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Resonant tunneling through ultrasmall quantum dots:
Zero-bias anomalies, magnetic-field dependence, and boson-assisted transport
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We study resonant tunneling through a single-level quantum dot in the presence of strong Coulomb repul-
sion beyond the perturbative regime. The level is either spin degenerate or can be split by a magnetic field.
Furthermore we discuss the influence of a bosonic environment. Using a real-time diagrammatic formulation,
we calculate transition rates, the spectral density, and the nonlinéacharacteristic. The spectral density
shows a multiplet of Kondo peaks split by the transport voltage and the boson frequencies and shifted by the
magnetic field. This leads to zero-bias anomalies in the differential conductance, which agree well with recent
experimental results for the electron transport through single-charge traps. Furthermore, we predict that the
sign of the zero-bias anomaly depends on the level position relative to the Fermi level of the leads.
[S0163-18296)03047-0

[. INTRODUCTION acting case, and provided that temperature is lower than the
Kondo temperatur@?® T,=1/2(UT)Y%exd me(e-+U)/TU].

The experimental study of tunneling through zero-Since the weight of the equilibrium spectral density at the
dimensional states in quantum dots with high charging enerEermi level is proportional to the linear conductance, an en-
gies has received considerable interest recénflffheoreti- hancement of the latter due to Kondo-assisted tunneling was
cal studies cover the classical regifiigh temperaturés'd  predicted:"*® Typical values for quantum dots atg~1
as well as the quantum-mechanical regimgow MeV andl'~50 weV, which, fore~—T', yield a Kondo
temperaturé$—23. In the latter case, Coulomb blockade andtémperature of the orddfk ~50 mK. Due to heating effects
resonant-tunneling phenomena together with nonequilibriun%“Ch temperatures are still hard to realize in realistic dots. A

generalizations of the Kondo effect are expected to occufl0ré pronounced feature was found for the nonlinear con-

This leads to zero-bias anomalies in the differential condUCQUCtance’ which shows a zero-bias maximum even for tem-

tance, which have been observed recently by Ralph anfgeratures above the Kond_o temperaﬁfr?é‘. At zero mag-
Buhrman? In this article, we present a real-time diagram- netic field the spectral density of each spin channel exhibits a

. . . Kondo resonance at each of the chemical potentials. An ap-
matic approach to describe resonant tunneling at low tem-

eratures and compare our results to the latter experiment plied magnetic field causes the Kondo peaks to shift from the
pere ! P - . xper! .‘chemical potential by the Zeeman energy, in opposite direc-

. . | I ; ; lQions for the different spin channels. As a consequence,
zero-dimensional systems are usually performed in doubleg 5o _assisted tunneling can occur only if the bias voltage

barrier resongnt-tunneling istructu?e?’ssplit-gate. quantum- - exceeds the Zeeman energy. Therefore, the zero-bias
dot device$;® quantum point contacts with single-charge anomaly is split by an applied magnetic fiétiThese fea-
trap state$? and quite recently also in ultrasmall metallic tures have been observed experimentally by Ralph and
tunnel junctiondwith Al particles of diameter below 10 nm. Byhrman* They measured the differential conductance
In the latter experiment, the level spacing is of order 0.5through single-charge traps in a metallic quantum point con-
meV which is comparable to the Coulomb charging energytact. Although this system does not allow a controlled varia-
in usual quantum dots. Therefore, the quantum dot is detion of the level position, the appearance of a zero-bias maxi-
scribed by the nonequilibrium Anderson model where themum with a peak height varying logarithmically with
energy levele, (with spin labelo) is coupled via tunneling temperature clearly demonstrates the mechanism of Kondo-
barriers to two electron reservoirs with different electro-assisted tunneling. However, the detailed comparison of the
chemical potentialg., and wg. The charging energy is de- line shape in the experiment and the existing theory showed
scribed by a strong on-site Coulomb repulsidnthat sup-  significant deviations.

presses double occupancy of the dot level. In equilibrium, it In this paper, we will describe an approach to calculate
is well known from the theory of strongly correlated nonequilibrium properties of strongly correlated mesoscopic
fermiong® that the spectral density of the dot can exhibit asystems coupled to fermionic or bosonic baths via particle
Kondo resonance at the Fermi level. It occurs for a low-lyingand energy exchange. It consists of a real-time diagrammatic
level e,—u g<—-I and weak Zeeman splitting approach closely related to path-integral methods formulated
le,— e;t<T, whereI'/2 is the level width in the noninter- in connection with dissipatidi=2° or tunneling in metallic
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junctions3°~320ne of the difficulties of the present problem C C

lies in the fact that we have to account for the Coulomb L R
interaction in a nonperturbative way. Therefore, the standard I ne I
many-body diagrammatic approaches are not sufficient
(since Wick’s theorem cannot be applied naiyelwe cir-
cumvent the problem by keeping track explicitly of the time o
evolution of the density matrix of the dot and tracing out — G
only the bath degrees of freedom, which are assumed to be in
equilibrium. The final diagrammatic language is set up by an
expansion in the coupling to the fermionic reservoirs,
whereas the strong correlations on the local system are ex- ’l
actly taken into account. The basic step is the calculation of ‘ |
transition and current rates between different states of the

dot. We present an exact expression for these rates as the \3
sum over all irreducible diagrams. The transition rate is used
to set up a formally exact master equation from which the
time-dependent probability distribution for the dot can be

calculated. The current rate is generally not identical to th ransport throuah interacting quantum dots. The classical re-
transition rate since it contains also the number of particles. P 9 9q )

transferred to the reservoir where the current is calculateoqmebiigg gr?\?irgifnneﬁ%?%zoetgr:?zra:{jnk?(;(;(e)lraf;sdseigttetj@grf-
This number can take arbitrary values if one considers al

higher-order processes. The occupation probabilities mull€!ing lead here to resonant side peaks in the Coulomb os-

plied with the current rates are used to calculate the currerﬁiIIationS that can be used to analyze the complete excitation

flowing through the system. In earlier publications, we havesgecizummntgg Inﬂ:ﬁ Igoﬁd T?eirr:esiglrt]s zgrenef Vé’fclllh ¥wth
presented this technique in connection with tunnelin SXPENMENtS. € 1londo regime [t has been 1o a

through a metallic island with a continuum of stdfeand gtime-dependent perturbations split the Kondo resonances,

demonstrated the equivalence to path-integral metffbds which leads to satellite anomalies in the differential conduc-
‘tance and offers the possibility to realize pump effects that

There we used an approximation for the rate to sum up "in- re based purely on the presence of Kondo resonances. The
elastic resonant tunneling” processes to arbitrary ordel‘ﬁk purely P :

where different electrons tunnel coherently back and fort near ac conqllljcj[ance_has beﬁn gr}?lyzed mfRef. 3r.In thl's
between the island and the reservoirs. Here we apply aﬁaper,_ we wi Investigate the influence of an externa
equivalent approximation to describe resonant tunneling pe20sonic field on transport phenomena through ultrasmall
tween metallic leads through an ultrasmall quantum dot witruantum dots at low temperatures and small poson frequen-
a single level. An important advantage of our approach ié:les(compared td"). The emission and absorption of bosons

that we can solve the noninteracting limit exactly and carcauses additional Kondo singularities, for a one-mode field at

control systematically if this limit is contained within a given '“a:; rt""B' Wherendzl +1,x2,. I .Aga}[lrr]l, tg\.?fse r(atgtalnancss
approximation for the correlated case. The theory is curreana 0 corresponding anomaiies in the diferential conduc-
nce, which are inverted if the level position of the dot is

conserving and can be used for the calculation of correlatiof? 4 th h the Fermi
functions or Green'’s functions as well. moved through the Fermi energy.
For the case where the dot levelNs-fold degenerate we

Vo
|
|
Y

FIG. 1. Single-electron resistor.

recover forM =2 and a low-lying dot level a Kondo peak in 1. HAMILTONIAN
the spectral function. An applied transport voltage leads to a o
splitting of the Kondo peaKat u,, where a denotes the We concentrate here on a dot containing only one energy

lead, which results in a zero-bias anomaly in the differentiallevel €% with degeneracy. In a magnetic field, due to the

conductance such that the conductance has a maximum &eeman energy the level position is spin dependent. The dot

V=0. On the other hand, if the dot level lies above the Fermis connected via high tunneling barriers to two large nonin-

levels of the leads., we predict® a zero-bias anomaly in teracting reservoirs and coupled capacitively to an external

the conductance that has a minimunivat 0. gate voltage. The model Hamiltonian of this “single-electron
Several extensions will be considered. We study the cas#ansistor” (see Fig. 1is

where the(spin) degeneracy of the dot level is lifted, e.g., by

an applied magnetic field. In this case the Kondo peaks of

both spin channels move apart from each other by the level H=Hy+H;=Hp+ 2 H,+H+. @

spacinge,— e;-and Kondo-assisted tunneling sets in only at a=LR

transport voltagesV exceeding this splitting. The calculated

conductance agrees well with the experimental results oflereHp is the Hamiltonian for the dot. It includes the Cou-

Ref. 24. lomb interaction of the dot electrons, which is described
Furthermore, we account for inelastic interactions withwithin the capacitance model of a single-electron transistor

bosonic modes coupled to the dot. They describe applietly the capacitanceS_ andCy for the left and right tunnel

time-dependent fields, interaction with phonons, or the flucjunctions andCg for the gate. Furthermore, the dot electrons

tuations in the electrodynamic environment. The investigaare coupled to bosonic modes, with electron-boson cou-

tion of this field has started only recently in connection withpling g,. ThusHp, reads
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© - 5 ‘ The electron-boson interaction renormalizes the level posi-
Hp=2 e, +Ec(N—ng)*+ 2 wqdid, tion and the Coulomb repulsior,=€\?—= g5/ w, and
[oa q 2 . .
U=U,— 22,05/ @q and the tunneling term acquires phase
- factorse™'?.
t
+N% 9q(dgtdg). 2) For strong Coulomb repulsiod we restrict ourselves to
states withN=0,1. In lowest-order perturbation theory the
(Throughout this work, we sét=k=1 and use the conven- rates for tunneling into and out of the dot to reserveiare

tion e>0.) The particle number on the dot with spin is

ng=c:§cg andN=ZX_n,. The scale of the charging energy 27ryi(E)=277J dE'y=(E')P*(E—E') (7)

is provided byE.=e?/2C, whereC=C +Cg+Cg is the
total capacitance of the system. The transistor can be tun
by the gate voltage/g via eng=C V| +CrVr+CsVs. 7 2o + .

We remark here that is invariant under a global shift of all bosor?s,.Fa_(E)_—ZwElekl A(E=€c,), and f,(E) is the
energies. Therefore, we can always choose symmetric biag’erml distribution of reservoie with electrochemical poten-

Shere 21y, (E)=T (E)f_ (E) is the classical rate without

V| = —Vg=V/2. tial w,, while f_ (E)=1—f(E). Finally,
The next term in Eq.(1), Hazik‘,ekaalmak(m, de- 1
scribes the reservoitv of noninteracting electrons in the pi(E)zz_f dteiEt<eicp(0>efiqo<tt>>o (8)
o

leads. Finally, the dot is coupled via tunnel barriers to the left

and right lead. This coupling is described by the tunnelyescribes the probability that an electron absor®s)( or
Hamiltonian emits (P~) the boson energf.*~**The expectation value
is taken with the free boson Hamiltonian. These probabilities
Hy= S (Teal, c,+H.c). (3y  satisfy the condition of detailed balarfée
k,o,a

P (E)=P*(—E)=efEP"(E). 9
The bosonic modes can represent interaction wit
phonond®* or fluctuations of the electrodynamic

env(;rol?g"n':en‘{l \t/ﬁry similar to tpe Caldelr(jel-lée?ge:;] In order to go beyond the perturbative regime, we need a
mo (_af_. ki 0(; ofutrh eor(;j/ no aszl{[rr?p lon IIS' nee (T tr?'r enonperturbative treatment of the tunneling, where quantum
specific Kind of the mode&, and the couplinggg - 1n this f*uctuations yield finite lifetime broadening and renormaliza-

way we are able to present a general result for the CUTeNtHn effects of the dot levels. As an illustration we first as-

that shovys the influence of inelastic interactions for an arbl—Sume thatfor B=0) the broadening is given by the sum of
trary environment.

Th iive model i ivalent to the Ander nthe classical transition rates EG¢). Using the Kramers-
1€ capacitive model IS equivaient 1o the erso Kronig relation we deduce the renormalization and obtain for
Hamiltonian, which we obtain by defining the interaction

Uo=2E; and shifting the level positione®+2E the self-energy

—eVgCg/C—aeVi2—eD(V,Vg). The asymmetry factor My*(E')+y (E")

a.=(C_—CRg)/C accounts for a different capacitive cou- U(E):f e T (10)

pling of the left and right leads. We see here that the effec-

tive level position in the Anderson model depends on thewvhere y*=3 .y, . The aim of the present paper is to test

gate voltage as well as, due &, on the transport voltage. and extend this simple physical picture within a systematic

The dot is then described by and conserving theory for all Green’s functions and the cur-
rent. To achieve this we use a real-time technique developed
in Refs. 34, 33, and 15 that provides a natural generalization

hI'he classical rates combined with a master equation are suf-
ficient in the perturbative regimeé=3 ,I' ,<T.*®

_ (0) T . . .
HD_E(T: €s (V\Ve)n,+Ug 2 ”a”o'+§q: wqdqdq of the classical and cotunneling theory to the physics of reso-
T=o nant tunneling.
S t
+ N% 9q(dg+dg). “) lll. DIAGRAMMATIC TECHNIQUE

A unitary transformatioff with V=exp(—i&p) ‘and A quantum-statistical expectation value of an operator
e=i%4(gq/0g)(d]—d,) vields H=VHV l=H,+H,, attimetisgiven by
whereHo=Hg+Hp, (A1) = trlpoA(t)i], (11)

e + where A(t)y= exp:iH_(t—to)]A exq—iH_(t—tO)] is the opera-
HD_%“ 6"”"+UU<EU, n(,n(,/+% ©qdgda: O o Heisenberg picture with respect to the initial time
Permutation under the trace yiel@a(t))= tr{ p(t)A], with
and A in Schralinger picture. The density matrp(t) evolves in
time via p(t)=e """t p(t,) e (%) We assume that the
H_T= 2 ( ﬁafﬂmcaei‘HH.c.). (6) initial density matrixpy=p(ty) factorizes into parts for the
Ko, dot electrons, the bosons, and the leads:
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0 } 0o 0 b ot 0 In the following we will encounter also higher-order cor-
. * e - relation functions of the type
‘\L Rf L‘\ \R L LIRS e FL > (TkA1(t1)1Ax(t2) - - Aq(tn)i). The final time t of the
LT s Keldysh contour is then given by mgx, . .. t,}.
5 ‘+‘ 5 + ; 5 + 0 * oy ¢ 0 For a diagrammatic description we expand the exponen-

tial with respect to the tunneling Hamiltonian and obtain

FIG. 2. Diagram showing various tunneling processes: sequen- n "
tial tunneling in the left and right junctions, a term preserving the m , , ,
norm, a cotunneling process, and resonant tunneling. TKH At | =tr PomE:O (=1) Kdtl Kdt2' o Kdtm

p0=pon81;[ P - (12) XTK[ Hr(ty) He(tg), - - - Hr(t),
The leads are treated as large equilibrium reservoirs with
fixed electrochemical potentiajs,= —eV, . Therefore, we < [T At ty>ty> - >t
describe the electrons in the leads by Fermi functions i=1
f,(E) and the density matrix reads (17)
3=ianF[—B(Ha—MaN )] (13  in which the relationt;>t,>--- >t/ has to be understood

with respect to the Keldysh contour. The time-ordering op-
eratorTy acts also in the operators(t;), and puts them in
the right place between the tunneling Hamiltonians.

The next task is to perform the trace of each term of the

where 8=1/T andN,=3, ,al, .8, the number of elec-
trons in the leadx. The normalization factoZg is deter-

mined by tpg=1. The boson part reads expansion. We insert the tunnel Hamiltonigd) and notice
1 that the HamiltoniarH is bilinear in the lead electron op-
pS= Bex;{ ,332 wngdq}, (14  erators. For this reason, Wick’s theorem holds for these de-
grees of freedom, i.e., the lead electron operators are con-

The temperature of the boson batg=1/8g may differ in tracted in pairs. This includes contractions between pairs of

real experiments from the electron temperafiire field operators fromHt as well as contractions to lead elec-
For the initial distribution of the dot we assume that it is tron operators that can be present in the operaiprsThese

diagonal in the many-bodglot states x), which include the ~ contractions are given by equilibrium distribution functions.

strong correlations within the quantum dot but are assumeffor the dot electrons, the situation is different. The Coulomb
to have fixed occupation numbers interaction is expressed by a quartic term of dot electron

operators. Therefore, Wick’s theorem does not hold for this
b 0 part of the system. A product of dot electron operators can-
Po :E Py (19 not be contracted into pairs, but has to be treated explicitly.
X The trace over the bosonic part, however, poses no problem.

with EXP?(:l. We will see later that in the stationary limit, Each tunneling term contains an exponengal ¢ of the
i.e., whentg is shifted to—< all the physical quantities are bosonic operatorg. The trace over the product of such ex-
independent of the choice @f?( ponentials can be performed eadibee Eq.(20)] provided

In the following, it is convenient to change to the interac- that the operatoA also contains only such exponentials.

tion picture with respect toHy. This_implies A(t)y
-7 exr[—lftodt'HT(t )WAR®,T exp:—lft dt’'H(t"),] in which A. Rules

T is the time-ordering operator afddenotes the anti-time-  With regard to the applications discussed in Secs. Il B
ordering operator. We write the integrals as one contour inand |1l C, we assume here that the operafyrérepresenting
tegral f¢dt’- - - over theKeldysh contourlt is parametrized “external vertices”) depend on the lead and boson degrees
by the “time” t’, which first runs forward from, tot and  of freedom only in the form

then backward front to ty. In diagrammatic language, the

Keldysh contour is represented by horizontal lines running

from the left to the right and then back to the lefee Fig. 2 A=A 2 Ta), ,c.e'?

We find

E T cla,e ¢ ce¢cle ™|, (19

(A(t))=tr

pOTKexy{—iJKdt’H_T(t’),)A(t),} (16)

Here we have introduced the Keldysh time-ordering operatoEach term of the expansion E(L7) is visualized by a dia-
Tk, which orders all following operators along the Keldysh gram(see Fig. 2 There is a forward and a backward propa-
contour such that the one with the later time along thegator symbolized by the upper and the lower horizontal line,
Keldysh contour appears at a more left posiffaithout any  running fromt, to t and back fromt to ty, respectively.
sign change for an exchange of Fermi operators Along this time path, we arrange internal and external verti-



16 824 KONIG, SCHMID, SCHOELLER, AND SCH® 54

ces according to their time ordering. The internal vertices . % 0o X 0
emerge from the insertion of the tunneling Hamiltoni@n
into the expansiofil7). Each of them corresponds to a prod- _ (O] ©
uct of a lead and a dot electron operator and a phase factor I = I + I z |11
e*1¢. After integrating out the lead degrees of freedom, all
vertices(either internal or externplcontaining a lead elec-
tron operator are connected in pairs by directed tunneling _
lines (dashed lines %(t,t’) from t' to t, with FIG. 3. lteration of processes for the propagdtor
YUY =7y (t—t") for t<t’ and y"(t,t') =7y, (t—t’) for
t>t’ with respect to the Keldysh contour with
yo(t)=SdEe B (E). These tunneling lines represent
contractions of lead electron operators.

There are vertices from which a tunneling line Ieaves
[representinga/, . (t)c,(t)e'*?, which removes a dot elec-
tron with spino] and others to which a tunneling line enters
[representing! (t)a,,.(t)e ", which adds a dot electron
with spino]. Fermi statistics, furthermore, yield a minus sign
for each crossing of tunneling lines.

In the interaction picture the dot electron operators get In this section we will derive a formally exact expression
exponential factors that contain the energief the many-  for the central object of this paper: the quantum-mechanical
body dot stateg given bye, |x)=Hp|x). The order of the transition rateEX (t',1) for the reduced systefithe do} to
electron operators may mduce furthermore, a minus siggo from a statey’ at timet’ to a statey at timet. This rate

X2 X2 X2 X2 X2 X2 X2

We will account for the exponential factors eMpt)
(i=2,...n) by drawing directed virtual lines from the ex-
ternal vertices with timet; to the last vertex with time
=0 and assigning the enerdg to this virtual line.
Performing the time integrals, we end up with diagram-
matic rules in an energy representation. These rules are sum-
marized in Appendix B.

B. Master equation and stationary probabilities

due to Fermi statistics. will serve as input for a formally exact and time-dependent

The trace over the boson operators gives rise to a factor dhaster equation, which, in principle, could be used to calcu-

the form late all occupation probabilities of the dot as a function of

time for an arbitrary initial state. Similar master equations

Calty,ty, .. tm t1th, .. b)) =(Tg[e ¢e et are well known and successfully applied in connection with
macroscopic quantum coherence phenomena in spin boson

e ietmgietngie(ty) .eW(tﬁﬂ/)D_ (199 models?®?**® The connection to these path-integral ap-

. o } proaches will be described in Ref. 57.
Since¢ is linear in the boson operators, we get A matrix element of the reduced density matrix of the dot

at timet, Pﬁ(t), is given by the quantum-statistical expec-
tation value of the projector £,){x1|)(t),

=11 Pt L PRl T PR, PO =((x2)(xh (D), (22

i<j

Ca(ty ta, .o tmti b, oot

(20) i.e., we have to set=1 andA;=|x2){x1| in Eq. (17). The
We write PK(t,t")=P7*(t,t’') for t<t’ and PX(t,t’) reduced density matrix commutes with the particle number
=P (t,t') for t>t’ on the Keldysh contour with on the dot. Thus the operatby,)(x:| is unaffected by the
P*(t)=/dEe "B'P*(E). In diagrammatic language, we unitary transformation and no tunneling and boson line
represent the facto®* by boson lines connecting each ver- emerges from this external vertex. The matrix element
tex with each other. A summary of these rules are given |rPX1(t) can be expressed by the reduced propagator
Appendix A.

In order to calculate stationary transport properties it istl X,
convenient to change to an energy representation. Witho
loss of generality we assume that the tines. . . t,, of the
correlation function(17) are ordered on the real axis accord-
ing tot,<t,_,<---<t;=t. This may be different from the PIA(t)= 2 PXl(t )H)‘l Xl(t ). (23)
ordering on the Keldysh contour, which depends on whether Xy, 2

the times lie on the upper or lower branch. In the stationary
limit we can setto=—o andt=t;=0. The propagator is the sum of all diagrams with the given

We consider the Laplace transform states at the ends and can be expressed by an irreducible
X]_ X1

X1 t’,t) from at timet’ forward to y, at timet and
X1 X1

LHﬁen fromy, at timet backward toy, at timet’,

self-energy parE (t ,t), defined as the sum of all dia-

G(E,,E3, ... Ey)
grams in which any vertical line cutting through them

0 t th_ ) . .
=(—i)”‘1f dtzj ? dtg- - - f ldtneIEztz crosses at least one tunneling or boson line. The propagators
—o —o —o for the four lines attached to the self-energy are not included
xeiEsta...eiEntn<TKA1(o)A2(t2)...An(tn)>_ in Eif’il(t’,t). We obtain an iteration in the style of a
242

(21 Dyson equatior(see Fig. 3,
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HX%’“ )=t )5, /8, . < @m
Xz'Xz( ) Xz( ) XXy 7X2:X2 Ia(t) =-ie E{ @t - R t}

t t2 X/ ’X//
+ > dtzJ dt,I1°7 ")t ty)
X Xy t t X2:X2 FIG. 4. Graphical representation of the curréptthrough lead
«. Internal vertices are not indicated.

XEX%’Xl(tl1t2)H(O)§1(t2,t). (24)
Xo1X2 2

X and isnot the equilibrium one if the electrochemical poten-

tials of the leads are different. Fro(@6) and(27) we obtain
whereH(O)ﬁ(t’,t)=exp:—i(eX1—eX2)(t—t’)] is the propaga-

tor of the isolated quantum dot. Multiplying this equation OZZ piﬂzx,w: 2 [pit,gx,yx_ P;tzx,x’]’ (29
with Pi}(t’), summing over the stateg,, x5, and differen- X X Fx
2

. . . . where
tiating with respect td, we obtain, together with Eq23)
and setting’ =to, (o
EX’szlf dt,EXr’X(t,,O) (30)
dt Pfé(t)*i(fxl_ fo)PQ(t) can be calculated directly by using our diagrammatic rules in

energy space. The prefactorin (30) together with the
m— 1 time integrations over the internal verticeirgives a
factori™ in (B1) that cancels the factor(i)™ from rule 5.
The self-energy park,. , is purely imaginary. This can
This formally exact equation is the most general kineticP® S€en by changing the vertical positions of all vertices on
equation for the reduced density matrix of the dot. No asfhe Keldysh contoufwithout changing their horizontal posi-
sumption is necessary for the initial state and the integrafio™ and reversing the direction of all tunneling and boson
kernelS, on the right-hand side shows that memory effectsines. Consequently, only the energy differences; from
are fully taken into account. rule 2 will phange sign. Since the number o_f vertices is even
The equation simplifies considerably if we assume thaf@ll tunneling vertices are coupled in pairs by tunneling
the initial density matrix is diagonal. In the general case, thidines, there is no sign change due to ruleamd the number
does not imply that the reduced density matrix stays diagondl{ resolvents is odd. Thus the whole diagram has been
for all imes. However, for the special case of the Andersorfhanged to its conjugate complex up to a sign.
model considered here, spin conservation implies that the
reduced density matrix will be diagonal for all times t,,. C. Tunneling current

Hence we consideEX,,XEE§i:§ and obtain, from(25), The tunneling current flowing into reservair is defined
by I.(t)=e(d/dt)(N,(t))=ie([H,N,](t)), which is
equivalent to

t ’ !
= > | dUPHIT L. (29
XZ X21X2

’ !
X1:X2 to

d t
aF>X(t):2, ftodt’PX,(t')EX,,X(t',t), (26)
X
l()=—ie> {TX(a],.c.e®)(t
where P, (t)=PX(t) denotes the probability to be in state (V) gf {Tid(AkaCo L)
x at timet. For a time-translational invariant system, the ot i
time-dependent rateX . (t',t) depend only on the time — T ((Cpaxkaa® O) (1))} (31)
differenceX . (t'—t). Performing the Laplace transform of The tunneling current is an expectation value of a product of
Eq. (26), one can then study the time evolution of arbitrary a dot, boson, and reservoir electron operésee Fig. 4 We
initial probability distributions into the stationary state. obtain
By attaching the rightmost vertex of each diagramo
the upper and lower propagators, the minus sign for each | (t)—eE
vertex on the backward propagator yields ., x(t',t) a\ f
=0, which allows us to rewrite E26) in the form X

t
’ ’ a+ ’
dt'P,. ()3 (t,1)

to

t
. t =—eX | dt'P (1)} (1), (32
’ t !
JiPah= E dt'[P,/ (1), (t',1) xx' 7o X
X'#x lo where the partial self-energies’;" (t',t) are parts of the
—P(t)Z, (1", D] (270  total self-energy

We obtain the structure of a master equation with transition , at . “ .,
rates given by, (t',t). 2t 't)zé {Ex’,x(t ’t)+2x’,x(t D (83
The stationary distribution is given by
They describe processes in which the rightmost tunneling
PSt= lim P (t)= lim P,(0) (28)  line corresponds to reservoir and is an outgoingincom-
X e tg—— ing) line if the rightmost vertex lies on the upper propagator
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or an incomingoutgoing line if the rightmost vertex lies on
the lower propagator. Their physical meaning is displayed by 15 — 94 mY JHVY o{,@ - M@ }
the current formuld32), which shows that they give the total ¢ o 7151_,—’—“
contribution to the current rate. We can relate them to an

Inilrj)ltlvelly mgre physical ObJ,ECt’ namely, the ra.te FIG. 5. Graphical representation of the relation between the cur-
EX’,X(t 1), p=0,£1,22,..., which describes the transi- rent and the correlation functions. Here the line connecting the ex-
tion rate wherep particles are transferred to reserveit  ternal vertices is a real one. Internal vertices are not indicated.
Within our graphical Ianguagéi;‘:?,x(t’,t) is given by all

diagrams where the number of tunneling lines with reservoilG(t,t')=G(t—t"). The Fourier transform G(E)
index & running from the forward to the backward propaga- = fdteE'G(t) can be written in the form

tor minus the number of tunneling lines with reservoir index

a running from the backward to the forward propagator is G>(E)=2i Im(—i)fo dte iEt

given byp. We obtain 7 —

N X(T(c,€9)(0)(cie™'O)(tT)), (39
Sy n==3 3 ps® . (39 ‘
X ' X P ’ 0
< — __ i i —iEt
This relation together with current conservation is proven in G, (B)=—2i Im( |)J7xdte
Appendix C. The factop shows clearly tha® ** describes _ '
the contribution to the current rate. In contrast to lowest- X(Tk(c,€¥9)(0)(cle ) (1)), (40)

order processes, i.e., the golden rule rate, wipeoan only wheret* means that the time lies on the uppelowen)

take the valuest 1, p can be arbitrary for higher-order pro- branch of the Keldysh contour. Note that the time ordering is
cesses. Nevertheless, E_£a3) shovys that t_he current rate can defined here by a pure ordering along the Keldysh contour
be calculated as a partial selection of diagrams already COQ/\'/ithout anv sian chanae if we interchanae fermion operators
tained in the total transition rafg,, . : y sig 9 . 9 pel :

We emphasize that the currer){t 'onrml(ﬂ}Q) together with The integrals can be calculated like H@1), whereby in-
the mastepr equatiof26) constitutes a complegte theory to stead of assigning the energE to the virtual line connect-
describe time-dependent phenomena starting from an arb:'ﬁr—:]getgﬁ de;tszrinil %(eertlecneesr%le can change the direction of the
trary diagonal initial state. The original problem has now 9 .

. . - . In order to relate the current to the Green’s functions of
been shifted to the evaluation of the various self-energy dla@e dot we consider the first diagram on the right-hand side

grams that correspond to transition and current rates. The, . o )
self-energies are defined by a set of irreducible diagrams an%I Fig. 4 (the second one is just the conjugate compl@ke

thus their corresponding perturbation expansion in the num‘?Xtemal vertex can be contracted by a tunneling line to either

ber of tunneling lines is a well-defined series and contains néhhg gtpr Egtru(r)(; I&"‘;ﬁ; pg?ggﬁf‘;;fg%&i f:géei w:;r;leéjéziltely
divergent time integrals. ' P

For time-translational invariant systems the current rate%gggo(rgoe%ﬂg' 3. We recover for the stationary current the

Eifx(t’,t) depend only on the time differend@—t. To

calculate the stationary current we define in analog{3t)
19=—ie> f dE{v, (E)G, (E)+ v, (E)G(E)}.

0
E;ffiﬁxdt'z;,fx(t',oy (35) (42)

. ] ) . . In the case that the couplings to the leads have the same
which again can be calculated directly with our diagram-gnergy dependende,(E)/T . (E)=\,, ., this can be writ-
matic tr)ules in energy space. The stationary current is thefs, jn the form(which was already derived in Ref. 14
given by

I' (E)L,(E)
st_ @ @ + _ft
Ia—e§ ; JdE 2 ol on(E) PoBNfo (B~ 1. (B)]
(42)

Here we used the relation between the Green's functions

st__ _ Stgat _: stga—
|5t= |e§, PYEY legr PO . (36)

D. Green's functions G ,G. and spectral density, =G — G /2i.
After the unitary transformation the Green’s functions of
the dot electrons read IV. RESULTS
G (t,t")=—i({(c,e®)(t)(cle '®)(t")), 37 What we have done so far is to derive a diagrammatic
language that allows a systematic description of transport
G (t,t")=i((cle ') (t")(c,e'®)(t)). (38)  processes. Furthermore, we have shown how the physical

quantities of interest, the stationary probability distribution
HereG_ andG; are independent quantities since we do notand the current, can be obtained if we know the value of
assume equilibrium. For time-translational invariant systemsspecial diagrams. In this section, we will now explicitly cal-
the Green’s functions depend only on the time differenceculate the value of the corresponding diagrams.
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X1 X1 x A 4 x

X’ X ,G,E , — 2i Im ___/ + L.
D woE = () R Zix { i D[ }
X2,X2

>

Xa X2

X XX A X

FIG. 7. Irreducible self-energy obtained by attaching the open

o .
FIG. 6. Definition of¢, which denotes a part of a diagram with tunneling fine of¢ and ¢™ to the upper and lower propagators.

an open tunneling line entering from the right. ] ) )
where the pairg; ,t{ are already coupled by tunneling lines

We consider here the case of strong Coulomb repulsionunning fromt/ to t;. This amounts to a dressing of the
U, i.e., we restrict ourselves to the states witkr0,1. Dia-  tunneling linesy— y. This approximation, while neglecting
grams in which a higher occupancy occurs do not contributenany diagrams, describes well the spectral density of the dot

since they have resolvents of the ordeld 1/ at resonance points. The reason is that position and value of

In the following, the indexo labels the singly occupied the peaks of the spectral density are determined by a self-
state with spirc=1, ... M. The labely additionally allows energyo [see Eq(49)], which is calculated here in lowest-
an empty dotxy=0,1,... M. order perturbation theory ifi including the bosons. Higher

In general, we cannot sum ugll possible diagrams. orders are small for high tunnel barriers.
Therefore, we have to find a systematic criterion that dia- First, we relate the rat& ,, , to an irreducible diagram
grams should be retained and summed. labeled by¢XixX1
The simplest approximation is to neglect all diagrams X51X2
where two or more tunneling lines overlap in tinteee the neling line associated with tunneling of an electron with spin
leftmost diagram parts in Fig)2This means that we include ¢ in the junctiona carrying the energf. The line is di-
those processes that are also described by the master equeeted from the right to the left and its value together with
tion with rates obtained in lowest-order perturbation theorythe corresponding resolvent is included#nThe self-energy
(sequential tunneling which is a good description at high is then constructed by attaching the open tunneling line of
temperaturd’<T. these diagrams to the upper and lower propagdtms Fig.
In situations when sequential tunneling is suppressed by) with the result
Coulomb blockade, the lowest-order contribution to the cur-
rent arises due to cotunneling. The rates for a process in ,
which an electron enters the dot from the left lead and leaves S =20 Im dEY, >, {<X|CU|X1>¢i,:il(a,UyE)

(a,0,E) (see Fig. 6. It has an open tun-

to right one is described by diagrams with two overlapping o X1
lines (see the diagram part in the middle of Fig. 2 ,
At lower temperature the perturbative approach is not suf- —(xaleox)y by (a0 BN}
ficient. Higher-order processes become important. In a gen-
eralization to cotunneling we have to take into account irre- :2 {2a+ 3 (44)
ducible diagrams with an arbitrary number of correlated = xhx o Txhx

tunneling processes, i.e., we include resonant tunneling.
Similar to the case of metallic island$>*we proceed in

a* .
a conserving approximation, taking into account nondiagona\f\’here the current r.ateEX,‘X cgrrespond to the first and sec-
matrix elements of the total density matrix up to the differ-Ond terms, respectively. Again we have made use of the fact

ence of one electron-hole pair excitation in the leads. Thdhat @ diagram becomes the conjugate complex if we change

graphical representation of this constriction is that only dia_the vertical position of all vertices and the direction of all

grams in which any vertical line will cut at most two tunnel-

ing lines are taken into account. 0. ¢ c
We give two arguments why this class of diagrams is the L
most important one. First, since we treat the leads as large P g’o" (wo,E) = E a,0,E
equilibrium reservoirs there should be a tendency of the sys- '
tem to stay close to diagonal states. Second, our approxima- 0 0
tion contains the exact solution for the noninteracting limit 0 0 g G
U=0: if there is no electron-electron interaction in the dot, * .
electrons with different spin do not influence each other, so + D _____E._-%‘.”E
that this limit is described within our model by choosing Nl
M=1. In this case, the selected diagrams are the only con- 0 s 0 0
tributing ones. The sum of all other, more complicated, dia- 0 0 o J o
grams is zero. * DT SR N,
Furthermore, we include only boson lines between verti- +Y | D e Tt |*°F
ces that are already connected by tunneling lines, i.e., ¢ 0 = s 5 0
m
Ca(ty,to, .. ytm,ti,téa o ,trfn)QH PK(ti ), (43 FIG. 8._ G_raphic_:al representation of the self-consistent equation
i=1 for ¢ beginning with an empty dot state.
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I c . 0 © c c
G0 _ o — ' "Ts--
¢0_:0 (0.,6,E) —_ | —E__ g,f)',E 80_ o O ® = __(E__ + Z ’>g.
s s ¢ N
&0 0 0 0 0 ¢ o0
c 0 o G
b FIG. 11. In our approximation, the diagram for the irreducible
+ (I)* L7 T |acE self-energyo?(E) contains one tunneling line in addition to the
e B backward running line.
[ c 0 . . i
o 0 o s Since at most two tunneling lines are allowed at once, the
B N irreducible self-energy?(E) consists of only one tunneling
+ Z D -0 —_;.c-"oz,é,E line. We calculate all contributions, that are depicted in Fig.
c” N 11, and get
c o> 0 0
FIG. 9. Graphical representation of the self-consistent equation U‘T(E)=f dE’ v (E")
for ¢ beginning with an occupied dot state. E—-E'+i0"
tunneling and boson lines. As pointed out in Appendix C, , Yy (E')
b . . +> | dE . ——. (49
any approximation forp will lead to a current conserving = E-E'+e, —€,+i0
theory.

We construct the diagrarp by iteration(see Figs. 8 and
9). To do S0, we needl the P"agr?’“(E)’ Wh'ch Is the Propa- . at we found from intuitive arguments.
gator, while a tunneling line with energl is running in A ding t | Fi 8 and 9 lead to th if.
parallel from the right to the left. This diagram can also be ceording o our rules, Fgs. © an cad to the se
expressed as an iteration in the style of a Dyson equatioﬁons'Stent equation for the diagragi(«, o,E),
(see Fig. 10

In the spin degenerate case, this is exactly the relgtion

X"X X’ ol 7 - ’
WX;Xi(E)=w<°>X2(E)5X1,X15Xé,X2 3%(a,0,E)=m(E) y;(E)—ya(E)Z f dE
X1:X1 X1x1 (0)X1 1
+ ™, //(E)U " (E)ﬂ- (E) 00/ 1 ’
XlllEy)(g X2:X5 X51X2 X2 Xm(ﬁ*oyo(a ,o,E")
(45) .
In analogy ta3,, the self-energyr(E) denotes the sum of - 7a(E)Z E f dE'
all irreducible diagrams with a tunneling line going back- a “
ward in time. Here the free propagator in energy space is 1 “00's e
g|Ven by XE_E,+€O-!_€O.+i0+¢ O:O (a ,O',E)
1
(0)X1 =
T B TES (e —eHi07 (49 (50
Hence we can solve Eg45) and find in matrix notation the q
general relation an
7(E)=[[#(E)] '~ a(E)]"". (47) ,
Because of the restriction to two charge states, only th@ o o(@,0,E)=7(E)| =7, (E) 850
matrix elements 7’(E)=wgy(E) of =(E) and
d?(E)=0(3y4 (E) of o(E) are involved, and we deduce from B
Eq. (47 @3 | o
T (B)=0———. (49 ,
E_EU_O'U(E) - %00 ’ !
XE_Er+i0+¢ J’,O(a aUyE )
Xy X1 X % 1 b4 %1
o o “7 (B X | dE’
T = T + T c |7 T
E-=<4----4 — - Ev - .- E-=<d{----4 — - -- F - - - 1
2 R I I 2 %2 “E—E te,—e,+i0"

FIG. 10. Iteration of processes for the propagatawith a tun-

neling line running in parallel from the right to the left. X¢*o (@', d"E")|. (53)
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G.® =2i Im G2(E)=2i Im| =°(E)| P~ E de’

! t II’ !
PSg* 08 (0" [E)+ > PS,¢* 7,0 (a,0' E')
o_”

X

+2 2 P

X o4

E-E'+e, —€,+i0" '

1 (56)

FIG. 12. Graphical representation &i(E).

The stationary probabilities and the current are derived fronfs (E)=—2i Im| 7?(E)| P3+ ; f dE’
Egs.(29) and(36). To calculate the rates we specify E44)

and obtain ,
P(s)tfﬁ*gjg(a,a,E’)-i—E Pj,(ﬁ*g,:g(a,o,E’)
. - X S
Yo=2iIm, de¢>;((,:o(a,(r,E), (52 E-E +i0°
(57)
. ) 'y In the following, we discuss for transparency the effect of the
30 = 2i Imf dE¢}, o(a,0,E), (53 coupling to bosons and the presence of a magnetic field sepa-

rately.

whereas all other rates are zero.

The correlation functions can be calculated from the dia- A. Boson-assisted tunneling
grams shown in Figs. 12 and 13. We have to consider only For zero magnetic field, i.ee, = € for all o, we can per-
the latesti.e., rightmost correlated part of the diagram. The form the resummation of the corresponding diagrams for the

processes before end up with probabilRy' in a diagonal rates and the Green'’s functions analyticatigtails are given
statey. We have used the same criterion as for the calculain Appendix D) and find
tion of the density matrix with one exception. If a vertical

line lies between the external vertices, we allow a cut ot _ 4
through at most one tunneling line. Here we have used the 'aZZWeME, dE[ ¥, (E) 7,/ (E)
fact that such a vertical line will, in addition, always cut the “
virtual line connecting the external vertices. The sum of all —v,(E)y (E)]|m(E)[?, (58)
these diagrams givesvhere we can combine always two . _ o
diagrams to the imaginary part of one of them with 7(E)=7?(E). We can write this equation in a more
intuitive way by inserting the definitiofi7) for vy, ,
> — /_> ! + 1 __ e
c;®- [T ErE-n, 9-23 | dE [ QB (Tar B BN (B~ (B
— T, (EENf (BE)1-f,(E")]}, 59
Gj(E)=f dE'G;(E')P (E'—E), (55 al (B (EDN 9
where
with Toa (E,E')=MT (E)T ./ (E")

Xf dE;P*(E;—E)P™(E,—E')|m(Ey[?

(60)

can be interpreted as a transmission probability for an elec-

tron to start from reservoier with energyE and end in
X 0 L8 i reservoira’ with energyE’. From the detailed balance con-
/ dition (9) we get
t * E
+X P | D7 | T > ,
X o= T Tar’a(E,,E):eﬁ(E *E)Ta’a/(E,Er). (61)
x G 0 0

o This guarantees that the current is zero if all chemical poten-
FIG. 13. Graphical representation Gf; (E). tials of the reservoirs are identical.
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However, the interpretation of, ,, as a one-particle Defining g:quS/wé we obtain P*(E)=2,p,6(E
transmission probability in analogy to a generalization of the+ nwg), where
Landauer-Bttiker formula to inelastic interactiofsis not
correct. We see that the transmission probability still de- pn=e" 9t 2Nolwsllgnws/2Te| \(2gNo(wg)es?Te)
pends. on the Fermi.distribution functions via the sglf—energ){s the probability for the emission afi bosons with fre-
o(E) in the denominator of the propagateiE). This re- uencyws. Here Ng(wg) is the Bose function anti, the

flects the many_-part|cle_ as_pect of the electron-electron an odified Bessel function. Using E¢49) we obtairt®
electron-boson interaction in our model.

Comparing our result foll, ,» with other approaches in N
the caseM =1 38-494we see that the energy dependence of Reo(E)=2>, (Mp,— P-n)5
o(E) has been neglected in all previous treatments. We find e
that even in theM=1 case, the energy dependence of 1 E+nog—u,

o(E) cannot been neglected if the temperatiirend the - Re\If(EH T” (65
typical frequencywg of the bosons are smaller théh

Without bosons, the current formula is exact up to order o
I'2, i.e., sequential and electron cotunneling are fully taken IMma(E)=—m>, p[My" (E+nwg)+7 (E—nwg)].
into account. With bosons, cotunneling is not described cor- "
rectly since we have treated the bosons only by a dressing of (66)
the tunneling lines. This means that our approximation is noHere ¥ denotes the digamma function and we have chosen
valid in regions where the current is very small. However, atin the energy integrals a Lorentzian cutoffi&t .
resonance we believe our treatment to be correct since there The real part ofo(E) renormalizes the level position to
we expect that sequential tunneling will be just modified byhigher energies. Furthermore, it depends logarithmically on
a renormalization and broadening of the local state of the dagnergy, temperature, voltage, and frequency. These logarith-
that is described by the self-energ¢E), which is calculated mic terms are typical for the occurrence of Kondo peaks.
in lowest order inl" here. Higher orders will be small for Hence we anticipate logarithmic singularities either for
high tunneling barriers. M=2 orforp,#p_,. This includes not only the degenerate

Finally, we calculate the Green’s functions and find case but also the case of a single dot level without spin

(M=1) since the probabilities for absorption and emission
o ) R o of bosons are different. It is important to remark here that for
G (E)—_ZTT'J dE'y (E")P"(E'—E)|7(E")[? systems coupled to classical time-dependent fiélti® situ-
(62) ation is different since then both probabilities are equal. At
low enough temperatures we obtain logarithmic peaks in
o(E) at E=u,+hwg (N#0 for M=1). They lead to
G<(E)=27-rif dE'y"(E")P (E'—E)|w(E")|?, maxima of the resolventr(E) at E=pu,+nwg (n>0 for
(63) M=1, n=0 for M>1) for e<0 and atE=u,+hwg
(n<0) for e>0. The spectral densit§p4) shows resonances
In equilibrium, i.e.,x,=0 for all @, we obtain the correct at the same points but, due to the additioRal functions in
sum rule G”(E) = —exp(BE)G=(E). Furthermore, for the the integrand, they are shifted by multiples @f. This
M=1 case, particle-hole symmetry is satisfied. The spectrd?oson-assisted tunneling is completely independent from the
density has the form influence of the bosons on the self-energE).
The spectral density at different voltages for a low-lying
level e<0 is depicted in Fig. 14. Without an applied bias

in| £S
n 27T

p(E)If dE'[y"(E")P (E'—E) voltage, we obtain(for M=2) the usual Kondo peak near
the Fermi levelwhich we choose as zero enejgyhe emis-
+vy (E"PY(E'—E)]|w(E")|2 (64)  sion of bosons leads to additional resonances at multiples of

wg. ForM=1 ande<0 resonances occur for negative en-
The effect of the resonant-tunneling processes is describegtgies, and in the case>0, we find resonances at positive
by the resolventr(E) containing the self-energy(E) [Eq.  energies. In these cases, the effects are less pronounced and
(49)]. The real and imaginary parts of the self-energy expresare only visible for very low temperatures. At finite bias
energy renormalization and broadening and determine, thergoltages all peaks split and decrease in magnitude.
fore, the position and the width of the maxima in the spectral The resonances in the spectral density can be probed by

density. the nonlinear differential conductance as a function of the
To proceed we consider from now on a one-mode envibias voltageV, as shown in Fig. 15 for the cage<0. The
ronment (Einstein model with boson frequencyw,= wg . splitting of the Kondo peak leads to an overall decrease of

Experimentally realizations of this model are opticalthe spectral density in the energy randgg<eV (see the
phonond®—*C or by fluctuations of an externdlC circuit  inset of Fig. 15. For this reason, the conductance shows the
with frequency*~** wg=(LC) Y2 The results for a general well-knownt*???* maximum at zero bias. The emission of
environment can be anticipated approximately from the onebosons produces a set of symmetric satellite maxima. They
mode case by a superposition. Furthermore, we choose tloan be traced back to the fact that pairs of Kondo peaks can
special case of two reservoig=L/R and constant level merge if the bias voltage is a multiple of the boson frequency
broadeningl'/2=T"| =T'y. (see Fig. 14 This gives rise to pronounced Kondo peaks at
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' ' Gle*/h]

0.4

p(E) ATp(E)2

arp(Ey2

0.1
0.0 |

FIG. 14. Spectral density forM=2, T=Tz=0.009",
€=—2I',0=0.2, w=0.29", andEc=50I" at different voltages. FIG. 16. Differential conductance vs bias voltage for
Forv=0 there are resonances at multiplessgf, WhICh split for T=Tg=0.02", e=0, wy=0.5", andE.=50T". The curves show
finite bias voltage. Inset spectral density foM=1, a minimum at zero bias and steps at multiplesagf for a finite
T=0.00005", Tg=0.3I", e=—T', V=0,9=05,05=0.29", and  gjec4r0n-boson coupling. Inseg0): increasing voltage leads to
Ec=50r" an overall increase of the spectral density in the rgijeceV.

E=*eV/2 and thus to an increase of the spectral densit){
with bias voltage near these points.
Figure 16 shows the differential conductance ter0

ncrease of the resolvenir(E) and the spectral density
p(E) near zero energysee the inset of Fig. 16

: ) o ; Zero-bias minima are known from Kondo scattering from
with and without bosons. A striking result is that the whole magnetic impuritie2 They have been observed in recent

structure is inverted compared to the case0, and we find experiments’ and have been interpreted as two-channel
a zero-bias anomaly although the Kondo peak at zero energy scattering from atomic tunneling systéffS or by

is absent. The coupl!ng _to bosons y|eI(_js satellite step_s %nneling into a disordered met&IHere we have shown that
|eV|=nwg.. The contributions of sequential and COturmeImgzero-bias minima can also arise due to resonant tunneling via

lead, compared to resonant tunneling, only to a weak b'e.‘ﬁ')cal impurities if the level position is high enough such that

voltage dependence of the differential conductance. Th'%ve are in the mixed valence regime
shows cIeafIy_that the influence Of the_ Iogarithmic terms in Finally, we have investigated the aifferential conductance
o(E) are St!” important. The logavrithmic peaks in &) at fixed bias voltage as a function of the position of the dot
decrease V.V'th Increasing bias voltage and approach the VallI'gvel, which experimentally can be varied by a gate voltage
Ef_ E__ER i EE dls large er;]qur?h. tThuls (’;het value Of”coupled capacitively to the daisee Fig. 1Y. The result

€~ Reo(E) decreases, which in turn leads to an overallgy, a(classical pair of peaks ate|=eV/2 together with

satellites(due to emission and absorption of bospasd

Gle¥h] " " ' peaks for|e|>eV/2 (only due to absorption The energy
e jeveo dependence of Im(E) gives rise to an asymmetry of the
05 o1 1
0.5 . . p—p—
2 I
Gle/h] “
04 } 0,0 o5 o0 05 E 107 04 -0 TB=0'050)B '|= ]
Te= W, I| l|
A i
03+t \ i 1
0.3 l,' .|
— |
g—0.1 02 ,' i
0.2 1 i 1
050  -0.25 0.00 0.25 oy 0.50
T 01 a 1
\
7 \ 4 \
4 -~ =
FIG. 15. Differential conductance vs bias voltage for 0.0 i M e s
T=T=0.009", e=—2T, wg=0.24", andE.=50I". The curves -5 -10 -5 0 5 10 ¢ 15
show a maximum at zero bias and satellite maxima at multiples of T

wg for a finite electron-boson coupling. Inseg=€0): increasing
voltage leads to an overall decrease of the spectral density in the FIG. 17. Differential conductance as a function ef for
range|E|<eV. T=0.129", eV=15I', g=0.3, wg=2.5I", andE-=250".
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peak heights. The peak at=¢eV/2 is higher than the one at Gleth
e=—eVi2 since |Imo(E)|=n|My*(E)+vy (E)| s — —
smaller for higher energie@xcept forM =1 when particle- j B0 Tesla B=0.85 Tesla
hole symmetry holds This significant effect is due to the 45
broadening of the spectral density by quantum fluctuations.

0.5 |

B. Magnetic-field dependence

In this section we discuss the effect of an applied mag- 03 |
netic field and do not take into account the coupling to

bosons. Again we consider the case of two reservoirs and
constant level broadenings. Since the energy le¥glare

now spin dependent, we can no longer solve the self-
consistent equations analytically but have to solve them nu-

0.7

0.5

B=1.7 Tesla

B=2.55 Tesla

merically.

We find Kondo resonances in the spectral dengjt¢E)
at energieE=u,+ €, — €, with ¢’ # ¢. This is due to the
fact that the correlation function§; (E) and G_ (E) are
mainly determined by the resolvent’(E) [see Eqs.56)
and (57)], which contains, via the self-energy’(E) loga-
rithmic singularities at the corresponding energies,

Ec
27T
Ete,—€,— 1y,
27T

In

r,
Res’(E)=2 5~ 2
a o' #o

el

Imo’(E)=—m . (68

Y (E)+2 ¥ (Ete,—€,)

From Eq.(42) we see that only energies within the win-

dow defined by the difference of the Fermi functions contrib-
ute to the current. For this reason, there is no Kondo-assistdg€t"y &c
tunneling at low transport voltage but sets on if transport®

voltage and level splitting are equal. Therefore, for low-lying

037

-0.5 0.0 -0.5

vV{mV)

0.5 0.0

vimV)

0.5

FIG. 18. Differential conductance vs bias voltage for
T=4.3 peV, €,(B=0)=-5.2 meV,['=3.4 meV,a,=0.33, and
E-=30 meV. The circles are experimental data from Ref. 24.

given in Ref. 24 using perturbation theory since we have
taken into account nonperturbative effects, which are obvi-
ously important here.

The model proposed by the authors of Ref. 24 explains
the broad peaks at large voltages by the matching of the
energies of the empty and the singly occupied dot. Our cal-
culations for this case, however, lead to a broader and lower
peak for positive voltages in comparison with experiment
(see Fig. 19 We think, therefore, that due to the capacitance
asymmetry the system becomes doubly occupied before the
empty state is energetically favorable. The capacitance asym-
makes then the corresponding resonance peak
harper. An energy-dependent transparency of the barriers
could then explain the different heights. A generalization of

levels the conductance peak at zero bias found in Sec. Iv RUr theory to situations, where multiple occupancy of the dot
now splits up into two peaks separated by the twice the levef Important, is currently under way and will be presented

splitting** (see Fig. 18

elsewhere.

Ralph and Buhrman recently measured Kondo-assisted

tunneling via a single-charge trap of a point contact tunnel 1.0 T T
barrier>* We follow the model proposed by the authors in-  Gje?/h]
terpretating the experiment as a realization of the Anderson 08

model with strong Coulomb repulsion such that double oc-
cupancy does not occur. However, we think that the interac-
tion energyU and not the conduction bandwidth is the rel-
evant cutoff in this situation.

A comparison of the experiment and our theory is given
in Figs. 18, 19, and 20. We find good agreement for the
peaks induced by Kondo-assisted tunneling processes if we
set the cutoffU=230 meV. The authors suspect the single-
charge trap to be a dangling bond, for which they expect
U =100 meV. Our result agrees in the order of magnitude; it
gives a hint, however, that the state may have a larger exten-
sion than an ordinary dangling bond or that there is screening
due to the copper electrodes or both. The peaks for larger
magnetic fields show, however, a stronger broadening than f|G.

0.6

0.4

0.2

[0}

¢}
o]
Q

0.0

-15

19. Differential

V[mV]

conductance vs bias voltage for

predicted from our calculation. Nevertheless, our theory reT=4.3 ueV, ¢,=—5.2 meV,B=0, I'=3.4 meV,a,=0.33, and
produces the experimental curves much better than the filS.=30 meV. The circles are experimental data from Ref. 24.
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nonperturbative calculation of transition rates between dif-

2
Grole/hl ferent states of a local strongly correlated system coupled to
0.9 v fermionic or bosonic baths. We present systematic rules of
how to set up well-defined perturbation expansions for the
rates in terms of the tunneling matrix elements between dot
0.8 and leads. The formally exact rates are used to calculate
occupation probabilities and the current from master equa-
07} tions and current formulas that are intuitively obvious. The
method has a wide applicability, ranging from the study of
arbitrary dot level structures to the investigation of macro-
06 | scopic quantum coherence phenomena. The latter can arise
from the time evolution of nonstationary initial states or by
05 | the application of explicitly time-dependent fields.
’ The usage of real-time methods to understand low-
temperature behavior of strongly correlated fermions in ei-
0.4 4 ther equilibrium or nonequilibrium situations is a rather new

100 TlueV] 1000 field and has not yet been extensively applied. Compared

with the conventional methods in imaginary tiftethey of-

FIG. 20. Maximal linear conductance vs temperature forfer the possibility to set up new approximation schemes. In
€,=—5.2 meV,B=0, '=3.4 meV,a,=0.33, andEc=30 meVv. this paper we have performed a nonperturbative resumma-
The circles are experimental data from Ref. 24. tion of higher-order coherent tunneling processes to calculate

transition and current rates analytically for temperatures

Finally, we consider the case when the energy level ismaller than the intrinsic broadenidg Although the crite-
above the Fermi energies of the leads. The zero-bias minkion for considering certain diagrams is yet not motivated by
mum found in Sec. IV A splits for finite magnetic field into the usage of a “small” parameter, the diagrams are selected

two minima separated by twice the level splittitgee Fig. in a systematic way. We have chosen all diagrams that keep
21). the total density matrix as close as possible to the diagonal

state up to one electron-hole pair excitation in the reservoirs.
This is reminiscent of the technique applied within a varia-
tional wave function Ansat? but here formulated on the

In conclusion, we have studied low-temperature transporbasis of density matrices for nonequilibrium systems at finite
in the nonequilibrium Anderson model with bosonic interac-temperatures. Furthermore, there are many possibilities to
tions. The latter yield Kondo resonances in the spectral derimprove our approximation by considering more diagrams
sity that can be probed by the measurement of the nonlinedry analytical or numerical methods. Simple limiting cases as,
differential conductance. Both the gate and bias voltage de=.g., the noninteracting case are already exactly incorporated
pendence are important. Quantum fluctuations due to resavithin our approximation. Since the strongly interacting case
nant tunneling yield zero-bias anomalies as a function of thgives also at least qualitatively good results, our method may
bias voltagewhich can be changed from maxima to minimabe a good candidate to cover the whole range from weak to
by varying the gate voltage-urthermore, we discussed the strong interaction within the same approximation scheme.
splitting of the zero-bias anomaly by an external magnetic
field and found good agreement with recent experiments.

V. CONCLUSION

We have presented a real-time approach that is based on a ACKNOWLEDGMENTS
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0.25
APPENDIX A: RULES IN TIME SPACE

Each term of the expansion E@.7) with operatorsA; of
the form Eq.(18) can be calculated according to the follow-

0.20
ing rules.
(1) Draw all topological different diagrams with directed
tunneling lines connecting pairs of internal or external verti-
0.15 . . . L . . ces containing lead electron operators. Assign a reservoir
-0.02 -0.01 0.00 0.01 gy 0.02 index« and a spin indexr to each of these lines. Connect all

T vertices containing boson operators in all possible ways by
boson lines. Assign stateg and the corresponding energy
FIG. 21. Differential conductance vs bias voltage for €, to each element of the Keldysh contour connecting two
T=0.00T, €,=0.1"'+A€/2, andEc=10I". vertices.
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—iAE (11— 7))

(2) The propagation fromt’ to t with t'<<t on the 0 0 0 .
drlf dry- - f d7min_1€° e

Keldysh contour implies a factor expie,(t—t")].
(3) The statey that is assigned to the leftmost part of the
diagram implies a factoP?( from the initial density matrix. X @ 18Ea(r2=73) . . @ IAEmin-17min-1
Each vertex containing a dot operaBugives rise to a matrix
element({x’|B|x), where y (x’) is the dot state entering ey 1 1 1
(leaving the vgrtex with respect fto the. Ke!dysh contqur. =1 AE,+i07 AE,+i07  AEn,, ,+i0""
(4) Each directed tunneling line with index running
fromt’ to t implies (—1)"y%(t,t"), with v being the num- (B1)
ber of electron operatofglue to external verticg®n the part

of the Keldysh contour from” to t. The line corresponds 10 Here AE; is the difference of all energies going to the left
a tunneling process in reservair Each boson line connect- minus, all energies going to the right in each segment limited
ing vertices at times andt’ implies P(t,t") if the phase by 7; andr,, . This includes the energies of the propagators
factors at these vertices have different sign. Otherwise, thand, if present, the energies of the tunneling, boson, and
boson line has the value(t,t') . _ virtual lines. The convergence factef ™ is related to an
(5) Each diagram carries a prefactor()™(—1)°, where  ggiapatic switching on of the tunneling tetiry . The factor
m is the total number of internal vertices anthe number of  jm+n-1 cancels with the factor<i)™ from rule 4 above
crossings of tunneling lines. There may be another minugygether with the prefactori)"~* from the definition Eq.
sign due to the order of dot electron operators, whichB1). Therefore, the corresponding rules in energy represen-
emerges from the matrix elementg’|B|x) discussed in tation read as follows.
rule 3. (1") Draw all topologically different diagrams with fixed
(6) Integrate over the internal times along the Keldyshordering of the vertices along the real axis, i.e., irrespective
contour without changing their ordering and sum over theon which branch they are. The vertices are connected by
reservoir and spin indices. tunneling and boson lines as in time space. In addition to the
We emphasize that these diagrammatic rules hold for arenergye, assigned to the propagators we assign an energy
bitrary dot HamiltoniangHp, =3, € |x)(x|, i.e., the stateg E to each tunneling line. For each boson line choose a direc-
can be many-body eigenfunctions lgf, containing compli- t|on.(arb|trarlly) and assign als;_o an Qner@/ The external
i/ertlces are connected by virtual lines with energkes

71 m+n-2

cated correlations due to Coulomb interaction, magnetic. -
=2,...,n) as described above.

fields, geometric setups, etc. Such eigenfunctions have be

calculated for special situatioi€® and can be used as an .:(12 2) For ri?—cr?—sf gz:srilt ndegvigsgl?/?nf fog:jigvlt)h
input for our diagrammatic language. In this paper, howeverJ, R ; 9 . ] N

. o where AE; is the difference of the leftgoing energy minus
we will concentrate ourselves on the dot Hamiltoni@n, J

L . X the rightgoing energyincluding the energies of the tunnel-
where the stateg are trivially known. For this special case, ghgoing 9y 9 g

. , e ing, boson, and virtual lings
the matrix element$y’|B|x) from rule 3 can only give rise (3') See rule 3 in time space.

to minus signs, whereas they can h(;':lve a more pronounced (4') For each coupling of vertices write{1)"y7 (E) if
influence in more general situatioffs’ _ , the tunneling line of reservoirr is going backward and

Furthermore, we note Fhat the same dlagrammgtlc 'ruIeE_ 1)”y. (E) if it is going forward with respect to the closed
even hold for arbitrary time-dependent dot Hamiltoniansgme nath(definition ofv see rule 4 in time spageFor each
Hp(t) that are not diagonal in the statgsIn this case one  poson line writeP* (E) if it is going backward andP ™ (E) if
has to assign two statgs and x to the beginning and the it is going forward with respect to the closed time path.
end of each element of the Keldysh contour, respectively. (5) The prefactor is given by-{1)°(—1)¢, whereb is
The factor exp—ie (t—t')] from rule 2 is then replaced by the total number of internal vertices on the backward propa-
the matrix elemen{x|Up(t.t")|x"), whereUp denotes the  gator andt the number of crossings of tunneling lines. There
time evolution operator dfl, andt (t') are the times at the may be another minus sign due to the order of dot electron
end (beginning of the element of the Keldysh contour. operators that emerges from the matrix elemémntyB|x)

discussed in rule 3.
(6') Integrate over the energies of tunneling and boson

APPENDIX B: RULES IN ENERGY SPACE lines and sum over the reservoir and spin indices.
We obtain the diagrammatic rules in energy space by ex-
panding the expectation value in E§1) and then perform- APPENDIX C: CURRENT CONSERVATION
ing the time integrals. We order the times of all internal ) )
(m) and external verticesnj from left to right and label ~ In this appendix we prove E‘q3‘2 and current conserva-
them byr; with j=1,2,. .. ,m+n (with 7, ,=0), irrespec- tion. Let us consider any dlagramxf’,x(t’,t) in the expres-

tive on which branch they are. The Keldysh contour integralssion
are now written as ordinary integrals. This includes a minus
sign for each internal vertex on the backward propagator. If
the initial density matrix is diagonal we then encounter ex- ap (i
_ y g > 2 pE (). (CD
pressions of the type X P
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By changing the vertical position of the rightmost vertex we  APPENDIX D: ANALYTIC SOLUTION FOR ZERO
get a new diagram that has up to a minus sign the same value MAGNETIC FIELD
as the old diagram from which the new one was constructed. For zero maanetic field. i.ee — e for all o we define
If the rightmost tunneling of the old diagram line has a res-,[h it ?E — A (E T E‘T= o(E d
ervoir index different fromx, then the new diagram is of the € quantitiesr(E)=7(E), o(E)=0?(E), an
form 2;‘:5")(,,, so that the sum of all these contributions in Eq.
(C1) is zero. The other diagrams are divided into two classes: 4*t(E)=¢3%(a,0,E), ¢, (E)=>, ¢%J (a0’ ,E),
in one (the othey class, the rightmost tunneling line of each ’ o ’
diagram enteréleave$ the forward propagator or leavésn- (D1)
ters the backward propagator. The change of the vertical
position of the rightmost vertex then increageecreases Which are independent af. We get the integral equations
the value ofp by one, so that the new diagram is of the form
2;”?;,,1. Furthermore, the old and the new diagram belong to
different classes. After changing the position of the rightmost
vertex of only one class and then shifting the summation 1
index p in Eg. (C1), we obtain exactly all diagrams of X—— $*(E),
=25, which proves Eq(34) E-E'+i0

The conservation of probability follows directly from the (D2)
master equation(26). Summation overy together with
3, 3,0,(t,1)=0 yields where y,(E)=1v,(E)+My,(E) and ¢=(E)==,¢, (E).
Summing overa and taking the imaginary part, we obtain
the solution

[E—e—a(B)]¢, (E)=%+7,(E)- va(E)j dE’

d
}X) JiPuh=0. (C2)

+

+ )\_
|m¢>‘(E)=1wTy(E)IW(E)I2, (D3)
To prove current or charge conservation we first recog-

nize that where we used the definitionsy=(E)==,v, (E),

Y(E)=y (E) +My"(E),
S x-S ow, @@
N(O=p NGO S p+1 Ki:JdEYi(E)IW(E)IZ, >\=J dE|m(E)|2.

D4
where N(y) is the particle number on the dot for state (b4

This relation follows directly by changing the vertical posi- Fyrthermore, we obtain directly fronD2) a relation be-
tion of the rightmost vertex. tween g, and ¢,

After multiplication of the master equatiof26) with
—e andN(y) and summation ovey, we use Eqs(33) and ey +
(C3), insert the current formulé&32), and find the conserva- Y(B)da(B)=7u(B) 4~ (E)
tion law for the total charge flowing into the dot +7(E)[Y(E) v (E)— ¥ (E) y.(E)].

(DY)
S 1= Q) (C4)
x dt ’ Using (52), the current rates follow from 3§
=2iMfdEIm¢,(E) and 3%5=2i[dEIm¢,(E). With
whereQ=—eN=—eX N(x)P, is the charge on the dot. In EQs.(D3) and(D5), the result is
the stationary and time-independent case(Ed) reduces to
the conservation of the tunneling current

2a+__2 : E 2

18'=0, C _ + N _
; a (€5 X[y (E)y.(E)—vy (Em(E)]}, (D6)

whereas for the general case the right-hand side of E4).
is minus the sum over all displacement currents flowing in
the reservoirs.

An important result of this appendix is that any approxi-
mation for the rates is current conserving provided that the - Yoey ot -
condition Eq.(C3) is satisfied. This means that we always *Ly (B)ya(B)=y (E)V“(E)]}' ©7)
have to consider both vertical positions of the rightmost ver-
tex. where\ ,= [dEy(E)|=(E)|?.

A
§B=2wi[T)\a—MJ dE|m(E)|?
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Summing the current rates overw and using
S A =N +MrT=1, we get the total transition ratésote
that>?, ;=0)

+

So00=—2 'M)\ 3 50=2 i
0,0~ 7l T, a0 7T|T

(D8)
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and the solution of the stationary master equaf®®) reads
P3=\", PJ=AT with \"+MAT=1. (D9)

The stationary current follows fron86) 15=—ie[P§=g}

+MPES2%] (note tha ;“,J“’U=O), which gives as the final

g,

result Eq.(58).
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