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The quasihole states of several paired states, the Pfaffian, Haldane-Rezayi, and 331 states, which under
certain conditions may describe electrons at filling factorn5

1
2 or

5
2, are studied analytically and numerically in

the spherical geometry, for the Hamiltonians for which the ground state are known exactly. We also find all the
ground states~without quasiparticles! for these systems in the toroidal geometry. In each case, a complete set
of linearly independent functions that are energy eigenstates of zero energy is found explicitly. For fixed
positions of the quasiholes, the number of linearly independent states is 2n21 for the Pfaffian, and 22n23 for the
Haldane-Rezayi state; these degeneracies are needed if these systems are to possess non-Abelian statistics, and
they agree with predictions based on conformal field theory. The dimensions of the spaces of states for each
number of quasiholes agree with numerical results for moderate system sizes. The effects of tunneling and of
the Zeeman term are discussed for the 331 and Haldane-Rezayi states, as well as the relation to Laughlin states
of electron pairs. A model introduced by Ho, which was supposed to connect the 331 and Pfaffian states, is
found to have the same degeneracies of zero-energy states as the 331 state, except at its Pfaffian point where
it is much more highly degenerate than either the 331 or the Pfaffian. We introduce a modification of the model
which has the degeneracies of the 331 state everywhere including the Pfaffian point; at the latter point,
tunneling reduces the degeneracies to those of the Pfaffian state. An experimental difference is pointed out
between the Laughlin states of electron pairs and the other paired states, in the current-voltage response when
electrons tunnel into the edge. An appendix contains results for the permanent state, in which the zero modes
can be occupied by composite bosons, rather than by composite fermions as in the other cases; the system is
found to have an incipient instability toward a spin-polarized state.@S0163-1829~96!04947-8#

I. INTRODUCTION

Over the past few years there has been renewed interest in
fractional quantum Hall effect~FQHE! ~Ref. 1! states involv-
ing pairing at even-denominator filling factors.2–8 The earli-
est idea2 was to generalize the Laughlin state9 by first pairing
the electrons into charge-2 bosons, then forming a Laughlin
state of the bosons, for which the filling factornb must be of
the formnb51/m, m.0 even. Since the filling factorn of
the electrons is related to that of the bosons byn54nb ,

2 one
obtainsn either of the form 1/q or 2/q, where in the second
caseq must be odd. For the casesn51/q with q even, this
produces a fractional quantum Hall state at a filling factor
not accessible in the usual hierarchy theory.10 This idea was
taken up by Haldane and Rezayi,3 using spin-singlet pairs, to
produce a candidate to explain the observedn55/2 plateau11

~using the usual notion that filling factors larger than 2 in-
volve filling the lowest Landau level with electrons of both
spin, and then constructing an5 1

2 state in the first excited
Landau level!. The Haldane-Rezayi~HR! wave function has
a simple structure, and other paired states with analogous
structures, for either spin-singlet or spin-polarized pairs,
were written down in Refs. 4 and 5. In particular, the Pfaffian
state of Moore and Read5 is the simplest paired state for
spinless or spin-polarized particles. The latter authors also
argued that paired states exhibit pairing of composite par-

ticles, either bosons or fermions, constructed by attaching an
odd or even numberq, respectively, of vortices to the elec-
trons, for filling factor 1/q.12,13 These objects behave like
particles in zero magnetic field, and the wave functions of
the paired states can be interpreted as Bardeen-Cooper-
Schrieffer ~BCS!-paired wave functions, in their position
space form. In particular, this makes it easy to understand
why the HR state is a spin singlet. It was also suggested that
there should be low-energy excitations in which composite
particles are unpaired~but still consist of electrons attached
to vortices!, as opposed to breaking the electron pairs in
Halperin’s picture. It was further suggested that quasiparticle
excitations analogous to those of the Laughlin state,9 which
in incompressible states correspond to vortices in the order
parameter,12 would carry multiples of a half-flux quantum,
and thus charges in multiples of 1/2q, rather than 1/q as in
the Laughlin states at filling factor 1/q ~this also results from
viewing the excitations as quasiparticles in the Laughlin
states of charge-2 bosons!. Finally, it was proposed5 that
these quasiparticles obey non-Abelian statistics. In brief,
non-Abelian statistics requires that there be degenerate states
for well-separated quasiparticles, and, when the quasiparti-
cles are exchanged adiabatically, the effect is not merely a
Berry phase representing ordinary fractional statistics, but a
matrix acting within the space of degenerate quasiparticle
states. In the present paper, we do not aim to exhibit this
action directly, but we do aim to show that the quasihole
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states of the Pfaffian and HR states possess the necessary
degeneracies, and to give a physical explanation of their ori-
gin.

In subsequent work by Greiter, Wen, and Wilczek,6 the
physics of the formation of Halperin-type paired states, that
is, Laughlin states of electron pairs, was elaborated, using
the Moore-Read Pfaffian state as an example, and several of
the points made in Ref. 5 were repeated. Greiter, Wen, and
Wilczek also introduced a three-body Hamiltonian for which
the Pfaffian state atn51 is the exact zero-energy eigenstate.
As regards the statistics of the quasiparticles, however, they
argued, quite reasonably, that Halperin’s picture would lead
to simple Abelian statistics of the quasiparticles. While we
agree with much of the physical discussion by these authors
~including the argument that the Halperin paired states will
have 4q-fold-degenerate ground states on the torus in the
thermodynamic limit!, we disagree with their use of the
three-body Hamiltonian and Pfaffian-based simple wave
functions to illustrate their points. Other work on this
model,7,8 and even the observation by Greiter, Wen, and Wil-
czek themselves6 that there is a sixfold degeneracy of zero-
energy states of the three-body interaction on the torus, are
more consistent with the predictions of Ref. 5 of non-
Abelian statistics and related properties that are connected
with conformal field theory~CFT! in two space-time dimen-
sions. For example, there are gapless Majorana fermion ex-
citations at an edge of the Pfaffian state,7,8 in addition to the
usual charge-fluctuation boson excitations, while the
Halperin-type state of electron pairs would be expected to
possess only the latter. The results that will be obtained in
the present paper lend further support to the belief that the
quasiparticle states that are constructed as energy eigenstates
of the three-body Hamiltonian of Ref. 6~and its generaliza-
tions to be constructed below! do possess non-Abelian sta-
tistics.

It was also suggested6 that non-Abelian behavior might be
present only at points of special symmetry, and not be ge-
neric. Clearly, the three-body Hamiltonian might be such a
point. Although it was argued in Ref. 5 that non-Abelian
statistics is a topological property that cannot be altered by
small perturbations because the ground states involved are
assumed to have an energy gap for all excitations, this has
not been tested. It is clearly an important problem, but it lies
beyond the scope of the present paper.

A further development in paired FQHE states was the
realization that some members~to be referred to here collec-
tively as the 331 state! of another class of states, of which an
example was introduced by Halperin,2 also exhibit
pairing.3,14,15These states have come under scrutiny because
of their relevance for FQHE states in double-layer systems at
n5 1

2.
16,17,14,18They can also be viewed as generalized hier-

archy states,19 and so are not expected to possess non-
Abelian statistics; however, they are still distinct from the
Halperin idea of a Laughlin state of charge-2 bosons. We
will discuss these states, and especially recent work by Ho,20

further in Sec. VI.
As we mentioned above, the main purpose of this paper is

to check the expectation, based on the CFT ideas of Ref. 5,
that the quasihole states of the Pfaffian and HR states possess
degeneracies above and beyond those that would be obtained
for ordinary Laughlin quasiholes, or their generalization to

the Halperin-type paired states, and thus to lay the ground-
work for a demonstration of non-Abelian statistics. We do
this by constructing zero-energy eigenstates of those Hamil-
tonians for which the simple form of the ground-state wave
function is correct. These systems serve as model examples,
each of which we may hope is typical of a universality class
~in the sense of Ref. 5!, though the study of the effect of
perturbations lies beyond the scope of this paper.~We should
mention that quasielectrons are expected to obey non-
Abelian statistics like those for the quasiholes, but it is al-
ways much more difficult to obtain energy eigenfunctions, of
which the wave functions take a nice form, for quasielectrons
than for quasiholes, and the energies will not be zero, nor
degenerate, though presumably the degeneracies would be
recovered in the thermodynamic limit for well-separated
quasielectrons.! Some of the results for the Pfaffian appeared
in an unpublished earlier work21 ~see also Ref. 22!, but the
method employed here in general is related to that used for
the edge states in Ref. 8. The results are in full accord with
earlier expectations. It will emerge that the degeneracies of
quasihole states of the paired states can be viewed as coming
from breaking pairs of composite particles and placing the
unpaired~composite! particles in certain single-particle states
that contribute zero to the total energy; these are ‘‘zero
modes.’’

Throughout this paper we will use the terminology ‘‘par-
ticles’’ to refer to the underlying charged particles in the
lowest Landau level, which could be either fermions~such as
electrons! or bosons, and not to the composite particles. For
a given Hamiltonian, we will also refer to energy eigenstates
that have energy eigenvalue equal to zero simply as zero-
energy states.

In this paper we mostly work on the sphere; we will
briefly review this formalism, and results for the quasiholes
of the Laughlin state.10 One uses a uniform radial magnetic
field with a total ofNf flux through the surface, and in the
lowest Landau level~LLL ! each particle has orbital angular
momentumNf/2. The LLL wave functions on a sphere are
usually written~in a certain gauge10! in terms of ‘‘spinor’’
~or ‘‘homogeneous’’! coordinatesui andv i for each particle
i51, . . . ,N, with ui5eif i /2cosui/2, v i5e2 if i /2sinui/2 in
terms of the spherical polar coordinatesu i andf i , on the
sphere. Since these imply thatui andv i are not independent
complex numbers, it is often more convenient, and will sim-
plify the writing, to use a nonredundant parametrization of
the sphere by a single complex variable. This is done by
stereographic projection, which gives the definition
zi52Rv i /ui , whereR is the radius of the sphere. Single-
particle basis states in the LLL then take the form
zi
m/(11uzi u2/4R2)11Nf/2, where theLz angular momentum
quantum number isLz5Nf/22m. In this form, the rotation-
ally invariant inner product of single-particle states on the
sphere is given by multiplying one function by the conjugate
of the other, and integrating over thezi plane with no other
zi dependent factors inside the integral. Only single-particle
basis states withm<Nf correspond to LLL functions on the
sphere, and can be normalized with respect to this inner
product ~the normalizing factors will not be needed here!.
@Note that whenNf andR→` with Nf /R

2 fixed, in which
case the sphere becomes effectively flat, the basis functions
~for m fixed! tend tozi

me2uzi u
2/4, the basis functions in the
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plane in the symmetric gauge9.# Many-particle states can
thus be written as

C5C̃)
i

~11uzi u2/4R2!2~11Nf/2!, ~1.1!

andC̃ must be a polynomial of degree no higher thanNf in
eachzi . Therefore, in the following we need specify only
C̃ in order to describe a state.

The Laughlin ground state and quasihole states are exact,
zero-energy states for short-range pseudopotential
Hamiltonians10 of the general form

H5(
i, j

(
M50

Nf

VMPi j ~Nf2M !, ~1.2!

in whichPi j (L) is a projection operator onto the subspace in
which the total orbital angular momentum of the particlesi
and j is L; in the summation,M can be viewed as the rela-
tive angular momentum. For the LLL states, the close ap-
proach of two or more particles occurs only when their total
angular momentum is large. The parametersVM are the
pseudopotentials. Note that, for spinless particles, only even
M occur for bosons, and only oddM for fermions. We will
later generalize the projection operator notation to three-
body operatorsPi jk , and the subspace onto which it projects
will be specified by the values of further quantum numbers
of the chosen group of particles, such as total spinS, or
specific values of thez component of the spin of each par-
ticle, etc. Every projection operator is always normalized in
the conventional way, withP25P.

The Laughlin states are zero-energy states for the pseudo-
potential Hamiltonian in whichVMÞ0 for M,q, and zero
otherwise~in fact, the nonzeroVM are usually taken to be
positive!. The Laughlin-Jastrow wave function is

C̃LJ5)
i, j

~zi2zj !
q. ~1.3!

Clearly q must be even when the particles are bosons, and
odd when they are fermions. The number of flux is then
Nf5q(N21), and the filling factor,n5N/Nf , tends to
1/q as the number of particlesN→`. We will always use the
integer q.0 as the parameter specifying the filling factor
n51/q. In this state, any two particles have relative angular
momentumM>q,10 so it is annihilated byH. This property
is preserved if the state is multiplied by the quasihole factors
U(w)5) i(zi2w), which change the flux by one quantum.
These factors can be expanded in powers of eachw to obtain
the elementary symmetric polynomials in thezi ’s,

em5 (
i1, i2,•••, im

zi1zi2 . . . zim ~1.4!

which are linearly independent operators, and the states ob-
tained by multiplying in several of these factors span the full
space of zero-energy states for each number of flux
Nf5q(N21)1n, wheren is the number of quasiholes.9,10

This results from the standard fact about symmetric polyno-
mials that they can all be obtained as sums of products of the
elementary symmetric polynomials. The space of states ob-
tained in this way is equivalent to that forN bosons on the

sphere in the lowest Landau level withn flux, or n11 or-
bitals. This can be viewed as theq50 case of Laughlin’s
states, which applies since the dimension of the desired
space of states is independent ofq. The dimension of the
space is therefore a binomial coefficient

SN1n

n D . ~1.5!

Also, the expansion of

)
i

)
k

~zi2wk! ~1.6!

in sums of products of symmetric polynomials in thew’s
shows that, when thew’s are viewed as the coordinates of
bosons,10 the space of available states for these bosons,
which behave as if in their LLL withN as the number of
flux, exactly coincides with the space of zero-energy quasi-
hole states. The dimension of this space is then given by the
formula for n bosons inN11 orbitals, which is the same
binomial coefficient~1.5!. The equivalence of these view-
points is the basic duality between bosonic particles and vor-
tices within the LLL; it is analogous to the particle-hole
transformation for fermions. The count can also be per-
formed by using theq51 ~fermion! case instead of the
q50 ~boson! case. It then gives the number of states forN
fermions inNf115N1n orbitals, or forn holes obeying
Fermi statistics in the same number of orbitals, and these are
the same number~1.5!. We will often refer to the dimension
of the spaces of zero-energy states we find in this paper
simply as the number of zero-energy states.

We now summarize the contents of the remainder of this
paper. In Secs. II, III, and IV we study the quasihole states of
the Pfaffian, HR, and 331 states on the sphere, for the Hamil-
tonians for which these ground states are exact. We find
explicit wave functions for all the quasihole states, and count
them to exhibit in particular the degeneracy that occurs even
when the positions of the quasiholes are fixed. For the Pfaff-
ian and HR states, this is related to non-Abelian statistics,
while for the 331 states it results simply from a layer quan-
tum number of the quasiholes. The analytical results are con-
firmed numerically. In Sec. V, we consider the ground states
of the same Hamiltonians on the torus, that is with periodic
boundary conditions, and obtain the wave functions of the
zero-energy states in all cases. In Sec. VI, we make a modest
attempt to discuss the effects of perturbations on the states
considered, especially the Zeeman term~for systems like HR
that include particles of both spin! and tunneling~for double-
layer systems like 331!. We make a full analysis of the zero-
energy states of a model proposed by Ho,20 which we show
to be compressible and thus pathological at the point where
the spin-polarized Pfaffian is among the zero-energy states.
We also rectify this problem by adding further terms to the
Hamiltonian. These results are again checked numerically. In
addition, we mention an experimental test that can distin-
guish the Halperin and other paired states, by using electron
tunneling into the edge, for example via a point contact.
Appendix A contains definitions used in Sec. V, and Appen-
dix B analyzes a further paired state, the permanent state, in
which there are spin-singlet pairs of spin-1

2 composite
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bosons;5 this state is found to be at a transition point to a
ferromagnetically ordered state.

II. QUASIHOLES OF THE PFAFFIAN STATE
ON THE SPHERE

In this section we will obtain all the energy eigenstates at
zero energy for the three-body Hamiltonian for which the
Pfaffian ground state is exact, for arbitrary numbers of added
flux, that is, for any number of quasiholes. The following
sections generalize the results to the Haldane-Rezayi and 331
states, and~partially! to the torus.

The Pfaffian state,5 for even particle numberN, is defined
by the wave function

C̃Pf~z1 ,...,zN!5PfS 1

zi2zj
D)
i, j

~zi2zj !
q, ~2.1!

where the Pfaffian is defined by

PfMi j5
1

2N/2~N/2!! (
sPSN

sgns)
k51

N/2

Ms~2k21!s~2k!

for an N3N antisymmetric matrix whose elements are
Mi j ; SN is the group of permutations ofN objects. The
filling factor is 1/q. The Pfaffian state is totally antisymmet-
ric for q even, so could describe electrons, while forq odd it
describes charged bosons in a high magnetic field. For
q51, it is the zero-energy state of the lowest flux of the
Hamiltonian6

H5V (
i, j,k

d2~zi2zj !d
2~zi2zk!, ~2.2!

where the sum is over distinct triples of particles.
For numerical purposes on the sphere, it is more conve-

nient to work with a projection operator form of the three-
body Hamiltonian, instead of thed functions in Eq.~2.2!.
The closest approach of three particles on the sphere corre-
sponds to the state of maximum possible total angular mo-
mentum for the three. If the particles are bosons, the largest
possible total angular momentum is 3Nf/2 ~recall that each
particle has angular momentumNf/2). Then, for theq51
case, the Hamiltonian may be taken as proportional to the
projection operator onto the~unique! multiplet of maximum
angular momentum for each triple of bosons:

H5 (
i, j,k

VPi jk~3Nf/2!. ~2.3!

The same trick works for the three-body interaction of fer-
mions giving theq52 case; in this case, the maximum total
angular momentum of three particles is 3Nf/223. Some nu-
merical results for such Hamiltonians were already given in
Ref. 7. For largerq, these Hamiltonians can be generalized
in such a way that the zero-energy states are obtained from
those forq51 by multiplying by )(zi2zj )

q21 ~it is as-
sumed that forq odd, we are discussing bosons, and forq
even, fermions!. The presence of the latter factor implies that
they are all zero-energy eigenstates of the projection opera-
tors for any two particles onto relative angular momentum

M50,2, . . . ,q23 (q odd!, or M51,3, . . . ,q23 (q even!
@or the corresponding total angular momentaNf ,
Nf22, . . . ,Nf2q13, (q odd!, etc.#. The space of states
annihilated by such projections is in one-to-one correspon-
dence with the full space of states of theq51 case, and the
desired three-body projection operator@onto angular momen-
tum 3Nf/223(q21)# is the unique one that corresponds
under this mapping to that already mentioned forq51. For
eachq, the Hamiltonian can then be taken to be the sum of
the three-body and all of these two-body projection opera-
tors. A very similar approach works for the other Hamilto-
nians studied in this paper, so that results for higherq can be
deduced easily from those for the minimalq. These Hamil-
tonians can also be written in terms ofd functions and their
derivatives, so as to arrive at a form suitable for use in ge-
ometries other than the sphere. An attempt at a Hamiltonian
appropriate for the Pfaffian atq52 in the second paper in
Ref. 6 is invalid as it annihilates all states.

In Fig. 1 we show the two-particle correlation function
g(r ) for the Pfaffian state on the sphere withq52 for three
sizes,N510, 12, and 14. We plotted the function versus the
great circle separationr ~in units of magnetic length! on the
sphere, so that the largest possible value ofr is half the
circumference, and we normalized the curves in such a way
that in an infinite system they would approach 1 at infinity.
We see that, although forN510 an exponential decay at
large distances is not apparent, forN512 and 14 the curve
appears to be rapidly approaching 1 at large separation, and
these two curves are almost indistinguishable in the region
where both are defined. The correlation length in the Pfaff-
ian, which would be defined as the length over which
g(r )21 decays by a factor ofe, is apparently quite large.

The Pfaffian state is the only zero-energy eigenstate of
H at Nf5q(N21)21. Zero-energy quasihole excitations
can be obtained only by increasingNf , as for the quasiholes
of the Laughlin state as discussed in Sec. I, but in this case
the basic objects contain a half flux quantum each and must
be created in pairs. A wave function for two quasiholes was
proposed in Ref. 5; it is

FIG. 1. Two-particle correlation functiong(r ) for the Pfaffian
state, withNf52(N21)21 ~i.e., n5

1
2!, for N510 ~dashed line!,

12 ~dot-dashed line!, and 14~solid line! vs the great circle distance
on the sphere. The curves forN512 and 14 are almost indistin-
guishable.
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C̃Pf1 2 qholes~z1 , . . . ,zN ;w1 ,w2!5
1

2N/2~N/2!! (
sPSN

sgns
Pk51

N/2 @~zs~2k21!2w1!~zs~2k!2w2!1~w1↔w2!#

~zs~1!2zs~2!!•••~zs~N21!2zs~N!!
)
i, j

~zi2zj !
q.

~2.4!

It is clearly the pairing structure built into the ground state
which allows insertion of Laughlin-like factors

f ~zi ,zj ;w1 ,w2!5~zi2w1!~zj2w2!1~zi2w2!~zj2w1!,
~2.5!

which act only on one member of each pair, and, since the
f ’s increase the maximum angular momentum for eachzi by
1,Nf increases by 1. As the quasiholes are, at least approxi-
mately, located atw1 andw2, they effectively contain a half-
flux quantum each, unlike the usual Laughlin quasihole that
corresponds to a full flux quantum. The same structure re-
quires that quasiholes are made in pairs, since the wave func-
tion must be totally symmetric or antisymmetric. When
quasiholes coincide, that is, whenw15w2, a Laughlin quasi-
hole is recovered.

It is clear that by inserting more factorsf , with different
w’s, into the sum over permutations, a whole host of zero-
energy eigenfunctions can be obtained. However, this in-
volves dividing the quasihole coordinatesw1, . . . ,w2n into
pairs in an arbitrary way; the resulting functions are invariant
only under exchanges of the two quasihole coordinates in
each of these pairs, or under permutatations of the pairs. One
must then ask whether all these states, of which there are
(2n)!/(2nn!)5(2n21)(2n23)•••[(2n21)!!, are lin-
early independent, and also whether all zero-energy eigen-
functions can be obtained in this way.

For four quasiholes, the three distinct functions obtained
from dividing thew’s into pairs in three distinct ways obey
just one linear relation, as we will now show.~These meth-
ods and results for four quasiholes appeared previously in
Ref. 21.! For more than four quasiholes, the following
method becomes increasingly impractical, and we will in-
stead use a more direct method, inspired by the results for
edge states of the Pfaffian in Ref. 8.

It is convenient to write the functions in the more general
form

C̃p~z1 , . . . ,zN ;w1 , . . . ,w2n!

5Pf$Fp~zi ,zj ;w1 , . . . ,w2n!/~zi2zj !%C̃LJ .

~2.6!

HereFp must be symmetric and of degreen in z1 andz2 in
order to represent 2n quasiholes, that is so that
Nf5q(N21)211n. We could use products of thef ’s in
Eq. ~2.5!, but it is convenient to use the following~these
choices are clearly related by taking linear combinations!.
For n52, define

F1~z1 ,z2 ;w1 , . . . ,w4!5~z12w1!~z12w2!~z22w3!

3~z22w4!1~z12w3!~z12w4!

3~z22w1!~z22w2!, ~2.7!

F2~z1 ,z2 ;w1 , . . . ,w4!5F1~z1 ,z2 ;w1 ,w3 ,w2 ,w4!,
~2.8!

F3~z1 ,z2 ;w1 , . . . ,w4!5F1~z1 ,z2 ;w1 ,w4 ,w2 ,w3!.
~2.9!

The following identity is useful: For any set of complex
numbersai , i51, . . .N, N even,.2,

Pf~ai2aj !50, ~2.10!

since the square of the Pfaffian is a determinant in which any
three rows or columns obey a linear relation. Set
F5F11F21F3, then using Eq.~2.10! it can be shown that

F18[F12
1

3
F

5
1

3
~z12z2!

2@~w12w4!~w22w3!

1~w12w3!~w22w4!#. ~2.11!

HenceF22F35x(F12F2), where

x5~w12w2!~w32w4!/~w12w4!~w22w3! ~2.12!

is the cross ratio. Thus as functions ofz1 andz2, F1, F2, and
F3 are linearly related. To show there are no further rela-
tions, consider the limitw1→w2, w3→w4. We find

F1;~z12w1!
2~z22w3!

21~z12w3!
2~z22w1!

2,
~2.13!

F2;F3;2~z12w1!~z12w3!~z22w1!~z22w3!,

which are clearly linearly independent.
ForN52 particles, it now follows immediately that there

are only two linearly independent states of the type shown.
For an arbitrary evenN, we still have to prove that
Pf$Fp(zi ,zj ;w1 ,w2 ,w3 ,w4)/(zi2zj )% gives only two lin-
early independent states for fixedw’s. For anyp51, 2, and
3, we use Eq.~2.11! and expand the Pfaffian in powers of
Fp8 . All terms containing more than one factor ofFp8 cancel
using identity ~2.10!, since they contain factors (zi2zj ).
Thereforethe N-particle wave functions satisfy the same lin-
ear relation as theFp for all N. A similar argument shows
that use of linear combinations of theFp inside the Pfaffian
leads only to linear combinations of the same states. We note
that the linearly-independent states can be taken to be the
unique state whereFp in Eq. ~2.6! is replaced byF, and that
where only one factor ofFp in the expansion of the wave
function is replaced byF18 , the otherFp being replaced by
F. The effect of F18 is to cancel the pairing factor
(zs(2k21)2zs(2k))

21 for the pair on which it acts. Thus there
is a ‘‘broken pair’’ in the wave function, as in Ref. 8. This
observation provides the method to generalize these results
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to any number of quasiholes. As thewi vary, these states
span a space of zero-energy four-quasihole states, whose di-
mension we will find below when we have results for general
n.

We now turn to the method for arbitrary numbers of

quasiholes or added flux quanta. We will first write down the
functions, then explain why they both span the full vector
space of zero-energy eigenstates for eachn andN, and are
linearly independent. The functional form was inspired by
those in Ref. 8. The functions are defined as

C̃m1 , . . . ,mF
~z1 , . . . ,zN ;w1 , . . . ,w2n!5

1

2~N2F !/2~N2F !/2! (
sPSN

sgns)
k51

F

zs~k!

mk )
l 51

~N2F !/2

3
F~zs~F12l 21! ,zs~F12l ! ;w1 , . . . ,w2n!

~zs~F12l 21!2zs~F12l !!
)
i, j

~zi2zj !
q. ~2.14!

In this equation,F(z1 ,z2 ;w1 , . . . ,w2n) is defined so as to
be symmetric in thew’s, and is a generalization of the func-
tion F used in then52 case:

F~z1 ,z2 ;w1 , . . . ,w2n!5
1

~n! !2 (
tPS2n

)
r51

n

~z12wt~2r21!!

3~z22wt~2r !!. ~2.15!

Clearly the integersmk must obey 0<mk<n21 for each
k51, . . . ,F, since the flux isNf5q(N21)211n, and can
be taken to be ordered and distinct,
0<m1,m2,•••,mF<n21, because of the antisymmetri-
zation by the sum over permutations; thus 0<F<n. Clearly
we must also haveF<N; for N>n this restriction can be
ignored, and the analytic formulas below apply in this limit.
A similar caveat applies to the other paired states below, but
will not be explicitly mentioned after this section. Functions
~2.14! represent pairing, but withF fermions left unpaired.
One could think of the unpaired fermions as resulting from
breaking pairs forN even, but the states also make sense for
N odd ~note thatN-F is always even!. These functions are
closely analogous to the excited quasiparticle states of a
BCS-paired system, where the unpaired particles usually oc-
cupy plane waves. A whole spectrum of such excitations is
expected also in the paired FQHE states5,6 for any number of
quasiholes~including zero!, but these generally have nonzero
energy. Here we are interested only in the subset of states
that have zero energy for the three-body Hamiltonian, which
occur only when quasiholes are present. These states contain
fermions occupying a certain set of single-fermion wave
functions 1,z, z2, . . . , zn21, which can be viewed as the
LLL wave functions for a flux ofn21, or as an angular
momentum multiplet of angular momentum (n21)/2. How-
ever, the actual spatial distribution of the unpaired fermions
in these states is hard to calculate, since it must take into
account the whole many-particle wave function. Since the
effective magnetic field seen by the fermions is essentially
zero except in the quasiholes where the density is lower, we
expect that the orbitals have weight concentrated on the
quasiholes. The occupation of these orbitals contributes
nothing to the energy for our Hamiltonian, so these are ‘‘zero
modes.’’ The number of zero modes isn, the number of
added~real! flux quanta, and not 2n, the number of quasi-

holes. Thus one cannot say that there is a zero mode locally
bound to each quasihole. Instead the zero-mode wave func-
tions are shared among the quasiholes.

We should point out that Greiter, Wen, and Wilczek6 also
stated that in the presence of quasiholes there are wave func-
tions with broken pairs. However, the functions they pub-
lished for states with one broken pair, both with and without
quasiholes@see Eqs.~9! and~10! in the first paper in Ref. 6,
and Eqs.~6.2!, ~6.8!, and~6.9! in the second#, vanish identi-
cally when antisymmetrized. Probably for this reason, the
counting of the number of unpaired fermions that can be
accomodated ‘‘naturally,’’ i.e., in zero-energy eigenstates, in
the presence of quasiholes, is stated incorrectly to ben bro-
ken pairs, when the correct answer isn fermions. Note also
that the states for unpaired fermions without quasiholes that
they give are not zero-energy eigenstates~and thus not obvi-
ously eigenstates at all!.

The linear independence of the states~2.14! is easily es-
tablished for fixed w’s. After removing the factor
)(zi2zj )

q, we arbitrarily divide the particles into pairs, and
let the members of each pair approach each other, one after
the other, sayz1→z2, thenz3→z4, and so on. For each limit
we examine the leading behavior; clearly the leading behav-
ior for each limit may be a single pole, in view of the paired
form of the function, or it may be nonsingular. If it is a pole,
we take the function that multiplies the pole~its residue!,
which is a function of the remaining coordinates to which the
procedure has not yet been applied, as well as of the coordi-
natesz15z2, z35z4, . . . , towhich it has, and we repeat the
process. If the first limit is nonsingular, we call the function
we started with the zeroth nonsingular residue; if the first
limit is singular, but the second is not, we call the first resi-
due the first nonsingular residue, and so on. Thus themth
residue, obtained after themth limit, may be singular or non-
singular in the next limit; if it is nonsingular we can identify
the original states as havingm5(N2F)/2 unbroken pairs.
Then the (N2F)/2th nonsingular residue will, by definition,
be a nonsingular function of the paired coordinatesz15z2,
z35z4, . . . , zN2F215zN2F , the unpaired coordinates
z(N2F)11, . . . ,zN , and ofw1, . . . ,w2n . Since two functions,
one of which is singular and the other nonsingular in a given
limit, are linearly independent of each other, it follows that
states with different numbersF of unpaired particles are lin-
early independent. For states with the sameF, we consider
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the (N2F)/211th residue, as a function of the remaining
F coordinatesz(N2F)11, . . . , zN . It is just a Slater determi-
nant in these variables, and these determinants for distinct
sets ofmk are obviously linearly independent. This con-
cludes the proof.

From wave functions~2.14!, it is straighforward to enu-
merate the number of states that satisfy the conditions, for
given positions of thew’s. First we note that for zero quasi-
holes, a state~the original Pfaffian ground state! exists for
N even, but not forN odd. For 2n52 quasiholes, there is a
unique possibility, both forN even~with F50) andN odd
~with F51 fermion, in them150 state!. For 2n54, there
are two states both forN even and odd; forN even these are
the same as the two independent states found before. In gen-
eral, for givenn.0 andF, there are clearly

S nF D ~2.16!

independent states. Summing over the allowed values ofF,
which are those with the same parity asN, we obtain,
whetherN is even or odd, 2n21, by a well-known formula
for binomial coefficients. This number, which is valid for
N>n, is exactly the number of conformal blocks for 2n spin
fields in the Majorana conformal field theory;5 see also Ref.
22.

Just as for the quasiholes of the Laughlin state~see Sec.
I!, there is a~finite! positional degeneracy associated with the
positions of the quasiholes. The functions for fixedw’s are
analogous to coherent states formed out of the linearly inde-
pendent quasihole states. In the present case, this degeneracy
can be calculated, for a givenF and set ofmk’s, by expand-
ing all theF ’s in powers of thew’s:

F~z1 ,z2 ;w1 , . . . ,w2n!5
~2n!!

~n! !2 Fz1nz2n1 1

2
~z1

n21z2
n

1z1
nz2

n21!e1~2w!1•••

1e2n~2w!G . ~2.17!

Here em(2w) is shorthand for the elementary symmetric
polynomials in thew’s, with eachwi replaced by2wi :

em~w!5 (
i1, i2,•••, im

wi1
wi2

. . .wim
, ~2.18!

which arise since eachw appears at most once in any term
resulting from the expansion ofF. It is known that linear
combinations of products of the elementary symmetric poly-
nomialsem , m50, . . . ,2n yield all the symmetric polyno-
mials in 2n variables. Thus when the functions in Eq.~2.14!
are expanded in powers of thew’s, we obtain all the sym-
metric polynomials inw1, . . . ,w2n , in which the degree in
any onew is not greater than (N2F)/2. The total number of
linearly independent states~as functions of thez’s!, for a
fixed F and a fixed set ofmk’s, cannot be greater than the
number of linearly independent symmetric functions of the
w’s obtained in this expansion. Notice that, if thew’s are
regarded as coordinates of some kind of particles, the sym-
metric polynomials in thew’s can be interpreted as the states

for 2n bosons, each of which can occupy one of
(N2F)/211 orbitals@the orbitals having the single-particle
wave functions 1,w, . . . ,w(N2F)/2; they form an angular
momentum multiplet of angular momentum (N2F)/4)#. The
number of such symmetric polynomials in thew’s for the
Pfaffian case is thus

S ~N2F !/212n

2n D . ~2.19!

It is our claim that, for each of these linearly independent
symmetric polynomials, we have a linearly independent
many-particle state~for each set ofmk’s!, and so the upper
bound just obtained is in fact the answer. To establish the
truth of this claim, we again make use of the residues of the
successive limitsz1→z2, z3→z4, . . . , asdefined above. The
nonsingular residues have a simple form; they are propor-
tional to

)
i51

~N2F !/2

)
r51

2n

~z2i2wr ! (
sPSF

sgns)
k51

F

zs~N2F1k!

mk . ~2.20!

The last factor, involving the unpaired particles, is a Slater
determinant; the first factor is simply a product of Laughlin-
like quasiholes acting on the coordinate of each pair. We
have thus reduced the analysis to the case of the Laughlin
states, where all the quasihole states are linearly independent
~see Sec. I!, and this establishes our claim.

The total number of linearly independent quasihole states,
fixing only N andn, is then

(
F,~21!F5~21!N

S nF D S ~N2F !/212n

2n D . ~2.21!

~Notice that this expression incorporates both restrictions
F<n, F<N.! This number is clearly larger than the number
that would be expected if the quasiholes behaved like the
quasiholes of the Laughlin states. In the present case the
expectation, based on assuming Abelian fractional statistics
as for the Laughlin states, would be~in view of the half flux
in each quasihole! that the number would be given by the
formula for 2n bosons which may each occupy any of
N/211 orbitals ~for N even!. We can compare our result
with this number, which is

SN/212n

2n D . ~2.22!

For n fixed andN tending to infinity, the ratio tends to
2n21. Again, this represents the degeneracy necessary for
non-Abelian statistics.

We now give arguments that the states found above are a
complete set of zero-energy states. The general construction
of zero-energy states for the three-body Hamiltonian for
q51, or its generalizations forq.1, was given in the first
part of Appendix A of Ref. 8. It shows that without loss of
generality, zero-energy states are linear combinations of the
forms „from which we have removed the ubiquitous factor
)(zi2zj )

q
…

16 870 54N. READ AND E. REZAYI



(
sPSN

sgns
(tPSN/2

Pk51
N/2 f k~zs„2t~k!21… ,zs„2t~k!…!

~zs~1!2zs~2!!•••~zs~N21!2zs~N!!
, ~2.23!

where f k are symmetric polynomials in two variables. For
N odd we can write a similar form withk51, . . . ,
(N21)/2, and include for the unpaired particle an arbitrary
polynomial factorf 0(zs(N)). In order to represent states with
2n quasiholes, the number of flux added to the Pfaffian
ground state must ben, and so thef k ~and f 0 for N odd!
must be of degree at mostn in each coordinatezi ; these
symmetric polynomials must then be linear combinations of
the linearly independent forms

z1
n1z2

n21z1
n2z2

n1 , ~2.24!

in which 0<n1<n2<n. These clearly span a vector space of
dimension 1

2(n11)(n12). As in Ref. 8, if any f k(z1 ,z2)
vanishes atz15z2, then it must contain a factor (z12z2)

2,
and this pair is broken and will contribute to the unpaired-
fermion part of functions~2.14!. The subspace of symmetric
polynomials for which this occurs is spanned by (z12z2)

2

times those in Eq.~2.24!, here with 0<n1<n2<n22; this
subspace has dimension12n(n21). The quotient of these two
spaces, which represents the symmetric polynomials in two
variables which do not vanish atz15z2, therefore has dimen-
sion 2n11. But we have already found a set of such func-
tions while expandingF, Eq. ~2.17!, and there are exactly
2n11 terms in this series, which form a linearly indepen-
dent set for the required symmetric polynomials. Therefore
we may now argue that, in the general form~2.23!, we may
choose thef k to be in either of the two sets, that is, those that
vanish atz15z2 and those appearing in Eq.~2.17!. The un-
paired fermion part takes the given form, after use of the
antisymmetrization among theF particles involved. If f k
does not vanish atz15z2, then it is part of the expansion of

F for that pair. Thus we obtain exactly all the terms that
occur on expanding Eq.~2.14!. This shows that the count of
states given is correct, and that they can be viewed as arising
from the states with quasiholes at fixed positions.

The numbers for the total number of zero-energy states,
which are not resolved into angular momentum multiplets,
are convenient for comparison with numbers of zero-energy
eigenstates obtained numerically@using the same three-body
Hamiltonian~2.3!#, when these are summed over allL and
Lz . We can also work out the decomposition of functions
~2.14! into angular momentum multiplets, using wave func-
tions ~2.14! and applying the Clebsch-Gordan decomposition
to the angular momenta of the bosons that represent the
quasiholes in theF factors, and the unpaired fermions.
These numbers, and the angular momentum decomposition,
are in perfect agreement for moderate sizes. The cases that
have been checked numerically are shown in Table I. In the

FIG. 2. Spectrum of the three-body Hamiltonian for the Pfaffian
state of fermions withn5

1
2, for N512 andNf521; that is, no

quasiholes. The inset enlarges the low-lying levels.

TABLE I. Numbers of multiplets of states of total angular momentumL at zero energy for the three-body
Hamiltonian for theq52 Pfaffian state on the sphere, forNf52(N21)211n, i.e., 2n quasiholes.

N n L50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

4 1 1 1
4 2 1 2 1
4 3 1 2 1 2 1
4 4 2 2 1 3 1 2 1
4 5 1 3 1 3 2 3 1 1 1
6 1 1 1
6 2 2 2 1 2 1
6 3 3 1 4 2 3 2 2 1
6 4 3 1 5 3 7 3 6 3 4 2 2 1
6 5 5 3 9 6 9 7 9 5 7 4 4 2 2 1
8 1 1 1 1
8 2 2 3 1 3 1 2 1
8 3 3 1 5 4 7 4 6 3 4 2 2 1
8 4 5 2 10 7 14 10 14 9 12 7 8 4 5 2 2 1
8 5 6 5 16 14 23 20 26 21 25 19 20 14 15 9 9 5 5 2 2 1
10 1 1 1 1
10 2 2 4 1 4 2 3 1 2 1
10 3 6 4 10 7 11 8 10 6 7 4 4 2 2 1
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table, we show only the results forN even; similar results, in
complete agreement with the analytic formulas, are also
found forN odd.

As an aside, it is interesting that in this case we estab-
lished the linear independence of the functions in general,
whereas in Ref. 8 we were forced to resort to a case-by-case
analysis. In fact, the results given here now suffice to com-
plete the proof of linear independence of the edge states of
the Pfaffian state on a disk. We first note that if we place
many ~or all! quasiholes at the same place by setting all the
w’s equal, then there are no particles in that region of the
sphere, and the fluid has an edge there. If we take the limit of
these states asNf→` with N fixed, then the sphere becomes
an infinite plane, and the particles are concentrated in a disk
at the origin if the quasiholes are at the position on the
sphere that is mapped to the point at infinity by the stereo-
graphic projection. Thus the problems of finding the zero-
energy quasihole and edge states are essentially the same.
The general edge states, that include charge-fluctuation exci-
tations at the edge, are obtained by letting some of thew’s
deviate from infinity, and expanding in 1/w’s gives states
that contain symmetric polynomials in the paired-particle co-
ordinates, rather than in all the coordinates as in Ref. 8. This
is merely another basis for the edge states; the number of
states at each angular momentum level is easily seen to be
the same, for sufficiently largeN. In the limit, the complete
and linearly independent zero-energy bulk quasihole states,

for the case where allw’s are nearly equal, yield all the edge
states of the disk, and this gives proof that the latter are
linearly independent. To obtain results for the cylinder, with
two edges, we place half the quasiholes at each pole of the
sphere and take a similar limit. In the limit, the particles
occupy a narrow band around the equator of the sphere, and
the infinite flux through the system makes it equivalent to the
cylinder, if we consider states where the particles are close to
the equator, which again means thew’s must not deviate far
from the poles. Note that the fact that the particles are spread
very thinly along this band in the limit we have taken does
not affect the construction or counting of edge states, which
is independent of the aspect ratio of the occupied region of
the cylinder. Also, the operation that shifts charge from one
edge to the other8 is obtained by removing a quasihole from
one pole and placing it at the other.

In Fig. 2 we show numerical spectra for theq52 three-
body Hamiltonian, described after Eq.~2.3! ~in which the
projection is ontoL53Nf/223), with V5 1

6, for N512
electrons andNf52N23 flux, that is, no quasiholes, and
n5 1

2. In Fig. 3 we show the same but withN510 and 2 flux
added, so there are 2n54 quasiholes. The zero-energy
states, of which the degeneracies were given in Table I, can
be seen atE50, as can the set of angular momentum values
obtained in this case. The figure also shows that all higher-
energy states are separated by a significant gap that we ex-
pect will survive in the thermodynamic limit, as needed for
the arguments for non-Abelian statistics. To investigate fur-
ther the claim that this system is incompressible, we include

FIG. 3. As in Fig. 2, but withN510 andNf519; that is, four
quasiholes.

FIG. 4. Low-lying excited states of the three-body Hamiltonian
for the Pfaffian ground state atn5

1
2 @Nf52(N21)21# for

N512 and 14, plotted againstk5L/R.

FIG. 5. As in Fig. 4, but for the energyDE of the lowest-energy
excited state vs 1/N.

FIG. 6. Ground-state energy of the three-body Hamiltonian for
the Pfaffian state atNf52(N21)22 ~that is, n5

1
2 with two

quasielectrons added!, plotted against 1/N.
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some finite-size scaling results. In Fig. 4, we show the low-
lying excited energy levels above the ground state for
N512 and 14, versusk5L/R. It can be seen that the spectra
lie almost on top of one another. In Fig. 5, we show the size
dependence of the lowest excited state, versus 1/N, for sev-
eral values ofN, including those in Fig. 4. Although it is not
quite clear by inspection that this energy gap is converging
to a constant asN→`, because of the behavior of the points
for the sizesN510, 12, and 14, we note that in Fig. 4 the
lowest-energy points forN512 seem to lie on two sides of a
minimum, while forN514 one lies near a minimum. Hence
we expect that, if results for still larger sizes were available,
convergence to a finite gap would be apparent. In Fig. 6, we
show the ground-state energy for systems with
Nf52(N21)22, that is, twoquasielectrons, where there
are no zero-energy states for the three-body Hamiltonian. If
these energies converge to a finite gap asN→`, then this

energy determines the slope in the total-energy density ver-
sus density in the thermodynamic limit, on the higher-density
side ofn5 1

2. Since the energy density is zero on the lower-
density side, this would represent a discontinuity in the
chemical potential atn5 1

2 for this Hamiltonian, showing that
the system is incompressible. From the results shown, we
cannot be sure that the points approach a nonzero limiting
value asN→`, but they are nonetheless consistent with this
hypothesis.

III. QUASIHOLES OF THE HALDANE-REZAYI STATE
ON THE SPHERE

The Haldane-Rezayi~HR! state3 can be written in terms
of the coordinates ofN/2 up-spin particles atz1

↑ , . . . , and
N/2 down-spin particles atz1

↓ , . . . , as

C̃HR~z1
↑ , . . . ,zN/2

↑ ,z1
↓ , . . . ,zN/2

↓ !5 (
sPSN/2

sgns
1

~z1
↑2zs~1!

↓ !2•••~zN/2
↑ 2zs~N/2!

↓ !2)i, j
~zi2zj !

q. ~3.1!

Hereq>2 is even for electrons, and odd for bosons, and the filling factor is 1/q. The first factor is of course just a determinant.
The product overzi ’s with no spin labels attached is over all particles. The fact that this describes a singlet is discussed
carefully in Ref. 3. In Ref. 5 it was pointed out that this state can be regarded as a BCS-type condensate of spin-singlet pairs
of spin-12 composite fermions that consist of a particle andq vortices, from which the spin-singlet property can be more easily
understood. Some further discussion related to the edge states is contained in Ref. 8. The HR state is the unique zero-energy
state atNf5q(N21)22 flux of a ‘‘hollow-core’’ pseudopotential Hamiltonian that gives any two particles a nonzero energy
when their relative angular momentum is eitherq21 or<q23,3 again with the assumption that the particles are bosons for
q odd, fermions forq even, and thatq>2.

In exact analogy with the Pfaffian state, the wave function for two quasiholes is

C̃HR~z1
↑ , . . . ,zN/2

↓ ;w1 ,w2!5 (
sPSN/2

sgns
Pk51

N/2 @~zk
↑2w1!~zs~k!

↓ 2w2!1~w1↔w2!#

~z1
↑2zs~1!

↓ !2•••~zN/2
↑ 2zs~N/2!

↓ !2 )
i, j

~zi2zj !
q. ~3.2!

Due to the spin-independence of the newly inserted factors acting on each pair inside the sum over permutations, the state is
still a spin singlet, and this suggests that the quasiholes carry no spin. The two-quasihole state is again a zero-energy eigenstate
of the hollow-core Hamiltonian. To see this fact, expand the inserted factors for each pair in terms of powers ofzk

↑6zs(k)
↓ . Due

to the symmetry betweenzk
↑ andzs(k)

↓ in each factor, it is easy to see thatzk
↑2zs(k)

↓ must occur to an even power. Thus in the
complete wave function, the absence of (zk

↑2zs( l )
↓ )q21 for anyk andl , and hence the zero-energy property of the ground state,

is preserved in the quasihole states.
It is possible to write down directly the forms of all the zero-energy states of the hollow-core Hamiltonian, in analogy with

those for the Pfaffian and those in Ref. 8. In terms of the coordinates ofN↑ up particles andN↓ down particles, the wave
functions are linear combinations of

1

~N↑2F↑!!
(

sPSN↑
rPSN↓

sgnssgnr)
k51

F↑

~zs~k!
↑ !nk)

l51

F↓

~zr~ l !
↓ !ml )

r51

N↑2F↑ F~zs~F↑1r !
↑ ,zr~F↓1r !

↓ ;w1 , . . . ,w2n!

~zs~F↑1r !
↑ 2zr~F↓1r !

↓ !2 )
i, j

~zi2zj !
q. ~3.3!

HereN↑2F↑5N↓2F↓ is the number of unbroken pairs, and
we may assume thenk’s andmk’s are strictly increasing, as
for those in the Pfaffian quasihole states, with
0<n1,n2,•••,nF↑<n22, 0<m1,m2,•••,mF↓
<n22; consequently, 0<Fs<n21 for eachs5↑ or ↓. As
written, these states do not have definite spin, but eigenstates
of S2 andSz can be constructed. Since the paired particles
form singlets, the spin is determined by the spin-1

2 unpaired

fermions in the sums overs andr, which behave identically
to ordinary spin-12 fermions. Hence the possible spin states
are determined by adding the spins of particles in different
orbitals ~labeled bynk or mk), with the only constraint that
an orbital occupied with both an up and a down fermion
must form a singlet. The total spinS of the zero-energy
states therefore obeysS<(n21)/2. Notice that the number
of flux in these states isNf5q(N21)221n. Arguments
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that the states given are both complete and linearly indepen-
dent, so that our count of states is correct, can be constructed
straightforwardly as a combination of those in Appendix A
of Ref. 8 and in Sec. II above; we omit the details.

We may now count the number of linearly independent
states as for the Pfaffian. We see that forn50 and 1, we
must have F↑5F↓50, and such states exist only for
N5N↑1N↓ even; they are the ground and two-quasihole
states written down above. Forn52, we find two possibili-
ties for bothN even or odd, like the Pfaffian case. For the
general case, we can write the number of states for fixedn,
F↑ , F↓ , andw’s in two ways. One is

S n21

F↑
D S n21

F↓
D . ~3.4!

If we sum overF↑ with F5F↑1F↓ fixed, we obtain a sec-
ond form,

S 2~n21!

F D , ~3.5!

which is the number of states forF fermions in 2(n21)
orbitals. The sum overF satisfying (21)F5(21)N then
yields a total of 22(n21)21522n23 zero-energy quasihole
states of all spins for fixedN ~either even or odd, except for
smalln as already shown! andw’s.

We now find the dimension of the space of quasihole
states at all spins for fixedN, including the positional degen-
eracy due to thew’s as for the Pfaffian. Then the total num-
ber of linearly independent quasihole states, fixing onlyN
andn, is

(
F,~21!F5~21!N

S 2~n21!

F D S ~N2F !/212n

2n D . ~3.6!

Again the ratio of this number to that for positional degen-
eracy only is 22n23 asN→`. In this case, the factor 22n

might give the impression that there is a factor 2 for each
quasihole, perhaps because each carries spin1

2. But the result
is in fact 22n23, which indicates the connection with non-
Abelian statistics. There are onlyn21 zero modes available,
similarly to the Pfaffian, which can be occupied with either
spin, with a final condition on the parity of the number of
unpaired fermions.

The two-particle correlation functions for the HR ground
state withq52 have been published previously,3 for six par-
ticles; they suggest that the correlation length is quite large
in this system also. In Table II we show results obtained
numerically for zero-energy quasihole states of the hollow-
core Hamiltonian forq52, which agree exactly with the
general formula, as do the orbital and spin angular momenta.
In Fig. 7, we show the spectrum of the HR state atn5 1

2,

FIG. 7. Spectrum of the hollow-core model for the HR state of
fermions withn5

1
2, for N58 andNf512; that is, no quasiholes.

The inset enlarges the low-lying levels.

TABLE II. Numbers of multiplets of states of total angular momentumL and total spinS at zero energy
for the hollow-core Hamiltonian for theq52 HR state on the sphere, forNf52(N21)221n, i.e., 2n
quasiholes.

N n S L50 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

4 1 0 1 1
4 2 0 1 2 1
4 3 0 2 2 1 2 1
4 3 1 1
4 4 0 2 3 1 4 1 2 1
4 4 1 1 1 1 1
4 5 0 2 4 1 4 2 3 1 2 1
4 5 1 1 2 2 1 2 1 1
4 5 2 1
6 1 0 1 1
6 2 0 2 2 1 2 1
6 3 0 3 1 5 2 3 2 2 1
6 3 1 1 1 1 1
6 4 0 4 1 6 4 8 4 7 3 4 2 2 1
6 4 1 2 1 3 2 3 1 2 1 1
6 5 0 7 4 12 8 12 9 11 6 8 10 4 2 2 1
6 5 1 3 1 6 4 7 5 7 5 2 3 1 1
6 5 2 1
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when no quasiholes are present, forN58 particles. In the
spectra, we have chosenV151. There does appear to be a
gap above the ground state, and the form of the low-lying
excitation spectrum is similar to that of the Pfaffian. In Fig.
8, we show the spectrum when 8 quasiholes are present, for
N56 andNf512. However, we note that because the par-
ticles carry spin in this system, it is harder to reach suffi-
ciently large sizes to ensure that the results are converging to
the thermodynamic limit, and larger sizes may be needed in
order to prove that the energy gaps are approaching constants
in this limit.

IV. QUASIHOLES OF THE 331 STATE ON THE SPHERE

It is of interest to perform a similar calculation for the
quasiholes of the 331 state, even though the excitations of
this state are known to have Abelian statistics. The relation
to paired states has been discussed in Refs. 14,15,20 and 8.

The 331 state is just one of a family of two-component
states, the so-calledmm8n states, first introduced by
Halperin,2 and studied further in Refs. 10,16–18 and 14. Us-
ing notation↑, ↓ for the two components, these states can be
written:

C̃mm8n~z1
↑ , . . . ,zN↑

↑ ,z1
↓ , . . . ,zN↓!

5)
i, j

~zi
↑2zj

↑!m)
k, l

~zk
↓2zl

↓!m8)
rs

~zr
↑2zs

↓!n. ~4.1!

The generalmm8n state~for some values ofN↑ andN↓) is
the unique lowest total-angular-momentum ground state of a
spin-dependent pseudopotential Hamiltonian, that general-
izes Eq.~1.2! to the two-component case,10

H5(
i, j

F (
M50

m21

VMPi j ~Nf2M ,↑↑ !

1 (
M50

m821

VM8 Pi j ~Nf2M ,↓↓ !G
1(

i j
(
M50

n21

VM9 Pi j ~Nf2M ,↑↓ ! ~4.2!

in which the projection operatorsPi j (L,ss8) project onto
the spin statess ands8 for particlesi and j , respectively, as
well as onto total orbital angular momentumL. Thus this
Hamiltonian gives positive energy to any state in which two
↑ or ↓ particles have relative angular momentum less than
m orm8, respectively, or in which an↑ and a↓ particle have
relative angular momentum less thann.

For the case when the exponents in these states are of the
form m5m85q11, n5q21, andq>1 ~which requireN↑
5N↓5N/2, giving a filling factorn51/q, and the partial
filling factors for↑ and↓ are both 1/2q; for brevity, we will
continue to refer to this class of states with generalq as the
331 state!, then use of the Cauchy determinant identity

)
i, j

~zi
↑2zj

↑!)
k, l

~zk
↓2zl

↓!)
rs

~zr
↑2zs

↓!215detS 1

zi
↑2zj

↓D
~4.3!

allows the ground states to be written in a paired form~i.e.,
as a spin-independent Laughlin-Jastrow factor times a pair-
ing function!, similar to the Pfaffian and HR states.3,14 In
terms of BCS-type pairing, this function describesp-type
spin-triplet pairing, with each pair in theSz50 state of a spin
triplet.15,20

We will write the quasihole states immediately in terms of
broken pairs~although a simple form using Laughlin quasi-
hole operators acting on either↑ or ↓ spins will be described
later!,

1

~N↑2F↑!!
(

sPSN↑
rPSN↓

sgnssgnr)
k51

F↑

~zs~k!
↑ !nk)

l51

F↓

~zr~ l !
↓ !ml )

r51

N↑2F↑ F~zs~F↑1r !
↑ ,zr~F↓1r !

↓ ;w1 , . . . ,w2n!

zs~F↑1r !
↑ 2zr~F↓1r !

↓ )
i, j

~zi2zj !
q, ~4.4!

which is particularly similar to the HR case, except that here
nk andml<n21, and so 0<Fs<n. The flux in these states
is Nf5q(N21)211n, as for the Pfaffian.

For the count of states at fixedw’s we obtain, again sum-
ming overF↑ with F5F↑1F↓ fixed,

S 2nF D , ~4.5!

which is the number of states forF fermions in 2n orbitals.
The sum overF satisfying (21)F5(21)N then yields a
total of 22n21 zero-energy quasihole states of all spins for
fixedN andw’s. This is valid for alln exceptn50, in which
case there is no zero-energy state forN odd.

The result 22n21 may also be understood by viewing it as
coming from the choice of layer index on the Laughlin
quasihole operator. Thus quasihole states of zero energy can

FIG. 8. As in Fig. 7, but withN56 andNf512; that is, eight
quasiholes.
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clearly be obtained by multiplying factors)(zi
s2ws), that

act on either particles of spins5↑ only, or on spin-↓ only,
into the 331 ground state. Further, the numbersN↑ andN↓
need not be equal. However, the flux seen by both↑ and↓
particles must be equal. This leads to the condition
2(N↑2N↓)5n↓2n↑ , wherens are the numbers of quasi-
holes of the two types, in which the factors act on the par-
ticles of spins. For fixedN5N↑1N↓ , there are 2

2n21 ways
to choose the spins of the quasiholes consistent with these
conditions, forn>1. We will refer to this construction of the
zero-energy states as bosonic, because, as explained in Ref.
8, the relation of the two approaches is related to bosoniza-
tion of Fermi systems.

Returning to the paired, or fermionic, description, the to-
tal number of states resulting from the positional degeneracy
is, in this case,

(
F,~21!F5~21!N

S 2nF D S ~N2F !/212n

2n D . ~4.6!

This is larger than for the Pfaffian or HR states. It should
also be possible to obtain this formula from the bosonic de-
scription, although we have not done so. The positional de-
generacy for the quasiholes of each spin is, in that approach,

SNs1ns

ns
D , ~4.7!

and the summations are constrained by the fact that for the
zero-energy statesNs depends onns .

For the 331 state, it is again not too difficult to extend the
arguments for the Pfaffian or HR cases, to show the com-
pleteness and linear independence of the zero-energy states
found, in the pairing or fermionic form. This is also quite
clear in the bosonic form of the states.

V. GROUND STATES ON THE TORUS

In this section we consider the zero-energy eigenstates of
the special Hamiltonians discussed above on a system with
periodic boundary conditions~a torus!, without quasiholes.
Although we believe that the states we will give span the
complete spaces of such states, we will not prove this, but
will refer to numerical results for confirmation.

First we briefly review known results for this geometry,23

to fix notation. In the Landau gaugeA52Byx̂, we will take
the magnetic length to be 1, and the system to be a parallelo-
gram with sidesL1 andL2 and periodsL1 andL2e

ia5L1t in
the complex plane;a is the angle between the sides, andt
~with Imt.0) parametrizes the aspect ratio. As usual, there
areNf flux through the surface. Many-particle wave func-
tions in the LLL can be written

C~z1 , . . . ,zN!5 f ~z1 , . . . ,zN!e2( i yi
2/2, ~5.1!

where f is a holomorphic function; as a consequence of the
boundary conditions onC it is required to satisfy, for alli ,

f ~z1 ,z2 , . . . ,zi1L1 , . . . !

f ~z1 ,z2 , . . . ,zi , . . . !
5eif1,

f ~z1 ,z2 , . . . ,zi1L1t, . . . !

f ~z1 ,z2 , . . . ,zi , . . . !
5eif2e2 ipNf~2zi /L11t!.

~5.2!

Heref1 andf2 represent general twisted boundary condi-
tions, the same for all particles, and are the same for all states
in the Hilbert space. They can be set to zero without any real
loss of generality.

From a general symmetry analysis,24 any state in the sys-
tem can be decomposed into center of mass and relative mo-
tion, as

f ~z1 , . . . ,zN!5Fcm~Z! f rel~z1 , . . . ,zN!, ~5.3!

where f rel is invariant under shifts of allzi by the same
amount, andFcm is a function ofZ5( izi only. Given the
boundary conditions onf , specified byf1 andf2, there is
still some freedom of choice in the corresponding phases in
the conditions onFcm and f rel , which is related to Haldane’s
k-vector quantum number,24 and which will be useful in the
following. In any case, there are alwaysq solutions for
Fcm, for filling factor n5p/q (p, q coprime!, which are
mapped into each other by magnetic translations of the cen-
ter of mass, and consequently are degenerate in energy for
any translationally invariant Hamiltonian.

For the Laughlin state on the torus, the property of van-
ishing as theqth power as anyzi→zj fixes the relative wave
function to be~definitions and results for the theta and ellip-
tic functions used in this section are given in Appendix A!

f rel5)
i, j

q1„~zi2zj !/L1ut…q[ f LJ . ~5.4!

The basis states for the center-of-mass wave functions found
in Ref. 23 can be rewritten~see Appendix A!, apart from
some constant factors, as25

Fcm~Z!5qF l /q1~Nf2q!/2q1f1/2pq

2~Nf2q!/22f2/2p
G~qZ/L1uqt!.

~5.5!

Here l 50,1, . . . , q21 labels the center-of-mass degen-
eracy, andf1 andf2 have been retained for generality. Us-
ing the properties given in Appendix A, this can be verified
to obey the conditions resulting from Eq.~5.2! that are given
in Ref. 23. Alternatively one can verify directly that Eq.~5.3!
satisfies Eq.~5.2!. Note thatFcm hasq zeros in the unit cell
for Z of sidesL1 andL1t, and linear combinations of these
functions span the Hilbert space of a charged particle on a
torus in a magnetic field withq flux quanta through the torus,
in the LLL. The flux seen by the particles in these states is
Nf5qN.

For the paired states on the torus, the relative motion part
f rel must be modified fromf LJ , in particular to change the
symmetry under permutations, which can be done at the
same fluxNf5qN, by using
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f rel5 f ellipticf LJ . ~5.6!

Here f elliptic(z1 , . . . ,zN) is a meromorphic function, and,
since f rel must be holomorphic, any poles inf elliptic must be
of sufficiently low order that they are rendered nonsingular
by the zeros off LJ , which are located on the hyperplanes
zi5zj . Further, f elliptic must obeyzi-independent boundary
conditions

f elliptic~z1 , . . . ,zi1L1 , . . . ,zN!

} f elliptic~z1 , . . . ,zi , . . . ,zN!, ~5.7!

and similarly forzi→zi1L1t. Thusf elliptic is analogous to an
elliptic function, but inN complex variables. In general, the
phases that are the proportionality factors in Eq.~5.7! need
not be equal to 1, because any phase left by translatingf rel
can be absorbed~canceled! by modifying the behavior of
Fcm, by a shift inf1 or f2 ~by p in the present case! in Eq.
~5.5! before settingf1 andf2 to zero. This is the freedom of
choice that is related to thek vector, mentioned above. For
the paired states,f elliptic is expected to be a periodic gener-
alization of the pairing functions, such as the Pfaffian, dis-
cussed earlier on the sphere.

We now review the ground states of the three-body
Hamiltonian Eq.~2.2! and its generalizations on the torus.
These ground states, without quasiholes, were found by Gre-
iter, Wen and Wilczek.6 For the relative motion part we take

f elliptic,a5PfFqa„~zi2zj !/L1ut…
q1„~zi2zj !/L1ut…

G ~5.8!

wherea52, 3, or 4.@The three ratiosqa /q1(zut) are es-
sentially the three Jacobi elliptic functions sn(zut), cn(zut),
and dn(zut), up to translations ofz and some factors.# These
then reverse sign under exactly two of the three transforma-
tions zi→zi1L1, zi→zi1L1t, and zi→zi1L1(11t), and
are invariant under the third, for anyi . The change in sign
can be absorbed by the effect of a modification ofFcm as
explained above, such that the full wave function always
obeys the same boundary conditions. This structure has the
consequence that Haldane’sk-vector quantum number,24

which lies in a Brillouin zone, and which is zero~modulo
reciprocal-lattice vectors! in all q of the periodic Laughlin
states, is nonzero in these periodic Pfaffian states. The dis-
tinct nonzero values fora52, 3, or 4, are determined by the
behavior under the three translations already mentioned. For
the most symmetrical choice oft, t5eip/3, which gives the
system sixfold rotational symmetry in real space and in the
hexagonal Brillouin zone ofk’s, these nonzero vectors lie
halfway along the shortest nonzero reciprocal-lattice vectors;
only three of these vectors are distinct modulo addition of
reciprocal-lattice vectors. Thus they lie at the midpoints of
the edges of the zone, for this choice of zone. Thus, all 3q
zero-energy states found forn51/q have distinct quantum
numbers, and so are linearly independent~indeed, orthogo-
nal! states. Numerical calculations are in agreement with
these quantum numbers.26

Next we turn to the HR state on the torus. For the HR
state atn5 1

2 (q52), numerical calculations have revealed
that there are 1055q ground states of the hollow-core
model,27,28 and so we expect to find 5q for generalq. The

full set of wave functions has, to our knowledge, not been
obtained previously.

Following the reasoning for the Pfaffian, we might expect
f elliptic to be a determinant ofqaqb /q1

2’s in zi
↑2zj

↓ with a,
b52, 3, and 4, or possibly an antisymmetrized combination
of other functions that each obey the same boundary condi-
tions. ~This assumption may be too restrictive, since the
boundary conditions in fact need only apply to the complete
function. We will see that it works for HR, but not for 331.!
These products of Jacobi elliptic functions are not, however,
linearly independent. In general, elliptic functions are com-
pletely determined by the singular part of their behavior near
the poles, and by the periodicities~see, e.g., Ref. 29!. In the
present case, we require that underz→z11, andz→z1t
the elliptic function@with arguments (zut)# be either periodic
or antiperiodic, giving four possibilities which we will label
11, 12, 21, and22, in an obvious notation, and we
also require that there be a double pole atz50, with residue
zero.

For the11 case, there is a classic solution to these re-
quirements: the Weierstrass functioǹ(zut). The required
functions with the other boundary conditions, which we will
denotè 2, `3, and`4 ~in the same sequence as before!, can
be obtained straightforwardly~see Appendix A!. Defining
`15`, four candidates for the relative part of the HR state
on the torus are obtained:

f elliptic,a5det̀ a„~zi
↑2zj

↓!/L1ut…, ~5.9!

and so, on includingf LJ andFcm, we obtain 4q states. It is
easy to see that they are zero-energy states of the hollow-
core Hamiltonian. Thek values for the casesa52, 3, and 4
are as for the Pfaffian, whilea51 gives states atk50. Since
the 4q states have distinct quantum numbers, they are lin-
early independent.

To obtain the fifth set ofq states, we note that, for the
11 case only, the Weierstrass function is not the unique
solution to the problem posed: we obtain another solution by
adding a constant.~For the other cases, this would violate the
boundary conditions.! Indeed, we could have used a constant
in place of`1, but the determinant would then vanish except
in the case ofN52 particles. If we insert̀ 11c in place of
`1 in the determinant, and then expand in powers ofc, we
find that terms of order higher than one inc vanish identi-
cally because there are rows or columns in the determinant
that are equal. The term of first order, however, is linearly
independent of the zeroth-order term~which is f elliptic,1) and
is nonzero. Further, it is a zero-energy eigenstate of the
hollow-core model; it clearly hask50. Explicitly, this func-
tion is

f elliptic,55
1

~N/221!! (
sPSN/2
rPSN/2

sgns sgnr )
r51

N/221

3`1„~zs~11r !
↑ 2zr~11r !

↓ !/L1ut…. ~5.10!

We point out that this has an interpretation in terms of un-
paired fermions. Unpaired fermions must occupy single-
particle states that are holomorphic, and obey the boundary
conditions onf elliptic . For any except11, there are no such
states, and for11 the only state is, again, the constant
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function. By breaking one pair inf elliptic,1 and putting the two
fermions~with opposite spin! in this constant state, we ob-
tain f elliptic,5 . We observe that all 5q states found are spin
singlets. The first and fifth sets ofq states are linearly inde-
pendent because they have different numbers of poles. The
k values found agree with the numerical results.

The existence of five sets ofq states for the HR state on
the torus is surprising, especially as the analysis in Ref. 8
found just 4q sectors of edge states, and one expected,5 on
general CFT grounds, that the number of sectors~or of pri-
mary fields of the chiral algebra of the CFT, which comes to
the same thing! would be the same as the number of confor-
mal blocks in the CFT on the torus. All we can say about this
here is that the CFT described in Ref. 8 for the HR state does
lead to 4q vacuum sectors on the torus, yet what is actually
required for constructing a QHE state is a correlator contain-
ing many insertionsof fields in the chiral algebra, corre-
sponding to the particles in the ground state. For the HR
case, these correlators are the ground states found above, and
one set ofq sectors has turned out to contain two conformal
blocks. However one chooses to interpret this in CFT terms
~it is probably related to other oddities of the CFT for the HR
state8!, the existence of 4q sectors in the underlying theory is
not in doubt.

Finally, we turn to the 331 state. Since the pole in
f elliptic is expected to be first order, we try

f elliptic,a5detFqa„~zi
↑2zj

↓!/L1ut…
q1„~zi

↑2zj
↓!/L1ut…

G . ~5.11!

For a52, 3, and 4, these lead to nonvanishing, zero-energy
states for the pseudopotential Hamiltonian. We expect, how-
ever, that there are 4q states altogether, based on the general
structure of this Abelian quantum Hall state~see, e.g., Ref.
8!, and we expect the remainingf elliptic to be11. Clearly
the natural choice detq1 /q1 is nonvanishing only for
N52. From the theory of elliptic functions in one variable,
the constant is the only elliptic function with at most one
simple pole and these boundary conditions, so we have ex-
hausted the possibilities of this structure. However, as
pointed out above,f elliptic need not be an antisymmetrized
product of elliptic functions in (zi2zj )/L1 that each satisfy
the boundary condition; onlyf elliptic itself must have this
property, so we should broaden our search.

The correct solution can be obtained, no doubt, in various
ways. One way is to use the expectation thatf elliptic is a
conformal block for a Dirac Fermi field on the torus, with
11 boundary condition in the case of interest~the other
functions f elliptic,a , a52, 3, and 4, can be viewed in exactly
this way!. This conformal block is known to exist, and could
also be obtained by bosonization. We are indebted to Greg
Moore, who obtained the following formula~for N54) for
this function, at our request, by a limiting procedure of first
considering the conformal block for the fermi field with the
general boundary condition, that is twisted byeic1 and
eic2, and taking the limitsc1 andc2→0. The result is~up to
factors independent of thezi ’s!

f elliptic,15
1

~N/221!! (
sPSN/2
rPSN/2

sgns sgnr )
r51

N/221

3
q18„~zs~11r !

↑ 2zr~11r !
↓ !/L1ut…

q1„~zs~11r !
↑ 2zr~11r !

↓ !/L1ut…
, ~5.12!

where q18(zut)5dq1(zut)/dz. Notice that, like the fifth
function for the HR state, there are two unpaired fermions of
opposite spins, occupying the constant single-particle state
that is allowed by the boundary conditions. ForN52, this is
all that remains, and this function was already noted above.
ForN.2 this function containsq18/q1, which is not strictly
periodic ~since no such functions exist for11 boundary
conditions!, but obeys

q18~z1tut!

q1~z1tut!
5

q18~zut!

q1~zut!
22p i , ~5.13!

and is invariant underz→z11. When any zi
↑ (zj

↓) in
f elliptic,1 is translated by L1t (2L1t), the result is
f elliptic,1(z1

↑ , . . . ,zN/2
↓ ) plus a term that vanishes because the

constant22p i must be antisymmetrized with the constant
1 that represents the missing row and column in the deter-
minant. Thusf elliptic,1 is invariant, and we found the fourth
set of q zero-energy states. We note thatk50 for these
states, and the quantum numbers of all 4q states are distinct,
so these states are linearly independent.

In this section we implicitly assumed that the number of
particlesN is even. One may ask if there are also ground
states on the torus forN odd. Such states will have an odd
number of unpaired fermions. As we have seen, this is pos-
sible only in the11 ~or k50) sector. For the Pfaffian, there
is no such sector, so there are no ground states forN odd,
except forN51. For 331 thek50 states already include two
unpaired fermions forN even. ForN odd, there must be just
one unpaired fermion, of either up- or down-spin, otherwise
the state vanishes. But, on generalizing Eq.~5.12!, one finds
that it no longer satisfies the boundary condition, except,
again, forN51. Finally, for HR, there is no problem con-
structing a zero-energy state with one unpaired fermion in
thek50 sector. This gives a spin-12 doublet of ground-states
for all odd N, and we have verified numerically that states
with these quantum numbers are the only zero-energy states
for N odd. If these ground state wave functions are again
interpreted as CFT correlators, then they imply that in this
11 sector, there are nonzero correlators containing an odd
number of insertions of the Fermi field.

Greiter, Wen, and Wilczek6 also found formulas for two
quasiholes of the Pfaffian state on the torus. There should be
no great difficulty in extending the results of the present
paper to include any number of quasiholes on the torus for
any of the paired states we have considered.

VI. EFFECT OF ZEEMAN TERM, TUNNELING,
AND OTHER PERTURBATIONS

In this section we address the question of what happens to
the degeneracies of the quasihole states and of the ground
states on the torus when the Hamiltonian is varied from the
exactly soluble~for the zero-energy states! forms we have
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considered up to now. First we consider the effect of the
Zeeman term2h( isz,i on the HR state; hereh.0 is the
magnetic fieldgmBB, andsz,i is thez component of the spin
operator for thei th particle, which can be represented by the
usual Pauli matrices. The hollow-core Hamiltonian is spin
rotation invariant, and its eigenstates are also eigenstates for
the total spin. Hence the Zeeman term simply has the effect
of splitting the multiplets of spin states. For the quasihole
states, this means that the degeneracy is partially resolved,
independent of the locations of the quasiholes. The lowest-
energy states are then those with the largest number of↑
unpaired fermions, and the lowest number of↓. Since
Fs<n21, andF andN have the same parity, these states
containF↑5n21 andF↓50 whenN andn21 are of the
same parity, and eitherF↑5n21, F↓51 or F↑5n22,
F↓50 whenN and n21 are of opposite parity. For fixed
w’s these states clearly have a residual degeneracy 1 in the
first case, 2(n21) in the second.@The total spin of these
lowest-energy states, which is alternatelySz5(n21)/2 or
Sz5(n22)/2, agrees with the results in Ref. 3.# In the first
case in particular, the lifting of the degeneracy implies that
adiabatic exchange of the quasiholes can produce only a
phase factor, and so the statistics is Abelian.

We also note here that for the edge states,8 the gapless
spectrum of spin-carrying fermion excitations at the edge
implies that the spin susceptibility of the edge is nonzero,
and for finiteh there will be some↑ fermions present in the
ground state, so there is a magnetization at the edge, or one
could say the edge is reconstructed in this way; a confining
potential is necessary to stabilize this effect. If one thinks of
the ↑ fermions and their antiparticles, the↓ fermions, as
particles and holes of a chiral Fermi-Dirac sea, then the re-
constructed state just corresponds to shifting the Fermi en-
ergy of the sea. There is thus still a gapless branch of ferm-
ion excitations for both spin-↑ and -↓ at the edge. Further,
the degeneracy of 5q on the torus is not split by the Zeeman
term, because all the states are singlets.

It is clear that similar effects may be expected for any
Abelian or non-Abelian statistics state, when there is a sym-
metry present, particularly a continuous symmetry: A
symmetry-breaking perturbation may break the degeneracies
and leave some kind of Abelian statistics behavior. This does
not, however, necessarily mean that non-Abelian statistics is
unstable againstany perturbation, nor does it mean that the
Abelian statistics obtained is that of some simpler Abelian
state, such as a Laughlin state of charge-2 bosonic pairs. We
also note that, for either the Pfaffian or HR state, when there
are only two quasiholes, there are no degeneracies for fixed
quasihole positions on the sphere~so there is nothing to
split!, yet the expectation is that the Berry phase obtained on
adiabatically exchanging the two is not that in the Laughlin
state of charge-2 bosonic pairs,5 at least if the quasiholes are
given by the wave functions studied in this paper. In fact,
while the breaking of degeneracies does strictly mean that
non-Abelian statistics does not occur in adiabatic transport of
quasiparticles, other associated properties, such as the spec-
trum of edge states, are, as we have seen, not affected~in
general, a splitting of the velocities might occur due to a
symmetry-breaking perturbation.! Quite similar phenomena
are known in the hierarchy states, which have Abelian statis-
tics, where, for example, SU(N) symmetry appears in certain

states,19 but the symmetry~or related degeneracies! is pre-
sumably broken by the Hamiltonian, both for the bulk qua-
siparticle states and for the edge spectrum. For this reason,
we propose that such effects do not really represent a change
of universality class in the non-Abelian systems either.

We now discuss the effect of tunneling between the layers
on the 331 states; mathematically this is the same as a
Zeeman-like term2t( isx,i ~see earlier discussions in Refs.
15 and 20!. This term can be diagonalized by using a basis of
sx eigenstates for each particle, which we will labele ando
~for ‘‘even,’’ ‘‘odd’’ !, given by e5(↑1↓)/A2, o
5(↑2↓)/A2, which have eigenvalues11 and21, respec-
tively, undersx,i . In the literature, these states have often
been denoted ‘‘symmetric’’ and ‘‘antisymmetric,’’ respec-
tively. Unlike the HR case, the pseudopotential Hamiltonian
for which 331 is exact is not spin rotation invariant, and the
energy eigenstates are not eigenstates ofSx5

1
2( isx,i . Thus

the tunneling is a symmetry-breaking perturbation, which
breaks the conservation ofSz . The effect of the tunneling
term is to modify the states, not merely to split their energies.
Nonetheless, whent.0 is small, we may try to use degen-
erate perturbation theory to understand its effect, which
means diagonalizing the tunneling term in the subspace of
the states that have zero energy whent50; this would give
the exact results at first order int. We are not able to carry
this out analytically in general, because we do not have the
matrix elements of the perturbation among these states. We
may expect, however, that the degeneracies would be at least
partially lifted, in a similar way as for the HR state with
Zeeman, by the following argument. In spin space, the pairs
in the 331 state take the form↑ i↓ j1↓ i↑ j5eiej2oioj , using
an obvious notation for the spinors for thei th and j th par-
ticles in a term in which these form a pair. Halperin15 has
argued that the effect of positive tunnelingt is to cause a
change in the 331 ground state, which within a trial-wave-
function description causes the amount ofoo in the pairs to
decrease. Ho20 proposed that this occurs at first order int. If
we also write the unpaired fermions in our zero-energy states
in thee-o basis, and neglect the effect oft on the paired part
of the state, its effect would be to split the energies of the
e ando unpaired fermions, exactly as for the↑ and↓ fermi-
ons of the HR state, and again with the effect of removing
most of the degeneracy. For the ground states on the torus,
we first note that states withkÞ0 are even under layer ex-
change, which has the effect of multiplying by) isx,i , while
the states atk50 are odd~incidentally, this agrees with nu-
merical findings26!. The broken pair in those states contains
one e and oneo fermion. Application of the same naive
argument as for the quasihole states then suggests that the
4q degeneracy is split to 3q by t.0. However, an accurate
calculation should include the modification of the rest of the
state, and the splitting might disappear in the thermodynamic
limit.

If we consider arbitrary small changes in the Hamiltonian
from the special forms considered in previous sections, then
physical arguments like those for the Zeeman and tunneling
terms suggest that, as the degeneracy arises from breaking
pairs and putting the fermions into the zero-mode functions,
there is no obvious reason why it should not be broken in
general. For the bound states in the gap in the vortex cores in
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conventional BCS superfluids, such excited many-particle
states have positive energies. However, such arguments may
just be too naive, because of the modification of the ground-
state wave function.

In an interesting paper, Ho20 gave a more general interpo-
lation between the 331 and Pfaffian ground states by varying
the spin states of the pairs. Within a paired trial wave-
function description, the effect of tunneling is presumably to
reduce the amount ofoo in the spin part of the wave function
of a pair.15 If this is done without changing the spatial factor
(zi2zj )

21, then when the pairs are purelyee, and the
ground state is precisely the Pfaffian state. Ho claimed that
this somehow contradicts the ‘‘topological’’ arguments that
assert that one cannot go continuously between these distinct
ground states. However, this is really a misstatement; one
canalways interpolate between any two state vectors in the
same Hilbert space. The real question is whether theproper-
ties of the states, like those considered in this paper, can be
continuously connected. If one wishes to exhibit a break-
down of the ‘‘topological’’ arguments, then it is necessary to
show that the interpolation occurs without any phase transi-
tion, that is without any energy gap for local excitations go-
ing to zero~which would be a second order transition! or any
level crossing of ground states~which would be a first order
transition!. Ho proposed a family of Hamiltonians for each
of which his corresponding wave function is a zero-energy
ground state, but did not show that the energy gap is main-
tained throughout the interpolation. We will now examine
this. We will show that at the point where Ho’s ground state
is the Pfaffian, there is an enormous degeneracy of other
zero-energy states for his Hamiltonian, implying that the en-
ergy gap collapses to zero at this point, and the system is not
incompressible. We will show that, up to that point, the de-
generacies of the zero-energy eigenstates of his model are
the same as those of the pseudopotential Hamiltonian for the
331 state, considered earlier. We will then consider modifi-
cations of his model that remove the pathology.

Following Ho, we now fixq52, so the particles are fer-
mions, and the filling factor isn5 1

2 ~as usual, other cases are
similar!. To understand Ho’s description, first recall that for
spin-12 fermions in the LLL, Fermi statistics implies that if
the particles have even relative angular momentum,m50,
2, . . . , then they must be in an antisymmetric spin state,
which can only be a singlet, while if they are in an odd
relative angular momentum state,m51,3, . . . ,then they can
only be in a symmetric spin state, which must be a triplet.
We emphasize that these statements remain true in the pres-
ence of any number of other particles. If the two particles
have total spin 1, then there is a three-dimensional complex
vector space of spin states, and the spin state can be de-
scribed exactly by a nonzero complex three-component vec-
tor d, of which the magnitude and phase are irrelevant to the
state. We will not need the detailed definition ofd, which
can be found in Ho20 or in references on superfluid3He ~see,
e.g., Ref. 30!. We note only that, for the spin state
↑ i↓ j1↓ i↑ j5eiej2oioj ~as in the pairs in the 331 state!, d
} x̂z , while for eiej ~as in the pairs in the Pfaffian!, d
}( x̂z2 i x̂y)/A2 ~herex̂z denotes a unit vector in spin space in
thez direction, etc.!. Notice that the transformation from one
state to the other is not simply a rotation. Ho’s Hamiltonian
is a pseudopotential Hamiltonian

HHo~d!5(
i, j

@V0Pi j ~Nf ,S50!1V1Pi j ~Nf21,'d!#,

~6.1!

which gives positive energy to any two particles with~i!
relative angular momentum zero and spin zero, or~ii ! rela-
tive angular momentum one and triplet spin state orthogonal
to a chosen state specified byd. For a choice ofd that cor-
responds to 331, this reduces to the pseudopotential Hamil-
tonian ~4.2! used above; pairs may have zero energy and
relative angular momentum 1 only if they are in the
↑ i↓ j1↓ i↑ j spin state. For ad vector that corresponds to the
ee pairs in the Pfaffian, it allows two particles to have rela-
tive angular momentum 1 at zero energy if they both have
spin e, but not if they areeo1oe or oo. However, at this
d vector, which we call the Pfaffian point,all states of the
electrons in which all spins are e are zero-energy eigenstates
of this Hamiltonian. This follows because there are clearly
no singlets in such states, and so no relative angular momen-
tum zero pairs either. This should be no surprise, since no
convenient two-body Hamiltonian~like Ho’s! giving the
Pfaffian as ground-state and a sensible spectrum is known.
Since there are very many spin-aligned states at
Nf52N23, Ho’s Hamiltonian has a very large ground-state
degeneracy. There might, of course, also be degenerate zero-
energy states in which the spins are not alle. We will fully
analyze this degeneracy below.

For d}” ( x̂z2 i x̂y)/A2, the degeneracies of Ho’s ground
state, and of quasihole states on the sphere and ground states
on the torus, coincide with what was found earlier for the
case of the 331 state. To construct these zero-energy states
for generald, we use a more precise notation for the wave
functions that includes the spin states. We label the particles
i51, . . . ,N, and use↑ i and↓ i for spinors which are eigen-
states ofsz,i ; the wave function is now in a tensor-product
space of spatial wave functions and spinors, and must be
antisymmetric under simultaneous exchange of coordinates
and spinors of two particles. For example, the ground state
on the sphere is

C̃d5 (
sPSN

sgns)
k51

N/2
xs~2k21!,s~2k!~d!

zs~2k21!2zs~2k!
)
i, j

~zi2zj !
q ~6.2!

~which is actually a Pfaffian!, wherex i , j (d) is the spin state
of two particlesi and j that corresponds tod, and the product
of these factors is actually a tensor product, so thatC̃d is a
multispinor function of the coordinates. This clearly has zero
energy. We will call it the Ho state, as it appears in Ref. 20
~in a different notation!. In the presence of quasihole factors
F in the pairing factors, one may construct zero-energy
states with unpaired fermions, as for the 331 state, but with
the pairs taking the same form as in Eq.~6.2!. The unpaired
fermions can be in either spin state. Even though the ground
state~6.2! does not have a definite totalSz , except in the 331
special case, the counting of zero-energy quasihole states
proceeds just as for the 331 state, and the results are identical
to those in Sec. IV. Similar results are found for the edge
states, which are in one-to-one correspondence with those in
Ref. 8, and for ground states on the torus, which are like
those in Sec. V. We expect that these zero-energy states are
the complete set, except in the Pfaffian limit. This is consis-
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tent with the continuity of the spectrum as a function ofd in
a finite-size system, which requires that the energy levels
found in the 331 state must change continuously with the
Hamiltonian. We expect that the larger degeneracy appears
only at the Pfaffian point, because there the pairs have the
special property of being composed of one spin (e) only,
unlike the general statesx(d). This implies that the energy
of some excited states decreases as this point is approached,
so the gap goes to zero. Therefore Ho’s Hamiltonian is
pathological at the Pfaffian point.

In spite of this pathology at the Pfaffian point, it is still of
interest, given that the degeneracies of the quasiholes and
torus ground states are the same in Ho’s model~except for
the Pfaffian point! as in the 331 state, to ask whether the
statistics properties are the same. In the 331 state, the struc-
ture of these properties is described in terms of a U~1! @or
SO~2!# quantum number, which in the case of 331 isSz .
Also, excitations with opposite values of this quantum num-
ber are degenerate, because of the symmetry operation of
interchanging the layers, which generates aZ2 group. These
two symmetries combine to make up the symmetry group
O(2), which is the semidirect product ofZ2 and SO(2).
Ho’s Hamiltonian breaks the conservation ofSz , but not the
Z2 symmetry, if we consider only the family
d5 x̂zcosu2ix̂ysinu, 0<u<p/4 as proposed by Ho; these
correspond to the spin state cos(u2p/4)eiej
1sin(u2p/4)oioj for the pairs, suggested by Halperin,

15 and
u50 is the 331 case andu5p/4 the Pfaffian. Consequently,
one might think the U~1! quantum number is lost. However,
the degeneracies of the quasiholes and torus ground states
are consistent with the presence of this quantum number,
which would be a ‘‘hidden’’ U~1! symmetry. One might ex-
pect this to be, in some sense, the symmetry of rotation in
spin space about the axis ofd, however, sinced is complex
we must be careful. Under rotations of spin space,d is ro-
tated by the action of a~real! orthogonal 333 matrix in
O~3!. In general, there is no rotation that leavesd invariant
~up to multiplication by a phase!, except whend is of certain
special forms of which thed vectors for 331 and the Pfaffian
happen to be examples. Remarkably, even though O~2! sym-
metry is broken by Ho’s Hamiltonian, it seems to be reap-
pearing in the low-energy properties. Indeed, in terms of a
conformal field theory~CFT! description of the edge states
on the cylinder, which gives detailed information about the
structure of the states,8 the low-energy edge states, obtained
as zero-energy eigenstates of Ho’s model have the same
structure as in Ref. 8 for alld. If we assume that a CFT
description must involve a U~1! theory for charge, together
with some unitaryc51 theory, combined by theZ2 orbifold
construction of Ref. 8, then the theory described in that ref-
erence seems to be the only possibility. However, we should
be cautious about concluding on the basis of these observa-
tions that the universality class of Ho’s model is the same as
that of the 331 state, except at the Pfaffian point. Below we
will see an example in which the full properties of this class
do not emerge, and the degeneracy can be broken by a per-
turbation even in the thermodynamic limit. This example
emerges from further analysis of the Pfaffian point of Ho’s
model, to which we now turn.

At the Pfaffian point of Ho’s model, in theq52 case, it is
a two-body projection-operator Hamiltonian which gives

positive energy to any two particles which either have oppo-
site spin and relative angular momentum zero, or if one or
both of them iso and they have relative angular momentum
1. It is known in general how to find the zero-energy states of
such pseudopotential Hamiltonians; this was already dis-
cussed at the beginning of Sec. IV. To be zero-energy eigen-
states, wave functions must contain themm8n wave func-
tion, Eq. ~4.1!, as a factor, in which for the particular class
~but for generalq) considered here, we havem5q21,
m85q11, n5q,

C̃q21,q11,q~z1
e , . . . ,zNe

e ,z1
o , . . . ,zNo

o !

5)
i, j

~zi
e2zj

e!q21)
k, l

~zk
o2zl

o!q11)
rs

~zr
e2zs

o!q. ~6.3!

For functions on the sphere, the number of fluxes seen by
e and byo particles must be the same, but this is not the case
for function ~6.3! as it stands, unlessNo is zero. IfNo.0, it
is necessary to multiply the function by additional factors,
and the space of these factors may be parametrized by view-
ing them as quasihole factorsUs(w

s)5) i(zi
s2ws), where

s5e or o, acting on particles of either spin. On multiplying
in ne factors ofUe , no factors ofUo , one finds, for the flux
seen bye ando , respectively,

Nf5~q21!~Ne21!1qNo1ne ~6.4!

5~q11!~No21!1qNe1no , ~6.5!

since the flux must be the same for both; the second line,
which is the flux seen by theo particles, applies only if
No.0.

We wish to analyze the situationNf>q(N21)21, that
corresponds to the Pfaffian ground state or the same plus
quasiholes. If we write

DNf5Nf2@q~N21!21#, ~6.6!

which was denotedn in Sec. II, then we find the
q-independent equations

ne5Ne221DNf , ~6.7!

no1No5DNf , ~6.8!

where again the second equation does not apply ifNo50.
Now we see that ifDNf<0, we must haveNo50 since
no>0. So in this region, all zero-energy states contain only
e particles. In particular, this includes the Pfaffian state and
all states degenerate with it atDNf50; for q51, this space
of states includes all states in which all the bosons have spin
e, and the same is true for the fermions atq52, as remarked
above, since antisymmetry requires all states to include the
factor ) i, j (zi

e2zj
e) as a factor. The nondegenerate ground

state of the model occurs atNf5(q21)(N21) @i.e., at
DNf52(N21)11#, and for q52 is the LLL filled with
e particles. ForDNf.0, the maximum number ofo par-
ticles possible in the zero-energy states isNo<DNf . The
numbers of zero-energy states, and their angular-momentum
decomposition, for eachN, Nf for this model can now be
obtained, as in other cases~see especially the case of the
Laughlin state, and the 331 state in bosonic language!.
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Numerical study of Ho’s model confirms the above dis-
cussion. Figures 9 and 10 show representative spectra with
no quasiholes, for various values ofu, including the 331
point u50, and forN56 andq52. We choseV051 and
V150.5. For d not at the Pfaffian point, the zero-energy
ground state atNf5q(N21)21, is nondegenerate. As the
Pfaffian point is approached, a set of states approaches zero
energy, and at the Pfaffian point, the degeneracies of the
zero-energy states are exactly those of themm8n system that
we have just analyzed. Already atu5p/8, one can identify
most of the states that reach zero energy at the Pfaffian point.
Calculations not shown in the figures also confirm that states
with quasiholes have the degeneracies, and the angular mo-
menta, of those for the 331 state. We notice that, in addition
to the zero-energy states at the Pfaffian point, which are fully
explained by the above analysis, there are also some very
low-energy excited states, for which at present we do not
have a detailed explanation.

There is a simple way to remove the ‘‘excess’’ degen-
eracy at the Pfaffian point, without destroying the 331-like
behavior of zero-energy states elsewhere. The Pfaffian, with
all particlese, would be selected by the three-body Hamil-
tonian used earlier in the spinless case, if it acted on thee
particles. We also observe, from the structure of the wave
functions ~6.2!, that in these wave functions no three par-
ticles have total angular momentum 3Nf/223(q21).
Therefore, the three-body operator which projects each set of
three particles onto angular momentum 3Nf/223(q21)
and spin 3

2 ~or its analog on the torus! annihilates the Ho
states, and the quasihole states and ground states on the torus

derived from it for all d ~the quantum numbers are most
easily derived by considering spin-1

2 bosons forq51; in
these Ho states, three bosons are never found at the same
point—if they were, they would be in a symmetric spin
state!. If it is added to the Ho Hamiltonian, all the degenera-
cies of zero-energy states will be maintained, away from the
Pfaffian point. At the Pfaffian point, the total Hamiltonian
now selects, atNf5q(N21)21, the Pfaffian ground state
as the unique zero-energy state, in which all spins aree. For
smallerNf there are no zero-energy states, and for larger
Nf the zero-energy states are just those of the Ho form~6.2!
and its generalizations. In these states, the paired fermions
are alle, but the unpaired ones can be eithere or o. Conse-
quently, the degeneracies are again those of the 331 state,not
those of the Pfaffian. This was of course inevitable by con-
tinuity, given that no states now come down to zero energy
at the Pfaffian point. Numerical spectra confirm these predic-
tions, as shown in Fig. 11 for zero quasiholes, and in Fig. 12
for four quasiholes. In these figures, the coefficient of the
three-body projection operator is 1.

We have now arrived at a Hamiltonian which has the
degeneracies of the 331 state at alld vectors. Yet the Ho
model was supposed to represent the effect of tunneling,
which should raise theo particles to high energy, and it was
expected that the ground state for strong tunneling would be

FIG. 9. Spectrum of the Ho model, for four values ofu which
parametrize thed vector, all forN56 andNf59; that, isn5

1
2 and

no quasiholes.

FIG. 10. Same as Fig. 9, but enlarged to show low-lying levels.

FIG. 11. Spectrum of the Ho model plus the three-body interac-
tion at the Pfaffian pointu5p/4, again forN56 andNf59. The
inset enlarges the low-lying levels.

FIG. 12. As in Fig. 11, but withN56 andNf511; that is, four
quasiholes.
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the Pfaffian. While the ground state we find at the Pfaffian
point is the Pfaffian, the problem is that unpaired particles of
either spin can be in the zero modes. But this can now be
easily ~and exactly! remedied by adding to the Hamiltonian
the tunneling term2t( isx,i . Since the tunneling term is
diagonal in thee-o basis we are using, it simply splits the
states we have found. Clearly, all states containing onlye
particles now have energy2Nt, and these have the degen-
eracies of the Pfaffian state for any number of quasiholes, or
for edge states, or on the torus. States containingo particles
are higher in energy. If we consider the same model, as a
function ofd, and lett vary with d, such thatt is zero at the
331 point and of order 1 at the Pfaffian point, then we can
say that its lowest-energy states are known exactly at the 331
and Pfaffian points, but unfortunately not in between. There
must be one or more phase transitions as the Hamiltonian is
varied between these limits. Notice that there is a surprising
effect at the Pfaffian point, which has edge states including
unpaired fermions of either spin whent is zero, but theo
states obtain a gap whent.0.

When studying more general Hamiltonians that include
tunneling, Ho’s state would in general be a better choice of
trial state than the original 331 state, andd can be used as a
variational parameter. We wish to emphasize that a large
overlap of the ground state of a Hamiltonian with a particular
trial state, say, the 331 state~as in Ref. 18! does not prove
that the state is in the corresponding~say, 331! universality
class; to show that, its properties must be calculated, and the
thermodynamic limit taken, and this is a more difficult task
numerically. Conversely, a low overlap would not prove it is
not in that class.

Our discussion still leaves the question of whether, for
large enought, there is a transition to the Pfaffian universal-
ity class, or to some other class. Because of the similarity in
the ground-state structure of the 331 and Pfaffian states em-
phasized in Refs. 6,15 and 20, a second order transition
seems to be a possibility. Another possibility is that the Hal-
perin class of paired states is involved, those for which a trial
state can be constructed by first pairing the particles into
charge-2 bosons, then forming anb51/4q5 1

8 state of the
bosons.2,6 This is clearly another Abelian quantum Hall state,
for which the edge excitations would consist only of the U~1!
density-fluctuation chiral scalar boson modes, in different
charge sectors; it would lack the gapless fermion excitations
characteristic of the paired states discussed here.8

While we cannot rule out the Halperin type of paired
state, and all of these states might describe the universality
classes of various Hamiltonians, even within the LLL, we
can point out an experimental signature that will distinguish
the former from the others. First we recall that, for the
Laughlin states, the Luttinger liquid at the edge leads to the
local density of statesN(v);uvuq21 for the filling factor
1/q ~see Ref. 31 for a review!. The corresponding tunneling
differential conductance for a point contact at zero tempera-
ture will bedI/dV;Vq21. The exponents are simply related
to the scaling dimensionD of the operator that creates a
single electron in the low-energy theory of the edge, as
dI/dV;V2D21, and also to the statisticsu of the excitation
by u/2p[D ~mod 1). In the theory for the Laughlin states,
the chargen/q operators at a single edge have dimensions
n2/2q (n must be an integer!; the nonintegral charge opera-

tors must be combined with similar operators at the other
edge~see Refs. 31 or 8!. ThusD5q/2 for the electron. In the
charge-2 boson system, the charged operators that create
charges at the edge within the low-energy theory~subject to
some straightforward conditions discussed in Ref. 8! have
scaling dimensionn2/8q when they create charge6n/2q ~in
electron units! at the edge at filling factor 1/q, again forn
integral. As in the old argument of Tao and Wu,32 in either
theory the operator of charge 1 hasu52pD5pq, which is
Bose statistics forq even, and cannot represent an electron
~similarly, for q odd, it cannot represent a charge-1 boson!.
In addition, such an operator cannot be used at a single edge
in the charge-2 boson theory, but must be combined with
another charged operator at the other edge, or with some
other operator at the same edge. Only operators with an
even-integer charge can act on one edge. Therefore, at low
energies~that is, bias voltages!, tunneling into the edge from
outside will be impossible at these filling factorsn51/q for
this charge-2 boson universality class. To make an electron
on one edge, the charged operator must be combined with an
operator making an unpaired fermion~or BCS quasiparticle!,
which in the present case would exist as excitations, but
would have a finite energy gap, even at the edge; thus the
tunneling current will be zero below a threshold voltage. On
the other hand, in paired states like the Pfaffian, HR, and 331
states, the fermion excitations are gapless at the edge, and a
nonzero tunneling current with a power-law dependence at
small bias voltage should be observable~the power law can
be calculated from the theories in Ref. 8;D has an extra
contribution from the fermions, to yieldVq, for both the
Pfaffian and 331 cases, andVq11 for HR!. These arguments
are for leading order in the tunneling. It is possible that some
sort of higher-order tunneling process could transfer two
electrons into the edge, through a virtual transition to one or
more higher-energy states; as this does not require any fer-
mions to be created except virtually, this would give a cur-
rent at arbitrarily low bias voltage. However, the exponent
would be related to the scaling dimension~and statistics! for
the charge-2 operator in the low-energy edge field theory of
the charge-2 boson state, and so the power law would be
V4q21; thus forq52 the current would be much lower than
for Pfaffian, 331, and HR states, and still clearly distinguish-
able. For another discussion of the experimental conse-
quences of the Halperin-type charge-2 boson Laughlin state,
in connection with even-integer filling factors, see Ref. 33;
our formulas for the charge-2 boson universality class also
apply for the conductance in this case, withq5 1

2, to give
dI/dV;V.

VII. CONCLUSION

In summary, we obtained a full description of the quasi-
hole states of several paired FQHE states, for the Hamilto-
nians for which the exact ground states are known. The de-
generacies found in the Pfaffian and HR cases are as required
for non-Abelian statistics. For the 331 states, the statistics are
Abelian, and the degeneracies are due to the layer index.
Ho’s model was found to be pathological at its Pfaffian
point, but the pathology was removed by adding a three-
body term to Ho’s Hamiltonian. With tunneling also added,
the Pfaffian state was recovered, but the model was no longer
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exactly soluble for the low-energy states at intermediate
points in the parameter space between the 331 and Pfaffian
points. In Appendix B, the permanent state was also consid-
ered, which is another candidate for non-Abelian statistics,
but should probably be rejected because of its proximity to a
ferromagnetic ground state, and its correspondingly gapless
nature. It remains to be seen whether the other non-Abelian
states, though not apparently close to an obviously gapless
state, are in fact stable against small generic perturbations.
This is an important outstanding issue, to which we hope to
return elsewhere. It probably requires an analytical, field-
theoretic technique to settle it in general, which should be a
theory that describes the paired condensate, and not just a
Chern-Simons theory of the low-energy sector containing
non-Abelian statistics. In the meantime, we pointed out in
Sec. VI how the different paired states, the Halperin-type
state of charge-2 bosons, and the Pfaffian and HR types with
non-Abelian statistics, can be distinguished in a point-
contact tunneling experiment. As for an actual demonstration
that adiabatic transport of quasiparticles does produce non-
Abelian statistics in some systems, that also will have to be
left for treatment elsewhere.
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APPENDIX A: ELLIPTIC FUNCTIONS

In general,q functions with characteristics are defined as

qFabG~zut!5(
n

eipt~n1a!212p i ~n1a!~z1b!, ~A1!

where then sum is over all the integers anda andb are real.
From the definition we obtain

qFabG~z11ut!5e2p iaqFabG~zut!,

qFabG~z1tut!5e2 ipt22p i ~z1b!qFabG~zut!. ~A2!

Consequently we can restricta andb to lie between 0 and
1.

The standard Jacobi theta functions29 are particular cases
of those above. There are four of them:

q1~zut!5qF 1
2

1
2

G , q25qF 1
2

0
G ,

q35qF00G , and q45qF01
2
G .

Of these,q1 is of particular importance, since it is odd under
z→2z, and so has a zero at the origin. In general, allq@b

a#
can be related to each other by shifts ofz.

The identity used to rewrite theFcm found in Ref. 23 in
the form given in Sec. V can be obtained, by shifts ofz, from
the simplest version

)
r51

M

q3~z2r /M ut!5q3~Mz1~M21!/2uMt!

3hM~t!/h~Mt!, ~A3!

which is obtained by writing theq functions on the left-hand
side in the product form29

q3~zut!5 )
n51

`

~12e2p i tn!~112e2p i t~2n21!cos2pz

1e4p i t~2n21!!, ~A4!

and doing ther product first. Hereh(t) is the Dedekindh
function,

h~t!5eipt/12)
n51

`

~12e2p i tn!. ~A5!

The Weierstrass elliptic function can be defined by29

`~zut!5
1

z2
1( 8

m,n H 1

~z2m2nt!2
2

1

~m1nt!2 J ,
~A6!

where the prime indicates thatm5n50 is to be omitted
from the sum. It can be shown29 that ` is invariant under
z→z11 and z→z1t. To obtain functions that have a
double pole at the origin, like the Weierstrass function, but
are antiperiodic, we may use the definitions

`a,b~zut!5(
m,n

~21!ma1nb
1

~z2m2nt!2
, ~A7!

wherea andb are integers.̀ a,b depends ona andb only
modulo 2. Fora andb both even, the sum is not convergent,
which is why` was not defined this way. For the other three
cases, the series converges, and it is clear that the functions
have the periodicity properties that we denoted12, 21,
and22 in the text.

APPENDIX B: PERMANENT STATE

In this appendix, we will introduce a Hamiltonian for
which a certain state containing a permanent5 ~other such
states can be found in Ref. 4! is the unique zero-energy
eigenstate of maximum density, and summarize results for
the quasihole and edge excitations, and for the ground states
on the torus. We also describe a relation with fully spin-
polarized states and their Skyrmion excitations, and argue
that the permanent state is at a phase transition from ferro-
magnet to paramagnet.

The permanent state is a spin-singlet ground state of spin-
1
2 fermions forq odd, and of spin-

1
2 bosons forq even. It can

be viewed as spin-singletp-wave pairing of composite
bosons.5 The Hamiltonian for the simplest caseq51 is a
three-body Hamiltonian, which penalizes the closest possible
approach of three spin-12 fermions. On the sphere, three par-
ticles are at their closest, consistent with Fermi statistics,
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when the total orbital angular momentum for the three is
3Nf/221, and the total spin is12. Our three-body Hamil-
tonian is therefore taken to be a positive number times the
projection operator onto this multiplet of states for three par-
ticles, summed over all triples of particles:

H5 (
i, j,k

VPi jk~3Nf/221,1/2!. ~B1!

We have verified numerically that this does produce a unique
many-particle state at zero energy at theNf value that cor-
responds to the permanent state atn51. As the permanent
state is a zero-energy state for this Hamiltonian by inspection
~and is nonzero!, it must be the state obtained numerically.
As for the Pfaffian state in Sec. II, a suitable Hamiltonian,
consisting of a combination of spin-independent two-body
projection operators onto angular momentaNf , Nf21,
. . . , Nf2q12, and a certain three-body projection onto
angular momentum 3Nf/223(q21)21 and spin12, can be
constructed for which the generalizations of these states to
q.1 are again the complete set of zero-energy states.

In our much-abused notation, the permanent state is de-
fined by the wave function5

C̃perm~z1
↑ , . . . ,zN/2

↑ ,z1
↓ , . . . ,zN/2

↓ !

5 (
sPSN/2

1

~z1
↑2zs~1!

↓ !•••~zN/2
↑ 2zs~N/2!

↓ !)i, j
~zi2zj !

q.

~B2!

The fact that it represents a singlet is most easily seen by
viewing it as singlet pairs of composite bosons of spin1

2. It is
totally antisymmetric forq odd, symmetric forq even. It
resembles the 331 state, but with the sign of the permutation
omitted. Such a summation over permutations defines the
permanent of a matrix, permM5(s) iM i ,s( i ) , in which M
is anL3L matrix with elementsMi j , and the sum is over all
memberss of SL .

States with 2n quasiholes can be written down in the
now-familiar manner:

1

~N↑2B↑!!
(

sPSN↑
rPSN↓

)
k51

B↑

~zs~k!
↑ !nk)

l51

B↓

~zr~ l !
↓ !ml )

r51

N↑2B↑

3
F~zs~B↑1r !

↑ ,zr~B↓1r !
↓ ;w1 , . . . ,w2n!

~zs~B↑1r !
↑ 2zr~B↓1r !

↓ ! )
i, j

~zi2zj !
q,

~B3!

in which F is as in Secs. II–IV, andnk andml must be
<n21. In these states the flux isNf5q(N21)211n. It is
clear that these are all zero-energy states for the three-body
interaction Eq. ~B1! at q51, and its generalization to
q.1. The counting of states is most similar to the 331 state,
but because the unpaired particles are here spin-1

2 bosons, the
Pauli principle restriction on the number of unpaired par-
ticles does not apply, and there is no upper limit, except that
the number of unpaired particles cannot exceed the total
number of particles. Forn>1, the number of states for fixed

w’s, and a fixed number of broken pairs, is that for
B5B↑1B↓ unpaired bosons, in 2n orbitals ~including spin
↑ or ↓), which yields

SB12n21

B D . ~B4!

Including the positional degeneracy of the quasiholes, and
summing overB as for the other states, gives

(
B,~21!B5~21!N

SB12n21

B D S ~N2B!/212n

2n D . ~B5!

The sum overB satisfying (21)B5(21)N diverges as
N→`. Note that forn>1, it is possible to break all the pairs
and make all the spins polarized, still with zero energy. In
other words, the quasihole states of the spin-polarizedn51
state form a subset of the zero-energy states for the three-
body Hamiltonian.

As we saw in the main text, the edge states are closely
related to the bulk quasihole states. For the permanent state,
we will just state that there are 4q sectors of edge states
involving unpaired bosons, much like the other examples in
Ref. 8. In the twisted sector, there are zero modes which can
be occupied with arbitrarily many bosons of either spin.
Turning to the ground states on the torus, there are again
4q sectors forN even. The ground states forkÞ0 are an
obvious generalization of those for the 331 state, containing
a permanent instead of a determinant. These states are again
spin singlets. Fork50, the construction that worked for 331
made essential use of antisymmetrization, and does not work
here. Instead, the only possibility is to break all the pairs, and
put the bosons in the constant single-particle state on the
torus. The spin state is then totally symmetric, so we obtain
a spinN/2 multiplet of states. This construction also works
for N odd.

The large degeneracies of states in certain sectors in this
system make sense in the interpretation in terms of correla-
tors in CFT. The theory relevant to the permanent is ab-g
ghost system,5 where b and g are free bosonic fields of
conformal weight12, so that this theory is nonunitary. It real-
izes Kac-Moody symmetry at levelk52 1

2 ~Ref. 5! ~not to be
confused with the vectork on the torus!. The latter theory
includes the ‘‘spin’’ fields for theb-g system, which behave
as infinite-dimensional fractional-spin representations of
SU~1,1! symmetry, that is related to, but not quite the same
as, the SU~2! symmetry in which we are interested. Conse-
quently the infinite degeneracies when quasiholes are
present, or in the ground state on the torus in the correspond-
ing sector, are not surprising.

Another interesting question is the excitation spectrum
when the zero-energy states of our Hamiltonian are fully~or
even just macroscopically! spin polarized, as occurs in the
presence of two quasiholes or on the torus. Since the ground
state breaks the spin-rotation symmetry, and the Hamiltonian
is short ranged, we expect low-energy spin-wave excitations
to exist, in which one or more spins are flipped. For a generic
Hamiltonian, one would expect these to occur at low but
nonzero energy, with a gapless quadratic dispersion relation
as in a quantum ferromagnet. Then the system would not be
fully gapped for spin excitations, unlike~we believe! the
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other systems studied in this paper. It is interesting to note
the relation with then51 spin-polarized system that has
been much studied recently.34 For a two-body Hamiltonian
consisting of a projection operator onto zero relative angular
momentum for two particles of total spin 0, the spin-
polarized filled Landau-level state, and quasihole states in-
cluding reversed spins~Skyrmions! are zero-energy eigen-
states~note that the number of quasiholes for this system is
identified with the number of flux added to the polarized
ground state, which is smaller by 1 than the number of flux
added to the permanent ground state!. For each number of
added flux, these are exactly the same as the states above
with no unbroken pairs. There are also the expected spin-
wave excitations at nonzero energy. However, in the case of
the quasihole states of the Hamiltonian we have studied here,
we already know that there are other states with some addi-
tional reversed spins atzero energy; they are simply the
states where not all the pairs are broken. Clearly, these states
would not be zero-energy states for the two-body Hamil-
tonian. It is tempting to identify them with a subset of the
spin-wave states.

From the summand in Eq.~B5!, we can obtain the number
of zero-energy states for each number of unbroken pairs,
(N2B)/2. It is instructive to begin with the casen51 that
corresponds to the sector containing the fully polarized filled
Landau-level state. As we increase (N2B)/2 from zero, we
expect that the total spin must decrease due to the formation
of singlet pairs. The first binomial coefficient in Eq.~B5! is
equal toB11, which is the degeneracy of a single multiplet
of spinS5B/2. The second binomial coefficient in Eq.~B5!
is the orbital degeneracy of the quasiholes of the permanent,
which we here interpret as the number of ways of placing
(N2B)/2 bosons in 2n1153 orbitals. The bosons are to be
viewed as the spin waves. The three orbitals form anL51
multiplet. The spin-wave excitations in general could have
angular momenta 0,1, . . . ; theL50 ones simply represent a
global rotation of the spin, and have already been counted in
the degeneracy of each spin multiplet. We conclude that, for
our Hamiltonian,L51 spin waves have zero energy at
n51. The other spin-wave states would have to be obtained
by a collective excitation of the condensate of singlet pairs,
or spin waves~depending on our point of view!, which ex-
cites one or more of them to higher angular momentum. A
similar picture holds forn.1. Based on these arguments, we
do expect a gapless branch of low-energy spin waves to be
present in the spectrum of elementary excitations of the spin-
polarized zero-energy states for our Hamiltonian, on the
sphere, and also on the torus.

The three-body Hamiltonian~B1! above has been diago-
nalized numerically forq51 andN up to 12, withV5 1

18, for
various numbers of quasiholes; results forn50 and 1 are
shown in Figs. 13 and 14. Forn51, the degeneracies of the
zero-energy quasihole states have been confirmed, and in
addition ~see Fig. 14! there are low-lying states, so the sys-
tem is not obviously gapped. In fact, by examining the states
at n51 with Sz5N/221, that is one less than the maximum
value, which we expect to be the single-spin-wave states of
the ferromagnet, we obtain a dispersion relation of the spin
waves, which is shown as the lower-right inset in Fig. 14. It
has the expected form of a finite-size version of a gapless
branch of states, and has zero energy for bothL50 and 1;

the latter property may mean that the dispersion relation has
vanishing coefficient of the wave vector squared in the ther-
modynamic limit~this coefficient is proportional to the spin
stiffness in the ferromagnet!. We note that these states pen-
etrate quite far into the full spectrum. The apparent slight gap
above the zero-energy states forLÞ5 is in fact just a finite-
size effect, since at least theSz5N/221 states must form a
gapless branch asN→`. The low-lying states in the full
spectrum should be other multiple-spin-wave states.

For the ground-state sector of the permanent, there is a
nondegenerate zero-energy state, as in the other cases studied
in this paper, but there is also an apparent gapless branch of
states at lowL ~see Fig. 13!. From the point of view of the
ferromagnet, thisNf value represents a quasielectron state,
which would be an anti-Skyrmion. For the two-body Hamil-
tonian, the anti-Skyrmions form a set of states withL5S,
but which do not have zero energy or exactly soluble wave
functions. The lowest-energy states in Fig. 13 haveL5S for
L50, 1, 2, and 3, butS51 for L54, though here anS54
state lies at slightly higher energy. Moreover, theL50
ground state has overlap squared 0.81 with that for the Cou-

FIG. 13. Spectrum of the three-body interaction for the perma-
nent state of fermions withn51, forN512 andNf510; that is, no
quasiholes. The inset enlarges the low-lying levels.

FIG. 14. As in Fig. 13, but withN510 andNf59; that is, two
quasiholes. Upper-left inset: low-lying levels. The lower-right inset
shows only the states withSz5N/221, i.e., single spin flips~or
spin waves! of the fully polarized state.
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lomb interaction at the sameN andNf . There is thus some
evidence that this branch of states represents something simi-
lar to an anti-Skyrmion.

The proximity to the ferromagnet, albeit at a different
number of flux @Nf5q(N21) for the ferromagnet#, sug-
gests that the system is at the transition to the ferromagnet.
Indeed, if the two-body Hamiltonian containingV0 only ~for
q51, or the usual generalizations for otherq) is added to the
three-body Hamiltonian, then forV0.0 the ferromagnet and
its quasihole excitations~Skyrmions! will be the only re-
maining zero-energy states, and theL51 spin waves@at
Nf5q(N21)# will have nonzero energy. On the torus, the
4q-fold degenerate sectors will be split to leave only theq
states withk50, which have spinN/2. ForV0 negative, we
expect the splittings to reverse sign, and the ground states on
the torus or on the sphere with quasiholes will presumably be
unpolarized; in this region no exact wave functions are avail-
able for the lowest-energy eigenstates. In other words, the
polarized and unpolarized states will differ in energy density.
We expect that the unpolarized states are paired, and indeed
the attractive pseudopotentialV0,0 should favor the pairs.
In view of the higher-energy density of the polarized ground
state on the torus, we guess that these states are no longer in
the same universality class as the permanent state, but may
be a simple Halperin-type state, a Laughlin state of charge-2
boson pairs. This probably would occur because the attrac-
tive potential decreases the size of the pairs, and modifies the

pairing function from the simple form (zi
↑2zj

↓)21 found
hitherto. As non-Abelian statistics probably relies upon the
long-range character of this part of the wave function, it
could disappear under this perturbation. In any case, the fer-
romagnetic order parameter is constant forV0.0, and will
vanish forV0,0, which indicates a first-order phase transi-
tion.

The transition also has a simple interpretation in terms of
composite bosons. In the permanent state, the bosons are
paired, but when one flux quantum is added, there are broken
pair states of the same energy. In these states, the unpaired
composite bosons occupy theL50 zero mode, and can be
viewed as a Bose condensate. Since they carry spin1

2, such a
condensate is necessarily a ferromagnet, and when more flux
is added, the Skyrmion zero-energy states are obtained. Thus
the permanent three-body Hamiltonian can have pairs, but
the bosons can also unpair and form a condensate. In Bose
liquid systems, the condensation of single bosons is the usual
occurrence. It seems that the permanent state is on the bor-
derline between a single-particle Bose condensate and a con-
densate of pairs only. It is possible that, while the ferromag-
netic order indicates a first-order transition, the behavior of
the pair order parameter~specifically, the size of the pairs!,
or of some properties on the ferromagnetic side, possibly
related to a spin stiffness going to zero, could be character-
istic of a second-order transition, with a length that diverges
at the transition point.
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8M. Milovanović and N. Read, Phys. Rev. B53, 13 559~1996!.
9R. B. Laughlin, Phys. Rev. Lett.50, 1395~1983!.
10F. D. M. Haldane, Phys. Rev. Lett.51, 605 ~1983!, and inThe

Quantum Hall Effect~Ref. 1!.
11R. L. Willett, J. P. Eisenstein, H. L. Sto¨rmer, D. C. Tsui, A. C.

Gossard, and J. H. English, Phys. Rev. Lett.59, 1776~1987!.
12N. Read, Phys. Rev. Lett.62, 86 ~1989!.
13J. K. Jain, Phys. Rev. Lett.63, 199 ~1989!.
14M. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. B46, 9586

~1992!.
15B. I. Halperin, Surf. Sci.305, 1 ~1994!.
16E. H. Rezayi and F. D. M. Haldane, Bull. Am. Phys. Soc.32, 892

~1987!.

17D. Yoshioka, A. H. MacDonald, and S. M. Girvin, Phys. Rev. B
39, 1932~1989!.

18S. He, X.-C. Xie, S. Das Sarma, and F.-C. Zhang, Phys. Rev. B
43, 9339~1991!; S. He, S. Das Sarma, and X.-C. Xie,ibid. 47,
4394 ~1993!.

19N. Read, Phys. Rev. Lett.65, 1502~1990!.
20T.-L. Ho, Phys. Rev. Lett.75, 1186~1995!.
21N. Read and E. Rezayi~unpublished!.
22C. Nayak and F. Wilczek~unpublished!.
23F. D. M. Haldane and E. H. Rezayi, Phys. Rev. B31, 2529

~1985!.
24F. D. M. Haldane, Phys. Rev. Lett.55, 2095~1985!.
25A. Kol and N. Read~unpublished!.
26F. D. M. Haldane~private communication!.
27F. D. M. Haldane and E. H. Rezayi~unpublished!.
28E. Keski-Vakkuri and X.-G. Wen, Int. J. Mod. Phys. B7, 4227

~1993!.
29E. T. Copson,Introduction to the Theory of Functions of a Com-

plex Variable~Oxford University Press, Oxford, 1935!.
30D. Vollhardt and P. Wo¨lfle, The Superfluid Phases of Helium 3

~Taylor and Francis, London, 1990!.
31X.-G. Wen, Int. J. Mod. Phys. B6, 1711~1992!.
32R. Tao and Y.-S. Wu, Phys. Rev. B31, 6859~1985!.
33A. M. Tikofsky and S. A. Kivelson, Phys. Rev. B53, R13275

~1996!.
34E. Rezayi, Phys. Rev. B36, 5454 ~1987!; 43, 5944 ~1991!; S.

Sondhi, A. Karlhede, S. A. Kivelson, and E. Rezayi,ibid. 47,
16 419~1993!.

54 16 887QUASIHOLES AND FERMIONIC ZERO MODES OF . . .


