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We study resonant tunneling through a single-level quantum dot in the presence of strong Coulomb repul-
sion beyond the perturbative regime. The level is either spin degenerate or can be split by a magnetic field.
Furthermore we discuss the influence of a bosonic environment. Using a real-time diagrammatic formulation,
we calculate transition rates, the spectral density, and the nonlinearI -V characteristic. The spectral density
shows a multiplet of Kondo peaks split by the transport voltage and the boson frequencies and shifted by the
magnetic field. This leads to zero-bias anomalies in the differential conductance, which agree well with recent
experimental results for the electron transport through single-charge traps. Furthermore, we predict that the
sign of the zero-bias anomaly depends on the level position relative to the Fermi level of the leads.
@S0163-1829~96!03047-0#

I. INTRODUCTION

The experimental study of tunneling through zero-
dimensional states in quantum dots with high charging ener-
gies has received considerable interest recently.1–7 Theoreti-
cal studies cover the classical regime~high temperatures8–12!
as well as the quantum-mechanical regime~low
temperatures13–23!. In the latter case, Coulomb blockade and
resonant-tunneling phenomena together with nonequilibrium
generalizations of the Kondo effect are expected to occur.
This leads to zero-bias anomalies in the differential conduc-
tance, which have been observed recently by Ralph and
Buhrman.24 In this article, we present a real-time diagram-
matic approach to describe resonant tunneling at low tem-
peratures and compare our results to the latter experiment.

The experiments for Coulomb blockade phenomena in
zero-dimensional systems are usually performed in double-
barrier resonant-tunneling structures,2,3 split-gate quantum-
dot devices,4–6 quantum point contacts with single-charge
trap states,24 and quite recently also in ultrasmall metallic
tunnel junctions7 with Al particles of diameter below 10 nm.
In the latter experiment, the level spacing is of order 0.5
meV which is comparable to the Coulomb charging energy
in usual quantum dots. Therefore, the quantum dot is de-
scribed by the nonequilibrium Anderson model where the
energy leveles ~with spin labels) is coupled via tunneling
barriers to two electron reservoirs with different electro-
chemical potentialsmL andmR . The charging energy is de-
scribed by a strong on-site Coulomb repulsionU that sup-
presses double occupancy of the dot level. In equilibrium, it
is well known from the theory of strongly correlated
fermions25 that the spectral density of the dot can exhibit a
Kondo resonance at the Fermi level. It occurs for a low-lying
level es2mL,R,2G and weak Zeeman splitting
ues2e s̄u,G, whereG/2 is the level width in the noninter-

acting case, and provided that temperature is lower than the
Kondo temperature25,26 TK51/2(UG)1/2exp@pe(e1U)/GU#.
Since the weight of the equilibrium spectral density at the
Fermi level is proportional to the linear conductance, an en-
hancement of the latter due to Kondo-assisted tunneling was
predicted.17,18 Typical values for quantum dots areU;1
meV andG;50 meV, which, for e;2G, yield a Kondo
temperature of the orderTK;50 mK. Due to heating effects
such temperatures are still hard to realize in realistic dots. A
more pronounced feature was found for the nonlinear con-
ductance, which shows a zero-bias maximum even for tem-
peratures above the Kondo temperature.13,14 At zero mag-
netic field the spectral density of each spin channel exhibits a
Kondo resonance at each of the chemical potentials. An ap-
plied magnetic field causes the Kondo peaks to shift from the
chemical potential by the Zeeman energy, in opposite direc-
tions for the different spin channels. As a consequence,
Kondo-assisted tunneling can occur only if the bias voltage
exceeds the Zeeman energy. Therefore, the zero-bias
anomaly is split by an applied magnetic field.14 These fea-
tures have been observed experimentally by Ralph and
Buhrman.24 They measured the differential conductance
through single-charge traps in a metallic quantum point con-
tact. Although this system does not allow a controlled varia-
tion of the level position, the appearance of a zero-bias maxi-
mum with a peak height varying logarithmically with
temperature clearly demonstrates the mechanism of Kondo-
assisted tunneling. However, the detailed comparison of the
line shape in the experiment and the existing theory showed
significant deviations.

In this paper, we will describe an approach to calculate
nonequilibrium properties of strongly correlated mesoscopic
systems coupled to fermionic or bosonic baths via particle
and energy exchange. It consists of a real-time diagrammatic
approach closely related to path-integral methods formulated
in connection with dissipation27–29 or tunneling in metallic
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junctions.30–32One of the difficulties of the present problem
lies in the fact that we have to account for the Coulomb
interaction in a nonperturbative way. Therefore, the standard
many-body diagrammatic approaches are not sufficient
~since Wick’s theorem cannot be applied naively!. We cir-
cumvent the problem by keeping track explicitly of the time
evolution of the density matrix of the dot and tracing out
only the bath degrees of freedom, which are assumed to be in
equilibrium. The final diagrammatic language is set up by an
expansion in the coupling to the fermionic reservoirs,
whereas the strong correlations on the local system are ex-
actly taken into account. The basic step is the calculation of
transition and current rates between different states of the
dot. We present an exact expression for these rates as the
sum over all irreducible diagrams. The transition rate is used
to set up a formally exact master equation from which the
time-dependent probability distribution for the dot can be
calculated. The current rate is generally not identical to the
transition rate since it contains also the number of particles
transferred to the reservoir where the current is calculated.
This number can take arbitrary values if one considers all
higher-order processes. The occupation probabilities multi-
plied with the current rates are used to calculate the current
flowing through the system. In earlier publications, we have
presented this technique in connection with tunneling
through a metallic island with a continuum of states33 and
demonstrated the equivalence to path-integral methods.34

There we used an approximation for the rate to sum up ‘‘in-
elastic resonant tunneling’’ processes to arbitrary order
where different electrons tunnel coherently back and forth
between the island and the reservoirs. Here we apply an
equivalent approximation to describe resonant tunneling be-
tween metallic leads through an ultrasmall quantum dot with
a single level. An important advantage of our approach is
that we can solve the noninteracting limit exactly and can
control systematically if this limit is contained within a given
approximation for the correlated case. The theory is current
conserving and can be used for the calculation of correlation
functions or Green’s functions as well.

For the case where the dot level isM -fold degenerate we
recover forM>2 and a low-lying dot level a Kondo peak in
the spectral function. An applied transport voltage leads to a
splitting of the Kondo peak~at ma , wherea denotes the
lead!, which results in a zero-bias anomaly in the differential
conductance such that the conductance has a maximum at
V50. On the other hand, if the dot level lies above the Fermi
levels of the leadsma we predict15 a zero-bias anomaly in
the conductance that has a minimum atV50.

Several extensions will be considered. We study the case
where the~spin! degeneracy of the dot level is lifted, e.g., by
an applied magnetic field. In this case the Kondo peaks of
both spin channels move apart from each other by the level
spacinges2e s̄ and Kondo-assisted tunneling sets in only at
transport voltageseV exceeding this splitting. The calculated
conductance agrees well with the experimental results of
Ref. 24.

Furthermore, we account for inelastic interactions with
bosonic modes coupled to the dot. They describe applied
time-dependent fields, interaction with phonons, or the fluc-
tuations in the electrodynamic environment. The investiga-
tion of this field has started only recently in connection with

transport through interacting quantum dots. The classical re-
gime (G@T) has been analyzed for time-dependent fields11

and bosonic environments.35 Photon- and boson-assisted tun-
neling lead here to resonant side peaks in the Coulomb os-
cillations that can be used to analyze the complete excitation
spectrum of the dot. The results agree well with
experiments.36 In the Kondo regime it has been found22 that
time-dependent perturbations split the Kondo resonances,
which leads to satellite anomalies in the differential conduc-
tance and offers the possibility to realize pump effects that
are based purely on the presence of Kondo resonances. The
linear ac conductance has been analyzed in Ref. 37. In this
paper, we will investigate the influence of an external
bosonic field on transport phenomena through ultrasmall
quantum dots at low temperatures and small boson frequen-
cies~compared toG). The emission and absorption of bosons
causes additional Kondo singularities, for a one-mode field at
ma1nvB , wheren561,62, . . . . Again, these resonances
lead to corresponding anomalies in the differential conduc-
tance, which are inverted if the level position of the dot is
moved through the Fermi energy.

II. HAMILTONIAN

We concentrate here on a dot containing only one energy
level es

(0) with degeneracyM . In a magnetic field, due to the
Zeeman energy the level position is spin dependent. The dot
is connected via high tunneling barriers to two large nonin-
teracting reservoirs and coupled capacitively to an external
gate voltage. The model Hamiltonian of this ‘‘single-electron
transistor’’ ~see Fig. 1! is

H5H01HT5HD1 (
a5L,R

Ha1HT . ~1!

HereHD is the Hamiltonian for the dot. It includes the Cou-
lomb interaction of the dot electrons, which is described
within the capacitance model of a single-electron transistor
by the capacitancesCL andCR for the left and right tunnel
junctions andCG for the gate. Furthermore, the dot electrons
are coupled to bosonic modesvq with electron-boson cou-
pling gq . ThusHD reads

FIG. 1. Single-electron resistor.
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HD5(
s

es
~0!ns1EC~N̂2nG!21(

q
vqdq

†dq

1N̂(
q

gq~dq1dq
†!. ~2!

~Throughout this work, we set\5k51 and use the conven-
tion e.0.! The particle number on the dot with spins is
ns5cs

†cs and N̂5(sns . The scale of the charging energy
is provided byEC[e2/2C, whereC5CL1CR1CG is the
total capacitance of the system. The transistor can be tuned
by the gate voltageVG via enG5CLVL1CRVR1CGVG .
We remark here thatH is invariant under a global shift of all
energies. Therefore, we can always choose symmetric bias,
VL52VR5V/2.

The next term in Eq.~1!, Ha5(ksekaaksa
† aksa , de-

scribes the reservoira of noninteracting electrons in the
leads. Finally, the dot is coupled via tunnel barriers to the left
and right lead. This coupling is described by the tunnel
Hamiltonian

HT5 (
k,s,a

~Tk
aaksa

† cs1H.c.!. ~3!

The bosonic modes can represent interaction with
phonons38–40 or fluctuations of the electrodynamic
environment41–44 very similar to the Caldeira-Leggett
model.45 For our theory no assumption is needed for the
specific kind of the modesvq and the couplingsgq . In this
way we are able to present a general result for the current
that shows the influence of inelastic interactions for an arbi-
trary environment.

The capacitive model is equivalent to the Anderson
Hamiltonian, which we obtain by defining the interaction
U052EC and shifting the level positiones

(0)12EC

2eVGCG /C2aceV/2→es
(0)(V,VG). The asymmetry factor

ac5(CL2CR)/C accounts for a different capacitive cou-
pling of the left and right leads. We see here that the effec-
tive level position in the Anderson model depends on the
gate voltage as well as, due toac , on the transport voltage.
The dot is then described by

HD5(
s

es
~0!~V,VG!ns1U0 (

s,s8
nsns81(

q
vqdq

†dq

1N̂(
q

gq~dq1dq
†!. ~4!

A unitary transformation46 with V5exp(2iN̂w) and
w5 i(q(gq /vq)(dq

†2dq) yields H̄5VHV215H̄01H̄T ,
whereH̄05HR1H̄D ,

H̄D5(
s

esns1U (
s,s8

nsns81(
q

vqdq
†dq , ~5!

and

H̄T5 (
k,s,a

~Tk
aaksa

† cse
iw1H.c.!. ~6!

The electron-boson interaction renormalizes the level posi-
tion and the Coulomb repulsiones5es

(0)2(qgq
2/vq and

U5U022(qgq
2/vq and the tunneling term acquires phase

factorse6 iw.
For strong Coulomb repulsionU we restrict ourselves to

states withN50,1. In lowest-order perturbation theory the
rates for tunneling into and out of the dot to reservoira are

2pga
6~E!52pE dE8ḡa

6~E8!P6~E2E8!, ~7!

where 2pḡa
6(E)5Ga(E) f a

6(E) is the classical rate without
bosons,Ga(E)52p(kuTk

au2d(E2eka), and f a
1(E) is the

Fermi distribution of reservoira with electrochemical poten-
tial ma , while f a

2(E)512 f a
1(E). Finally,

P6~E!5
1

2pE dteiEt^eiw~0!e2 iw~6t !&0 ~8!

describes the probability that an electron absorbs (P1) or
emits (P2) the boson energyE.41–43 The expectation value
is taken with the free boson Hamiltonian. These probabilities
satisfy the condition of detailed balance47

P2~E!5P1~2E!5ebEP1~E!. ~9!

The classical rates combined with a master equation are suf-
ficient in the perturbative regimeG5(aGa!T.35

In order to go beyond the perturbative regime, we need a
nonperturbative treatment of the tunneling, where quantum
fluctuations yield finite lifetime broadening and renormaliza-
tion effects of the dot levels. As an illustration we first as-
sume that~for B50) the broadening is given by the sum of
the classical transition rates Eq.~7!. Using the Kramers-
Kronig relation we deduce the renormalization and obtain for
the self-energy

s~E!5E dE8
Mg1~E8!1g2~E8!

E2E81 i01 . ~10!

whereg65(aga
6 . The aim of the present paper is to test

and extend this simple physical picture within a systematic
and conserving theory for all Green’s functions and the cur-
rent. To achieve this we use a real-time technique developed
in Refs. 34, 33, and 15 that provides a natural generalization
of the classical and cotunneling theory to the physics of reso-
nant tunneling.

III. DIAGRAMMATIC TECHNIQUE

A quantum-statistical expectation value of an operatorA
at time t is given by

^A~ t !&5 tr@r0A~ t !H̄#, ~11!

whereA(t) H̄5exp@iH̄(t2t0)#A exp@2iH̄(t2t0)# is the opera-
tor in Heisenberg picture with respect to the initial timet0.
Permutation under the trace yields^A(t)&5 tr@r(t)A#, with
A in Schrödinger picture. The density matrixr(t) evolves in

time via r(t)5e2 iH̄ (t2t0)r(t0)e
iH̄ (t2t0). We assume that the

initial density matrixr05r(t0) factorizes into parts for the
dot electrons, the bosons, and the leads:
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r05r0
Dr0

B)
a

r0
a . ~12!

The leads are treated as large equilibrium reservoirs with
fixed electrochemical potentialsma52eVa . Therefore, we
describe the electrons in the leads by Fermi functions
f a(E) and the density matrix reads

r0
a5

1

Z0
a exp@2b~Ha2maNa!#, ~13!

whereb51/T andNa5(k,saksa
† aksa the number of elec-

trons in the leada. The normalization factorZ0
a is deter-

mined by trr0
a51. The boson part reads

r0
B5

1

Z0
BexpF2bB(

q
vqdq

†dqG . ~14!

The temperature of the boson bathTB51/bB may differ in
real experiments from the electron temperatureT.

For the initial distribution of the dot we assume that it is
diagonal in the many-bodydot statesux&, which include the
strong correlations within the quantum dot but are assumed
to have fixed occupation numbers

r0
D5(

x
Px
0ux&^xu, ~15!

with (xPx
051. We will see later that in the stationary limit,

i.e., whent0 is shifted to2` all the physical quantities are
independent of the choice ofPx

0 .
In the following, it is convenient to change to the interac-

tion picture with respect toH̄0. This implies A(t) H̄
5T̃ exp@2i*t

t0dt8H̄T(t8)I#A(t)IT exp@2i*t0
t dt8H̄T(t8)I# in which

T is the time-ordering operator andT̃ denotes the anti-time-
ordering operator. We write the integrals as one contour in-
tegral*Kdt8••• over theKeldysh contour. It is parametrized
by the ‘‘time’’ t8, which first runs forward fromt0 to t and
then backward fromt to t0. In diagrammatic language, the
Keldysh contour is represented by horizontal lines running
from the left to the right and then back to the left~see Fig. 2!.
We find

^A~ t !&5 trFr0TKexpS 2 i E
K
dt8H̄T~ t8! I DA~ t ! I G . ~16!

Here we have introduced the Keldysh time-ordering operator
TK , which orders all following operators along the Keldysh
contour such that the one with the later time along the
Keldysh contour appears at a more left position~without any
sign change for an exchange of Fermi operators!.

In the following we will encounter also higher-order cor-
relation functions of the type
^TKA1(t1) IA2(t2) I•••An(tn) I&. The final time t of the
Keldysh contour is then given by max$t1 , . . . ,tn%.

For a diagrammatic description we expand the exponen-
tial with respect to the tunneling Hamiltonian and obtain

K TK)
i51

n

Ai~ t i !L 5 trFr0 (
m50

`

~2 i !mE
K
dt18E

K
dt28•••E

K
dtm8

3TKH H̄T~ t18! I H̄T~ t28! I•••H̄T~ tm8 ! I

3)
i51

n

Ai~ t i ! IJ G , t18.t28. •••.tm8 ,

~17!

in which the relationt18.t28.•••.tm8 has to be understood
with respect to the Keldysh contour. The time-ordering op-
eratorTK acts also in the operatorsAi(t i) I and puts them in
the right place between the tunneling Hamiltonians.

The next task is to perform the trace of each term of the
expansion. We insert the tunnel Hamiltonian~6! and notice
that the HamiltonianH̄0 is bilinear in the lead electron op-
erators. For this reason, Wick’s theorem holds for these de-
grees of freedom, i.e., the lead electron operators are con-
tracted in pairs. This includes contractions between pairs of
field operators fromH̄T as well as contractions to lead elec-
tron operators that can be present in the operatorsAi . These
contractions are given by equilibrium distribution functions.
For the dot electrons, the situation is different. The Coulomb
interaction is expressed by a quartic term of dot electron
operators. Therefore, Wick’s theorem does not hold for this
part of the system. A product of dot electron operators can-
not be contracted into pairs, but has to be treated explicitly.
The trace over the bosonic part, however, poses no problem.
Each tunneling term contains an exponentiale6 iw of the
bosonic operatorsw. The trace over the product of such ex-
ponentials can be performed easily@see Eq.~20!# provided
that the operatorA also contains only such exponentials.

A. Rules

With regard to the applications discussed in Secs. III B
and III C, we assume here that the operatorsAi ~representing
‘‘external vertices’’! depend on the lead and boson degrees
of freedom only in the form

Ai5Ai S (
k
Tk

aaksa
† cse

iw,

(
k
Tk

a* cs
†aksae

2 iw,cse
iw,cs

†e2 iwD . ~18!

Each term of the expansion Eq.~17! is visualized by a dia-
gram~see Fig. 2!. There is a forward and a backward propa-
gator symbolized by the upper and the lower horizontal line,
running from t0 to t and back fromt to t0, respectively.
Along this time path, we arrange internal and external verti-

FIG. 2. Diagram showing various tunneling processes: sequen-
tial tunneling in the left and right junctions, a term preserving the
norm, a cotunneling process, and resonant tunneling.
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ces according to their time ordering. The internal vertices
emerge from the insertion of the tunneling Hamiltonian~6!
into the expansion~17!. Each of them corresponds to a prod-
uct of a lead and a dot electron operator and a phase factor
e6 iw. After integrating out the lead degrees of freedom, all
vertices~either internal or external! containing a lead elec-
tron operator are connected in pairs by directed tunneling
lines ~dashed lines! ḡa

K(t,t8) from t8 to t, with
ḡa
K(t,t8)5ḡa

1(t2t8) for t,t8 and ḡa
K(t,t8)5ḡa

2(t2t8) for
t.t8 with respect to the Keldysh contour with
ḡa

6(t)5*dEe2 iEtḡa
6(E). These tunneling lines represent

contractions of lead electron operators.
There are vertices from which a tunneling line leaves

@representingaksa
† (t)cs(t)e

iw(t), which removes a dot elec-
tron with spins# and others to which a tunneling line enters
@representingcs

†(t)aksa(t)e
2 iw(t), which adds a dot electron

with spins#. Fermi statistics, furthermore, yield a minus sign
for each crossing of tunneling lines.

In the interaction picture the dot electron operators get
exponential factors that contain the energiesex of the many-
body dot statesx given byexux&5H̄Dux&. The order of the
electron operators may induce, furthermore, a minus sign
due to Fermi statistics.

The trace over the boson operators gives rise to a factor of
the form

CB~ t1 ,t2 , . . . ,tm ,t18 ,t28 , . . . ,tm8
8 !5^TK@e2 iw~ t1!e2 iw~ t2!

•••e2 iw~ tm!eiw~ t18!eiw~ t28!
•••eiw~ t

m8
8 !#&. ~19!

Sincew is linear in the boson operators, we get

CB~ t1 ,t2 , . . . ,tm ,t18 ,t28 , . . . ,tm8
8 !

5)
i, j

PK~ t i ,t j !
21)

i, j
PK~ t i8,t j8!21)

i , j
PK~ t i ,t j8!.

~20!

We write PK(t,t8)5P1(t,t8) for t,t8 and PK(t,t8)
5P2(t,t8) for t.t8 on the Keldysh contour with
P6(t)5*dEe2 iEtP6(E). In diagrammatic language, we
represent the factorsPK by boson lines connecting each ver-
tex with each other. A summary of these rules are given in
Appendix A.

In order to calculate stationary transport properties it is
convenient to change to an energy representation. Without
loss of generality we assume that the timest1 , . . . ,tn of the
correlation function~17! are ordered on the real axis accord-
ing to tn,tn21,•••,t15t. This may be different from the
ordering on the Keldysh contour, which depends on whether
the times lie on the upper or lower branch. In the stationary
limit we can sett052` and t5t150.

We consider the Laplace transform

G~E2 ,E3 , . . . ,En!

5~2 i !n21E
2`

0

dt2E
2`

t2
dt3•••E

2`

tn21
dtne

iE2t2

3eiE3t3•••eiEntn^TKA1~0!A2~ t2!•••An~ tn!&.

~21!

We will account for the exponential factors exp(iEiti)
( i52, . . . ,n) by drawing directed virtual lines from the ex-
ternal vertices with timet i to the last vertex with time
t150 and assigning the energyEi to this virtual line.

Performing the time integrals, we end up with diagram-
matic rules in an energy representation. These rules are sum-
marized in Appendix B.

B. Master equation and stationary probabilities

In this section we will derive a formally exact expression
for the central object of this paper: the quantum-mechanical
transition rateSx8,x(t8,t) for the reduced system~the dot! to
go from a statex8 at time t8 to a statex at time t. This rate
will serve as input for a formally exact and time-dependent
master equation, which, in principle, could be used to calcu-
late all occupation probabilities of the dot as a function of
time for an arbitrary initial state. Similar master equations
are well known and successfully applied in connection with
macroscopic quantum coherence phenomena in spin boson
models.28,29,48 The connection to these path-integral ap-
proaches will be described in Ref. 57.

A matrix element of the reduced density matrix of the dot
at time t, Px2

x1(t), is given by the quantum-statistical expec-

tation value of the projector (ux2&^x1u)(t),

Px2

x1~ t !5Š~ ux2&^x1u!~ t !‹, ~22!

i.e., we have to setn51 andA15ux2&^x1u in Eq. ~17!. The
reduced density matrix commutes with the particle number
on the dot. Thus the operatorux2&^x1u is unaffected by the
unitary transformation and no tunneling and boson line
emerges from this external vertex. The matrix element
Px2

x1(t) can be expressed by the reduced propagator

P
x
28 ,x2

x18 ,x1(t8,t) from x18 at time t8 forward tox1 at time t and

then fromx2 at time t backward tox28 at time t8,

Px2

x1~ t !5 (
x18 ,x28

P
x
28

x18~ t8!P
x
28 ,x2

x18 ,x1~ t8,t !. ~23!

The propagator is the sum of all diagrams with the given
states at the ends and can be expressed by an irreducible

self-energy partS
x
28 ,x2

x18 ,x1(t8,t), defined as the sum of all dia-

grams in which any vertical line cutting through them
crosses at least one tunneling or boson line. The propagators
for the four lines attached to the self-energy are not included

in S
x
28 ,x2

x18 ,x1(t8,t). We obtain an iteration in the style of a

Dyson equation~see Fig. 3!,

FIG. 3. Iteration of processes for the propagatorP.
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P
x
28 ,x2

x18 ,x1~ t8,t !5P~0!
x2

x1~ t8,t !dx1 ,x18
dx2 ,x28

1 (
x19 ,x29

E
t8

t

dt2E
t8

t2
dt1Px

28 ,x29

x18 ,x19~ t8,t1!

3S
x
29 ,x2

x19 ,x1~ t1 ,t2!P
~0!

x2

x1~ t2 ,t !, ~24!

whereP (0)
x2

x1(t8,t)5exp@2i(ex1
2ex2

)(t2t8)# is the propaga-

tor of the isolated quantum dot. Multiplying this equation

with P
x
28

x18(t8), summing over the statesx18 ,x28 , and differen-

tiating with respect tot, we obtain, together with Eq.~23!
and settingt85t0,

d

dt
Px2

x1~ t !1 i ~ex1
2ex2

!Px2

x1~ t !

5 (
x18 ,x28

E
t0

t

dt8P
x
28

x18~ t8!S
x
28 ,x2

x18 ,x1~ t8,t !. ~25!

This formally exact equation is the most general kinetic
equation for the reduced density matrix of the dot. No as-
sumption is necessary for the initial state and the integral
kernelS on the right-hand side shows that memory effects
are fully taken into account.

The equation simplifies considerably if we assume that
the initial density matrix is diagonal. In the general case, this
does not imply that the reduced density matrix stays diagonal
for all times. However, for the special case of the Anderson
model considered here, spin conservation implies that the
reduced density matrix will be diagonal for all timest.t0.

Hence we considerSx8,x[Sx8,x
x8,x and obtain, from~25!,

d

dt
Px~ t !5(

x8
E
t0

t

dt8Px8~ t8!Sx8,x~ t8,t !, ~26!

wherePx(t)[Px
x(t) denotes the probability to be in state

x at time t. For a time-translational invariant system, the
time-dependent ratesSx8,x(t8,t) depend only on the time
differenceSx8,x(t82t). Performing the Laplace transform of
Eq. ~26!, one can then study the time evolution of arbitrary
initial probability distributions into the stationary state.

By attaching the rightmost vertex of each diagramS to
the upper and lower propagators, the minus sign for each
vertex on the backward propagator yields(xSx8,x(t8,t)
50, which allows us to rewrite Eq.~26! in the form

d

dt
Px~ t !5 (

x8Þx
E
t0

t

dt8@Px8~ t8!Sx8,x~ t8,t !

2Px~ t8!Sx,x8~ t8,t !#. ~27!

We obtain the structure of a master equation with transition
rates given bySx8,x(t8,t).

The stationary distribution is given by

Px
st5 lim

t→`

Px~ t !5 lim
t0→2`

Px~0! ~28!

and isnot the equilibrium one if the electrochemical poten-
tials of the leads are different. From~26! and~27! we obtain

05(
x8

Px8
st Sx8,x5 (

x8Þx

@Px8
st Sx8,x2Px

stSx,x8#, ~29!

where

Sx8,x5 i E
2`

0

dt8Sx8,x~ t8,0! ~30!

can be calculated directly by using our diagrammatic rules in
energy space. The prefactori in ~30! together with the
m21 time integrations over the internal vertices inS gives a
factor i m in ~B1! that cancels the factor (2 i )m from rule 5.

The self-energy partSx8,x is purely imaginary. This can
be seen by changing the vertical positions of all vertices on
the Keldysh contour~without changing their horizontal posi-
tion! and reversing the direction of all tunneling and boson
lines. Consequently, only the energy differencesDEj from
rule 28 will change sign. Since the number of vertices is even
~all tunneling vertices are coupled in pairs by tunneling
lines!, there is no sign change due to rule 58 and the number
of resolvents is odd. Thus the whole diagram has been
changed to its conjugate complex up to a sign.

C. Tunneling current

The tunneling current flowing into reservoira is defined
by I a(t)5e(d/dt)^Na(t)&5 ie^@H̄,Na#(t)&, which is
equivalent to

I a~ t !52 ie(
k,s

$Tk
a^~aksa

† cse
iw!~ t !&

2Tk
a* ^~cs

†aksae
2 iw!~ t !&%. ~31!

The tunneling current is an expectation value of a product of
a dot, boson, and reservoir electron operator~see Fig. 4!. We
obtain

I a~ t !5e(
x,x8

E
t0

t

dt8Px8~ t8!Sx8,x
a1

~ t8,t !

52e(
x,x8

E
t0

t

dt8Px8~ t8!Sx8,x
a2

~ t8,t !, ~32!

where the partial self-energiesSx8,x
a6 (t8,t) are parts of the

total self-energy

Sx8,x~ t8,t !5(
a

$Sx8,x
a1

~ t8,t !1Sx8,x
a2

~ t8,t !%. ~33!

They describe processes in which the rightmost tunneling
line corresponds to reservoira and is an outgoing~incom-
ing! line if the rightmost vertex lies on the upper propagator

FIG. 4. Graphical representation of the currentI a through lead
a. Internal vertices are not indicated.
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or an incoming~outgoing! line if the rightmost vertex lies on
the lower propagator. Their physical meaning is displayed by
the current formula~32!, which shows that they give the total
contribution to the current rate. We can relate them to an
intuitively more physical object, namely, the rate
Sx8,x

ap (t8,t), p50,61,62, . . . , which describes the transi-
tion rate wherep particles are transferred to reservoira.
Within our graphical languageSx8,x

ap (t8,t) is given by all
diagrams where the number of tunneling lines with reservoir
indexa running from the forward to the backward propaga-
tor minus the number of tunneling lines with reservoir index
a running from the backward to the forward propagator is
given byp. We obtain

(
x

Sx8,x
a6

~ t8,t !56(
x

(
p

pSx8,x
ap

~ t8,t !. ~34!

This relation together with current conservation is proven in
Appendix C. The factorp shows clearly thatSa6 describes
the contribution to the current rate. In contrast to lowest-
order processes, i.e., the golden rule rate, wherep can only
take the values61, p can be arbitrary for higher-order pro-
cesses. Nevertheless, Eq.~33! shows that the current rate can
be calculated as a partial selection of diagrams already con-
tained in the total transition rateSx8,x .

We emphasize that the current formula~32! together with
the master equation~26! constitutes a complete theory to
describe time-dependent phenomena starting from an arbi-
trary diagonal initial state. The original problem has now
been shifted to the evaluation of the various self-energy dia-
grams that correspond to transition and current rates. The
self-energies are defined by a set of irreducible diagrams and
thus their corresponding perturbation expansion in the num-
ber of tunneling lines is a well-defined series and contains no
divergent time integrals.

For time-translational invariant systems the current rates
Sx8,x

a6 (t8,t) depend only on the time differencet82t. To
calculate the stationary current we define in analogy to~30!

Sx8,x
a6

5 i E
2`

0

dt8Sx8,x
a6

~ t8,0!, ~35!

which again can be calculated directly with our diagram-
matic rules in energy space. The stationary current is then
given by

I a
st52 ie(

x,x8
Px8
st Sx8,x

a1
5 ie(

x,x8
Px8
st Sx8,x

a2 . ~36!

D. Green’s functions

After the unitary transformation the Green’s functions of
the dot electrons read

Gs
.~ t,t8!52 i ^~cse

iw!~ t !~cs
†e2 iw!~ t8!&, ~37!

Gs
,~ t,t8!5 i ^~cs

†e2 iw!~ t8!~cse
iw!~ t !&. ~38!

HereGs
. andGs

, are independent quantities since we do not
assume equilibrium. For time-translational invariant systems,
the Green’s functions depend only on the time difference

G(t,t8)5G(t2t8). The Fourier transform G(E)
5*dteiEtG(t) can be written in the form

Gs
.~E!52i Im~2 i !E

2`

0

dte2 iEt

3^TK~cse
iw!~0!~cs

†e2 iw!~ t1!&, ~39!

Gs
,~E!522i Im~2 i !E

2`

0

dte2 iEt

3^TK~cse
iw!~0!~cs

†e2 iw!~ t2!&, ~40!

where t6 means that the timet lies on the upper~lower!
branch of the Keldysh contour. Note that the time ordering is
defined here by a pure ordering along the Keldysh contour
without any sign change if we interchange fermion operators.
The integrals can be calculated like Eq.~21!, whereby in-
stead of assigning the energy2E to the virtual line connect-
ing the external vertices one can change the direction of the
line and assign the energyE.

In order to relate the current to the Green’s functions of
the dot we consider the first diagram on the right-hand side
of Fig. 4 ~the second one is just the conjugate complex!. The
external vertex can be contracted by a tunneling line to either
the upper or lower propagator and we recover immediately
the structure of the Green’s functionsG. andG,, respec-
tively ~see Fig. 5!. We recover for the stationary current the
relation50,13,14

I a
st52 ie(

s
E dE$ga

1~E!Gs
.~E!1ga

2~E!Gs
,~E!%.

~41!

In the case that the couplings to the leads have the same
energy dependenceGa(E)/Ga8(E)5la,a8, this can be writ-
ten in the form~which was already derived in Ref. 14!

I a
st5e(

a8
(
s

E dE
Ga~E!Ga8~E!

(a9Ga9~E!
rs~E!@ f a8

1
~E!2 f a

1~E!#.

~42!

Here we used the relation between the Green’s functions
Gs

, ,Gs
. and spectral densityrs[Gs

,2Gs
./2p i .

IV. RESULTS

What we have done so far is to derive a diagrammatic
language that allows a systematic description of transport
processes. Furthermore, we have shown how the physical
quantities of interest, the stationary probability distribution
and the current, can be obtained if we know the value of
special diagrams. In this section, we will now explicitly cal-
culate the value of the corresponding diagrams.

FIG. 5. Graphical representation of the relation between the cur-
rent and the correlation functions. Here the line connecting the ex-
ternal vertices is a real one. Internal vertices are not indicated.
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We consider here the case of strong Coulomb repulsion
U, i.e., we restrict ourselves to the states withN50,1. Dia-
grams in which a higher occupancy occurs do not contribute
since they have resolvents of the order 1/U.

In the following, the indexs labels the singly occupied
state with spins51, . . . ,M . The labelx additionally allows
an empty dot,x50,1, . . . ,M .

In general, we cannot sum upall possible diagrams.
Therefore, we have to find a systematic criterion that dia-
grams should be retained and summed.

The simplest approximation is to neglect all diagrams
where two or more tunneling lines overlap in time~see the
leftmost diagram parts in Fig. 2!. This means that we include
those processes that are also described by the master equa-
tion with rates obtained in lowest-order perturbation theory
~sequential tunneling!, which is a good description at high
temperatureG!T.

In situations when sequential tunneling is suppressed by
Coulomb blockade, the lowest-order contribution to the cur-
rent arises due to cotunneling. The rates for a process in
which an electron enters the dot from the left lead and leaves
to right one is described by diagrams with two overlapping
lines ~see the diagram part in the middle of Fig. 2!.

At lower temperature the perturbative approach is not suf-
ficient. Higher-order processes become important. In a gen-
eralization to cotunneling we have to take into account irre-
ducible diagrams with an arbitrary number of correlated
tunneling processes, i.e., we include resonant tunneling.

Similar to the case of metallic islands,33,34we proceed in
a conserving approximation, taking into account nondiagonal
matrix elements of the total density matrix up to the differ-
ence of one electron-hole pair excitation in the leads. The
graphical representation of this constriction is that only dia-
grams in which any vertical line will cut at most two tunnel-
ing lines are taken into account.

We give two arguments why this class of diagrams is the
most important one. First, since we treat the leads as large
equilibrium reservoirs there should be a tendency of the sys-
tem to stay close to diagonal states. Second, our approxima-
tion contains the exact solution for the noninteracting limit
U50: if there is no electron-electron interaction in the dot,
electrons with different spin do not influence each other, so
that this limit is described within our model by choosing
M51. In this case, the selected diagrams are the only con-
tributing ones. The sum of all other, more complicated, dia-
grams is zero.

Furthermore, we include only boson lines between verti-
ces that are already connected by tunneling lines, i.e.,

CB~ t1 ,t2 , . . . ,tm ,t18 ,t28 , . . . ,tm8 !')
i51

m

PK~ t i ,t i8!, ~43!

where the pairst i ,t i8 are already coupled by tunneling lines
running from t i8 to t i . This amounts to a dressing of the
tunneling linesḡ→g. This approximation, while neglecting
many diagrams, describes well the spectral density of the dot
at resonance points. The reason is that position and value of
the peaks of the spectral density are determined by a self-
energys @see Eq.~49!#, which is calculated here in lowest-
order perturbation theory inG including the bosons. Higher
orders are small for high tunnel barriers.

First, we relate the rateSx8,x to an irreducible diagram

labeled byf
x
28 ,x2

x18 ,x1(a,s,E) ~see Fig. 6!. It has an open tun-

neling line associated with tunneling of an electron with spin
s in the junctiona carrying the energyE. The line is di-
rected from the right to the left and its value together with
the corresponding resolvent is included inf. The self-energy
is then constructed by attaching the open tunneling line of
these diagrams to the upper and lower propagators~see Fig.
7! with the result

Sx8,x52i ImE dE(
s,a

(
x1

$^xucsux1&fx8,x
x8,x1~a,s,E!

2^x1ucsux&fx8,x1
x8,x ~a,s,E!%

5(
a

$Sx8,x
a1

1Sx8,x
a2 %, ~44!

where the current ratesSx8,x
a6 correspond to the first and sec-

ond terms, respectively. Again we have made use of the fact
that a diagram becomes the conjugate complex if we change
the vertical position of all vertices and the direction of all

FIG. 6. Definition off, which denotes a part of a diagram with
an open tunneling line entering from the right.

FIG. 7. Irreducible self-energy obtained by attaching the open
tunneling line off andf* to the upper and lower propagators.

FIG. 8. Graphical representation of the self-consistent equation
for f beginning with an empty dot state.
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tunneling and boson lines. As pointed out in Appendix C,
any approximation forf will lead to a current conserving
theory.

We construct the diagramf by iteration~see Figs. 8 and
9!. To do so, we need the diagramp(E), which is the propa-
gator, while a tunneling line with energyE is running in
parallel from the right to the left. This diagram can also be
expressed as an iteration in the style of a Dyson equation
~see Fig. 10!

p
x
28 ,x2

x18 ,x1~E!5p~0!
x
28

x18~E!dx
18 ,x1

dx
28 ,x2

1 (
x19 ,x29

p
x
28 ,x29

x18 ,x19~E!s
x
29 ,x2

x19 ,x1~E!p~0!
x2

x1~E!.

~45!

In analogy toS, the self-energys(E) denotes the sum of
all irreducible diagrams with a tunneling line going back-
ward in time. Here the free propagator in energy space is
given by

p~0!
x2

x1~E!5
1

E2~ex1
2ex2

!1 i01 ~46!

Hence we can solve Eq.~45! and find in matrix notation the
general relation

p~E!5@@p~0!~E!#212s~E!#21. ~47!

Because of the restriction to two charge states, only the
matrix elements ps(E)[p0,0

s,s(E) of p(E) and
ss(E)[s0,0

s,s(E) of s(E) are involved, and we deduce from
Eq. ~47!

ps~E!5
1

E2es2ss~E!
. ~48!

Since at most two tunneling lines are allowed at once, the
irreducible self-energyss(E) consists of only one tunneling
line. We calculate all contributions, that are depicted in Fig.
11, and get

ss~E!5E dE8
g2~E8!

E2E81 i01

1(
s8

E dE8
g1~E8!

E2E81es82es1 i01 . ~49!

In the spin degenerate case, this is exactly the relation~10!
that we found from intuitive arguments.

According to our rules, Figs. 8 and 9 lead to the self-
consistent equation for the diagramf(a,s,E),

f0,0
0,s~a,s,E!5ps~E!Fga

1~E!2ga
2~E!(

a8
E dE8

3
1

E2E81 i01f* 0,0
0,s~a8,s,E8!

2ga
1~E!(

s8
(
a8

E dE8

3
1

E2E81es82es1 i01 f* 0,0
0,s8~a8,s8,E8!G

~50!

and

fs8,0
s8,s~a,s,E!5ps~E!F2ga

2~E!dss8

2ga
2~E!(

a8
E dE8

3
1

E2E81 i01f* s8,0
s8,s~a8,s,E8!

2ga
1~E!(

s9
(
a8

E dE8

3
1

E2E81es92es1 i01

3f* s8,0
s8,s9~a8,s9,E8!G . ~51!

FIG. 9. Graphical representation of the self-consistent equation
for f beginning with an occupied dot state.

FIG. 10. Iteration of processes for the propagatorp with a tun-
neling line running in parallel from the right to the left.

FIG. 11. In our approximation, the diagram for the irreducible
self-energyss(E) contains one tunneling line in addition to the
backward running line.

16 828 54KÖNIG, SCHMID, SCHOELLER, AND SCHO¨ N



The stationary probabilities and the current are derived from
Eqs.~29! and~36!. To calculate the rates we specify Eq.~44!
and obtain

Sx8,0
a1

52i Im(
s

E dEfx8,0
x8,s~a,s,E!, ~52!

Sx8,s
a2

522i ImE dEfx8,0
x8,s~a,s,E!, ~53!

whereas all other rates are zero.
The correlation functions can be calculated from the dia-

grams shown in Figs. 12 and 13. We have to consider only
the latest~i.e., rightmost! correlated part of the diagram. The
processes before end up with probabilityPx

st in a diagonal
statex. We have used the same criterion as for the calcula-
tion of the density matrix with one exception. If a vertical
line lies between the external vertices, we allow a cut
through at most one tunneling line. Here we have used the
fact that such a vertical line will, in addition, always cut the
virtual line connecting the external vertices. The sum of all
these diagrams gives~where we can combine always two
diagrams to the imaginary part of one of them!

Gs
.~E!5E dE8Ḡs

.~E8!P1~E82E!, ~54!

Gs
,~E!5E dE8Ḡs

,~E8!P2~E82E!, ~55!

with

Ḡs
.~E!52i ImH ps~E!F P0

st2(
a

(
s8

E dE8

3

P0
stf* 0,0

0,s8~a,s8,E8!1(
s9

Ps9
st f* s9,0

s9,s8~a,s8,E8!

E2E81es82es1 i01
G J ,

~56!

Ḡs
,~E!522i ImH ps~E!F Ps

st1(
a

E dE8

3

P0
stf* 0,0

0,s~a,s,E8!1(
s8

Ps8
st f* s8,0

s8,s~a,s,E8!

E2E81 i01
G J .

~57!

In the following, we discuss for transparency the effect of the
coupling to bosons and the presence of a magnetic field sepa-
rately.

A. Boson-assisted tunneling

For zero magnetic field, i.e.,es5e for all s, we can per-
form the resummation of the corresponding diagrams for the
rates and the Green’s functions analytically~details are given
in Appendix D! and find

I a
st52peM(

a8
E dE@ga

2~E!ga8
1

~E!

2ga8
2

~E!ga
1~E!#up~E!u2, ~58!

with p(E)5ps(E). We can write this equation in a more
intuitive way by inserting the definition~7! for ga

6 ,

I a
st5

e

h(a8
E dEE dE8$Ta8,a~E8,E! f a8~E8!@12 f a~E!#

2Ta,a8~E,E8! f a~E!@12 f a8~E8!#%, ~59!

where

Ta,a8~E,E8!5MGa~E!Ga8~E8!

3E dE1P
1~E12E!P2~E12E8!up~E1!u2

~60!

can be interpreted as a transmission probability for an elec-
tron to start from reservoira with energyE and end in
reservoira8 with energyE8. From the detailed balance con-
dition ~9! we get

Ta8,a~E8,E!5eb~E82E!Ta,a8~E,E8!. ~61!

This guarantees that the current is zero if all chemical poten-
tials of the reservoirs are identical.

FIG. 12. Graphical representation ofḠs
.(E).

FIG. 13. Graphical representation ofḠs
,(E).
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However, the interpretation ofTa,a8 as a one-particle
transmission probability in analogy to a generalization of the
Landauer-Bu¨ttiker formula to inelastic interactions51 is not
correct. We see that the transmission probability still de-
pends on the Fermi distribution functions via the self-energy
s(E) in the denominator of the propagatorp(E). This re-
flects the many-particle aspect of the electron-electron and
electron-boson interaction in our model.

Comparing our result forTa,a8 with other approaches in
the caseM51,38–40,44we see that the energy dependence of
s(E) has been neglected in all previous treatments. We find
that even in theM51 case, the energy dependence of
s(E) cannot been neglected if the temperatureT and the
typical frequencyvB of the bosons are smaller thanG.

Without bosons, the current formula is exact up to order
G2, i.e., sequential and electron cotunneling are fully taken
into account. With bosons, cotunneling is not described cor-
rectly since we have treated the bosons only by a dressing of
the tunneling lines. This means that our approximation is not
valid in regions where the current is very small. However, at
resonance we believe our treatment to be correct since there
we expect that sequential tunneling will be just modified by
a renormalization and broadening of the local state of the dot
that is described by the self-energys(E), which is calculated
in lowest order inG here. Higher orders will be small for
high tunneling barriers.

Finally, we calculate the Green’s functions and find

G.~E!522p i E dE8g2~E8!P1~E82E!up~E8!u2,

~62!

G,~E!52p i E dE8g1~E8!P2~E82E!up~E8!u2,

~63!

In equilibrium, i.e.,ma50 for all a, we obtain the correct
sum ruleG.(E)52exp(bE)G,(E). Furthermore, for the
M51 case, particle-hole symmetry is satisfied. The spectral
density has the form

r~E!5E dE8@g1~E8!P2~E82E!

1g2~E8!P1~E82E!#up~E8!u2. ~64!

The effect of the resonant-tunneling processes is described
by the resolventp(E) containing the self-energys(E) @Eq.
~49!#. The real and imaginary parts of the self-energy express
energy renormalization and broadening and determine, there-
fore, the position and the width of the maxima in the spectral
density.

To proceed we consider from now on a one-mode envi-
ronment ~Einstein model! with boson frequencyvq5vB .
Experimentally realizations of this model are optical
phonons38–40 or by fluctuations of an externalLC circuit
with frequency41–44vB5(LC)21/2. The results for a general
environment can be anticipated approximately from the one-
mode case by a superposition. Furthermore, we choose the
special case of two reservoirsa5L/R and constant level
broadeningG/25GL5GR .

Defining g5(qgq
2/vB

2 we obtain P6(E)5(npnd(E
6nvB), where

pn5e2g[112N0~vB!]envB/2TBI n„2gN0~vB!evB/2TB
…

is the probability for the emission ofn bosons with fre-
quencyvB . HereN0(vB) is the Bose function andI n the
modified Bessel function. Using Eq.~49! we obtain15

Res~E!5(
n,a

~Mpn2p2n!
Ga

2p F lnS EC

2pTD
2 ReCS 121 i

E1nvB2ma

2pT D G , ~65!

Ims~E!52p(
n

pn@M ḡ1~E1nvB!1ḡ2~E2nvB!#.

~66!

HereC denotes the digamma function and we have chosen
in the energy integrals a Lorentzian cutoff atEC .

The real part ofs(E) renormalizes the level position to
higher energies. Furthermore, it depends logarithmically on
energy, temperature, voltage, and frequency. These logarith-
mic terms are typical for the occurrence of Kondo peaks.
Hence we anticipate logarithmic singularities either for
M>2 or for pnÞp2n . This includes not only the degenerate
case but also the case of a single dot level without spin
(M51) since the probabilities for absorption and emission
of bosons are different. It is important to remark here that for
systems coupled to classical time-dependent fields22 the situ-
ation is different since then both probabilities are equal. At
low enough temperatures we obtain logarithmic peaks in
s(E) at E5ma1nvB (nÞ0 for M51). They lead to
maxima of the resolventp(E) at E5ma1nvB (n.0 for
M51, n>0 for M.1) for e,0 and at E5ma1nvB
(n,0) for e.0. The spectral density~64! shows resonances
at the same points but, due to the additionalP6 functions in
the integrand, they are shifted by multiples ofvB . This
boson-assisted tunneling is completely independent from the
influence of the bosons on the self-energys(E).

The spectral density at different voltages for a low-lying
level e,0 is depicted in Fig. 14. Without an applied bias
voltage, we obtain~for M52) the usual Kondo peak near
the Fermi level~which we choose as zero energy!. The emis-
sion of bosons leads to additional resonances at multiples of
vB . ForM51 ande,0 resonances occur for negative en-
ergies, and in the casee.0, we find resonances at positive
energies. In these cases, the effects are less pronounced and
are only visible for very low temperatures. At finite bias
voltages all peaks split and decrease in magnitude.

The resonances in the spectral density can be probed by
the nonlinear differential conductance as a function of the
bias voltageV, as shown in Fig. 15 for the casee,0. The
splitting of the Kondo peak leads to an overall decrease of
the spectral density in the energy rangeuEu,eV ~see the
inset of Fig. 15!. For this reason, the conductance shows the
well-known14,22,24maximum at zero bias. The emission of
bosons produces a set of symmetric satellite maxima. They
can be traced back to the fact that pairs of Kondo peaks can
merge if the bias voltage is a multiple of the boson frequency
~see Fig. 14!. This gives rise to pronounced Kondo peaks at
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E56eV/2 and thus to an increase of the spectral density
with bias voltage near these points.

Figure 16 shows the differential conductance fore>0
with and without bosons. A striking result is that the whole
structure is inverted compared to the casee,0, and we find
a zero-bias anomaly although the Kondo peak at zero energy
is absent. The coupling to bosons yields satellite steps at
ueVu5nvB . The contributions of sequential and cotunneling
lead, compared to resonant tunneling, only to a weak bias
voltage dependence of the differential conductance. This
shows clearly that the influence of the logarithmic terms in
s(E) are still important. The logarithmic peaks in Res(E)
decrease with increasing bias voltage and approach the value
of E2e if e is large enough. Thus the value of
E2e2 Res(E) decreases, which in turn leads to an overall

increase of the resolventp(E) and the spectral density
r(E) near zero energy~see the inset of Fig. 16!.

Zero-bias minima are known from Kondo scattering from
magnetic impurities.52 They have been observed in recent
experiments53 and have been interpreted as two-channel
Kondo scattering from atomic tunneling systems54,49 or by
tunneling into a disordered metal.56 Here we have shown that
zero-bias minima can also arise due to resonant tunneling via
local impurities if the level position is high enough such that
we are in the mixed valence regime.

Finally, we have investigated the differential conductance
at fixed bias voltage as a function of the position of the dot
level, which experimentally can be varied by a gate voltage
coupled capacitively to the dot~see Fig. 17!. The result
shows a~classical! pair of peaks atueu5eV/2 together with
satellites ~due to emission and absorption of bosons! and
peaks forueu.eV/2 ~only due to absorption!. The energy
dependence of Ims(E) gives rise to an asymmetry of the

FIG. 14. Spectral density forM52, T5TB50.005G,
e522G, g50.2,vB50.25G, andEC550G at different voltages.
For V50 there are resonances at multiples ofvB , which split for
finite bias voltage. Inset: spectral density forM51,
T50.000 05G, TB50.5G, e52G, V50, g50.5,vB50.25G, and
EC550G.

FIG. 15. Differential conductance vs bias voltage for
T5TB50.005G, e522G, vB50.25G, andEC550G. The curves
show a maximum at zero bias and satellite maxima at multiples of
vB for a finite electron-boson coupling. Inset (g50): increasing
voltage leads to an overall decrease of the spectral density in the
rangeuEu,eV.

FIG. 16. Differential conductance vs bias voltage for
T5TB50.025G, e50, vB50.5G, andEC550G. The curves show
a minimum at zero bias and steps at multiples ofvB for a finite
electron-boson coupling. Inset (g50): increasing voltage leads to
an overall increase of the spectral density in the rangeuEu,eV.

FIG. 17. Differential conductance as a function ofe for
T50.125G, eV515G, g50.3,vB52.5G, andEC5250G.
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peak heights. The peak ate5eV/2 is higher than the one at
e52eV/2 since u Ims(E)u5puMg1(E)1g2(E)u is
smaller for higher energies~except forM51 when particle-
hole symmetry holds!. This significant effect is due to the
broadening of the spectral density by quantum fluctuations.

B. Magnetic-field dependence

In this section we discuss the effect of an applied mag-
netic field and do not take into account the coupling to
bosons. Again we consider the case of two reservoirs and
constant level broadenings. Since the energy levelses are
now spin dependent, we can no longer solve the self-
consistent equations analytically but have to solve them nu-
merically.

We find Kondo resonances in the spectral densityrs(E)
at energiesE5ma1es82es with s8Þs. This is due to the
fact that the correlation functionsGs

,(E) and Gs
.(E) are

mainly determined by the resolventps(E) @see Eqs.~56!
and ~57!#, which contains, via the self-energyss(E) loga-
rithmic singularities at the corresponding energies,

Ress~E!5(
a

Ga

2p (
s8Þs

F lnS EC

2pTD
2 ReCS 121 i

E1es82es2ma

2pT D G , ~67!

Imss~E!52pF ḡ2~E!1(
s8

ḡ1~E1es82es!G . ~68!

From Eq.~42! we see that only energies within the win-
dow defined by the difference of the Fermi functions contrib-
ute to the current. For this reason, there is no Kondo-assisted
tunneling at low transport voltage but sets on if transport
voltage and level splitting are equal. Therefore, for low-lying
levels the conductance peak at zero bias found in Sec. IV A
now splits up into two peaks separated by the twice the level
splitting14 ~see Fig. 18!.

Ralph and Buhrman recently measured Kondo-assisted
tunneling via a single-charge trap of a point contact tunnel
barrier.24 We follow the model proposed by the authors in-
terpretating the experiment as a realization of the Anderson
model with strong Coulomb repulsion such that double oc-
cupancy does not occur. However, we think that the interac-
tion energyU and not the conduction bandwidth is the rel-
evant cutoff in this situation.

A comparison of the experiment and our theory is given
in Figs. 18, 19, and 20. We find good agreement for the
peaks induced by Kondo-assisted tunneling processes if we
set the cutoffU530 meV. The authors suspect the single-
charge trap to be a dangling bond, for which they expect
U5100 meV. Our result agrees in the order of magnitude; it
gives a hint, however, that the state may have a larger exten-
sion than an ordinary dangling bond or that there is screening
due to the copper electrodes or both. The peaks for larger
magnetic fields show, however, a stronger broadening than
predicted from our calculation. Nevertheless, our theory re-
produces the experimental curves much better than the fits

given in Ref. 24 using perturbation theory since we have
taken into account nonperturbative effects, which are obvi-
ously important here.

The model proposed by the authors of Ref. 24 explains
the broad peaks at large voltages by the matching of the
energies of the empty and the singly occupied dot. Our cal-
culations for this case, however, lead to a broader and lower
peak for positive voltages in comparison with experiment
~see Fig. 19!. We think, therefore, that due to the capacitance
asymmetry the system becomes doubly occupied before the
empty state is energetically favorable. The capacitance asym-
metry ac makes then the corresponding resonance peak
sharper. An energy-dependent transparency of the barriers
could then explain the different heights. A generalization of
our theory to situations, where multiple occupancy of the dot
is important, is currently under way and will be presented
elsewhere.

FIG. 18. Differential conductance vs bias voltage for
T54.3 meV, es(B50)525.2 meV,G53.4 meV,ac50.33, and
EC530 meV. The circles are experimental data from Ref. 24.

FIG. 19. Differential conductance vs bias voltage for
T54.3 meV, es525.2 meV,B50, G53.4 meV,ac50.33, and
EC530 meV. The circles are experimental data from Ref. 24.
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Finally, we consider the case when the energy level is
above the Fermi energies of the leads. The zero-bias mini-
mum found in Sec. IV A splits for finite magnetic field into
two minima separated by twice the level splitting~see Fig.
21!.

V. CONCLUSION

In conclusion, we have studied low-temperature transport
in the nonequilibrium Anderson model with bosonic interac-
tions. The latter yield Kondo resonances in the spectral den-
sity that can be probed by the measurement of the nonlinear
differential conductance. Both the gate and bias voltage de-
pendence are important. Quantum fluctuations due to reso-
nant tunneling yield zero-bias anomalies as a function of the
bias voltage,which can be changed from maxima to minima
by varying the gate voltage. Furthermore, we discussed the
splitting of the zero-bias anomaly by an external magnetic
field and found good agreement with recent experiments.

We have presented a real-time approach that is based on a

nonperturbative calculation of transition rates between dif-
ferent states of a local strongly correlated system coupled to
fermionic or bosonic baths. We present systematic rules of
how to set up well-defined perturbation expansions for the
rates in terms of the tunneling matrix elements between dot
and leads. The formally exact rates are used to calculate
occupation probabilities and the current from master equa-
tions and current formulas that are intuitively obvious. The
method has a wide applicability, ranging from the study of
arbitrary dot level structures to the investigation of macro-
scopic quantum coherence phenomena. The latter can arise
from the time evolution of nonstationary initial states or by
the application of explicitly time-dependent fields.

The usage of real-time methods to understand low-
temperature behavior of strongly correlated fermions in ei-
ther equilibrium or nonequilibrium situations is a rather new
field and has not yet been extensively applied. Compared
with the conventional methods in imaginary time,55 they of-
fer the possibility to set up new approximation schemes. In
this paper we have performed a nonperturbative resumma-
tion of higher-order coherent tunneling processes to calculate
transition and current rates analytically for temperatures
smaller than the intrinsic broadeningG. Although the crite-
rion for considering certain diagrams is yet not motivated by
the usage of a ‘‘small’’ parameter, the diagrams are selected
in a systematic way. We have chosen all diagrams that keep
the total density matrix as close as possible to the diagonal
state up to one electron-hole pair excitation in the reservoirs.
This is reminiscent of the technique applied within a varia-
tional wave function Ansatz58 but here formulated on the
basis of density matrices for nonequilibrium systems at finite
temperatures. Furthermore, there are many possibilities to
improve our approximation by considering more diagrams
by analytical or numerical methods. Simple limiting cases as,
e.g., the noninteracting case are already exactly incorporated
within our approximation. Since the strongly interacting case
gives also at least qualitatively good results, our method may
be a good candidate to cover the whole range from weak to
strong interaction within the same approximation scheme.

ACKNOWLEDGMENTS

We like to thank D. Averin, J. von Delft, and M. Hettler
for useful discussions. The support by the Deutsche Fors-
chungsgemeinschaft, through Sonderforschungsbereich 195,
by the Swiss National Science Foundation~H.S.!, and by the
Academy of Finland~G.S.! is gratefully acknowledged.

APPENDIX A: RULES IN TIME SPACE

Each term of the expansion Eq.~17! with operatorsAi of
the form Eq.~18! can be calculated according to the follow-
ing rules.

~1! Draw all topological different diagrams with directed
tunneling lines connecting pairs of internal or external verti-
ces containing lead electron operators. Assign a reservoir
indexa and a spin indexs to each of these lines. Connect all
vertices containing boson operators in all possible ways by
boson lines. Assign statesx and the corresponding energy
ex to each element of the Keldysh contour connecting two
vertices.

FIG. 20. Maximal linear conductance vs temperature for
es525.2 meV,B50, G53.4 meV,ac50.33, andEC530 meV.
The circles are experimental data from Ref. 24.

FIG. 21. Differential conductance vs bias voltage for
T50.001G, es50.1G6De/2, andEC510G.
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~2! The propagation fromt8 to t with t8,t on the
Keldysh contour implies a factor exp@2iex(t2t8)#.

~3! The statex that is assigned to the leftmost part of the
diagram implies a factorPx

0 from the initial density matrix.
Each vertex containing a dot operatorB gives rise to a matrix
element^x8uBux&, wherex (x8) is the dot state entering
~leaving! the vertex with respect to the Keldysh contour.

~4! Each directed tunneling line with indexa running
from t8 to t implies (21)vḡa

K(t,t8), with v being the num-
ber of electron operators~due to external vertices! on the part
of the Keldysh contour fromt8 to t. The line corresponds to
a tunneling process in reservoira. Each boson line connect-
ing vertices at timest and t8 implies PK(t,t8) if the phase
factors at these vertices have different sign. Otherwise, the
boson line has the valuePK(t,t8)21.

~5! Each diagram carries a prefactor (2 i )m(21)c, where
m is the total number of internal vertices andc the number of
crossings of tunneling lines. There may be another minus
sign due to the order of dot electron operators, which
emerges from the matrix elements^x8uBux& discussed in
rule 3.

~6! Integrate over the internal times along the Keldysh
contour without changing their ordering and sum over the
reservoir and spin indices.

We emphasize that these diagrammatic rules hold for ar-
bitrary dot HamiltoniansH̄D5(xexux&^xu, i.e., the statesx
can be many-body eigenfunctions ofH̄D containing compli-
cated correlations due to Coulomb interaction, magnetic
fields, geometric setups, etc. Such eigenfunctions have been
calculated for special situations59,60 and can be used as an
input for our diagrammatic language. In this paper, however,
we will concentrate ourselves on the dot Hamiltonian~5!,
where the statesx are trivially known. For this special case,
the matrix elementŝx8uBux& from rule 3 can only give rise
to minus signs, whereas they can have a more pronounced
influence in more general situations.59,60

Furthermore, we note that the same diagrammatic rules
even hold for arbitrary time-dependent dot Hamiltonians
H̄D(t) that are not diagonal in the statesx. In this case one
has to assign two statesx8 andx to the beginning and the
end of each element of the Keldysh contour, respectively.
The factor exp@2iex(t2t8)# from rule 2 is then replaced by
the matrix element̂xuUD(t,t8)ux8&, whereUD denotes the
time evolution operator ofH̄D andt (t8) are the times at the
end ~beginning! of the element of the Keldysh contour.

APPENDIX B: RULES IN ENERGY SPACE

We obtain the diagrammatic rules in energy space by ex-
panding the expectation value in Eq.~21! and then perform-
ing the time integrals. We order the times of all internal
(m) and external vertices (n) from left to right and label
them byt j with j51,2, . . . ,m1n ~with tm1n50), irrespec-
tive on which branch they are. The Keldysh contour integrals
are now written as ordinary integrals. This includes a minus
sign for each internal vertex on the backward propagator. If
the initial density matrix is diagonal we then encounter ex-
pressions of the type

E
2`

0

dt1E
t1

0

dt2•••E
tm1n22

0

dtm1n21e
01t1e2 iDE1~t12t2!

3e2 iDE2~t22t3!
•••e2 iDEm1n21tm1n21

5 i m1n21
1

DE11 i01

1

DE21 i01 •••
1

DEm1n211 i01 .

~B1!

HereDEj is the difference of all energies going to the left
minus, all energies going to the right in each segment limited
by t j andt j11. This includes the energies of the propagators
and, if present, the energies of the tunneling, boson, and
virtual lines. The convergence factore0

1t1 is related to an
adiabatic switching on of the tunneling termH̄T . The factor
i m1n21 cancels with the factor (2 i )m from rule 4 above
together with the prefactor (2 i )n21 from the definition Eq.
~B1!. Therefore, the corresponding rules in energy represen-
tation read as follows.

~18! Draw all topologically different diagrams with fixed
ordering of the vertices along the real axis, i.e., irrespective
on which branch they are. The vertices are connected by
tunneling and boson lines as in time space. In addition to the
energyex assigned to the propagators we assign an energy
E to each tunneling line. For each boson line choose a direc-
tion ~arbitrarily! and assign also an energyE. The external
vertices are connected by virtual lines with energiesEi
( i52, . . . ,n) as described above.

~28! For each segment derived fromt j<t<t j11 with
j51,2, . . . ,m1n21 assign a resolvent 1/(DEj1 i01),
whereDEj is the difference of the leftgoing energy minus
the rightgoing energy~including the energies of the tunnel-
ing, boson, and virtual lines!.

~38! See rule 3 in time space.
~48! For each coupling of vertices write (21)vḡa

1(E) if
the tunneling line of reservoira is going backward and
(21)vḡa

2(E) if it is going forward with respect to the closed
time path~definition ofv see rule 4 in time space!. For each
boson line writeP1(E) if it is going backward andP2(E) if
it is going forward with respect to the closed time path.

~58! The prefactor is given by (21)b(21)c, whereb is
the total number of internal vertices on the backward propa-
gator andc the number of crossings of tunneling lines. There
may be another minus sign due to the order of dot electron
operators that emerges from the matrix elements^x8uBux&
discussed in rule 3.

~68! Integrate over the energies of tunneling and boson
lines and sum over the reservoir and spin indices.

APPENDIX C: CURRENT CONSERVATION

In this appendix we prove Eq.~34! and current conserva-
tion. Let us consider any diagramSx8,x

ap (t8,t) in the expres-
sion

(
x

(
p

pSx8,x
ap

~ t8,t !. ~C1!
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By changing the vertical position of the rightmost vertex we
get a new diagram that has up to a minus sign the same value
as the old diagram from which the new one was constructed.
If the rightmost tunneling of the old diagram line has a res-
ervoir index different froma, then the new diagram is of the
form Sx8,x9

ap , so that the sum of all these contributions in Eq.
~C1! is zero. The other diagrams are divided into two classes:
in one ~the other! class, the rightmost tunneling line of each
diagram enters~leaves! the forward propagator or leaves~en-
ters! the backward propagator. The change of the vertical
position of the rightmost vertex then increases~decreases!
the value ofp by one, so that the new diagram is of the form
Sx8,x9

ap61. Furthermore, the old and the new diagram belong to
different classes. After changing the position of the rightmost
vertex of only one class and then shifting the summation
index p in Eq. ~C1!, we obtain exactly all diagrams of
(xSx8,x

a1 , which proves Eq.~34!.
The conservation of probability follows directly from the

master equation~26!. Summation overx together with
(xSx8,x(t8,t)50 yields

(
x

d

dt
Px~ t !50 . ~C2!

To prove current or charge conservation we first recog-
nize that

(
x

N~x!5p

Sx8,x
a1

52 (
x

N~x!5p11

Sx8,x
a2 , ~C3!

whereN(x) is the particle number on the dot for statex.
This relation follows directly by changing the vertical posi-
tion of the rightmost vertex.

After multiplication of the master equation~26! with
2e andN(x) and summation overx, we use Eqs.~33! and
~C3!, insert the current formula~32!, and find the conserva-
tion law for the total charge flowing into the dot

(
a

I a~ t !5
d

dt
Q~ t !, ~C4!

whereQ52eN52e(xN(x)Px is the charge on the dot. In
the stationary and time-independent case Eq.~C4! reduces to
the conservation of the tunneling current

(
a

I a
st50, ~C5!

whereas for the general case the right-hand side of Eq.~C4!
is minus the sum over all displacement currents flowing in
the reservoirs.

An important result of this appendix is that any approxi-
mation for the rates is current conserving provided that the
condition Eq.~C3! is satisfied. This means that we always
have to consider both vertical positions of the rightmost ver-
tex.

APPENDIX D: ANALYTIC SOLUTION FOR ZERO
MAGNETIC FIELD

For zero magnetic field, i.e.,es5e for all s, we define
the quantitiesp(E)[ps(E), s(E)[ss(E), and

fa
1~E!5f0,0

0,s~a,s,E!, fa
2~E!5(

s8
fs,0

s,s8~a,s8,E!,

~D1!

which are independent ofs. We get the integral equations

@E2e2s~E!#fa
6~E!56ga

6~E!2ga~E!E dE8

3
1

E2E81 i01 f*6~E8!,

~D2!

where ga(E)5ga
2(E)1Mga

1(E) and f6(E)5(afa
6(E).

Summing overa and taking the imaginary part, we obtain
the solution

Imf6~E!57p
l6

l
g~E!up~E!u2, ~D3!

where we used the definitionsg6(E)5(aga
6(E),

g(E)5g2(E)1Mg1(E),

l65E dEg6~E!up~E!u2, l5E dEup~E!u2.

~D4!

Furthermore, we obtain directly from~D2! a relation be-
tweenfa andf,

g~E!fa
6~E!5ga~E!f6~E!

6p~E!@g~E!ga
6~E!2g6~E!ga~E!#.

~D5!

Using ~52!, the current rates follow from S0,0
a1

52iM *dE Imfa
1(E) and Ss,0

a152i*dE Imfa
2(E). With

Eqs.~D3! and ~D5!, the result is

S0,0
a1522p iM Fl1

l
la1E dEup~E!u2

3@g2~E!ga
1~E!2g1~E!ga

2~E!#G , ~D6!

Ss,0
a152p i Fl2

l
la2ME dEup~E!u2

3@g2~E!ga
1~E!2g1~E!ga

2~E!#G , ~D7!

wherela5*dEga(E)up(E)u2.
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Summing the current rates overa and using
(ala5l21Ml151, we get the total transition rates~note
thatSx8,0

a2
50)

S0,0522p iM
l1

l
, Ss,052p i

l2

l
~D8!

and the solution of the stationary master equation~29! reads

P0
st5l2, Ps

st5l1 with l21Ml151. ~D9!

The stationary current follows from~36! I a
st52 ie@P0

stS0,0
a1

1MPs
stSs,0

a1# ~note thatSx8,s
a1

50), which gives as the final
result Eq.~58!.
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