus the three-body interac-

tion at the Pfaffian point= m/4, again forN=6 andN,=9. The

Numerical study of Ho’s model confirms the above dis-inset enlarges the low-lying levels.
cussion. Figures 9 and 10 show representative spectra with
no quasiholes, for various values éf including the 331 derived from itfor all d (the quantum numbers are most
point =0, and forN=6 andg=2. We chose/,=1 and easily derived by considering spinbosons forq=1; in
V,=0.5. Ford not at the Pfaffian point, the zero-energy these Ho states, three bosons are never found at the same
ground state aN,=qg(N—1)—1, is nondegenerate. As the point—if they were, they would be in a symmetric spin
Pfaffian point is approached, a set of states approaches ze$tate. If it is added to the Ho Hamiltonian, all the degenera-
energy, and at the Pfaffian point, the degeneracies of theies of zero-energy states will be maintained, away from the
zero-energy states are exactly those ofrtir@’ n system that ~ Pfaffian point. At the Pfaffian point, the total Hamiltonian
we have just analyzed. Already &t /8, one can identify now selects, aN,=q(N—1)—1, the Pfaffian ground state
most of the states that reach zero energy at the Pfaffian poirgs the unique zero-energy state, in which all spinseaféor
Calculations not shown in the figures also confirm that statesmaller N, there are no zero-energy states, and for larger
with quasiholes have the degeneracies, and the angular mdk, the zero-energy states are just those of the Ho f@2
menta, of those for the 331 state. We notice that, in additio@nd its generalizations. In these states, the paired fermions
to the zero-energy states at the Pfaffian point, which are fullyare alle, but the unpaired ones can be eitkeor 0. Conse-
explained by the above analysis, there are also some veguently, the degeneracies are again those of the 331 stite,
low-energy excited states, for which at present we do nothose of the PfaffianThis was of course inevitable by con-
have a detailed explanation. tinuity, given that no states now come down to zero energy

There is a simple way to remove the “excess” degen-at the Pfaffian point. Numerical spectra confirm these predic-
eracy at the Pfaffian point, without destroying the 331-liketions, as shown in Fig. 11 for zero quasiholes, and in Fig. 12
behavior of zero-energy states elsewhere. The Pfaffian, witfor four quasiholes. In these figures, the coefficient of the
all particlese, would be selected by the three-body Hamil- three-body projection operator is 1.
tonian used earlier in the spinless case, if it acted onethe =~ We have now arrived at a Hamiltonian which has the
particles. We also observe, from the structure of the waveélegeneracies of the 331 state at dlvectors. Yet the Ho
functions (6.2), that in these wave functions no three par-model was supposed to represent the effect of tunneling,
ticles have total angular momentumNg/2—3(q—1).  which should raise the particles to high energy, and it was
Therefore, the three-body operator which projects each set @xpected that the ground state for strong tunneling would be
three particles onto angular momentunN 32—3(q—1)
and spin3 (or its analog on the tordisannihilates the Ho
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FIG. 12. As in Fig. 11, but witiN=6 andN,=11; that is, four
FIG. 10. Same as Fig. 9, but enlarged to show low-lying levels.quasiholes.
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the Pfaffian. While the ground state we find at the Pfaffiantors must be combined with similar operators at the other
point is the Pfaffian, the problem is that unpaired particles ofdge(see Refs. 31 or)8 ThusA =q/2 for the electron. In the
either spin can be in the zero modes. But this can now beharge-2 boson system, the charged operators that create
easily (and exactly remedied by adding to the Hamiltonian charges at the edge within the low-energy the@ybject to
the tunneling term—t=;0, ;. Since the tunneling term is some straightforward conditions discussed in Refhave
diagonal in thee-o basis we are using, it simply splits the scaling dimensiom?/8q when they create chargen/2q (in
states we have found. Clearly, all states containing @nly electron unitg at the edge at filling factor @/ again forn
particles now have energy Nt, and these have the degen- integral. As in the old argument of Tao and ain either
eracies of the Pfaffian state for any number of quasiholes, dheory the operator of charge 1 has 27wA = 7q, which is
for edge states, or on the torus. States containipgrticles  Bose statistics for even, and cannot represent an electron
are higher in energy. If we consider the same model, as ésimilarly, for g odd, it cannot represent a charge-1 bgson
function ofd, and lett vary with d, such that is zero at the In addition, such an operator cannot be used at a single edge
331 point and of order 1 at the Pfaffian point, then we carin the charge-2 boson theory, but must be combined with
say that its lowest-energy states are known exactly at the 33another charged operator at the other edge, or with some
and Pfaffian points, but unfortunately not in between. Theredther operator at the same edge. Only operators with an
must be one or more phase transitions as the Hamiltonian @ven-integer charge can act on one edge. Therefore, at low
varied between these limits. Notice that there is a surprisingnergiegthat is, bias voltagestunneling into the edge from
effect at the Pfaffian point, which has edge states includin@utside will be impossible at these filling factors- 1/q for
unpaired fermions of either spin whenis zero, but theo this charge-2 boson universality class. To make an electron
states obtain a gap whep-0. on one edge, the charged operator must be combined with an
When studying more general Hamiltonians that includeoperator making an unpaired fermi¢or BCS quasiparticle
tunneling, Ho’s state would in general be a better choice ofvhich in the present case would exist as excitations, but
trial state than the original 331 state, asdan be used as a would have a finite energy gap, even at the edge; thus the
variational parameter. We wish to emphasize that a largé&unneling current will be zero below a threshold voltage. On
overlap of the ground state of a Hamiltonian with a particularthe other hand, in paired states like the Pfaffian, HR, and 331
trial state, say, the 331 statas in Ref. 18 does not prove States, the fermion excitations are gapless at the edge, and a
that the state is in the correspondifsgy, 331 universality ~nonzero tunneling current with a power-law dependence at
class; to show that, its properties must be calculated, and tHgmall bias voltage should be observattlee power law can
thermodynamic limit taken, and this is a more difficult taskbe calculated from the theories in Ref. 8; has an extra
numerically. Conversely, a low overlap would not prove it is contribution from the fermions, to yiel&/9, for both the
not in that class. Pfaffian and 331 cases, aMd*? for HR). These arguments
Our discussion still leaves the question of whether, forare for leading order in the tunneling. It is possible that some
large enough, there is a transition to the Pfaffian universal- sort of higher-order tunneling process could transfer two
ity class, or to some other class. Because of the similarity irlectrons into the edge, through a virtual transition to one or
the ground-state structure of the 331 and Pfaffian states enfdore higher-energy states; as this does not require any fer-
phasized in Refs. 6,15 and 20, a second order transitiomions to be created except virtually, this would give a cur-
seems to be a possibility. Another possibility is that the Hal-rent at arbitrarily low bias voltage. However, the exponent
perin class of paired states is involved, those for which a triawould be related to the scaling dimensi@nd statisticsfor
state can be constructed by first pairing the particles intéhe charge-2 operator in the low-energy edge field theory of
charge-2 bosons, then formingg=1/4q=3 state of the the charge-2 boson state, and so the power law would be
bosons® This is clearly another Abelian quantum Hall state, V49~ *; thus forq=2 the current would be much lower than
for which the edge excitations would consist only of th@g)J  for Pfaffian, 331, and HR states, and still clearly distinguish-
density-fluctuation chiral scalar boson modes, in differen@ble. For another discussion of the experimental conse-
charge sectors; it would lack the gapless fermion excitationguences of the Halperin-type charge-2 boson Laughlin state,
characteristic of the paired states discussed fere. in connection with even-integer filling factors, see Ref. 33;
While we cannot rule out the Halperin type of paired our formulas for the charge-2 boson universality class also
state, and all of these states might describe the universaligpply for the conductance in this case, wijk 3, to give
classes of various Hamiltonians, even within the LLL, wedl/dV~V.
can point out an experimental signature that will distinguish
the former from the others. First we recall that, for the
Laughlin states, the Luttinger liquid at the edge leads to the
local density of statetN(w)~|w|9" for the filling factor In summary, we obtained a full description of the quasi-
1/q (see Ref. 31 for a reviewThe corresponding tunneling hole states of several paired FQHE states, for the Hamilto-
differential conductance for a point contact at zero temperanians for which the exact ground states are known. The de-
ture will bed1/dV~V9~1, The exponents are simply related generacies found in the Pfaffian and HR cases are as required
to the scaling dimensiolh of the operator that creates a for non-Abelian statistics. For the 331 states, the statistics are
single electron in the low-energy theory of the edge, asAbelian, and the degeneracies are due to the layer index.
dI/dV~V?2~1 and also to the statistio® of the excitation Ho’s model was found to be pathological at its Pfaffian
by 6/27=A (mod 1). In the theory for the Laughlin states, point, but the pathology was removed by adding a three-
the chargen/q operators at a single edge have dimensiondody term to Ho's Hamiltonian. With tunneling also added,
n2/2q (n must be an integ&rthe nonintegral charge opera- the Pfaffian state was recovered, but the model was no longer

VIl. CONCLUSION
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exactly soluble for the low-energy states at intermediate The identity used to rewrite thE., found in Ref. 23 in
points in the parameter space between the 331 and Pfaffighe form given in Sec. V can be obtained, by shiftgofrom
points. In Appendix B, the permanent state was also consicthe simplest version

ered, which is another candidate for non-Abelian statistics,
but should probably be rejected because of its proximity to a
ferromagnetic ground state, and its correspondingly gapless rﬂl V3(z=1/M|7)=3(Mz+ (M~ 1)/2[M7)
nature. It remains to be seen whether the other non-Abelian

states, though not apparently close to an obviously gapless X gM(T)Ip(M7), (A3)
state, are in fact stable against small generic perturbations.
This is an important outstanding issue, to which we hope 0"
return elsewhere. It probably requires an analytical, field-
theoretic technique to settle it in general, which should be a o

theory that describes the paired condensate, and not just a 93(2| )= H (1—e?™™M)(1+2e2™ 72"~ Dcos2rz
Chern-Simons theory of the low-energy sector containing

non-Abelian statistics. In the meantime, we pointed out in 4 gtmin2n=1)) (Ad)
Sec. VI how the different paired states, the Halperin-type '

state of charge-2 bosons, and the Pfaffian and HR types withind doing the product first. Herenp( ) is the Dedekindy
non-Abelian statistics, can be distinguished in a pointfunction,
contact tunneling experiment. As for an actual demonstration

that adiabatic transport of quasiparticles does produce non- o i
Abelian statistics in some systems, that also will have to be n(r)=e nﬂl (1—e ™). (AS)
left for treatment elsewhere. -

M

Which is obtained by writing thé functions on the left-hand
side in the product forfY

[

The Weierstrass elliptic function can be defined®oy
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(m+n7)?

NSF-DMR-9420560. from the sum. It can be showhthat ¢ is invariant under
z—z+1 and z—z+ 7. To obtain functions that have a
APPENDIX A: ELLIPTIC FUNCTIONS double pole at the origin, like the Weierstrass function, but

) ) o ] are antiperiodic, we may use the definitions
In general,9 functions with characteristics are defined as

a — _aymatnb__ T
9, (] = i mr(n+a)%+27i(n+a)(z+b) (A1) Pan(Z7) % (=) (z—m—-n7)?’
b n ’
) ) wherea andb are integersp, , depends ora andb only
where then sum is over all the integers amdandb are real.  noqulo 2. Fora andb both even, the sum is not convergent,
From the definition we obtain which is whyp was not defined this way. For the other three
cases, the series converges, and it is clear that the functions

(A7)

9 a (z+1|7) =2y a (2]7), have the periodicity properties that we denoted-,
b b and —— in the text.
a _ _ a .
9 o (z+17| 7_)=e7|71'772ﬂ'|(2+b)1(} o (2] 7). (A2) APPENDIX B: PERMANENT STATE

In this appendix, we will introduce a Hamiltonian for
Consequently we can restriatandb to lie between 0 and which a certain state containing a permanefather such
1. states can be found in Ref) 4s the unique zero-energy
The standard Jacobi theta functi6hare particular cases eigenstate of maximum density, and summarize results for
of those above. There are four of them: the quasihole and edge excitations, and for the ground states
on the torus. We also describe a relation with fully spin-
polarized states and their Skyrmion excitations, and argue
that the permanent state is at a phase transition from ferro-
magnet to paramagnet.
The permanent state is a spin-singlet ground state of spin-
1 fermions forg odd, and of spirg bosons forg even. It can
be viewed as spin-singlep-wave pairing of composite
bosons. The Hamiltonian for the simplest casg=1 is a
Of these i, is of particular importance, since it is odd under three-body Hamiltonian, which penalizes the closest possible
z— —2z, and so has a zero at the origin. In general,%4§] approach of three spiffermions. On the sphere, three par-
can be related to each other by shiftszof ticles are at their closest, consistent with Fermi statistics,

Szl 7)=9 S,= O

Nl N

[@RNITH

0 0

193:19 0

, and 9,=7

2
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when the total orbital angular momentum for the three isw's, and a fixed number of broken pairs, is that for
3N4/2—1, and the total spin ig. Our three-body Hamil- B=B;+B, unpaired bosons, inr2orbitals (including spin
tonian is therefore taken to be a positive number times theé or | ), which yields

projection operator onto this multiplet of states for three par-

ticles, summed over all triples of particles: B+2n—1) B4
5 (B4)
H:ig;k VPij(3Ny/2—1,1/2). (B1) Including the positional degeneracy of the quasiholes, and

summing oveB as for the other states, gives

We have verified numerically that this does produce a unique

many-particle state at zero energy at g value that cor- E

responds to the permanent statevatl. As the permanent

state is a zero-energy state for this Hamiltonian by inspection

(and is nonzerp it must be the state obtained numerically. The sum overB satisfying (—1)®=(—1)" diverges as

As for the Pfaffian state in Sec. Il, a suitable Hamiltonian,N— . Note that fom=1, it is possible to break all the pairs

consisting of a combination of spin-independent two-bodyand make all the spins polarized, still with zero energy. In

projection operators onto angular momentg,, N,—1, other words, the quasihole states of the spin-polarized

..., Ny—q+2, and a certain three-body projection onto state form a subset of the zero-energy states for the three-

angular momentum8,/2—3(q—1)—1 and spin, can be  body Hamiltonian.

constructed for which the generalizations of these states to As we saw in the main text, the edge states are closely

q>1 are again the complete set of zero-energy states.  related to the bulk quasihole states. For the permanent state,
In our much-abused notation, the permanent state is deve will just state that there aregdsectors of edge states

(B5)

B+2n—1\/(N—B)/2+2n
B 2n '

B.(-1)°=(-N

fined by the wave functioh involving unpaired bosons, much like the other examples in
Ref. 8. In the twisted sector, there are zero modes which can
Wperd 2L -+ 22 2ds - -z be occupied with arbitrarily many bosons of either spin.
Turning to the ground states on the torus, there are again
2 1 H ( \o 4q sectors forN even. The ground states fér#0 are an
= Zi_zj .

obvious generalization of those for the 331 state, containing

a permanent instead of a determinant. These states are again
(B2)  spin singlets. Fok=0, the construction that worked for 331
made essential use of antisymmetrization, and does not work
Here. Instead, the only possibility is to break all the pairs, and
put the bosons in the constant single-particle state on the
torus. The spin state is then totally symmetric, so we obtain
1 spinN/2 multiplet of states. This construction also works
for N odd.

The large degeneracies of states in certain sectors in this
system make sense in the interpretation in terms of correla-
tors in CFT. The theory relevant to the permanent 8-&
ghost system, where 8 and y are free bosonic fields of
conformal weight;, so that this theory is nonunitary. It real-

- T_ 5l T _ 5l 11
o&un (21— Z501)  (Znie— Zg(np))i<]

The fact that it represents a singlet is most easily seen b,
viewing it as singlet pairs of composite bosons of shitt is
totally antisymmetric forq odd, symmetric forq even. It
resembles the 331 state, but with the sign of the permutatio
omitted. Such a summation over permutations defines th
permanent of a matrix, peth= X ;II;M; ), in which M
is anL X L matrix with elementd;; , and the sum is over all
memberso of S .

States with & quasiholes can be written down in the
now-familiar manner:

ij

B B N.—B izes Kac-Moody symmetry at levil= — 3 (Ref. 5 (not to be
i ! 1781 .
1 S I @I o™ T confused with the vectok on the torus The latter theory
(N; =B, &5, k=1 A T T includes the “spin” fields for the3-y system, which behave
pesy, as infinite-dimensional fractional-spin representations of
SU(1,1) symmetry, that is related to, but not quite the same
qD(ZL(BTm ,Zﬁ(Blm TW1, .. Wop) as, the S) s_ymmetry in which we are interesteq. Conse-
X T T ) Ll (z—=2)%  quently the infinite degeneracies when quasiholes are
o(Bytr)  Tp(By+r) =) present, or in the ground state on the torus in the correspond-

(B3) ing sector, are not surprising.

Another interesting question is the excitation spectrum
in which ® is as in Secs. II-1V, andy, and m; must be  when the zero-energy states of our Hamiltonian are fidly
<n—1. Inthese states the fluxi,=q(N—1)—1+n.Itis  even just macroscopicallyspin polarized, as occurs in the
clear that these are all zero-energy states for the three-bogyesence of two quasiholes or on the torus. Since the ground
interaction Eq.(B1) at g=1, and its generalization to state breaks the spin-rotation symmetry, and the Hamiltonian
g>1. The counting of states is most similar to the 331 stateis short ranged, we expect low-energy spin-wave excitations
but because the unpaired particles are here Spimsons, the  to exist, in which one or more spins are flipped. For a generic
Pauli principle restriction on the number of unpaired par-Hamiltonian, one would expect these to occur at low but
ticles does not apply, and there is no upper limit, except thahonzero energy, with a gapless quadratic dispersion relation
the number of unpaired particles cannot exceed the totas in a quantum ferromagnet. Then the system would not be
number of particles. Fan=1, the number of states for fixed fully gapped for spin excitations, unlikéve believe the
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other systems studied in this paper. It is interesting to note 50
the relation with thev=1 spin-polarized system that has
been much studied recenfl{For a two-body Hamiltonian E oo
consisting of a projection operator onto zero relative angular 1500
momentum for two particles of total spin 0, the spin-
polarized filled Landau-level state, and quasihole states in-
cluding reversed spinéSkyrmiong are zero-energy eigen-
states(note that the number of quasiholes for this system is
identified with the number of flux added to the polarized
ground state, which is smaller by 1 than the number of flux
added to the permanent ground stateor each number of
added flux, these are exactly the same as the states above o
with no unbroken pairs. There are also the expected spin- gl B B 1 L L
wave excitations at nonzero energy. However, in the case of 0 10 70 L 30
the quasihole states of the Hamiltonian we have studied here,
we already know that there are other states with some addi- FIG. 13. Spectrum of the three-body interaction for the perma-
tional reversed spins atero energy; they are simply the nent _state of fermions with=1, forN=12 gnde,=10; that is, no
states where not all the pairs are broken. Clearly, these statg4asiholes. The inset enlarges the low-lying levels.
would not be zero-energy states for the two-body Hamil-
tonian. It is tempting to identify them with a subset of the the latter property may mean that the dispersion relation has
spin-wave states. ) ) vanishing coefficient of the wave vector squared in the ther-

From the summand in E¢B5), we can obtain the number  modynamic limit(this coefficient is proportional to the spin
of zero-energy states for each number of unbroken pairsgitfness in the ferromagrjetwe note that these states pen-
(N—B)/2. Itis instructive to begin with the case=1 that  grate quite far into the full spectrum. The apparent slight gap
corresponds to the sector containing the fully polarized filled )\ e the zero-energy states fo# 5 is in fact just a finite-
Landau-level state. As we increasd  B)/2 from zero, we . Size effect, since at least tf&=N/2— 1 states must form a
E‘Xp.eCt that the total spin ”.‘“S‘ cjecreasg QUe .to the for.mat'o(?apless branch asl—o0. The low-lying states in the full
of singlet pairs. The first binomial coefficient in E@®5) is . ;

S . i spectrum should be other multiple-spin-wave states.
equal toB+ 1, which is the degeneracy of a single multiplet For th d-stat tor of th t th :
of spin S=B/2. The second binomial coefficient in E@®5) or the ground-state sector ot the permanent, there 1S a
is the orbital degeneracy of the quasiholes of the permanenli]’onQegenerate Zero-energy state, as in the other cases studied
n this paper, but there is also an apparent gapless branch of

which we here interpret as the number of ways of pIacind : X X
(N—B)/2 bosons in 2+ 1=3 orbitals. The bosons are to be States at lovL (see Fig. 18 From the point of view of the

viewed as the spin waves. The three orbitals form_anl ferromagnet, thidN, value represents a quasielectron state,
multiplet. The spin-wave excitations in general could haveVhich would be an anti-Skyrmion. For the two-body Hamil-
angu'ar momenta 0’1 o theL =0 ones S|mp|y represent a t0n|an, the antI-SkyrmlonS form a set of states wliths S,
global rotation of the spin, and have already been counted iRut which do not have zero energy or exactly soluble wave
the degeneracy of each spin multiplet. We conclude that, fofunctions. The lowest-energy states in Fig. 13 haveS for
our Hamiltonian,L=1 spin waves have zero energy atL=0, 1, 2, and 3, bu=1 for L=4, though here a®=4
n=1. The other spin-wave states would have to be obtainegtate lies at slightly higher energy. Moreover, the=0
by a collective excitation of the condensate of singlet pairsground state has overlap squared 0.81 with that for the Cou-
or spin wavegdepending on our point of viewwhich ex-
cites one or more of them to higher angular momentum. A
similar picture holds fon>1. Based on these arguments, we
do expect a gapless branch of low-energy spin waves to be E
present in the spectrum of elementary excitations of the spin- o
polarized zero-energy states for our Hamiltonian, on the 10
sphere, and also on the torus.

The three-body HamiltoniafB1) above has been diago-

nalized numerically fog=1 andN up to 12, withV = %, for i

‘HH‘\HI' 1

o HT

‘Ilil‘\\\\‘\\ll‘\l\\

1'5\|I\\\Illllllll\lllll\\

various numbers of quasiholes; results for0 and 1 are 0.5
shown in Figs. 13 and 14. For=1, the degeneracies of the
zero-energy quasihole states have been confirmed, and in
addition (see Fig. 14there are low-lying states, so the sys-

tem is not obviously gapped. In fact, by examining the states S
atn=1 with S,=N/2—1, that is one less than the maximum 0
value, which we expect to be the single-spin-wave states of

the ferromagnet, we obtain a dispersion relation of the spin F|G. 14. As in Fig. 13, but wittN=10 andN,=9; that is, two
waves, which is shown as the lower-right inset in Fig. 14. Itquasiholes. Upper-left inset: low-lying levels. The lower-right inset
has the expected form of a finite-size version of a gaplesshows only the states wit,=N/2—1, i.e., single spin flipgor
branch of states, and has zero energy for hothO and 1; spin waves of the fully polarized state.

.20 .
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lomb interaction at the san¢ andN,,. There is thus some pairing function from the simple formz(—zjl)*l found
evidence that this branch of states represents something sintiitherto. As non-Abelian statistics probably relies upon the
lar to an anti-Skyrmion. long-range character of this part of the wave function, it
The proximity to the ferromagnet, albeit at a different could disappear under this perturbation. In any case, the fer-
number of flux[N,=q(N—1) for the ferromagnét sug- romagnetic order parameter is constantV¥gr>0, and will
gests that the system is at the transition to the ferromagneyanish forV,<0, which indicates a first-order phase transi-
Indeed, if the two-body Hamiltonian containing only (for  tion.
g=1, or the usual generalizations for otltgris added to the The transition also has a simple interpretation in terms of
three-body Hamiltonian, then faf,>0 the ferromagnet and composite bosons. In the permanent state, the bosons are
its quasihole excitationgSkyrmionsg will be the only re- paired, but when one flux quantum is added, there are broken
maining zero-energy states, and the=1 spin waves[at pair states of the same energy. In these states, the unpaired
N4=0q(N—1)] will have nonzero energy. On the torus, the composite bosons occupy the=0 zero mode, and can be
4q-fold degenerate sectors will be split to leave only the viewed as a Bose condensate. Since they carrysach a
states withk =0, which have spirN/2. ForV, negative, we condensate is necessarily a ferromagnet, and when more flux
expect the splittings to reverse sign, and the ground states as added, the Skyrmion zero-energy states are obtained. Thus
the torus or on the sphere with quasiholes will presumably béhe permanent three-body Hamiltonian can have pairs, but
unpolarized; in this region no exact wave functions are availthe bosons can also unpair and form a condensate. In Bose
able for the lowest-energy eigenstates. In other words, thkquid systems, the condensation of single bosons is the usual
polarized and unpolarized states will differ in energy density.occurrence. It seems that the permanent state is on the bor-
We expect that the unpolarized states are paired, and indeeerline between a single-particle Bose condensate and a con-
the attractive pseudopotenti®}<<0 should favor the pairs. densate of pairs only. It is possible that, while the ferromag-
In view of the higher-energy density of the polarized groundnetic order indicates a first-order transition, the behavior of
state on the torus, we guess that these states are no longettle pair order parametégspecifically, the size of the pajrs
the same universality class as the permanent state, but may of some properties on the ferromagnetic side, possibly
be a simple Halperin-type state, a Laughlin state of charge-gelated to a spin stiffness going to zero, could be character-
boson pairs. This probably would occur because the attradstic of a second-order transition, with a length that diverges

tive potential decreases the size of the pairs, and modifies tha the transition point.
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